JPH0975740A - Catalyst for production of methacrylic acid and production of methacrylic acid using the same - Google Patents

Catalyst for production of methacrylic acid and production of methacrylic acid using the same

Info

Publication number
JPH0975740A
JPH0975740A JP8180414A JP18041496A JPH0975740A JP H0975740 A JPH0975740 A JP H0975740A JP 8180414 A JP8180414 A JP 8180414A JP 18041496 A JP18041496 A JP 18041496A JP H0975740 A JPH0975740 A JP H0975740A
Authority
JP
Japan
Prior art keywords
catalyst
raw material
methacrylic acid
hours
methacrolein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8180414A
Other languages
Japanese (ja)
Other versions
JP3482476B2 (en
Inventor
Junya Yoshizawa
純也 吉沢
Toshiaki Ui
利明 宇井
Koichi Nagai
功一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP18041496A priority Critical patent/JP3482476B2/en
Publication of JPH0975740A publication Critical patent/JPH0975740A/en
Application granted granted Critical
Publication of JP3482476B2 publication Critical patent/JP3482476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To obtain a catalyst having higher reactivity and selectivity and a longer service life than the conventional catalyst. SOLUTION: This catalyst is a partially neutralized salt of a hetero-polyacid represented by the formula, Pa Mob Vc Sbd Cue Xf Og . Starting materials for this catalyst except starting material for V and/or starting material for Sb are mixed, dissolved or suspended in water and heated at 80-200 deg.C for 1-24hr in the presence of ammonium radicals, starting material for V and/or starting material for Sb is added, they are heated again at 80-200 deg.C for 1-24hr and then firing is carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は気相接触酸化による
メタクリル酸の製造に用いられるヘテロポリ酸系触媒の
改良に関する。詳しくは、メタクロレイン、イソブタン
などを分子状酸素で気相接触酸化してメタクリル酸を製
造するために用いられるヘテロポリ酸系触媒の改良に関
する。
TECHNICAL FIELD The present invention relates to an improvement in a heteropolyacid catalyst used for the production of methacrylic acid by vapor phase catalytic oxidation. Specifically, it relates to improvement of a heteropolyacid catalyst used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein, isobutane and the like with molecular oxygen.

【0002】[0002]

【従来の技術】メタクロレインを気相接触酸化しメタク
リル酸を製造するための触媒は数多く提案されており
(例えば、特開昭50−101316号公報、特開昭5
7−177347号公報、特開平4−63139号公
報、特開平5−31368号公報、特開平5−3136
8号公報、特開平6−91172号公報など)、すでに
その一部は工業的規模の生産に用いられている。
2. Description of the Related Art Many catalysts have been proposed for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein (for example, JP-A-50-101316 and JP-A-5-101316).
7-177347, JP-A-4-63139, JP-A-5-31368, and JP-A-5-3136.
No. 8, JP-A-6-91172, etc.), a part of which is already used for industrial scale production.

【0003】またイソ酪酸の酸化脱水素(例えば、特開
昭57−72936号公報など)、イソブチルアルデヒ
ドの酸化(例えば、特開昭57−144238号公報な
ど)によるメタクリル酸を製造するための触媒もよく知
られている。さらにイソブチレンまたは第三級ブタノー
ルを酸化してメタクリル酸、メタクロレインを製造する
ための触媒(特開昭55−127328号公報など)、
最近ではイソブタンを直接酸化してメタクリル酸、メタ
クロレインを製造する触媒(特開平2−42032号公
報など)も提案されている。
A catalyst for producing methacrylic acid by oxidative dehydrogenation of isobutyric acid (for example, JP-A-57-72936) and oxidation of isobutyraldehyde (for example, JP-A-57-144238). Is also well known. Further, a catalyst for producing methacrylic acid or methacrolein by oxidizing isobutylene or tertiary butanol (for example, JP-A-55-127328),
Recently, catalysts for directly oxidizing isobutane to produce methacrylic acid and methacrolein (JP-A-2-42032, etc.) have also been proposed.

【0004】これらの反応に用いられる触媒としては、
モリブデン及びリンを主成分とするヘテロポリ酸および
その塩の構造を有するものが有効であることが知られて
おり、組成に関してはバナジウムによるモリブデンの一
部置換、銅、アンチモン、ヒ素などの助触媒成分の添
加、調製法に関しても環状アミンの使用、加熱熟成(例
えば、特開平4−257539号公報など)等、種々の
改良がなされている。
The catalyst used in these reactions is
It is known that those having a structure of a heteropolyacid containing molybdenum and phosphorus as the main components and salts thereof are effective. Regarding the composition, partial replacement of molybdenum with vanadium, co-catalyst components such as copper, antimony and arsenic Regarding the addition and preparation method of the above, various improvements have been made such as the use of cyclic amine, heat aging (for example, JP-A-4-25739).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
従来の触媒は、既に実用化されているメタクロレインの
酸化においても反応収率(活性と選択性)と触媒寿命と
の両方を必ずしも充分に満足させるものではない。例え
ば、アクロレインからアクリル酸を製造する触媒と比
べ、反応の選択性が悪いばかりでなく反応活性と寿命も
悪く、従って大量の触媒が必要となり、設備費用と触媒
コストの負担が大きいのが現状である。イソブタン、イ
ソ酪酸などを原料とする場合も未だ工業化できていない
のは、触媒の性能が充分でないことが大きな理由の一つ
である。本発明の課題は現状の触媒を改良し、より高い
反応活性、選択性と長い触媒寿命を合わせもつ触媒を提
供することにある。
However, these conventional catalysts do not necessarily satisfy both the reaction yield (activity and selectivity) and the catalyst life even in the oxidation of methacrolein that has already been put to practical use. Not a thing. For example, compared with a catalyst that produces acrylic acid from acrolein, not only the selectivity of the reaction is poor, but also the reaction activity and life are poor, and therefore a large amount of catalyst is required, and the burden of equipment cost and catalyst cost is large at present. is there. One of the main reasons why the performance of the catalyst is not sufficient is that it has not been industrialized even when using isobutane, isobutyric acid or the like as a raw material. An object of the present invention is to improve the existing catalyst and provide a catalyst having higher reaction activity, selectivity and long catalyst life.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記の課題
を達成するために、ヘテロポリ酸系の触媒の改良につい
て鋭意検討した結果、特定の触媒組成をもち特定の方法
で調製した触媒が、上記の目的を達成することを見いだ
し、本発明を完成するに至った。
Means for Solving the Problems In order to achieve the above objects, the inventors of the present invention have made extensive studies on improvement of a heteropolyacid catalyst, and as a result, found that a catalyst having a specific catalyst composition and prepared by a specific method was used. The inventors have found that the above-mentioned objects are achieved and completed the present invention.

【0007】すなわち、本発明は一般式 PaMobV
cSbdCueXfOg(式中、P、Mo、V、Sb、
Cu、Oはそれぞれリン、モリブデン、バナジウム、ア
ンチモン、銅および酸素を表し、Xはルビジウム、セシ
ウム、及びタリウムからなる群より選ばれた少なくとも
一種の元素を表し、また添字a、b、c、d、e、f及
びgは各元素の原子比を表し、b=12としたとき、
a、c、d、e、fはそれぞれ0(ゼロ)を含まない3
以下の値をとり、gは他の元素の原子価及び原子比によ
って決まる値を表す)で示されるヘテロポリ酸の部分中
和塩であって、触媒原料のうち、バナジウム原料および
/またはアンチモン原料を除く触媒原料を水に溶解また
は懸濁させ、アンモニウム根が存在する状態で80〜2
00℃の温度で1〜24時間加熱処理した後、バナジウ
ム原料および/またはアンチモン原料を添加し、再度8
0〜200℃の温度で1〜24時間加熱処理し、焼成し
てなるメタクリル酸製造用触媒を提供するものである。
That is, the present invention has the general formula PaMobV
cSbdCueXfOg (in the formula, P, Mo, V, Sb,
Cu and O respectively represent phosphorus, molybdenum, vanadium, antimony, copper and oxygen, X represents at least one element selected from the group consisting of rubidium, cesium and thallium, and subscripts a, b, c and d. , E, f and g represent the atomic ratio of each element, and when b = 12,
a, c, d, e, f do not include 0 (zero) respectively 3
The following values are taken, and g represents a value determined by the valence and atomic ratio of other elements), which is a partially neutralized salt of a heteropoly acid, wherein a vanadium raw material and / or an antimony raw material are The catalyst raw material to be removed is dissolved or suspended in water, and in the presence of ammonium root, 80 to 2
After heat treatment at a temperature of 00 ° C. for 1 to 24 hours, a vanadium raw material and / or an antimony raw material is added, and the temperature is again 8
A catalyst for producing methacrylic acid, which is obtained by heat-treating at a temperature of 0 to 200 ° C. for 1 to 24 hours and calcining.

【0008】更に本発明は上記メタクリル酸製造用触媒
の存在下に、メタクロレインを分子状酸素によって気相
接触酸化することを特徴とするメタクリル酸の製造方法
を提供するものである。
Further, the present invention provides a method for producing methacrylic acid, which comprises subjecting methacrolein to gas-phase catalytic oxidation with molecular oxygen in the presence of the above-mentioned catalyst for producing methacrylic acid.

【0009】[0009]

【発明の実施の形態】本発明の触媒の基本的な構造は従
来からよく知られているリンモリブデン酸のルビジウ
ム、セシウム、タリウムによる部分中和塩であるが、さ
らに必須成分として、バナジウム、アンチモンおよび銅
を含んでいる。これらの元素が有効であることは既に知
られているが、これらの組成の組み合わせと調製法との
関係を種々検討した結果、組成に関しては以下のことが
判明した。
BEST MODE FOR CARRYING OUT THE INVENTION The basic structure of the catalyst of the present invention is a conventionally well-known partially neutralized salt of phosphomolybdic acid with rubidium, cesium, and thallium. Further, vanadium and antimony are essential components. And contains copper. It is already known that these elements are effective, but as a result of various studies on the relationship between the combination of these compositions and the preparation method, the following has been found regarding the composition.

【0010】まずバナジウムを含まずアンチモンを含む
触媒は、反応選択性は高いが、長時間の使用により反応
率が低下しやすい欠点を持っており工業的使用に耐える
ものではない。一方、アンチモンを含まずバナジウムを
含む触媒は従来の調製法では反応選択性、寿命ともにあ
る程度のものができるがともに充分ではない。また、バ
ナジウム、アンチモンをともに含む触媒においても従来
の調製法では反応活性、寿命とも悪いものしか得られな
い。反応選択性と活性、寿命を合わせ持つためには、バ
ナジウム、アンチモンをともに含みさらに本発明の特別
な調製法を用いる必要がある。また、銅は反応活性の改
良の点で必須である。その他、ヒ素、銀、鉄、コバル
ト、ランタン、セリウムなどを任意成分として含んでい
てもよい。
First, the catalyst containing antimony but not vanadium has a high reaction selectivity, but has a drawback that the reaction rate tends to decrease with use for a long time and is not durable for industrial use. On the other hand, a catalyst containing vanadium but not antimony can provide some degree of reaction selectivity and life with conventional preparation methods, but it is not sufficient. Further, even in the case of a catalyst containing both vanadium and antimony, only a catalyst having a poor reaction activity and a short life can be obtained by the conventional preparation method. In order to have the reaction selectivity, the activity and the lifetime, it is necessary to use both the vanadium and the antimony and to use the special preparation method of the present invention. Also, copper is essential in terms of improving reaction activity. In addition, arsenic, silver, iron, cobalt, lanthanum, cerium, etc. may be contained as optional components.

【0011】触媒調製に用いる原料としては各元素の酸
化物、硝酸塩、炭酸塩、アンモニウム塩、水酸化物、ハ
ロゲン化物などを組み合わせて使用することができる。
例えば、モリブデン原料としてはパラモリブデン酸アン
モニウム、三酸化モリブデン、塩化モリブデン等、バナ
ジウム原料としては、メタバナジン酸アンモニウム、五
酸化バナジウム、塩化バナジウム等、アンチモン原料と
しては、三酸化アンチモン、五酸化アンチモン等が使用
できる。また、後に述べる懸濁物の加熱処理の段階でア
ンモニウム根を含んでいることが必要である。よって、
アンモニウム塩を含まない場合にはアンモニアが必要で
ある。
As the raw material used for preparing the catalyst, a combination of oxides, nitrates, carbonates, ammonium salts, hydroxides and halides of each element can be used.
For example, molybdenum raw materials include ammonium paramolybdate, molybdenum trioxide, molybdenum chloride, etc., vanadium raw materials include ammonium metavanadate, vanadium pentoxide, vanadium chloride, etc., and antimony raw materials include antimony trioxide, antimony pentoxide, etc. Can be used. Further, it is necessary to contain ammonium root at the stage of heat treatment of the suspension described later. Therefore,
Ammonia is required without ammonium salts.

【0012】本発明に於ける触媒の調整方法は、触媒原
料のうち、初めにバナジウム原料および/またはアンチ
モン原料を除く触媒原料を水に溶解または懸濁させ、ア
ンモニウム根が存在する状態で加熱処理(一段目)し、
次いでバナジウム原料および/またはアンチモン原料を
添加し、さらに加熱処理(二段目)を行うことを必須と
する。すなわち、バナジウム原料および/またはアンチ
モン原料は一段目の加熱処理に際しては触媒原料中には
無添加で、二段目の加熱処理に際して全量添加であって
もよく、或いは一段目の加熱処理に際してはバナジウム
原料またはアンチモン原料の何れかを添加存在せしめ、
二段目の加熱処理に際してはバナジウム原料および/ま
たはアンチモン原料を添加存在せしめる方法であっても
よく、さらには、各段に於いてバナジウム原料および/
またはアンチモン原料を分割添加存在せしめる方法であ
ってもよい。より好ましくは一段目の加熱処理に際し、
触媒原料中にバナジウム原料またはアンチモン原料を添
加存在せしめ、二段目の加熱処理に際しては、一段目に
於いて少なくとも未添加のバナジウム原料またはアンチ
モン原料を添加存在せしめて、加熱処理する方法が推奨
される。水溶性の原料は予め別に水に溶解して用いても
よいが、粉体のまま仕込んでも問題ない。
The method of preparing a catalyst according to the present invention is carried out by first dissolving or suspending a catalyst raw material, excluding vanadium raw material and / or antimony raw material, in water and subjecting it to heat treatment in the presence of ammonium root. (First step),
Next, it is indispensable to add vanadium raw material and / or antimony raw material, and further perform heat treatment (second step). That is, the vanadium raw material and / or the antimony raw material may not be added to the catalyst raw material during the first heat treatment and may be added in the total amount during the second heat treatment, or vanadium may be added during the first heat treatment. Add either raw material or antimony raw material,
In the second heat treatment, a method of adding a vanadium raw material and / or an antimony raw material may be added, and further, a vanadium raw material and / or an antimony raw material may be added in each stage.
Alternatively, a method may be used in which the antimony raw material is added separately. More preferably during the first-stage heat treatment,
It is recommended to add vanadium raw material or antimony raw material to the catalyst raw material, and at the time of the second stage heat treatment, at least the non-added vanadium raw material or antimony raw material should be added in the first stage and heat treatment is recommended. It The water-soluble raw material may be separately dissolved in water before use, but it may be charged as a powder without any problem.

【0013】加熱処理は一段目および二段目のいずれに
於いても、約80〜約200℃、好ましくは約100〜
約150℃で、約1〜約24時間、好ましくは約10〜
約20時間行われる。温度が約80℃より低い場合や時
間が1時間より短い場合には反応が充分に進まず、メタ
クリル酸選択率の低い触媒となり好ましくない。温度が
約200℃を超えても、また時間が約24時間を超えて
もよいが、それに見合った効果は得られない。
The heat treatment in both the first and second steps is about 80 to about 200 ° C., preferably about 100 to about 100 ° C.
About 150 ° C., about 1 to about 24 hours, preferably about 10
It takes about 20 hours. If the temperature is lower than about 80 ° C. or if the time is shorter than 1 hour, the reaction does not proceed sufficiently and the catalyst has a low methacrylic acid selectivity, which is not preferable. The temperature may exceed about 200 ° C. or the time may exceed about 24 hours, but the corresponding effect cannot be obtained.

【0014】加熱処理して得られる懸濁液を蒸発乾固す
ると、得られる固体はX線回折、赤外吸収からP:Mo
の比が1:9のいわゆるドーソン型のヘテロポリ酸の塩
となっていることがわかる。これを空気などの酸化性ガ
ス、窒素などの不活性ガス、または水素などの還元性ガ
ス中で、180〜350℃程度に加熱するとP:Moの
比が1:12のいわゆるケギン型ヘテロポリ酸の塩に変
化する。アンモニウム根を含んで調製しているのでこの
段階の固体は、ヘテロポリ酸のX成分(ルビジウム、セ
シウムなど)とアンモニウムとの混合塩になっている。
このままでは固体酸の性質がなく活性が低いので焼成し
て活性化する必要がある。窒素などの不活性ガス中で約
400〜500℃、好ましくは約420〜450℃の温
度で焼成する。これによりほぼ全てのアンモニウム成分
が脱離しプロトン酸となり高活性を発現する。空気中で
焼成した場合は、400℃を超える場合にはヘテロポリ
酸の分解、焼結が起こり活性が低くなり、一方、400
℃未満ではアンモニウム根が多く残るためにやはり活性
が低い。不活性ガス中で焼成した後、空気中で400℃
未満の温度で焼成することは差し支えない。触媒成分中
にX成分が存在しない場合には得られる触媒の熱安定
性、表面積が低下する。
When the suspension obtained by the heat treatment is evaporated to dryness, the solid obtained is found to be P: Mo from X-ray diffraction and infrared absorption.
It can be seen that a salt of so-called Dawson type heteropolyacid having a ratio of 1: 9 is formed. When this is heated to about 180 to 350 ° C. in an oxidizing gas such as air, an inert gas such as nitrogen, or a reducing gas such as hydrogen, a so-called Keggin-type heteropoly acid having a P: Mo ratio of 1:12 is obtained. Change to salt. Since it is prepared by containing the ammonium root, the solid at this stage is a mixed salt of the X component of the heteropolyacid (rubidium, cesium, etc.) and ammonium.
As it is, it does not have the property of a solid acid and its activity is low, so it is necessary to activate it by firing. Baking at a temperature of about 400 to 500 ° C., preferably about 420 to 450 ° C. in an inert gas such as nitrogen. As a result, almost all of the ammonium components are eliminated to form a protonic acid, which exhibits high activity. When firing in air, when the temperature exceeds 400 ° C, decomposition and sintering of the heteropolyacid occur and the activity decreases.
When the temperature is lower than ℃, the activity is low because many ammonium roots remain. After firing in inert gas, 400 ℃ in air
There is no problem in firing at a temperature below. When the X component is not present in the catalyst component, the thermal stability and surface area of the obtained catalyst are lowered.

【0015】このようにして得られた本発明の触媒はメ
タクロレインの酸化をはじめ種々の原料の酸化によるメ
タクリル酸の製造に用いられるが、使用に当たっては触
媒単味、またはアルミナ、シリカ、シリコンカーバイド
などの担体に担持または希釈混合した形で用いられ、固
定床の場合は、円柱状、球状、リング状などに成形して
用いられる。流動床、移動床などの反応形式を用いるこ
ともできる。
The catalyst of the present invention thus obtained is used for the production of methacrylic acid by the oxidation of various raw materials including the oxidation of methacrolein. In use, the catalyst alone or alumina, silica, silicon carbide is used. It is used in the form of being supported on a carrier such as or being diluted and mixed, and in the case of a fixed bed, it is used after being formed into a columnar shape, a spherical shape, a ring shape or the like. A reaction type such as a fluidized bed or a moving bed can also be used.

【0016】本発明の触媒を用いて、メタクロレインを
気相で接触酸化してメタクリル酸を製造する場合、使用
される原料としては必ずしも純粋のメタクロレインであ
る必要はなく、イソブチレンやターシャリーブタノール
を気相接触酸化して得られたメタクロレイン含有ガスで
も、また液相法で得られたメタクロレインを気化したも
のでもよい。酸素源は純粋な酸素でもよいが、工業的に
は空気が使用される。その他の希釈ガスとしては、窒
素、二酸化炭素、一酸化炭素、水蒸気などを用いること
ができる。反応原料ガス中のメタクロレイン濃度は1〜
10%、メタクロレインに対する酸素の比は1〜5程度
が用いられる。原料ガスの空間速度は500〜5000
-1の範囲、反応温度は250〜350℃程度が好まし
い。反応圧力は、通常、常圧付近または若干の加圧下で
行われる。
When methacrolein is catalytically oxidized in the gas phase to produce methacrylic acid using the catalyst of the present invention, the raw material used does not necessarily have to be pure methacrolein, but isobutylene or tertiary butanol. A methacrolein-containing gas obtained by vapor-phase catalytic oxidation of methacrolein or a vaporized methacrolein obtained by a liquid phase method may be used. The oxygen source may be pure oxygen, but industrially air is used. As other diluent gas, nitrogen, carbon dioxide, carbon monoxide, steam or the like can be used. The methacrolein concentration in the reaction raw material gas is 1 to
10%, and a ratio of oxygen to methacrolein of about 1 to 5 is used. Space velocity of raw material gas is 500 to 5000
The range of h −1 and the reaction temperature are preferably about 250 to 350 ° C. The reaction pressure is usually around normal pressure or slightly elevated pressure.

【0017】また本発明の触媒を用いて、イソブタンを
直接酸化してメタクリル酸、メタクロレインを製造する
場合は、原料ガス中のイソブタン濃度は1〜85%、酸
素源としては、純酸素、酸素富化空気、空気などが用い
られる。イソブタンに対する酸素の比は0.05〜4が
適当である。反応ガス中には水蒸気を3〜30%の範囲
で含有させることが望ましい。原料ガス中には窒素、二
酸化炭素、一酸化炭素などが希釈ガスとして含まれてい
てもよい。この反応では活性をそれほど高くできないの
で、未反応イソブタン及び場合により酸素は回収して再
循環される。副生メタクロレインは再循環するか別の反
応器に導きメタクリル酸まで酸化する。空間速度は40
0〜5000h-1、反応温度は270〜400℃が好ま
しい。反応圧力は常圧または加圧で行われる。
When isobutane is directly oxidized to produce methacrylic acid or methacrolein using the catalyst of the present invention, the isobutane concentration in the raw material gas is 1 to 85%, and the oxygen source is pure oxygen or oxygen. Enriched air, air, etc. are used. A suitable ratio of oxygen to isobutane is 0.05 to 4. It is desirable that the reaction gas contains water vapor in the range of 3 to 30%. The raw material gas may contain nitrogen, carbon dioxide, carbon monoxide or the like as a diluent gas. Unreacted isobutane and optionally oxygen are recovered and recycled, as the activity cannot be very active in this reaction. By-product methacrolein is recycled or introduced into another reactor to oxidize methacrylic acid. Space velocity is 40
The reaction temperature is preferably 0 to 5000 h -1 , and the reaction temperature is preferably 270 to 400 ° C. The reaction pressure may be atmospheric pressure or increased pressure.

【0018】本発明の触媒は、イソ酪酸の酸化脱水素、
イソブチルアルデヒドの酸化によるメタクリル酸の製造
にも用いることができる。またイソブチレンから一段で
メタクリル酸を製造する際にも用いることが可能であ
る。これらの反応では、メタクロレインの酸化と同様な
反応条件が採用できる。
The catalyst of the present invention is oxidative dehydrogenation of isobutyric acid,
It can also be used for the production of methacrylic acid by the oxidation of isobutyraldehyde. It can also be used when producing methacrylic acid from isobutylene in a single step. In these reactions, the reaction conditions similar to the oxidation of methacrolein can be adopted.

【0019】[0019]

【発明の効果】本発明の触媒はメタクリル酸の製造にお
いて、従来の触媒より高い反応活性、選択性と長い触媒
寿命を有している。
INDUSTRIAL APPLICABILITY The catalyst of the present invention has higher reaction activity, higher selectivity and longer catalyst life than conventional catalysts in the production of methacrylic acid.

【0020】[0020]

【実施例】以下に実施例をあげて、本発明をさらに具体
的に説明するが、本発明ではこれらの実施例によって限
定されるものではない。転化率および選択率の定義は下
記の通りである。 メタクロレイン転化率(%)=(反応したメタクロレイ
ンのモル数)÷(供給したメタクロレインのモル数)×
100 メタクロレイン酸選択率(%)=(生成したメタクロレ
インのモル数)÷(反応したメタクロレインのモル数)
×100
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. The definitions of conversion rate and selectivity are as follows. Conversion rate of methacrolein (%) = (mol number of reacted methacrolein) / (mol number of supplied methacrolein) x
100 Methacrolein acid selectivity (%) = (number of moles of methacrolein produced) / (number of moles of reacted methacrolein)
× 100

【0021】実施例1 40℃に加熱したイオン交換水224gに、硝酸セシウ
ム [CsNO3]38.2g、硝酸銅 [Cu(NO3)2
3H2 O] 10.2g、リン酸水溶液 [85%−H3
4 ] 24.2g、硝酸 [70%−HNO3 ] 25.2
gを溶解し、これをA液とした。40℃に加熱したイオ
ン交換水330mlにモリブデン酸アンモニウム [( N
4)6 Mo7 24・4H2 O ]297gを溶解し、メタ
バナジン酸アンモニウム[NH4 VO3 ] 8.19gを
懸濁させ、これをB液とした。撹拌しているB液に、A
液を滴下した。得られた懸濁液を密封容器中で、120
℃で17時間加熱撹拌した。得られた懸濁液に、三酸化
アンチモン [Sb2 3 ] 10.2gを加え、さらに得
られた懸濁液を密封容器中で、120℃で17時間加熱
撹拌した。得られた懸濁液を120℃で蒸発乾固した。
得られた乾固物はドーソン型のヘテロポリ酸塩の構造を
している。乾固物を1000μm以下に粉砕し、成形助
剤を添加し、水を加えて混練し、直径5mm、高さ5m
mの円柱上に押し出し成形した。この成形体を、90℃
で乾燥後、さらに、250℃で3時間焼成する。これを
窒素気流中、435℃で3時間焼成し、さらに空気気流
中、390℃で3時間焼成して触媒を得た。この触媒の
酸素を除く組成はP1.5 Mo120.5 Sb0.5 Cu0.3
Cs1.4 である。
Example 1 To 224 g of ion-exchanged water heated to 40 ° C., cesium nitrate was added.
Mu [CsNOThree] 38.2 g, copper nitrate [Cu (NOThree)2
3H2O] 10.2 g, phosphoric acid aqueous solution [85% -HThreeP
OFour] 24.2 g, nitric acid [70% -HNOThree] 25.2
g was dissolved, and this was designated as solution A. Io heated to 40 ° C
Ammonium molybdate [(N
HFour)6Mo7Otwenty four・ 4H2O] 297 g is dissolved and meta
Ammonium vanadate [NHFourVOThree] 8.19 g
It was suspended and used as solution B. A to stirring liquid B
The liquid was dropped. The resulting suspension is placed in a sealed container at 120
The mixture was heated and stirred at ℃ for 17 hours. Trioxide is added to the obtained suspension.
Antimony [Sb2O Three] Add 10.2g and get more
Heat the resulting suspension in a sealed vessel at 120 ° C for 17 hours.
Stirred. The resulting suspension was evaporated to dryness at 120 ° C.
The obtained dried product has the structure of a Dawson type heteropolyacid salt.
doing. Dry solid is crushed to 1000μm or less
Add agent, add water and knead, diameter 5mm, height 5m
It was extruded and molded on a cylinder of m. This molded body is heated to 90 ° C.
After drying in, it is further baked at 250 ° C. for 3 hours. this
Baking at 435 ° C for 3 hours in a nitrogen stream, then air stream
A catalyst was obtained by calcining at 390 ° C. for 3 hours. Of this catalyst
The composition excluding oxygen is P1.5Mo12V0.5Sb0.5Cu0.3
Cs1.4It is.

【0022】この触媒9gを内径15mmのガラス製反
応管に充填し、メタクロレイン4mol%、酸素12m
ol%、水蒸気17mol%、残りが窒素からなる組成
の原料ガスを空間速度(STP基準)670h-1で反応
管を通じ、反応温度290℃で活性試験を行った。その
結果、定常状態に達した時点で、メタクロレイン転化率
97.3%、メタクリル酸選択率77.8%、メタクリ
ル酸収率75.7%であった。条件を振らしてメタクロ
レイン転化率が90%時のメタクリル酸選択率を求める
と80.8%であった。
9 g of this catalyst was filled in a glass reaction tube having an inner diameter of 15 mm, and 4 mol% of methacrolein and 12 m of oxygen were filled.
An activity test was carried out at a reaction temperature of 290 ° C. through a reaction tube with a raw material gas having a composition of ol%, water vapor 17 mol%, and the balance nitrogen at a space velocity (STP standard) of 670 h −1 . As a result, when the steady state was reached, the conversion of methacrolein was 97.3%, the selectivity of methacrylic acid was 77.8%, and the yield of methacrylic acid was 75.7%. The methacrylic acid selectivity when the methacrolein conversion rate was 90% was calculated by changing the conditions, and it was 80.8%.

【0023】加速寿命試験として、得られた触媒4.5
gを内径15mmのガラス製反応管に充填し、上記と同
じ組成の原料ガスを空間速度1300h-1で反応管を通
じ、反応温度320℃で連続運転した。その結果、反応
開始後15時間目ではメタクロレイン転化率93.1
%、メタクリル酸選択性75.0%、メタクリル酸収率
69.8%、480時間後ではそれぞれ92.4%、7
6.9%、71.0%、960時間後ではそれぞれ9
0.2%、80.1%、72.2%、2400時間後で
はそれぞれ74.7%、86.0%、64.2%であっ
た。
As an accelerated life test, the obtained catalyst 4.5
g was filled in a glass reaction tube having an inner diameter of 15 mm, and a raw material gas having the same composition as described above was continuously operated at a reaction temperature of 320 ° C. through the reaction tube at a space velocity of 1300 h −1 . As a result, the methacrolein conversion rate was 93.1 15 hours after the start of the reaction.
%, Methacrylic acid selectivity 75.0%, methacrylic acid yield 69.8%, and 92.4% and 7 after 480 hours, respectively.
6.9%, 71.0%, 9 after 960 hours respectively
0.2%, 80.1%, 72.2%, and after 2400 hours were 74.7%, 86.0%, and 64.2%, respectively.

【0024】比較例1 イオン交換水350gにリン酸水溶液 [85%−H3
4 ] 4.6gを加え、さらにモリブドバナドリン酸
[H4 1 Mo111 40・18H2 O] 115gと三
酸化アンチモン [Sb2 3 ] 3.64gを加え、10
0℃で14時間環流し溶解する。この溶液を13℃まで
冷却し、これをA液とする。13℃に冷却したイオン交
換水250gに、硝酸セシウム [CsNO3 ] 13.7
g、硝酸銅 [Cu(NO3 2 ・3H2O] 3.62
g、硝酸アンモニウム[NH4 NO3 ] 10.4gを溶
解し、これをB液とする。A液にB液を滴下し、65℃
で減圧濃縮する。得られた乾固物をステンレス製バット
にとり電気炉中で120℃で乾燥した。成形工程、焼成
工程は実施例1と同様に行った。この触媒の酸素を除く
組成はP1.5 Mo121.1 Sb0.5 Cu0.3 Cs1.4
ある。実施例1と同じ活性試験では、メタクロレイン転
化率35.2%、メタクロレイン選択率85.8%、メ
タクリル酸収率30.2%であった。
Comparative Example 1 A solution of phosphoric acid [85% -H 3 P in 350 g of ion-exchanged water]
O 4 ] 4.6g was added, and molybdovanadolinic acid was further added.
115 g of [H 4 P 1 Mo 11 V 1 O 40 · 18H 2 O] and 3.64 g of antimony trioxide [Sb 2 O 3 ] were added, and 10
Reflux for 14 hours at 0 ° C. to dissolve. This solution is cooled to 13 ° C. and designated as solution A. To 250 g of ion-exchanged water cooled to 13 ° C., cesium nitrate [CsNO 3 ] 13.7
g, copper nitrate [Cu (NO 3) 2 · 3H2O] 3.62
g and 10.4 g of ammonium nitrate [NH 4 NO 3 ] are dissolved, and this is designated as solution B. Solution B is added dropwise to solution A, and the temperature is 65 ° C.
Concentrate under reduced pressure with. The obtained dried solid matter was placed in a stainless steel vat and dried at 120 ° C. in an electric furnace. The molding step and firing step were performed in the same manner as in Example 1. The composition of this catalyst excluding oxygen is P 1.5 Mo 12 V 1.1 Sb 0.5 Cu 0.3 Cs 1.4 . In the same activity test as in Example 1, the conversion of methacrolein was 35.2%, the selectivity of methacrolein was 85.8%, and the yield of methacrylic acid was 30.2%.

【0025】比較例2 40℃に加熱したイオン交換水224gに、硝酸セシウ
ム [CsNO3 ] 38.2g、硝酸銅 [Cu(NO3)2
・3H2 O] 10.15g、リン酸水溶液 [85%−H
3 PO4 ] 24.21g、硝酸 [70%−HNO3 ] 2
5.2gを溶解し、これをA液とした。40℃に加熱し
たイオン交換水330mlにモリブデン酸アンモニウム
[(NH4 6 Mo7 24・4H2 O] 297gを溶解
し、メタバナジン酸アンモニウム [NH4 VO3 ] 8.
19gを懸濁させ、これをB液とした。撹拌しているB
液に、A液を滴下した。得られた懸濁液に、三酸化アン
チモン[Sb2 3 ] 10.2gを加えた。得られた懸
濁液を密封容器中で、120℃で17時間加熱撹拌し
た。乾燥工程、成形工程、焼成工程については実施例1
と同様に行った。この触媒の酸素を除く組成はP1.5
120.5 Sb0.5 Cu0.3 Cs1.4 である。実施例1
と同じ活性試験では、メタクロレイン転化率93.6
%、メタクリル酸選択率81.1%、メタクリル酸収率
75.9%、メタクロレイン転化率90%時のメタクリ
ル酸選択率は83.1%であった。
Comparative Example 2 In 224 g of ion-exchanged water heated to 40 ° C., 38.2 g of cesium nitrate [CsNO 3 ] and copper nitrate [Cu (NO 3 ) 2
· 3H 2 O] 10.15g, aqueous solution of phosphoric acid [85% -H
3 PO 4 ] 24.21 g, nitric acid [70% -HNO 3 ] 2
5.2g was melt | dissolved and this was made into the A liquid. Ammonium molybdate is added to 330 ml of deionized water heated to 40 ° C.
[(NH 4) 6 Mo 7 O 24 · 4H 2 O] was dissolved 297 g, ammonium metavanadate [NH 4 VO 3] 8.
19 g was suspended and this was designated as solution B. Stirring B
Solution A was added dropwise to the solution. To the obtained suspension, 10.2 g of antimony trioxide [Sb 2 O 3 ] was added. The obtained suspension was heated and stirred at 120 ° C. for 17 hours in a sealed container. Example 1 for the drying process, the molding process, and the firing process
I went the same way. The composition of this catalyst excluding oxygen is P 1.5 M.
o 12 V 0.5 Sb 0.5 Cu 0.3 Cs 1.4 . Example 1
In the same activity test as above, the conversion of methacrolein was 93.6.
%, The methacrylic acid selectivity was 81.1%, the methacrylic acid yield was 75.9%, and the methacrylic acid selectivity at a methacrolein conversion rate of 90% was 83.1%.

【0026】得られた触媒の、実施例1と同じ加速寿命
試験の結果は、反応開始後15時間目ではメタクロレイ
ン転化率88.9%、メタクリル酸選択性76.9%、
メタクリル酸収率68.3%、480時間後ではそれぞ
れ81.0%、84.2%、68.2%であった。
The results of the same accelerated life test as in Example 1 of the obtained catalyst were as follows: 15 hours after the start of the reaction, the conversion of methacrolein was 88.9%, the selectivity of methacrylic acid was 76.9%,
The methacrylic acid yields were 68.3% and 81.0%, 84.2%, and 68.2% after 480 hours, respectively.

【0027】比較例3 三酸化アンチモン [Sb2 3 ] 10.2gを加えた
後、再度加熱処理を行わなかった以外は実施例1と同様
に行った。実施例1と同じ活性試験では、メタクロレイ
ン転化率94.0%、メタクリル酸選択率75.6%、
メタクリル酸収率71.0%、メタクロレイン転化率9
0%時のメタクリル酸選択率は77.4%であった。
Comparative Example 3 The same procedure as in Example 1 was performed except that 10.2 g of antimony trioxide [Sb 2 O 3 ] was added and no heat treatment was performed again. In the same activity test as in Example 1, the conversion of methacrolein was 94.0%, the selectivity of methacrylic acid was 75.6%,
Methacrylic acid yield 71.0%, methacrolein conversion 9
The methacrylic acid selectivity at 0% was 77.4%.

【0028】実施例2 加熱処理を135℃で17時間行った後、三酸化アンチ
モン [Sb2 3 ] 10.2gを加え、再度加熱処理を
135℃で17時間行った以外は実施例1と同様に行っ
た。実施例1と同じ活性試験では、メタクロレイン転化
率92.6%、メタクリル酸選択率83.2%、メタク
リル酸収率77.0%、メタクロレイン転化率90%時
のメタクリル酸選択率は84.2%であった。
Example 2 Example 1 was repeated except that after heat treatment was performed at 135 ° C. for 17 hours, 10.2 g of antimony trioxide [Sb 2 O 3 ] was added and the heat treatment was performed again at 135 ° C. for 17 hours. I went the same way. In the same activity test as in Example 1, the methacrolein conversion rate was 92.6%, the methacrylic acid selectivity was 83.2%, the methacrylic acid yield was 77.0%, and the methacrylic acid selectivity was 90% when the methacrolein conversion rate was 90%. It was 0.2%.

【0029】実施例3 硝酸 [70%−HNO3]を12.6g加えた以外は実施
例1と同様に行った。実施例1と同じ活性試験では、メ
タクロレイン転化率89.9%、メタクリル酸選択率8
4.0%、メタクリル酸収率75.5%、メタクロレイ
ン転化率90%時のメタクリル酸選択率は84.0%で
あった。
Example 3 Example 3 was repeated except that 12.6 g of nitric acid [70% -HNO 3 ] was added. In the same activity test as in Example 1, the methacrolein conversion rate was 89.9% and the methacrylic acid selectivity was 8
The methacrylic acid selectivity was 84.0% when the methacrylic acid yield was 4.0%, the methacrylic acid yield was 75.5%, and the methacrolein conversion rate was 90%.

【0030】実施例5 硝酸 [70%−HNO3]を12.6g加えた以外は実施
例2と同様に行った。実施例1と同じ活性試験では、メ
タクロレイン転化率90.2%、メタクリル酸選択率8
4.6%、メタクリル酸収率76.3%、メタクロレイ
ン転化率90%時のメタクリル酸選択率は84.6%で
あった。
Example 5 Example 3 was repeated except that 12.6 g of nitric acid [70% -HNO 3 ] was added. In the same activity test as in Example 1, the conversion of methacrolein was 90.2% and the selectivity of methacrylic acid was 8
The methacrylic acid selectivity was 84.6% at a methacrylic acid yield of 76.3% and a methacrolein conversion rate of 90%.

【0031】得られた触媒の、実施例1と同じ加速寿命
試験の結果は、反応開始後15時間目ではメタクロレイ
ン転化率86.5%、メタクリル酸選択性79.7%、
メタクリル酸収率68.9%、480時間後ではそれぞ
れ81.8%、83.3%、68.1%、1440時間
後ではそれぞれ68.6%、86.4%、59.2%で
あった。
The results of the same accelerated life test as in Example 1 of the obtained catalyst were as follows: 15 hours after the start of the reaction, the conversion of methacrolein was 86.5%, the selectivity of methacrylic acid was 79.7%,
The yields of methacrylic acid were 68.9%, 81.8%, 83.3% and 68.1% after 480 hours, and 68.6%, 86.4% and 59.2% after 1440 hours, respectively. It was

【0032】実施例6 40℃に加熱したイオン交換水224gに、硝酸セシウ
ム [CsNO3 ] 38.2g、硝酸銅 [Cu(NO3)2
・3H2 O] 10.15g、リン酸水溶液 [85%−H
3 PO4 ] 24.21g、硝酸 [70%−HNO3 ] 2
5.2gを溶解し、これをA液とした。40℃に加熱し
たイオン交換水330mlにモリブデン酸アンモニウム
[(NH4 6 Mo7 24・4H2 O] 297gを溶解
し、これをB液とした。撹拌しているB液に、A液を滴
下した。この懸濁液に、三酸化アンチモン [Sb
2 3 ] 10.2gを添加した。得られた懸濁液を密封
容器中で、120℃で17時間加熱撹拌した。得られた
懸濁液に、メタバナジン酸アンモニウム[ NH4
3 ] 8.19gを加え、さらに得られた懸濁液を密封
容器中で、120℃で17時間加熱撹拌した。乾燥工
程、成形工程、焼成工程は実施例1と同様に行った。こ
の触媒の酸素を除く組成はP1.5 Mo120.5 Sb0.5
Cu0.3 Cs1.4 である。実施例1と同じ活性試験で
は、メタクロレイン転化率94.3%、メタクリル酸選
択率81.7%、メタクリル酸収率77.0%、メタク
ロレイン転化率90%時のメタクリル酸選択率は82.
8%であった。
Example 6 To 224 g of ion-exchanged water heated to 40 ° C., 38.2 g of cesium nitrate [CsNO 3 ] and copper nitrate [Cu (NO 3 ) 2
· 3H 2 O] 10.15g, aqueous solution of phosphoric acid [85% -H
3 PO 4 ] 24.21 g, nitric acid [70% -HNO 3 ] 2
5.2g was melt | dissolved and this was made into the A liquid. Ammonium molybdate is added to 330 ml of deionized water heated to 40 ° C.
[(NH 4) 6 Mo 7 O 24 · 4H 2 O] was dissolved 297 g, which was used as a B solution. Solution A was added dropwise to solution B being stirred. This suspension contains antimony trioxide [Sb
2 O 3 ] 10.2 g was added. The obtained suspension was heated and stirred at 120 ° C. for 17 hours in a sealed container. Ammonium metavanadate [NH 4 V] was added to the obtained suspension.
O 3] 8.19 g was added, further the resulting suspension in a sealed vessel was heated and stirred 17 hours at 120 ° C.. The drying process, molding process, and firing process were performed in the same manner as in Example 1. The composition of this catalyst excluding oxygen is P 1.5 Mo 12 V 0.5 Sb 0.5.
Cu 0.3 Cs 1.4 . In the same activity test as in Example 1, the methacrolein conversion rate was 94.3%, the methacrylic acid selectivity was 81.7%, the methacrylic acid yield was 77.0%, and the methacrylic acid selectivity was 90% when the methacrolein conversion rate was 90%. .
8%.

【0033】得られた触媒の、実施例1と同じ加速寿命
試験の結果は、反応開始後15時間目ではメタクロレイ
ン転化率93.5%、メタクリル酸選択性74.1%、
メタクリル酸収率69.2%、480時間後ではそれぞ
れ89.5%、80.8%、72.3%、1440時間
後ではそれぞれ81.9%、83.4%、68.3%、
2400時間後ではそれぞれ74.5%、85.1%、
63.3%であった。
The results of the same accelerated life test as in Example 1 of the obtained catalyst were as follows: 15 hours after the start of the reaction, the conversion of methacrolein was 93.5%, the selectivity of methacrylic acid was 74.1%,
Methacrylic acid yield 69.2%, after 8 hours 89.5%, 80.8%, 72.3%, after 1440 hours 81.9%, 83.4%, 68.3%, respectively.
After 2400 hours, 74.5%, 85.1%,
It was 63.3%.

【0034】実施例7 40℃に加熱したイオン交換水224gに、硝酸セシウ
ム [CsNO3 ] 38.2g、硝酸銅 [Cu(NO3)2
・3H2 O] 10.15g、リン酸水溶液 [85%−H
3 PO4 ] 24.21g、硝酸 [70%−HNO3 ] 2
5.2gを溶解し、これをA液とした。40℃に加熱し
たイオン交換水330mlにモリブデン酸アンモニウム
[(NH4 6 Mo7 24・4H2 O] 297gを溶解
し、これをB液とした。撹拌しているB液に、A液を滴
下した。得られた懸濁液を密封容器中で、120℃で1
7時間加熱撹拌し、この懸濁液に、三酸化アンチモン
[Sb2 3 ] 10.2gおよびメタバナジン酸アンモ
ニウム[ NH4 VO3 ] 8.19gを加え、120℃で
5時間加熱撹拌した。乾燥工程、成形工程、焼成工程は
実施例1と同様に行った。この触媒の酸素を除く組成は
1.5 Mo120.5 Sb0.5 Cu0.3 Cs1.4 である。
実施例1と同じ活性試験では、メタクロレイン転化率9
6.9%、メタクリル酸選択率78.1%、メタクリル
酸収率75.7%、メタクロレイン転化率90%時のメ
タクリル酸選択率は79.5%であった。
Example 7 In 224 g of ion-exchanged water heated to 40 ° C., 38.2 g of cesium nitrate [CsNO 3 ] and copper nitrate [Cu (NO 3 ) 2
· 3H 2 O] 10.15g, aqueous solution of phosphoric acid [85% -H
3 PO 4 ] 24.21 g, nitric acid [70% -HNO 3 ] 2
5.2g was melt | dissolved and this was made into the A liquid. Ammonium molybdate is added to 330 ml of deionized water heated to 40 ° C.
[(NH 4) 6 Mo 7 O 24 · 4H 2 O] was dissolved 297 g, which was used as a B solution. Solution A was added dropwise to solution B being stirred. The resulting suspension is 1 at 120 ° C in a sealed container.
Heat and stir for 7 hours, and add antimony trioxide to this suspension.
[Sb 2 O 3 ] 10.2 g and ammonium metavanadate [NH 4 VO 3 ] 8.19 g were added, and the mixture was heated with stirring at 120 ° C. for 5 hours. The drying process, molding process, and firing process were performed in the same manner as in Example 1. The composition of this catalyst excluding oxygen is P 1.5 Mo 12 V 0.5 Sb 0.5 Cu 0.3 Cs 1.4 .
In the same activity test as in Example 1, the conversion of methacrolein was 9
The methacrylic acid selectivity was 79.5% when the methacrylic acid selectivity was 79.1%, the methacrylic acid yield was 75.7%, and the methacrolein conversion rate was 90%.

【0035】得られた触媒の、実施例1と同じ加速寿命
試験の結果は、反応開始後15時間目ではメタクロレイ
ン転化率95.8%、メタクリル酸選択性70.1%、
メタクリル酸収率67.1%、480時間後ではそれぞ
れ89.7%、79.6%、71.4%であった。
The results of the same accelerated life test as in Example 1 of the obtained catalyst were as follows: 15 hours after the start of the reaction, the conversion of methacrolein was 95.8%, the selectivity of methacrylic acid was 70.1%,
The yields of methacrylic acid were 67.1%, and were 89.7%, 79.6%, and 71.4% after 480 hours.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一般式 PaMobVcSbdCueX
fOg(式中、P、Mo、V、Sb、Cu、Oはそれぞ
れリン、モリブデン、バナジウム、アンチモン、銅およ
び酸素を表し、Xはルビジウム、セシウム、及びタリウ
ムからなる群より選ばれた少なくとも一種の元素を表
し、また添字a、b、c、d、e、f及びgは各元素の
原子比を表し、b=12としたとき、a、c、d、e、
fはそれぞれ0(ゼロ)を含まない3以下の値をとり、
gは他の元素の原子価及び原子比によって決まる値を表
す)で示されるヘテロポリ酸の部分中和塩であって、触
媒原料のうち、バナジウム原料および/またはアンチモ
ン原料を除く触媒原料を水に溶解または懸濁させ、アン
モニウム根が存在する状態で80〜200℃の温度で1
〜24時間加熱処理した後、バナジウム原料および/ま
たはアンチモン原料を添加し、再度80〜200℃の温
度で1〜24時間加熱処理し、焼成してなるメタクリル
酸製造用触媒。
1. The general formula PaMobVcSbdCueX
fOg (In the formula, P, Mo, V, Sb, Cu, and O represent phosphorus, molybdenum, vanadium, antimony, copper, and oxygen, respectively, and X represents at least one selected from the group consisting of rubidium, cesium, and thallium. Representing elements, the subscripts a, b, c, d, e, f and g represent the atomic ratio of each element. When b = 12, a, c, d, e,
f takes a value of 3 or less that does not include 0 (zero),
g represents a value determined by the valences and atomic ratios of other elements), and is a partially neutralized salt of a heteropoly acid, wherein the catalyst raw material excluding the vanadium raw material and / or the antimony raw material is water. Dissolve or suspend, and in the presence of ammonium root at a temperature of 80-200 ℃ 1
A catalyst for methacrylic acid production, which is obtained by heating for 24 hours, then adding a vanadium raw material and / or an antimony raw material, heat treating again at a temperature of 80 to 200 ° C. for 1 to 24 hours, and calcining.
【請求項2】 加熱処理が、触媒原料のうち、バナジウ
ム原料またはアンチモン原料を除く触媒原料を水に溶解
または懸濁させ、アンモニウム根が存在する状態で80
〜200℃の温度で1〜24時間加熱処理した後、バナ
ジウム原料および/またはアンチモン原料を添加し、再
度80〜200℃の温度で1〜24時間加熱処理し、焼
成することを特徴とする請求項1記載のメタクリル酸製
造用触媒。
2. The heating treatment dissolves or suspends, in the catalyst raw material, the catalyst raw material excluding the vanadium raw material or the antimony raw material in water, and in the state where ammonium root is present, 80
After the heat treatment at a temperature of ˜200 ° C. for 1 to 24 hours, the vanadium raw material and / or the antimony raw material is added, and again heat treated at a temperature of 80 to 200 ° C. for 1 to 24 hours, followed by firing. Item 2. A catalyst for producing methacrylic acid according to item 1.
【請求項3】 加熱処理が100〜150℃で10〜2
0時間である請求項1または2記載のメタクリル酸製造
用触媒。
3. Heat treatment at 100 to 150 ° C. for 10 to 2
The catalyst for producing methacrylic acid according to claim 1 or 2, which has 0 hours.
【請求項4】 再度加熱処理して得られた懸濁液を濃縮
乾固し、該乾固物を不活性ガス中、400〜500℃の
温度で焼成することを特徴とする請求項1または2記載
のメタクリル酸製造用触媒。
4. The suspension obtained by heat treatment again is concentrated to dryness, and the dried solid is calcined at a temperature of 400 to 500 ° C. in an inert gas. 2. The catalyst for producing methacrylic acid according to 2.
【請求項5】 請求項1〜4いずれか記載のメタクリル
酸製造用触媒の存在下に、メタクロレインを分子状酸素
によって気相接触酸化することを特徴とするメタクリル
酸の製造方法。
5. A method for producing methacrylic acid, which comprises subjecting methacrolein to gas-phase catalytic oxidation with molecular oxygen in the presence of the catalyst for producing methacrylic acid according to any one of claims 1 to 4.
【請求項6】 反応原料ガス中のメタクロレイン濃度が
1〜10%、メタクロレインに対する酸素の比が1〜
5、空間速度が500〜5000h-1、反応温度が25
0〜350℃で行うことを特徴とする請求項5記載のメ
タクリル酸の製造方法。
6. The methacrolein concentration in the reaction raw material gas is 1 to 10%, and the ratio of oxygen to methacrolein is 1 to
5, space velocity is 500 ~ 5000h -1 , reaction temperature is 25
It carries out at 0-350 degreeC, The manufacturing method of the methacrylic acid of Claim 5 characterized by the above-mentioned.
JP18041496A 1995-07-12 1996-07-10 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid Expired - Fee Related JP3482476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18041496A JP3482476B2 (en) 1995-07-12 1996-07-10 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17617295 1995-07-12
JP7-176172 1995-07-12
JP18041496A JP3482476B2 (en) 1995-07-12 1996-07-10 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JPH0975740A true JPH0975740A (en) 1997-03-25
JP3482476B2 JP3482476B2 (en) 2003-12-22

Family

ID=26497198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18041496A Expired - Fee Related JP3482476B2 (en) 1995-07-12 1996-07-10 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP3482476B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051787A1 (en) * 2000-12-25 2002-07-04 Mitsubishi Rayon Co., Ltd. Process for producing methacrylic acid
WO2006104155A1 (en) * 2005-03-29 2006-10-05 Nippon Kayaku Kabushiki Kaisha Catalyst for producing methacrylic acid and method for preparation thereof
EP1880761A1 (en) * 2005-05-12 2008-01-23 Nippon Kayaku Kabushiki Kaisha Method for preparing catalyst for production of methacrylic acid
JP2011078975A (en) * 2010-11-26 2011-04-21 Nippon Kayaku Co Ltd Method for producing catalyst for producing methacrylic acid
WO2019208715A1 (en) * 2018-04-26 2019-10-31 三菱ケミカル株式会社 Method for producing catalyst for methacrylic-acid production and methods for producing methacrylic acid and methacryic ester

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051787A1 (en) * 2000-12-25 2002-07-04 Mitsubishi Rayon Co., Ltd. Process for producing methacrylic acid
US6930201B2 (en) 2000-12-25 2005-08-16 Mitsubishi Rayon Co., Ltd. Process for producing methacrylic acid
WO2006104155A1 (en) * 2005-03-29 2006-10-05 Nippon Kayaku Kabushiki Kaisha Catalyst for producing methacrylic acid and method for preparation thereof
JP2006272151A (en) * 2005-03-29 2006-10-12 Nippon Kayaku Co Ltd Catalyst for producing methacrylic acid and method for manufacturing the catalyst
EP1867387A1 (en) * 2005-03-29 2007-12-19 Nippon Kayaku Kabushiki Kaisha Catalyst for producing methacrylic acid and method for preparation thereof
US8716523B2 (en) 2005-03-29 2014-05-06 Nippon Kayaku Kabushiki Kaisha Catalyst for use in production of methacrylic acid and method for manufacturing the same
EP1867387A4 (en) * 2005-03-29 2009-09-02 Nippon Kayaku Kk Catalyst for producing methacrylic acid and method for preparation thereof
EP2204234A1 (en) * 2005-03-29 2010-07-07 Nippon Kayaku Kabushiki Kaisha Catalyst for producing methacrylic acid and method for preparation thereof
EP2540393A1 (en) * 2005-05-12 2013-01-02 Nippon Kayaku Kabushiki Kaisha Method for preparing catalyst for production of methacrylic acid
US8017547B2 (en) 2005-05-12 2011-09-13 Nippon Kayaku Kabushiki Kaisha Method for manufacturing catalyst for use in production of methacrylic acid
US8148291B2 (en) 2005-05-12 2012-04-03 Nippon Kayaku Kabushiki Kaisha Method for manufacturing catalyst for use in production of methacrylic acid
EP1880761A4 (en) * 2005-05-12 2012-04-04 Nippon Kayaku Kk Method for preparing catalyst for production of methacrylic acid
TWI394615B (en) * 2005-05-12 2013-05-01 Nippon Kayaku Kk Production method of catalyst for manufacturing methacrylic acid
EP1880761A1 (en) * 2005-05-12 2008-01-23 Nippon Kayaku Kabushiki Kaisha Method for preparing catalyst for production of methacrylic acid
JP2011078975A (en) * 2010-11-26 2011-04-21 Nippon Kayaku Co Ltd Method for producing catalyst for producing methacrylic acid
WO2019208715A1 (en) * 2018-04-26 2019-10-31 三菱ケミカル株式会社 Method for producing catalyst for methacrylic-acid production and methods for producing methacrylic acid and methacryic ester
KR20210002576A (en) * 2018-04-26 2021-01-08 미쯔비시 케미컬 주식회사 Method for producing a catalyst for producing methacrylic acid, and a method for producing methacrylic acid and methacrylic acid ester
JPWO2019208715A1 (en) * 2018-04-26 2021-05-20 三菱ケミカル株式会社 A method for producing a catalyst for producing methacrylic acid, and a method for producing methacrylic acid and a methacrylic acid ester.

Also Published As

Publication number Publication date
JP3482476B2 (en) 2003-12-22

Similar Documents

Publication Publication Date Title
US8586499B2 (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
JPH03109943A (en) Preparation of catalyst for production of methacrolein and methacylic acid
JP4081824B2 (en) Acrylic acid production method
JPH081005A (en) Production of catalyst for production of mathacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JPH10128112A (en) Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
JPH09299803A (en) Oxidation catalyst, manufacture thereof and preparation of methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2558036B2 (en) Method for producing methacrolein and / or methacrylic acid
JP3146486B2 (en) Method for producing catalyst for producing methacrylic acid
JPH05237388A (en) Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
JP3772392B2 (en) Composite oxide catalyst and method for producing methacrylic acid
JPH0924277A (en) Catalyst and process for preparing methacrylic acid
JP3855298B2 (en) Process for producing alkene and / or oxygen-containing compound
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JP3209778B2 (en) Preparation of catalyst for methacrylic acid production
JP4207531B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
KR970011453B1 (en) Process for producing acrylonitrile
JPH09299802A (en) Manufacture of oxidation catalyst and preparation of methacrylic acid
JP3316880B2 (en) Method for producing catalyst for producing methacrylic acid
JP3859397B2 (en) Catalyst for production of methacrolein and methacrylic acid
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JP2005021727A (en) Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees