JPH0973283A - Generating circuit for gradation voltage of liquid crystal display device - Google Patents

Generating circuit for gradation voltage of liquid crystal display device

Info

Publication number
JPH0973283A
JPH0973283A JP7227620A JP22762095A JPH0973283A JP H0973283 A JPH0973283 A JP H0973283A JP 7227620 A JP7227620 A JP 7227620A JP 22762095 A JP22762095 A JP 22762095A JP H0973283 A JPH0973283 A JP H0973283A
Authority
JP
Japan
Prior art keywords
voltage
generating
gradation
liquid crystal
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7227620A
Other languages
Japanese (ja)
Inventor
Masaya Fujita
昌也 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7227620A priority Critical patent/JPH0973283A/en
Publication of JPH0973283A publication Critical patent/JPH0973283A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2011Display of intermediate tones by amplitude modulation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate gradation voltage of various kinds with simple constitution and to attain performing gamma compensation in which a display characteristic of liquid crystal is considered. SOLUTION: In a generating circuit for gradation voltage generating gradation voltage of a step-wave type, it has plural direct current voltage generating sections 50-53 generating fixed voltage having different values, voltage adding sections 54-57 having same numbers as the direct current voltage generating sections 50-53, and a step-wave voltage generating section 58 generating a step- wave. And each of direct current voltage generating sections 50-53 and each of voltage adding sections 54-57 group respectively, fixed voltage generated in the direct current voltage generating sections 50-53 in the same group is added to a step-wave by the voltage adding sections 54-57 in each group, and an adding ratio is set for each group.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示装置の階
調電圧発生回路に関し、特に、階段波状の階調電圧を発
生する階調電圧発生回路に関する。液晶の透過率は、液
晶電圧(液晶に書き込む電圧)の大きさによって決まる
から、液晶電圧をm段階に可変できるようにすると、黒
レベルと白レベルの間でm階調の多階調表示が可能にな
る。そこで、従前より、最小(又は最大)透過率の電圧
に相当する第1階調電圧から最大(又は最小)透過率の
電圧に相当する第m階調電圧までのm種類の階調電圧を
発生し、表示データの階調に応じてその中の一つを選択
して液晶電圧とすることが行われていたが、このような
やり方では、階調数と階調電圧が1対1に対応するた
め、階調数の増加に比例して、階調電圧を発生するため
の回路や、階調電圧を選択するための回路が複雑化する
という欠点があり、かかる欠点を招くことなく、より一
層多階調化を図ることのできる技術が要望されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grayscale voltage generating circuit for a liquid crystal display device, and more particularly to a grayscale voltage generating circuit for generating a staircase-shaped grayscale voltage. Since the transmittance of the liquid crystal is determined by the magnitude of the liquid crystal voltage (voltage written in the liquid crystal), if the liquid crystal voltage is made variable in m steps, multi-gradation display of m gradations between the black level and the white level is possible. It will be possible. Therefore, conventionally, m kinds of gradation voltages from the first gradation voltage corresponding to the voltage of the minimum (or maximum) transmittance to the m-th gradation voltage corresponding to the voltage of the maximum (or minimum) transmittance are generated. However, one of them is selected as the liquid crystal voltage according to the gradation of the display data, but in such a method, the number of gradations and the gradation voltage have a one-to-one correspondence. Therefore, there is a drawback that a circuit for generating a grayscale voltage and a circuit for selecting a grayscale voltage are complicated in proportion to an increase in the number of grayscales, and such a drawback is not caused. There is a demand for a technique capable of achieving more gradation.

【0002】[0002]

【従来の技術】構成を複雑化することなく、より一層の
多階調化を図ることのできる従来技術としては、例え
ば、特開平5−158446号公報に記載されたものが
ある。図9はその従来技術を適用した液晶表示装置の要
部ブロック図(但し、1データライン分)である。1は
制御回路、2はシフトレジスタ、3は第1メモリ、4は
第2メモリ、5はデコーダ、6は比較器、7は第3メモ
リ、8はセレクタ、9はスイッチ、10は階調電圧発生
回路である。
2. Description of the Related Art As a conventional technique capable of further increasing the number of gradations without complicating the structure, there is, for example, one disclosed in Japanese Patent Laid-Open No. 5-158446. FIG. 9 is a block diagram (however, for one data line) of a main part of a liquid crystal display device to which the conventional technique is applied. 1 is a control circuit, 2 is a shift register, 3 is a first memory, 4 is a second memory, 5 is a decoder, 6 is a comparator, 7 is a third memory, 8 is a selector, 9 is a switch, 10 is a gradation voltage It is a generation circuit.

【0003】これら各部の具備すべき機能を簡単に説明
すると、制御回路1は、1表示画面の水平方向の同期信
号HS、同画面の垂直方向の同期信号VS、及び、同画
面の画素単位の表示クロックCLKなどに基づいて、各
部の動作制御に必要な各種のタイミング信号(T1 、T
2 、………)や各種のクロック信号(C1 、C2 、……
…)を発生するとともに、1画素当たりnビットで構成
された表示データDiを、下位のPビットと上位のQビ
ットに2分(P+Q=n)し、それぞれを内部表示デー
タDP 、DQ として取り出す機能を有する。なお、
1 、T2 はHSに同期した信号、C1 、C2 はCLK
に同期した信号である。シフトレジスタ2は、C1 に同
期してT1 を順次にシフトし、データラインと同数のi
個の出力から順次に取り出す機能を有する。なお、図で
はi個の出力のうちの1番目の出力TS1 を代表で示し
ている。第1メモリ3は、i個の構成単位(図ではその
うちの1個を示している;以下同様)からなり、各単位
はPビット+Qビットの容量を持ち、各単位ごとにシフ
トレジスタ2の出力(TS1 〜TSi )に応答してDP
及びDQ を順次に取り込む機能を有する。第2メモリ4
は、i個の構成単位からなり、各単位はPビット+Qビ
ットの容量を持ち、T2 に応答して第1メモリ3内の全
データを一括的に取り込む機能を有する。デコーダ5
は、i個の構成単位からなり、各単位はDP のビット数
(Pビット)に対応した2P 本のデコード出力を持ち、
P の内容に応じてそのうちの1本の出力を選択する機
能を有する。比較器6は、i個の構成単位からなり、各
単位は第2メモリ4内のDQ と階調電圧発生回路10か
らのカウントデータ(後述)とを比較し一致の場合に出
力をアクティブにする機能を有する。セレクタ8は、i
個の構成単位からなり、デコーダ5のデコード結果に応
じて内部のスイッチ要素の一つをオンにすることによ
り、階調電圧発生回路10からの2P 種類(便宜的に4
種類;以下同様)の電圧V 1 〜V4 の一つを選択する機
能を有する。スイッチ9は、水平走査期間の始まりから
比較器6の出力がアクティブになるまでの間その接点を
オンにし、セレクタ8から取り出される電圧をデータラ
インX1 に出力する機能を有する。なお、図10は液晶
パネルの概念図(簡単化のために4×4構成のものを示
す)であり、4本のデータラインX1 〜X4 と4本のス
キャンラインY1 〜Y4 を交差状に配列し、各交差点に
画素を配列している。各画素は、スキャンラインY1
4 に所定のオン電圧が印加されたときに導通状態にな
るTFTと、導通状態のTFTを通してデータラインX
1 〜X4 上の電圧が書き込まれる液晶容量CLとから構
成されている。DV1 〜DV4 はスキャンドライバのバ
ッファアンプである。
A brief description of the functions that each of these sections must have
Then, the control circuit 1 receives the horizontal sync signal of one display screen.
No. HS, vertical synchronizing signal VS of the same screen, and the same screen
Based on the display clock CLK for each pixel of the surface,
Various timing signals (T1, T
2, ………) and various clock signals (C1, C2, ……
...) is generated, and each pixel is composed of n bits
The displayed display data Di is converted into lower P bits and upper Q bits.
2 minutes (P + Q = n) for each
TA DP, DQHas the function of taking out as. In addition,
T1, T2Is a signal synchronized with HS, C1, C2Is CLK
Is a signal synchronized with. The shift register 2 is C1Same as
In anticipation of T1Are sequentially shifted, and i of the same number as the data lines are
It has a function to take out sequentially from each output. In addition, in the figure
Is the first output TS of the i outputs1Is shown as a representative
ing. The first memory 3 includes i constituent units (in the figure,
One of them is shown; the same shall apply hereinafter), and each unit
Has a capacity of P bits + Q bits, and shifts for each unit.
Output of register 2 (TS1~ TSi) In response to DP
And DQHas a function of sequentially capturing. Second memory 4
Consists of i constituent units, where each unit is P bits + Q
Has the capacity of2All in the first memory 3 in response to
It has a function to fetch data collectively. Decoder 5
Is composed of i constituent units, and each unit is DPNumber of bits
2 corresponding to (P bit)PHas a decode output of the book,
DPA machine that selects one of the outputs according to the contents of
Has ability. The comparator 6 is composed of i constituent units, and
The unit is D in the second memory 4.QAnd the gradation voltage generation circuit 10?
Compared with other count data (described later) and output if they match.
It has the function of activating force. The selector 8 is i
It is composed of individual units, and is adapted to the decoding result of the decoder 5.
By turning on one of the internal switching elements
2 from the gradation voltage generation circuit 10PType (4 for convenience
Type; voltage V) 1~ VFourA machine to choose one of
Has ability. Switch 9 starts from the beginning of the horizontal scanning period
Until the output of the comparator 6 becomes active,
Turn on and set the voltage output from the selector 8 to the data
Inn X1It has a function to output to. In addition, FIG. 10 shows a liquid crystal.
Conceptual diagram of the panel (showing a 4x4 configuration for simplicity)
4 data lines X1~ XFourAnd 4 s
Can line Y1~ YFourAre arranged in a cross shape, and at each intersection
The pixels are arranged. Each pixel is a scan line Y1~
YFourWhen a predetermined ON voltage is applied to the
Data line X through the TFT that is connected
1~ XFourIt is composed of the liquid crystal capacitance CL to which the above voltage is written.
Has been established. DV1~ DVFourIs the scan driver
It is a coffa amplifier.

【0004】次に、階調電圧発生回路10は、T2 の周
期内でC2 をカウントするカウンタ11と、カウンタ1
1のカウント値(カウントデータ)をアナログ電圧に変
換するD−A変換器12と、2P 種類の基準電圧VR1
〜VR4 を発生する2P 個の電圧源13〜16と、2P
個の加算器17〜20とを備え、加算器17〜20によ
って、アナログ電圧と各基準電圧VR1 〜VR4 とを加
算して2P 種類の電圧V1 〜V4 を発生する機能を有す
る。
Next, the gradation voltage generating circuit 10 includes a counter 11 for counting C 2 within a cycle of T 2 and a counter 1.
A DA converter 12 for converting a count value of 1 (count data) into an analog voltage and a reference voltage VR 1 of 2 P types.
~ 2 P voltage sources 13 to 16 for generating VR 4 and 2 P
And a number of adders 17-20, by the adder 17 to 20, having a function of generating 2 P kinds of voltages V 1 ~V 4 adds the analog voltage and the reference voltage VR 1 to VR 4 .

【0005】このような構成によれば、まず、2P 種類
の電圧V1 〜V4 の一つがnビットの表示データの上位
Pビットに応じて選択され、次いで、選択された電圧の
中の一つの段(段数は2Q 段)が同表示データの下位Q
ビットに応じて選択された後、該選択段の電圧が液晶電
圧としてデータラインX1 に出力されるという作用が得
られる。ここで、階調数mは2n (nは表示データのビ
ット数)であり、n=4とすると16階調になる。16
階調の場合、冒頭のやり方では16種類の階調電圧が必
要になるが、この技術では2P 種類で済む。すなわち、
P<nであるから、便宜的にP=2とすると、16種類
から4種類へと電圧の種類を大幅に削減できる。
According to this structure, first, one of the 2 P kinds of voltages V 1 to V 4 is selected according to the upper P bits of the n-bit display data, and then the selected voltage is selected. One row (the number of rows is 2 Q ) is the lower Q of the same display data.
After being selected according to the bit, the voltage of the selected stage is output as the liquid crystal voltage to the data line X 1 . Here, the number of gradations m is 2 n (n is the number of bits of display data), and when n = 4, 16 gradations are obtained. 16
In the case of gradation, 16 kinds of gradation voltages are required by the method at the beginning, but 2 P kinds are sufficient with this technique. That is,
Since P <n, if P = 2 for convenience, the number of types of voltage can be significantly reduced from 16 types to 4 types.

【0006】ここで、階調電圧発生回路の具体的な回路
構成を説明する。図11はその構成図であり、この例で
は、pnpトランジスタ31のベース電圧をツェナーダ
イオード32の逆方向ブレークダウン電圧(いわゆるツ
ェナー電圧VZ )によって一定に保ちつつ、同トランジ
スタ31のコレクタ電流IB を、オペアンプ33の出力
電圧VWに応じて複数段階に変化させている。VWは、
この例では4段階の大きさに変化する。すなわち、VW
の大きさは、D−A変換回路34の入力ビット(カウン
タ35の出力ビット)の組み合わせによって決まり、こ
の例では、カウンタ35の出力ビットがD1C及びD0
Cの2ビットであるから、「00」、「01」、「1
0」及び「11」の各組み合わせに応じた4種類の電圧
になる。VWは4個の抵抗R1 〜R4 からなる分圧回路
36を通してトランジスタ31のコレクタに印加されて
おり、分圧回路36の4個のノードN1 〜N4 からは、
分圧比に応じた電位差を有する4種類の電圧V1 〜V4
が取り出され、V1 〜V4 の大きさは、以下の式〜
によって表される。なお、図11において、37は直流
電源、38、39は抵抗、40〜43はオペアンプであ
る。
Here, a specific circuit configuration of the gradation voltage generating circuit will be described. FIG. 11 is a configuration diagram thereof. In this example, while keeping the base voltage of the pnp transistor 31 constant by the reverse breakdown voltage of the Zener diode 32 (so-called Zener voltage V Z ), the collector current I B of the transistor 31 is kept. Is changed in a plurality of steps according to the output voltage VW of the operational amplifier 33. VW is
In this example, the size changes in four steps. That is, VW
Is determined by the combination of the input bits of the D-A conversion circuit 34 (the output bits of the counter 35). In this example, the output bits of the counter 35 are D1C and D0.
Since it is 2 bits of C, "00", "01", "1"
There are four types of voltages corresponding to each combination of "0" and "11". VW is applied to the collector of the transistor 31 through the voltage dividing circuit 36 composed of four resistors R 1 to R 4, and from the four nodes N 1 to N 4 of the voltage dividing circuit 36,
Four types of voltages V 1 to V 4 having a potential difference according to the voltage division ratio
And the magnitudes of V 1 to V 4 are calculated by the following equation
Represented by In FIG. 11, 37 is a DC power supply, 38 and 39 are resistors, and 40 to 43 are operational amplifiers.

【0007】 V1 = R1 ×IB +VW ……… V2 =(R1 +R2 )×IB +VW ……… V3 =(R1 +R2 +R3 )×IB +VW ……… V4 =(R1 +R2 +R3 +R4 )×IB +VW ……… 図12はVW及びV1 〜V4 の波形図である。VWは0
V、0.2V、0.4V及び0.6Vの4段階に変化
し、V1 〜V4 は、異なる電位の固定電圧(1.8V、
2.6V、3.4V及び4.2V)にVWを加算した波
形を有している。なお、V1 〜V4 の電位差は、特に限
定しないが0.8Vである。
[0007] V 1 = R 1 × I B + VW ......... V 2 = (R 1 + R 2) × I B + VW ......... V 3 = (R 1 + R 2 + R 3) × I B + VW ......... V 4 = (R 1 + R 2 + R 3 + R 4) × I B + VW ......... Figure 12 is a waveform diagram of a VW and V 1 ~V 4. VW is 0
There are four levels of V, 0.2V, 0.4V, and 0.6V, and V 1 to V 4 are fixed voltages (1.8V,
It has a waveform obtained by adding VW to 2.6V, 3.4V and 4.2V). The potential difference between V 1 and V 4 is 0.8V, although not particularly limited.

【0008】図13は階調電圧の生成タイミング図であ
る。1水平走査期間において、分圧回路36のノードN
1 〜N4 の電位が充分に安定する時点t0 から時点t1
までの間の各電圧V1 〜V4 の電位は、V1 =1.8
V、V2 =2.6V、V3 =3.4V、V4 =4.2V
である。時点t1 でカウンタ35の出力ビットD1C、
D0Cが「00」になると、各電圧V1 〜V4 の電位が
+0.2Vアップされ、時点t2 でカウンタ35の出力
ビットD1C、D0Cが「01」になると、各電圧V1
〜V4 の電位が再び+0.2Vアップされ、時点t3
カウンタ35の出力ビットD1C、D0Cが「10」に
なると、各電圧V1 〜V4 の電位が再び+0.2Vアッ
プされ、時点t4 でカウンタ35の出力ビットD1C、
D0Cが「11」になると、各電圧V1 〜V4 の電位が
再び+0.2Vアップされる。したがって、電圧V1
4 の電位は、電圧の種類(4つ)に、階段の段数(4
段)を乗じた16種類となり、最小の電位(時点t1
1 )を第1番目の階調、最大の電位(時点t4
4 )を第16番目の階調とする16階調の電圧が生成
される。
FIG. 13 is a timing chart of generation of gradation voltages. In one horizontal scanning period, the node N of the voltage dividing circuit 36
From time t 0 to time t 1 when the potentials 1 to N 4 are sufficiently stable
The potential of each voltage V 1 to V 4 up to V 1 = 1.8
V, V 2 = 2.6V, V 3 = 3.4V, V 4 = 4.2V
It is. At time t 1 , the output bit D1C of the counter 35,
When DOC is "00", the potential of the voltages V 1 ~V 4 is + 0.2V is up and at time t 2 output bits D1C of the counter 35, DOC becomes "01", the voltages V 1
Potential of ~V 4 is again + 0.2V up and at time t 3 output bits D1C of the counter 35, DOC is "10", the potential of the voltage V 1 ~V 4 is again + 0.2V up, point At t 4 , the output bit D1C of the counter 35,
When D0C becomes “11”, the potentials of the voltages V 1 to V 4 are again increased by + 0.2V. Therefore, the voltage V 1
The potential of V 4 depends on the type of voltage (4) and the number of stairs (4
Becomes 16 types multiplied by stage), the 16th floor to minimize the potential (V 1) of the 1st gradation point t 1, the largest V 4) the 16th gradation potential (time t 4 A key voltage is generated.

【0009】例えば、第1番目の階調電圧を画像データ
の「0000」に対応させ、第2番目の階調電圧を画像
データの「0001」に対応させ、………、第16番目
の階調電圧を画像データの「1111」に対応させたと
きの選択動作は、以下のとおりになる。すなわち、画像
データの下位2ビットとカウンタ35の出力ビットD1
C、D0Cとの一致を判定し(この判定動作は図9の比
較器6で行われる)、その判定結果に応じてスイッチ9
のオフタイミングをコントロールする。例えば、「0
0」で一致した場合には時点t1 でオフにし、「11」
で一致した場合には時点t4 でオフにする。4種類の電
圧V1 〜V4 は、画像データの上位2ビットで選択され
る(この選択動作は図9のセレクタ8で行われる)か
ら、結局、画像データが「0000」のときには、時点
1 のV1 の電位(第1番目の階調電圧)が選択され、
また、画像データが「1111」のときには、時点t4
のV4の電位(第16番目の階調電圧)が選択されるこ
とになる。
For example, the first gradation voltage is made to correspond to the image data "0000", the second gradation voltage is made to correspond to the image data "0001", ..., and the 16th floor. The selection operation when the adjusted voltage is made to correspond to “1111” of the image data is as follows. That is, the lower 2 bits of the image data and the output bit D1 of the counter 35
It is determined whether or not C and D0C match (this determination operation is performed by the comparator 6 in FIG. 9), and the switch 9 is selected according to the determination result.
Control the off timing of. For example, "0
If they match with "0", they are turned off at time t 1 and "11"
If they match with each other, they are turned off at time t 4 . Since the four types of voltages V 1 to V 4 are selected by the upper 2 bits of the image data (this selection operation is performed by the selector 8 in FIG. 9), eventually, when the image data is “0000”, the time t 1 V 1 of the potential (1st gradation voltage) is selected,
Further, when the image data is “1111”, time t 4
Therefore, the potential of V 4 (16th gradation voltage) is selected.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、かかる
従来の液晶表示装置の階調電圧発生回路(図11)にあ
っては、簡単な構成で多種類の階調電圧を発生できる点
で有用なものの、液晶の表示特性を考慮した補正(いわ
ゆるガンマ補正)を行うことができないため、表示品質
の点で不十分なものであった。
However, the conventional gray scale voltage generating circuit (FIG. 11) of a liquid crystal display device is useful in that it can generate various kinds of gray scale voltages with a simple structure. However, since the correction (so-called gamma correction) considering the display characteristics of the liquid crystal cannot be performed, the display quality is insufficient.

【0011】図14は液晶の表示特性を表すTV(Tran
sparency-Voltage)曲線図であり、縦軸は液晶の透過率
T、横軸は液晶電圧Vである。なお、この例は、黒レベ
ルを最大の液晶電圧に、白レベルを最小の液晶電圧に対
応させたノーマリィホワイト型の特性である。液晶のT
V曲線(A)の場合、その曲線部でT=KV3.8 の関係
が成立する。3.8を液晶のガンマ値と言う。但し、K
は係数である。一般に、各種映像ソースのガンマ値は慣
例によってCRTのガンマ値(2.2)程度を使用する
ため、各種映像ソースをそのまま液晶表示装置に与えた
場合には、白レベル付近又は黒レベル付近の表示階調差
が少なくなり、微妙なコントラスト表現ができなくなる
といった表示品質上の不都合を生じることになる。
FIG. 14 shows a TV (Tran) which shows the display characteristics of the liquid crystal.
sparency-Voltage) curve diagram, the vertical axis is the liquid crystal transmittance T, and the horizontal axis is the liquid crystal voltage V. Note that this example is a normally white type characteristic in which the black level corresponds to the maximum liquid crystal voltage and the white level corresponds to the minimum liquid crystal voltage. Liquid crystal T
In the case of the V curve (A), the relationship of T = KV 3.8 is established at the curve portion. 3.8 is called the gamma value of liquid crystal. However, K
Is a coefficient. Generally, the gamma value of various video sources is about the gamma value (2.2) of CRT by convention, so when various video sources are directly applied to a liquid crystal display device, a display near a white level or a black level is displayed. The gradation difference becomes small, which causes a problem in display quality such that delicate contrast cannot be expressed.

【0012】ガンマ補正とは、ガンマ値3.8のものを
ガンマ値2.2のものに近づける操作を言う。Bはガン
マ補正された特性線である。特性線Aを特性線Bのよう
に補正するには、図15に示すような略S字形状の補正
カーブCを考えればよい。この補正カーブCは、黒レベ
ルから略中間レベルまでの液晶電圧を非線型に増大補正
し、かつ、略中間レベルから白レベルまでの液晶電圧を
同じく非線型に減少補正する。因みに、破線で示す直線
Dは、ガンマ補正を行わないときのもの、言い換えれ
ば、従来の階段電圧発生回路の特性線である。
Gamma correction is an operation of bringing a gamma value of 3.8 closer to a gamma value of 2.2. B is a gamma-corrected characteristic line. In order to correct the characteristic line A like the characteristic line B, a substantially S-shaped correction curve C as shown in FIG. 15 may be considered. This correction curve C performs non-linear increase correction of the liquid crystal voltage from the black level to the substantially intermediate level, and also performs non-linear decrease correction of the liquid crystal voltage from the substantially intermediate level to the white level. Incidentally, a straight line D shown by a broken line is a line when gamma correction is not performed, in other words, a characteristic line of the conventional staircase voltage generating circuit.

【0013】[0013]

【課題を解決するための手段】本発明は、簡単な構成で
ガンマ補正を行うことができる階調電圧発生回路を実現
するために、階段波状の階調電圧を発生する階調電圧発
生回路において、それぞれ値の異なる固定電圧を発生す
る複数の直流電圧発生部と、前記直流電圧発生部と同数
の電圧加算部と、階段波を発生する階段波電圧発生部
と、を有し、各一つずつの前記直流電圧発生部及び前記
電圧加算部でグループを組み、各グループ内の電圧加算
部によって、同グループ内の直流電圧発生部で発生した
固定電圧と前記階段波とを加算し、かつ、その加算比率
を各グループごとに設定する、という各事項を備える。
According to the present invention, there is provided a gray scale voltage generating circuit for generating a staircase-shaped gray scale voltage in order to realize a gray scale voltage generating circuit capable of performing gamma correction with a simple structure. A plurality of direct current voltage generators each generating a fixed voltage having a different value, a same number of voltage adders as the direct current voltage generators, and a staircase voltage generator generating a staircase wave, one for each A group is formed by the DC voltage generating unit and the voltage adding unit, and the voltage adding unit in each group adds the fixed voltage generated by the DC voltage generating unit in the group and the staircase, and, Each item of setting the addition ratio for each group is provided.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。図1は本発明に係る液晶表示装置の階
調電圧発生回路の第1実施例を示す図である。図1にお
いて、50〜53はそれぞれ異なる値の固定電圧VR1
〜VR4 を発生する4個の直流電圧発生部、54〜57
は同じく4個の電圧加算部、58は4段の階段波VWを
発生する階段波電圧発生部である。なお、上記の個数
(4個)や段数(4段)は説明のための便宜的な数であ
り、これらの数に限定されない。因みに、4個×4段で
16種類の階調電圧を発生できる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a first embodiment of a gradation voltage generating circuit of a liquid crystal display device according to the present invention. In FIG. 1, 50 to 53 are fixed voltages VR 1 having different values.
~ 4 DC voltage generators for generating VR4, 54-57
Similarly, 4 is a voltage adding unit, and 58 is a staircase voltage generating unit that generates four-stage staircase wave VW. The above-mentioned number (4) and the number of stages (4) are numbers for convenience of description and are not limited to these numbers. Incidentally, 16 kinds of gradation voltages can be generated by 4 × 4 stages.

【0015】概念的に示す電圧加算部54〜57は、そ
れぞれVWとVRj (jは1〜4;以下同様)とを加算
し、その加算した電圧Vj を出力するものであり、VW
とVRj の加算比率を各電圧加算部54〜57ごとに自
在に設定できるようになっている点に特徴がある。すな
わち、それぞれの電圧加算部54〜57は、VRj に対
する係数KjA を設定する第1係数器6j と、VWに対
する係数KjB を設定する第2係数器7j と、各係数を
適用したVRj とVWとを加算する加算器8jとを有す
る。
Conceptually shown voltage adders 54 to 57 add VW and VR j (j is 1 to 4; the same applies hereinafter) and output the added voltage V j.
And the addition ratio of VR j are characterized in that they can be freely set for each of the voltage adding sections 54 to 57. That is, each of the voltage adders 54 to 57 sets the first coefficient unit 6 j for setting the coefficient K j A for VR j , the second coefficient unit 7 j for setting the coefficient K j B for VW, and each coefficient. It has an adder 8 j that adds the applied VR j and VW.

【0016】このような構成によれば、4種類の電圧V
1 〜V4 は、次式〜によって与えられる。 V1 = VR1 ×K1 + VW×K1 ……… V2 = VR2 ×K2 + VW×K2 ……… V3 = VR3 ×K3 + VW×K3 ……… V4 = VR4 ×K4 + VW×K4 ……… ここで、すべての係数を1にすると、ガンマ補正を行わ
ないもの、すなわち、図15の直線Dと同じになるが、
各係数(KjA 、KjB )をそれぞれ適正な値に設定す
ることによって、図15の略S字形状の補正カーブCに
近いものを容易に得ることができる。なお、図1の概念
図では、各係数を第1係数器6j 及び第2係数器7j
発生しているが、これらの係数器は、いくつかの抵抗の
組み合わせで簡単に構成できる。
According to this structure, four types of voltage V
1 to V 4 are given by the following equations. V 1 = VR 1 × K 1 A + VW x K 1 B ……… V 2 = VR 2 × K 2 A + VW x K 2 B ……… V 3 = VR 3 × K 3 A + VW x K 3 B ……… V 4 = VR 4 × K 4 A + VW x K 4 B ......... Here, if all the coefficients are set to 1, the gamma correction is not performed, that is, the same as the straight line D in FIG.
By setting each coefficient (K j A, K j B) to an appropriate value, it is possible to easily obtain a curve close to the substantially S-shaped correction curve C in FIG. In the conceptual diagram of FIG. 1, each coefficient is generated by the first coefficient unit 6 j and the second coefficient unit 7 j , but these coefficient units can be easily configured by combining some resistors.

【0017】図2〜図5は本発明に係る液晶表示装置の
階調電圧発生回路の第2実施例を示す図である。図2に
おいて、91〜94はそれぞれ異なる値の固定電圧VR
1 〜VR4 を発生する直流電圧発生部、95〜98は図
1の加算器に相当する4個のオペアンプ、99〜102
は図1の第1係数器及び第2係数器に相当する抵抗網、
103は階段波VWを発生する階段波電圧発生部であ
る。
2 to 5 are views showing a second embodiment of the gradation voltage generating circuit of the liquid crystal display device according to the present invention. In FIG. 2, 91 to 94 are fixed voltages VR having different values.
1 to VR 4 generating DC voltage generator, 95 to 98 are four operational amplifiers corresponding to the adder of FIG. 1, 99 to 102
Is a resistor network corresponding to the first coefficient unit and the second coefficient unit of FIG.
103 is a staircase voltage generator that generates a staircase wave VW.

【0018】各抵抗網99〜102はオペアンプの入力
抵抗Rsj とフィードバック抵抗Rfj からなり、各オ
ペアンプ95〜98は、VRj とVWの電位差を、Rf
j とRsj の比で決まる利得Aで増幅し、電圧Vj とし
て出力する。このような構成によれば、Rsj とRfj
の値を変更することにより、各オペアンプ95〜98の
利得Aを個別に調節することができる。図3は、Rsj
とRfj の値を好ましい値に設定したときの4種類の電
圧V1 〜V4 の電位レベル図である。VWが0.0Vの
ときには、V1 =VR1 、V2 =VR2 、V3 =V
3 、V4 =VR4 となる。ガンマ補正を考慮したとき
のVRj の好ましい値は、VR1 =2.14V、VR2
=2.5V、VR3 =2.9V、VR4 =4.0Vであ
る。ここで、階段波VWの各段の電圧を、0.0V、
1.0V、2.0V、3.0Vにするとともに、Rsj
とRfj の値をそれぞれ最適に設定すると、VW=0.
0V以外のときのV1 〜V4 の電位レベルを、ガンマ補
正に適したものとすることができる。例えば、V1 は、
1.96V、1.78V及び1.6Vの各電位レベルを
有し、また、V4 は、3.73V、3.45V、3.1
8Vの各電位レベルを有するようにすることができる。
Each resistor network 99 to 102 is an input of an operational amplifier.
Resistance RsjAnd feedback resistance RfjConsists of each
Peamplifiers 95-98 are VRjAnd the potential difference between VW and Rf
jAnd RsjIt is amplified by the gain A determined by the ratio ofjage
Output. According to such a configuration, RsjAnd Rfj
By changing the value of
The gain A can be adjusted individually. Figure 3 shows Rsj
And RfjThere are four types of power when the value of
Pressure V1~ VFour3 is a potential level diagram of FIG. VW is 0.0V
Sometimes V1= VR1, V2= VR2, VThree= V
R Three, VFour= VRFourBecomes When considering gamma correction
VRjThe preferred value of VR is1= 2.14V, VR2
= 2.5V, VRThree= 2.9V, VRFour= 4.0V
You. Here, the voltage of each step of the staircase wave VW is 0.0V,
Rs as well as 1.0V, 2.0V, 3.0Vj
And RfjIs set to the optimum value, VW = 0.
V when other than 0V1~ VFourThe potential level of
It can be just right. For example, V1Is
Each potential level of 1.96V, 1.78V and 1.6V
Have and VFourIs 3.73V, 3.45V, 3.1
It is possible to have each potential level of 8V.

【0019】図4は図3の各電位レベルを階調データに
対応させた表である。階調データ「0000」の黒レベ
ルは、V4 の4.00V(=VR4 )に対応し、階調デ
ータ「1111」の白レベルは、V1 の1.60Vに対
応している。そして、その間の各階調データ(「000
1」〜「1110」)が、V4 の3.73V、V4
3.45V、………、V1 の1.96V、1.78Vに
それぞれ対応している。
FIG. 4 is a table in which each potential level in FIG. 3 is associated with gradation data. The black level of the gradation data “0000” corresponds to 4.00 V (= VR 4 ) of V 4 , and the white level of the gradation data “1111” corresponds to 1.60 V of V 1 . Then, each gradation data ("000
1 "-" 1110 "), 3.73V of V 4, of V 4 3.45V, ........., V 1 of 1.96V, respectively correspond to 1.78V.

【0020】図5は図4の対応関係をグラフにプロット
したものである。横軸は電圧、縦軸は表示データであ
り、表示データと電圧との交点を結ぶ、略S字形状の補
正カーブが得られる。このように、本実施例によれば、
4個のオペアンプ95〜98の利得Aを個別に調節する
だけで、ガンマ補正を施した4種類の電圧V1 〜V4
発生することができ、各電圧の段数を4段とすると、4
種類×4段=16種類の階調電圧を生成することができ
る。なお、電圧の種類や段数は一例であり、例えば、6
4種類の階調電圧を生成する場合は、基準となる電圧V
1 、VR2 、………の種類を8種類とすると共に、階
段波VWの段数を8段にすればよい。
FIG. 5 is a graph plotting the correspondence relationship of FIG. The horizontal axis is the voltage and the vertical axis is the display data, and a substantially S-shaped correction curve connecting the intersections of the display data and the voltage is obtained. Thus, according to the present embodiment,
By simply adjusting the gains A of the four operational amplifiers 95 to 98 individually, it is possible to generate four types of voltages V 1 to V 4 that have been subjected to gamma correction. If the number of stages of each voltage is 4, then 4
It is possible to generate 16 types of gradation voltages, which is 4 types. The type of voltage and the number of stages are examples, and for example, 6
When generating four types of gradation voltages, the reference voltage V
The number of steps of the staircase wave VW may be set to 8 while the number of types of R 1 , VR 2 , ...

【0021】図6は本発明に係る液晶表示装置の階調電
圧発生回路の第3実施例を示す図であり、110〜11
3はそれぞれ異なる値の固定電圧VR1 〜VR4 (但し
第2実施例のVRj の逆極性)を発生する直流電圧発生
部、114〜117は図1の加算器に相当する4個のオ
ペアンプ、118〜121は図1の第1係数器及び第2
係数器に相当する抵抗網、122は階段波VWを発生す
る階段波電圧発生部である。第2実施例との相違は、オ
ペアンプ114〜117を反転増幅器として動作させる
点にあり、そのために、抵抗網118〜121は、VR
j 用の入力抵抗Rsj 、VW用の入力抵抗Rsj′ 、及
び共通のフィードバック抵抗Rfj を備えている。
FIG. 6 is a diagram showing a third embodiment of the gradation voltage generating circuit of the liquid crystal display device according to the present invention, which is 110 to 11
Reference numeral 3 designates a DC voltage generator for generating fixed voltages VR 1 to VR 4 having different values (reverse polarity of VR j in the second embodiment), and 114 to 117 are four operational amplifiers corresponding to the adder of FIG. , 118 to 121 are the first coefficient unit and the second coefficient unit of FIG.
A resistor network corresponding to a coefficient unit, and 122 is a staircase voltage generator that generates a staircase wave VW. The difference from the second embodiment is that the operational amplifiers 114 to 117 are operated as inverting amplifiers. Therefore, the resistor networks 118 to 121 are connected to VR.
It has an input resistance Rs j for j , an input resistance Rs j ′ for VW, and a common feedback resistance Rf j .

【0022】このような構成によれば、Rsj とRfの
比を調節することによってVRj に対する利得を変える
ことができ、かつ、Rsj′ とRfの比を調節すること
によってVWに対する利得を変えることができる。した
がって、VRj とVWの利得を個別に設定することがで
き、きめ細かなガンマ補正を行うことができるというメ
リットが得られる。
According to this structure, the gain for VR j can be changed by adjusting the ratio of Rs j and Rf, and the gain for VW can be adjusted by adjusting the ratio of Rs j ′ and Rf. Can be changed. Therefore, the gains of VR j and VW can be set individually, and fine gamma correction can be performed, which is an advantage.

【0023】図7は本発明に係る液晶表示装置の階調電
圧発生回路の第4実施例を示す図であり、130〜13
3はそれぞれ異なる値の固定電圧VR1 〜VR4 (但し
第2実施例のVRj と同極性)を発生する直流電圧発生
部、134〜137は図1の加算器に相当する4個のオ
ペアンプ、138A〜141A及び138B〜141B
は一体として図1の第1係数器及び第2係数器に相当す
る抵抗網、142は階段波VWを発生する階段波電圧発
生部である。
FIG. 7 is a diagram showing a fourth embodiment of the grayscale voltage generating circuit of the liquid crystal display device according to the present invention, and 130 to 13 are shown.
Reference numeral 3 denotes a DC voltage generator that generates fixed voltages VR 1 to VR 4 (but the same polarity as VR j of the second embodiment) having different values, and 134 to 137 are four operational amplifiers corresponding to the adder of FIG. 138A-141A and 138B-141B
Is a resistance network corresponding to the first coefficient device and the second coefficient device of FIG. 1, and 142 is a staircase voltage generator that generates a staircase wave VW.

【0024】抵抗網138A〜141Aは、VRj 用の
入力抵抗Raj とVW用の入力抵抗Rbj を備えると共
に、共通の入力抵抗Rsj 及びフィードバック抵抗Rf
j を備えている。Rsj とRfj の比を調節することに
より、各オペアンプ134〜137の利得を個別に設定
することができ、かつ、Raj とRbj の比を調節する
ことにより、各オペアンプ134〜137のVRj とV
Wとの加算割合を自在に設定することができる。
The resistor network 138A~141A is provided with a input resistor Rb j for input resistors Ra j and VW for VR j, common input resistor Rs j and feedback resistor Rf
equipped with j . By adjusting the ratio of Rs j and Rf j , the gains of the operational amplifiers 134 to 137 can be individually set, and by adjusting the ratio of Ra j and Rb j , the operational amplifiers 134 to 137 can be adjusted. VR j and V
The addition rate with W can be set freely.

【0025】図8は本発明に係る液晶表示装置の階調電
圧発生回路の第5実施例を示す図であり、上記第4実施
例と実質同一の構成を有するものである。すなわち、こ
の第5実施例では、4個の直流電圧発生部130〜13
3が抵抗網138B〜141Bの側に設けられており、
また、抵抗網138A〜141AのRaj の一端がグラ
ンドに接続されているため、第4実施例とは異なる構成
のように見えるが、両実施例における直流電圧発生部1
30〜133の正電極とRaj との間を仮想の配線で接
続してみると、両者は実質同一の構成になるから、いず
れの実施例でも共通の作用・効果を得ることができる。
FIG. 8 is a diagram showing a fifth embodiment of the gradation voltage generating circuit of the liquid crystal display device according to the present invention, which has substantially the same configuration as that of the fourth embodiment. That is, in this fifth embodiment, four DC voltage generators 130 to 13 are used.
3 is provided on the side of the resistor networks 138B to 141B,
Further, since one end of Ra j of the resistor networks 138A to 141A is connected to the ground, it looks like a configuration different from that of the fourth embodiment, but the DC voltage generator 1 in both embodiments is different.
When the positive electrodes of 30 to 133 and Ra j are connected by virtual wiring, both have substantially the same configuration, so that any embodiment can obtain common actions and effects.

【0026】[0026]

【発明の効果】本発明によれば、簡単な構成で多種類の
階調電圧を発生できることに加え、液晶の表示特性を考
慮したガンマ補正も行うことができるという従来技術に
はない有利な効果を有する階調電圧発生回路を実現でき
る。
According to the present invention, in addition to being able to generate various kinds of gradation voltages with a simple structure, gamma correction can be performed in consideration of the display characteristics of the liquid crystal, which is an advantageous effect not seen in the prior art. It is possible to realize a gradation voltage generating circuit having

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment.

【図2】第2実施例の構成図である。FIG. 2 is a configuration diagram of a second embodiment.

【図3】第2実施例の波形図である。FIG. 3 is a waveform diagram of the second embodiment.

【図4】第2実施例のガンマ補正を考慮した好ましい電
圧レベル図である。
FIG. 4 is a preferred voltage level diagram considering gamma correction in the second embodiment.

【図5】ガンマ補正を考慮した好ましい電圧レベルの図
式解法を示すグラフである。
FIG. 5 is a graph showing a graphical solution of a preferred voltage level considering gamma correction.

【図6】第3実施例の構成図である。FIG. 6 is a configuration diagram of a third embodiment.

【図7】第4実施例の構成図である。FIG. 7 is a configuration diagram of a fourth embodiment.

【図8】第5実施例の構成図である。FIG. 8 is a configuration diagram of a fifth embodiment.

【図9】階調電圧発生回路を含む液晶表示装置の要部ブ
ロック図である。
FIG. 9 is a block diagram of a main part of a liquid crystal display device including a grayscale voltage generation circuit.

【図10】液晶パネルの概念構成図である。FIG. 10 is a conceptual configuration diagram of a liquid crystal panel.

【図11】従来の階調電圧発生回路の構成図である。FIG. 11 is a configuration diagram of a conventional grayscale voltage generation circuit.

【図12】図11の波形図である。FIG. 12 is a waveform diagram of FIG. 11.

【図13】図11の電圧レベル図及びタイミング図であ
る。
13 is a voltage level diagram and a timing diagram of FIG. 11.

【図14】液晶のTV曲線を示すグラフである。FIG. 14 is a graph showing a TV curve of liquid crystal.

【図15】図15のTV曲線に対する好ましいガンマ補
正特性図である。
15 is a preferred gamma correction characteristic diagram for the TV curve of FIG.

【符号の説明】[Explanation of symbols]

50〜53:直流電圧発生部 54〜57:電圧加算部 58:階段波電圧発生部 91〜94:直流電圧発生部 95〜98:オペアンプ(電圧加算部) 103:階段波電圧発生部 110〜113:直流電圧発生部 114〜117:オペアンプ(電圧加算部) 122:階段波電圧発生部 130〜133:直流電圧発生部 134〜137:オペアンプ(電圧加算部) 142:階段波電圧発生部 50-53: DC voltage generator 54-57: Voltage adder 58: Staircase voltage generator 91-94: DC voltage generator 95-98: Operational amplifier (voltage adder) 103: Staircase voltage generator 110-113 : DC voltage generating unit 114 to 117: operational amplifier (voltage adding unit) 122: staircase voltage generating unit 130 to 133: DC voltage generating unit 134 to 137: operational amplifier (voltage adding unit) 142: staircase voltage generating unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】階段波状の階調電圧を発生する階調電圧発
生回路において、それぞれ値の異なる固定電圧を発生す
る複数の直流電圧発生部と、前記直流電圧発生部と同数
の電圧加算部と、階段波を発生する階段波電圧発生部
と、を有し、各一つずつの前記直流電圧発生部及び前記
電圧加算部でグループを組み、各グループ内の電圧加算
部によって、同グループ内の直流電圧発生部で発生した
固定電圧と前記階段波とを加算し、かつ、その加算比率
を各グループごとに設定することを特徴とする液晶表示
装置の階調電圧発生回路。
1. A gradation voltage generating circuit for generating a staircase gradation voltage, comprising: a plurality of DC voltage generating sections for generating fixed voltages having different values; and a voltage adding section of the same number as the DC voltage generating sections. , A staircase voltage generator that generates a staircase, and each of the DC voltage generator and the voltage adder are grouped one by one, and the voltage adder in each group A gradation voltage generation circuit for a liquid crystal display device, wherein a fixed voltage generated in a DC voltage generation unit and the staircase wave are added, and the addition ratio is set for each group.
JP7227620A 1995-09-05 1995-09-05 Generating circuit for gradation voltage of liquid crystal display device Withdrawn JPH0973283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7227620A JPH0973283A (en) 1995-09-05 1995-09-05 Generating circuit for gradation voltage of liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7227620A JPH0973283A (en) 1995-09-05 1995-09-05 Generating circuit for gradation voltage of liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH0973283A true JPH0973283A (en) 1997-03-18

Family

ID=16863792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7227620A Withdrawn JPH0973283A (en) 1995-09-05 1995-09-05 Generating circuit for gradation voltage of liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH0973283A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998048317A1 (en) * 1997-04-18 1998-10-29 Seiko Epson Corporation Circuit and method for driving electrooptic device, electrooptic device, and electronic equipment made by using the same
KR100365496B1 (en) * 2000-12-15 2002-12-18 엘지.필립스 엘시디 주식회사 Liquid Crystal Display Device having a Fine controlling Apparatus
KR100375309B1 (en) * 1999-12-10 2003-03-10 샤프 가부시키가이샤 Gray scale display reference voltage generating circuit capable of changing gamma correction characteristic and lcd drive unit employing the same
KR100430356B1 (en) * 1998-12-10 2004-05-06 산요덴키가부시키가이샤 Liquid crystal driving integrated circuit
KR100495792B1 (en) * 1997-07-08 2005-09-30 삼성전자주식회사 A liquid crystal display having the capability of compensating for flikers by dajusting gamma reference voltages
KR100525614B1 (en) * 1997-04-18 2005-12-21 세이코 엡슨 가부시키가이샤 Circuit and method for driving electrooptic device , electrooptic device, and electronic equipment made by using the same
KR100570160B1 (en) * 1998-03-24 2006-04-12 세이코 엡슨 가부시키가이샤 Digital driver circuit for electro-optical device and electro-optical device having the digital driver circuit
US7042430B2 (en) 2002-03-18 2006-05-09 Hitachi, Ltd. Liquid crystal display device having stabilized drive circuit
JP2006309126A (en) * 2005-04-27 2006-11-09 Samsung Sdi Co Ltd Driving apparatus and method for electron emission device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998048317A1 (en) * 1997-04-18 1998-10-29 Seiko Epson Corporation Circuit and method for driving electrooptic device, electrooptic device, and electronic equipment made by using the same
US6380917B2 (en) 1997-04-18 2002-04-30 Seiko Epson Corporation Driving circuit of electro-optical device, driving method for electro-optical device, and electro-optical device and electronic equipment employing the electro-optical device
US6674420B2 (en) 1997-04-18 2004-01-06 Seiko Epson Corporation Driving circuit of electro-optical device, driving method for electro-optical device, and electro-optical device and electronic equipment employing the electro-optical device
KR100525614B1 (en) * 1997-04-18 2005-12-21 세이코 엡슨 가부시키가이샤 Circuit and method for driving electrooptic device , electrooptic device, and electronic equipment made by using the same
KR100495792B1 (en) * 1997-07-08 2005-09-30 삼성전자주식회사 A liquid crystal display having the capability of compensating for flikers by dajusting gamma reference voltages
KR100570160B1 (en) * 1998-03-24 2006-04-12 세이코 엡슨 가부시키가이샤 Digital driver circuit for electro-optical device and electro-optical device having the digital driver circuit
KR100430356B1 (en) * 1998-12-10 2004-05-06 산요덴키가부시키가이샤 Liquid crystal driving integrated circuit
KR100375309B1 (en) * 1999-12-10 2003-03-10 샤프 가부시키가이샤 Gray scale display reference voltage generating circuit capable of changing gamma correction characteristic and lcd drive unit employing the same
KR100365496B1 (en) * 2000-12-15 2002-12-18 엘지.필립스 엘시디 주식회사 Liquid Crystal Display Device having a Fine controlling Apparatus
US7042430B2 (en) 2002-03-18 2006-05-09 Hitachi, Ltd. Liquid crystal display device having stabilized drive circuit
US7492340B2 (en) 2002-03-18 2009-02-17 Hitachi, Ltd. Liquid crystal display device having stabilized drive circuit
JP2006309126A (en) * 2005-04-27 2006-11-09 Samsung Sdi Co Ltd Driving apparatus and method for electron emission device

Similar Documents

Publication Publication Date Title
US6441763B1 (en) DA converter and liquid crystal driving device incorporating the same
JP2590456B2 (en) Liquid crystal display
KR100536871B1 (en) Display driving device and display using the same
JP3495960B2 (en) Gray scale display reference voltage generating circuit and liquid crystal driving device using the same
JP3367808B2 (en) Display panel driving method and apparatus
US5724058A (en) Gray scale display driving method of a matrix liquid crystal display and driving apparatus therefor
JPH08227283A (en) Liquid crystal display device, its driving method and display system
JP2003280596A (en) Display driving apparatus and display apparatus using the same
JP2000183747A (en) D/a converter and liquid crystal driver using the same
JPH08509818A (en) Method and apparatus for crosstalk compensation in liquid crystal display device
JP2006313306A (en) Gamma reference voltage generation circuit and flat display having the same
JPH06274133A (en) Driving circuit for display device, and display device
KR100229616B1 (en) Multi-gray processing device
JPH0973283A (en) Generating circuit for gradation voltage of liquid crystal display device
JPH09138670A (en) Driving circuit for liquid crystal display device
JP3641913B2 (en) Display device
JPH07306660A (en) Gradation driving circuit for liquid crystal display device and gradation driving method therefor
JP2006276114A (en) Liquid crystal display device
JP2001166752A (en) Liquid crystal display device
KR101165468B1 (en) Liquid crystal display device and method for driving the same
JPH0651719A (en) Liquid crystal display device
JPS6151829B2 (en)
JP2978515B2 (en) Liquid crystal display
JP2006337787A (en) Liquid crystal display device
JP2000010532A (en) Liquid crystal device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105