JPH0972795A - Torque sensor - Google Patents
Torque sensorInfo
- Publication number
- JPH0972795A JPH0972795A JP25183295A JP25183295A JPH0972795A JP H0972795 A JPH0972795 A JP H0972795A JP 25183295 A JP25183295 A JP 25183295A JP 25183295 A JP25183295 A JP 25183295A JP H0972795 A JPH0972795 A JP H0972795A
- Authority
- JP
- Japan
- Prior art keywords
- torque
- contact displacement
- sensor
- slits
- cylindrical body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、停止時あるいは高速回
転時における軸に付加される微小なトルクを検出するの
に好適なトルクセンサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a torque sensor suitable for detecting a minute torque applied to a shaft when stopped or rotating at high speed.
【0002】[0002]
【従来の技術】従来のトルクセンサは、第4図に示すよ
うに強磁性体で作られた全く同じ歯車12,12’をト
−ションバ−11の両側に取り付け、それぞれの歯車1
2,12’の外周面に対面して、電磁ピックアップ1
3,13’を設置した構造となっていた。したがって、
回転中にト−ションバ−の両端にトルクが加わるとト−
ションがねじれ両側の歯車に位相差が生じる。この位相
差からトルクの大きさを検出していた。2. Description of the Related Art In a conventional torque sensor, as shown in FIG. 4, exactly the same gears 12, 12 'made of a ferromagnetic material are mounted on both sides of a torsion bar 11, and each gear 1
Electromagnetic pickup 1 facing the outer peripheral surface of 2, 12 '
It had a structure with 3, 13 'installed. Therefore,
If torque is applied to both ends of the torsion bar during rotation,
The torsion is twisted and a phase difference occurs between the gears on both sides. The magnitude of torque was detected from this phase difference.
【0003】また、別のトルク検出法として、第5図に
示すように、軸16の長手方向に対し45゜及びー45
゜をなすらせん形状に薄いアモルファス磁性合金17,
18を接着し、その外側に同心にコイル14,15を配
置したものがある。軸にトルクが加わると、一方のアモ
ルファス磁性合金17には引っ張り応力が、他方のアモ
ルファス磁性合金18には圧縮応力が発生し、発生する
応力によりアモルファス磁性合金の透磁率が変化するの
で、コイル14,15のインダクタンスのとして検出
し、2つのコイルの差動出力によりトルクの大きさと方
向を検出していた。As another torque detecting method, as shown in FIG. 5, 45 ° and −45 with respect to the longitudinal direction of the shaft 16.
Helical amorphous thin magnetic alloy 17,
There is one in which 18 is adhered and coils 14 and 15 are concentrically arranged on the outside thereof. When torque is applied to the shaft, a tensile stress is generated in one of the amorphous magnetic alloys 17 and a compressive stress is generated in the other amorphous magnetic alloy 18, and the generated stress changes the magnetic permeability of the amorphous magnetic alloy. , 15 as the inductance, and the magnitude and direction of the torque are detected by the differential output of the two coils.
【0004】[0004]
【発明が解決しようとする問題点】第1の方式の場合、
位相差を検出するには軸が回転していなければならな
い。したがって、静止時のトルク測定を行なおうとした
場合、特殊な回転装置を必要とし構造が複雑になる。ま
た微小なトルクを検出しようとした場合、軸両端に検出
に必要な位相差を生じさせるには長いト−ションバ−が
必要で検出装置の全長が長くなり小型化が難しいなどの
問題点があった。また、第2の方式では軸にアモルファ
ス磁性合金を接着しているため、軸とアモルファス磁性
合金の熱膨張係数が異なるため、温度変化による測定誤
差が生じる。また微小なトルクでは歪みが少ないため、
応力の発生がわずかであり、微小なトルクの検出は困難
であるなどの問題点があった。。また上記両技術とも回
転数の測定は不可能である。本発明は上記従来技術の欠
点をなくし、静止から高速回転時における、微小トルク
及び回転速度を検出できる小型のトルクセンサを提供す
ることを目的とするものである。Problems to be Solved by the Invention In the case of the first method,
The axis must be rotating to detect the phase difference. Therefore, when trying to measure the torque at rest, a special rotating device is required and the structure becomes complicated. In addition, when trying to detect a small torque, a long torsion bar is required to generate the phase difference required for detection at both ends of the shaft, and the total length of the detection device becomes long, making it difficult to miniaturize. It was Further, in the second method, since the amorphous magnetic alloy is adhered to the shaft, the thermal expansion coefficient of the shaft is different from that of the amorphous magnetic alloy, so that a measurement error occurs due to a temperature change. Also, since there is little distortion with minute torque,
There is a problem that the stress is slightly generated and it is difficult to detect a minute torque. . In addition, it is impossible to measure the number of revolutions with both the above techniques. SUMMARY OF THE INVENTION It is an object of the present invention to eliminate the above-mentioned drawbacks of the prior art and to provide a small torque sensor capable of detecting a minute torque and a rotational speed during stationary to high speed rotation.
【0005】[0005]
【問題点を解決するための手段】上記目的は、トルク伝
達系に設けたトルクにより撓むようにした弾性体円筒面
の変位を、トルク伝達系外部に設置した非接触変位計に
より検出することにより達成される。すなわち、トルク
伝達軸の負荷軸と駆動軸の間に円周方向に対し斜め方向
に複数のスリットを等間隔に設けた弾性円筒体を挿入
し、駆動軸、弾性円筒体、負荷軸の回転中心が一致する
ように配置結合する。そして弾性円筒体のスリット成形
部の半径方向の変位を検出できるように、円筒面に直角
に非接触変位センサを配置した構成のトルク検出装置に
より達成できる。なお非接触変位計には、渦電流方式、
静電容量方式、光学式、などが利用できる。The above object is achieved by detecting the displacement of the elastic cylindrical surface which is provided in the torque transmission system and is made to bend by the torque, by a non-contact displacement gauge installed outside the torque transmission system. To be done. That is, an elastic cylindrical body having a plurality of slits at equal intervals obliquely to the circumferential direction is inserted between the load shaft of the torque transmission shaft and the drive shaft, and the rotation center of the drive shaft, the elastic cylindrical body, and the load shaft is inserted. Place and combine so that the two match. This can be achieved by a torque detection device having a configuration in which a non-contact displacement sensor is arranged at a right angle to the cylindrical surface so that the radial displacement of the slit forming portion of the elastic cylindrical body can be detected. In addition, the non-contact displacement gauge, eddy current method,
Capacitance type, optical type, etc. can be used.
【0006】[0006]
【作用】負荷軸に加わったトルクにより、弾性円筒体は
その両側がねじられ、中央部の斜めスリット成形部にお
いて、トルクの付加方向がスリットに引っ張り力が働く
方向の場合、絞られ直径が縮み、これと逆方向の場合、
直径が脹らむように変形する。この変形量はトルクの大
きさに比例するので、非接触変位計により検出すること
によりトルクの大きさと方向を知ることができる。[Operation] Due to the torque applied to the load shaft, both sides of the elastic cylindrical body are twisted, and in the diagonal slit forming part in the central part, when the direction of torque addition is the direction in which a tensile force acts on the slit, the diameter is reduced and the diameter is reduced. , In the opposite direction,
It deforms so that its diameter expands. Since this deformation amount is proportional to the magnitude of the torque, the magnitude and direction of the torque can be known by detecting it with a non-contact displacement meter.
【0007】[0007]
【実施例】以下、図示した実施例に基づき本発明を説明
する。第1図(a)には本発明の一実施例が示されてい
る。弾性体でできた円筒1の中央部の円周方向に対し
て、0及び90度以外のある任意の角度を以て、通常は
20〜70度の角度範囲で等間隔に複数のスリット2を
成形し、このスリット成形部3の軸方向中央部に円筒面
に直角に、非接触変位センサ4を対向して設置してい
る。いま第1図(b)の矢印の方向にトルクが加わる
と、同図に示すようにスリット成形部3は絞られてその
直径が小さくなるように変化する。また第1図(c)に
示すように逆方向にトルクを加えると、スリット成形部
3は、逆に脹らんで直径が大きくなる。この変形量はト
ルクの大きさに比例するため、非接触変位センサ4の出
力は、無負荷状態に対し、直径が縮む変形の場合、出力
レベルが下降し、直径が脹らむ場合出力レベルが上昇す
る。この出力レベルの増減を検出することにより、トル
クの大きさと方向を知ることができる。The present invention will be described below based on the illustrated embodiments. FIG. 1 (a) shows an embodiment of the present invention. A plurality of slits 2 are formed at regular intervals in an angular range of 20 to 70 degrees at an arbitrary angle other than 0 and 90 degrees with respect to a circumferential direction of a central portion of a cylinder 1 made of an elastic body. A non-contact displacement sensor 4 is installed facing the cylindrical surface at a central portion in the axial direction of the slit forming portion 3 at a right angle to the cylindrical surface. When torque is applied in the direction of the arrow in FIG. 1 (b), the slit forming portion 3 is squeezed and the diameter thereof changes so as to become smaller, as shown in FIG. When torque is applied in the opposite direction as shown in FIG. 1 (c), the slit forming portion 3 expands and the diameter increases. Since the amount of this deformation is proportional to the magnitude of the torque, the output of the non-contact displacement sensor 4 decreases in the case of the deformation in which the diameter shrinks with respect to the unloaded state, and the output level rises in the case of the diameter expanding. . The magnitude and direction of the torque can be known by detecting the increase / decrease in the output level.
【0008】第2図(a)は本発明の第2実施例で、弾
性体でできた円筒1の中央部付近に、互いに逆方向の
傾きを持ったスリット2,2’を成形しそれぞれのスリ
ット成形部3’,3”の中央部に非接触変位センサ
4’,4”を円筒面に直角に対向して設置している。い
ま第2図(b)に示す矢印の方向にトルクが働くと左側
のスリット部3’は絞られその直径が縮み、右側のスリ
ット部3”は脹らんで直径が広がるため、それぞれのス
リット部に対向して設置した非接触変位センサの出力は
極性が逆になり、その差分を検出することにより検出感
度を2倍に高くすることができる。FIG. 2 (a) shows a second embodiment of the present invention, in which the cylinders 1 made of an elastic material are provided in opposite directions to each other near the center.
Slits 2 and 2 ′ having an inclination are formed, and non-contact displacement sensors 4 ′ and 4 ″ are installed at the center of the slit forming parts 3 ′ and 3 ″ so as to face the cylindrical surface at right angles. When torque acts in the direction of the arrow shown in Fig. 2 (b), the left slit portion 3'is squeezed and its diameter shrinks, and the right slit portion 3 "expands and its diameter expands. The polarities of the outputs of the non-contact displacement sensor installed facing each other are opposite, and the detection sensitivity can be doubled by detecting the difference.
【0009】第3図は本発明の第3実施例で、弾性円筒
体1の軸方向の中央部に全周に複数の斜めスリット2を
等間隔に成形し、スリット部の前方に円周の一部にマー
カ5を成形し、スリットに対面して非接触変位センサ4
を設置し、マーカ5に対応した位置にフォトセンサ6を
設置している。非接触変位センサ4の出力はアンプ7を
経由してA/D変換器9でアナログ信号がデジタル信号
に変換され、演算処理部10に入る。弾性円筒体1が回
転すると非接触変位センサ4の出力は、弾性円筒体1の
偏心と丘部3が非接触変位センサ4の前を通過するとき
に電圧出力が大きくなる第4図aに示す形となる。この
とき1回転に1回マーカがフォトセンサの前を通過する
とき、第4図cに示すトリガ信号が発生する。今無負荷
状態での、トリガ信号を基準に順々にくる山の波形のピ
ークをホールドし、負荷が加わったとき、弾性円筒体の
半径が変化するから、非接触変位センサ4の出力波形は
第4図bのように変化する。従って、トリガ信号を基準
に順々にくる山の波形のピークを無負荷時のそれと比較
することにより、トルクの大きさを知ることができる。
また、演算処理部10に内蔵したタイマにより山の波形
のピーク間の時間を無負荷時と負荷時で比較測定するこ
とにより、回転速度の変動も同時に測定することができ
る。FIG. 3 shows a third embodiment of the present invention, in which a plurality of slanted slits 2 are formed at regular intervals in the central portion of the elastic cylindrical body 1 in the axial direction, and a circular slit is formed in front of the slit portion. A marker 5 is formed on a part of the non-contact displacement sensor 4 facing the slit.
And the photo sensor 6 is installed at a position corresponding to the marker 5. An output of the non-contact displacement sensor 4 is converted into an analog signal into a digital signal by an A / D converter 9 via an amplifier 7, and enters an arithmetic processing unit 10. When the elastic cylinder 1 rotates, the output of the non-contact displacement sensor 4 increases as the eccentricity of the elastic cylinder 1 and the hill portion 3 pass in front of the non-contact displacement sensor 4, as shown in FIG. Be in shape. At this time, when the marker passes in front of the photo sensor once per rotation, the trigger signal shown in FIG. 4c is generated. Now, in the no-load state, the peaks of the waveforms of the mountains that sequentially come based on the trigger signal are held, and when a load is applied, the radius of the elastic cylindrical body changes, so the output waveform of the non-contact displacement sensor 4 is It changes like FIG. 4b. Therefore, the magnitude of the torque can be known by comparing the peaks of the waveforms of the mountains that sequentially come with the trigger signal as a reference with those at no load.
Further, by comparing and measuring the time between peaks of the peak of the mountain with the timer built in the arithmetic processing unit 10 under no load and under load, the fluctuation of the rotation speed can be measured at the same time.
【0010】第5図は本発明の第4実施例で、弾性円筒
体1の内部にスリット成形部3の中央部に非接触センサ
4を設置している。弾性円筒体1の外部に非接触変位セ
ンサを設置するスペ−スが必要でなく、トルク検出装置
を小型にできる。本実施例は上記第2の実施例と同様に
スリットの傾斜方向が互いに逆向きのスリット成形部を
2ヵ所設けることにより、検出感度を高めることができ
る。FIG. 5 shows a fourth embodiment of the present invention, in which the non-contact sensor 4 is installed inside the elastic cylindrical body 1 at the center of the slit forming portion 3. A space for installing a non-contact displacement sensor outside the elastic cylindrical body 1 is not required, and the torque detection device can be downsized. In the present embodiment, similarly to the second embodiment, the detection sensitivity can be increased by providing two slit forming portions whose slits are inclined in opposite directions.
【0011】[0011]
【発明の効果】本発明により、停止及び高速回転まで微
小なトルクを検出できる小型で軽量のトルクセンサを提
供できる。さらに回転数の変動も測定できる。As described above, according to the present invention, it is possible to provide a small and lightweight torque sensor capable of detecting a minute torque even when stopped and rotated at a high speed. Furthermore, fluctuations in the number of revolutions can be measured.
【図1】本発明の第1実施例の斜視図。FIG. 1 is a perspective view of a first embodiment of the present invention.
【図2】本発明の第2実施例の斜視図。FIG. 2 is a perspective view of a second embodiment of the present invention.
【図3】本発明の第3実施例の斜視図および信号処理系
統図。FIG. 3 is a perspective view and a signal processing system diagram of a third embodiment of the present invention.
【図4】第3実施例の非接触変位センサからの出力電圧
レベルを示した図。FIG. 4 is a diagram showing an output voltage level from a non-contact displacement sensor according to a third embodiment.
【図5】本発明の第4実施例の要部断面の斜視図。FIG. 5 is a perspective view of a cross section of a main part of a fourth embodiment of the present invention.
【図6】第1の従来のトルク検出装置の原理を示す斜視
図。FIG. 6 is a perspective view showing the principle of a first conventional torque detection device.
【図7】従来の他の方式のトルク検出装置の原理を示す
模式図。FIG. 7 is a schematic diagram showing the principle of another conventional torque detection device.
1 弾性円筒体 2 スリット 3 スリット
成形部 4 非接触変位センサ 5 マーカ 6 フォ
トセンサ 7 アンプ 8 トリガ信号成形回路 9 A
/D変換器 10 演算処理部1 Elastic Cylindrical Body 2 Slit 3 Slit Forming Part 4 Non-contact Displacement Sensor 5 Marker 6 Photo Sensor 7 Amplifier 8 Trigger Signal Forming Circuit 9 A
/ D converter 10 arithmetic processing unit
Claims (4)
方法において、弾性円筒体の一部に円周全周に円周方向
に対し斜め方向のスリットを複数等間隔に成形し、スリ
ット成形部の円筒面に対面して非接触変位センサを設け
たことを特徴とするトルクセンサ。1. A method for detecting torque of a torque transmission system in a non-contact manner, wherein a plurality of slits oblique to the circumferential direction are formed at equal intervals on the entire circumference of a part of an elastic cylindrical body. A torque sensor characterized in that a non-contact displacement sensor is provided so as to face the cylindrical surface of.
き方向が円周方向に対し対称な方向に斜めスリットを複
数等間隔にの成形し、それぞれのスリット成形部の円筒
面に対面して非接触変位センサ2個を設けたことを特徴
とする請求項1記載のトルクセンサ。2. An elastic cylindrical body is formed with a plurality of diagonal slits at two axial positions in a direction symmetrical to each other with respect to the circumferential direction at equal intervals and faces the cylindrical surface of each slit forming portion. 2. The torque sensor according to claim 1, wherein two non-contact displacement sensors are provided.
の斜めスリットを等間隔に成形し、円周の一部にマーカ
を成形し、スリットに対面して非接触変位センサを設置
し、マーカ位置に対応して反射型のセンサを設置したこ
とを特徴とする請求項1記載のトルクセンサ。3. A plurality of diagonal slits are formed at equal intervals along the entire circumference of the central portion of the elastic cylinder in the axial direction, markers are formed on a part of the circumference, and a non-contact displacement sensor is faced to the slits. The torque sensor according to claim 1, wherein the torque sensor is installed and a reflection type sensor is installed corresponding to a marker position.
の斜めスリットを等間隔に成形し、スリット成形部の円
筒面に対面して非接触変位センサを、円筒体内部に設け
たことを特徴とする請求項1記載のトルクセンサ。4. A non-contact displacement sensor is provided inside the cylindrical body by forming a plurality of diagonal slits at equal intervals around the central portion in the axial direction of the elastic cylindrical body and facing the cylindrical surface of the slit forming part. The torque sensor as set forth in claim 1, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25183295A JP3278772B2 (en) | 1995-09-05 | 1995-09-05 | Torque sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25183295A JP3278772B2 (en) | 1995-09-05 | 1995-09-05 | Torque sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0972795A true JPH0972795A (en) | 1997-03-18 |
JP3278772B2 JP3278772B2 (en) | 2002-04-30 |
Family
ID=17228596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25183295A Expired - Lifetime JP3278772B2 (en) | 1995-09-05 | 1995-09-05 | Torque sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3278772B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19858108A1 (en) * | 1998-07-09 | 2000-02-10 | Mitsubishi Electric Corp | Torque detector |
US6223608B1 (en) | 1998-06-02 | 2001-05-01 | Mitsubishi Denki Kabushiki Kaisha | Torque detector |
DE19924601C2 (en) * | 1998-06-02 | 2001-05-31 | Mitsubishi Electric Corp | Torque detector |
US6684044B2 (en) | 2001-03-30 | 2004-01-27 | Fuji Photo Optical Co., Ltd. | Light source lamp for image reader |
DE10027095B4 (en) * | 1999-10-29 | 2007-03-08 | Mitsubishi Denki K.K. | Torque detector arrangement |
-
1995
- 1995-09-05 JP JP25183295A patent/JP3278772B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6223608B1 (en) | 1998-06-02 | 2001-05-01 | Mitsubishi Denki Kabushiki Kaisha | Torque detector |
DE19924601C2 (en) * | 1998-06-02 | 2001-05-31 | Mitsubishi Electric Corp | Torque detector |
DE19858108A1 (en) * | 1998-07-09 | 2000-02-10 | Mitsubishi Electric Corp | Torque detector |
DE19858108C2 (en) * | 1998-07-09 | 2000-05-18 | Mitsubishi Electric Corp | Torque detector |
DE10027095B4 (en) * | 1999-10-29 | 2007-03-08 | Mitsubishi Denki K.K. | Torque detector arrangement |
US6684044B2 (en) | 2001-03-30 | 2004-01-27 | Fuji Photo Optical Co., Ltd. | Light source lamp for image reader |
Also Published As
Publication number | Publication date |
---|---|
JP3278772B2 (en) | 2002-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5189206B2 (en) | Magnetic position sensor using measured values of magnetic field direction and flux collector | |
JP5247545B2 (en) | Rotation position sensor for detecting torsion of steering column | |
EP1658481B1 (en) | Method and system for measuring torque | |
US6782766B2 (en) | Apparatus for detecting torque, axial position and axial alignment of a rotating shaft | |
JP2000508055A (en) | Measuring device for torsional couple of rotating shaft | |
JPS62247222A (en) | Torque detection method and apparatus therefor | |
EP3151017B1 (en) | Amr speed and direction sensor for use with magnetic targets | |
US5675095A (en) | Rotational torque sensor | |
JP3278772B2 (en) | Torque sensor | |
JPH04505508A (en) | Measuring device for measuring torque and/or angle of rotation on a shaft | |
JP2564055B2 (en) | Magnetostrictive torque sensor overload prevention device | |
JP2001513901A (en) | Angle change detection sensor device | |
JPH11264779A (en) | Torque and thrust detecting device | |
JPH1151608A (en) | Angular position detector | |
JPH02176415A (en) | Position sensor and torque sensor using the same | |
JPH10122810A (en) | Magnetic turning angle sensor | |
JPH05196520A (en) | Phase difference type torque detector | |
JP3395648B2 (en) | Rotary torque measuring device | |
JP2829847B2 (en) | Torque detector | |
JP2545317Y2 (en) | Torque detection device for wave gear transmission | |
JP2540865B2 (en) | Torque detector | |
RU2326357C1 (en) | Torque meter | |
JP2566617B2 (en) | Axis rotation speed detection device | |
JPS60236041A (en) | Torque detecting device | |
JPS63313007A (en) | Measuring instrument for axial elongation quantity of rotary body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120222 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130222 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130222 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140222 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |