JP3278772B2 - Torque sensor - Google Patents

Torque sensor

Info

Publication number
JP3278772B2
JP3278772B2 JP25183295A JP25183295A JP3278772B2 JP 3278772 B2 JP3278772 B2 JP 3278772B2 JP 25183295 A JP25183295 A JP 25183295A JP 25183295 A JP25183295 A JP 25183295A JP 3278772 B2 JP3278772 B2 JP 3278772B2
Authority
JP
Japan
Prior art keywords
torque
slits
contact displacement
torque sensor
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25183295A
Other languages
Japanese (ja)
Other versions
JPH0972795A (en
Inventor
高巣周平
Original Assignee
高巣 周平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高巣 周平 filed Critical 高巣 周平
Priority to JP25183295A priority Critical patent/JP3278772B2/en
Publication of JPH0972795A publication Critical patent/JPH0972795A/en
Application granted granted Critical
Publication of JP3278772B2 publication Critical patent/JP3278772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、停止時あるいは高速回
転時における軸に付加される微小なトルクを検出するの
に好適なトルクセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a torque sensor suitable for detecting a small torque applied to a shaft at the time of stop or high-speed rotation.

【0002】[0002]

【従来の技術】従来のトルクセンサは、第4図に示すよ
うに強磁性体で作られた全く同じ歯車12,12’をト
−ションバ−11の両側に取り付け、それぞれの歯車1
2,12’の外周面に対面して、電磁ピックアップ1
3,13’を設置した構造となっていた。したがって、
回転中にト−ションバ−の両端にトルクが加わるとト−
ションがねじれ両側の歯車に位相差が生じる。この位相
差からトルクの大きさを検出していた。
2. Description of the Related Art In a conventional torque sensor, as shown in FIG. 4, identical gears 12, 12 'made of a ferromagnetic material are mounted on both sides of a torsion bar 11, and each gear 1
Electromagnetic pickup 1 facing the outer peripheral surface of 2, 12 '
3, 13 'was installed. Therefore,
If torque is applied to both ends of the torsion bar during rotation,
The torsional twist causes a phase difference between the gears on both sides. The magnitude of the torque was detected from the phase difference.

【0003】また、別のトルク検出法として、第5図に
示すように、軸16の長手方向に対し45゜及びー45
゜をなすらせん形状に薄いアモルファス磁性合金17,
18を接着し、その外側に同心にコイル14,15を配
置したものがある。軸にトルクが加わると、一方のアモ
ルファス磁性合金17には引っ張り応力が、他方のアモ
ルファス磁性合金18には圧縮応力が発生し、発生する
応力によりアモルファス磁性合金の透磁率が変化するの
で、コイル14,15のインダクタンスのとして検出
し、2つのコイルの差動出力によりトルクの大きさと方
向を検出していた。
As another torque detecting method, as shown in FIG.
Spiral amorphous magnetic alloy 17, forming a spiral shape
18 is adhered, and coils 14 and 15 are arranged concentrically on the outside thereof. When a torque is applied to the shaft, a tensile stress is generated in one amorphous magnetic alloy 17 and a compressive stress is generated in the other amorphous magnetic alloy 18, and the generated stress changes the magnetic permeability of the amorphous magnetic alloy. , 15 and the magnitude and direction of the torque are detected by the differential output of the two coils.

【0004】[0004]

【発明が解決しようとする問題点】第1の方式の場合、
位相差を検出するには軸が回転していなければならな
い。したがって、静止時のトルク測定を行なおうとした
場合、特殊な回転装置を必要とし構造が複雑になる。ま
た微小なトルクを検出しようとした場合、軸両端に検出
に必要な位相差を生じさせるには長いト−ションバ−が
必要で検出装置の全長が長くなり小型化が難しいなどの
問題点があった。また、第2の方式では軸にアモルファ
ス磁性合金を接着しているため、軸とアモルファス磁性
合金の熱膨張係数が異なるため、温度変化による測定誤
差が生じる。また微小なトルクでは歪みが少ないため、
応力の発生がわずかであり、微小なトルクの検出は困難
であるなどの問題点があった。。また上記両技術とも回
転数の測定は不可能である。本発明は上記従来技術の欠
点をなくし、静止から高速回転時における、微小トルク
及び回転速度を検出できる小型のトルクセンサを提供す
ることを目的とするものである。
Problems to be Solved by the Invention In the case of the first method,
The shaft must be rotating to detect the phase difference. Therefore, when trying to measure torque at rest, a special rotating device is required and the structure becomes complicated. In addition, when attempting to detect a minute torque, a long torsion bar is required to generate a phase difference required for detection at both ends of the shaft, and there is a problem that the length of the detection device is long and miniaturization is difficult. Was. In the second method, since the amorphous magnetic alloy is bonded to the shaft, the shaft and the amorphous magnetic alloy have different coefficients of thermal expansion, so that a measurement error occurs due to a temperature change. Also, since there is little distortion with a small torque,
There was a problem that the generation of stress was slight and it was difficult to detect a minute torque. . In addition, both of the above techniques cannot measure the number of rotations. SUMMARY OF THE INVENTION It is an object of the present invention to provide a small-sized torque sensor capable of detecting a minute torque and a rotation speed from a standstill to a high-speed rotation while eliminating the above-mentioned disadvantages of the prior art.

【0005】[0005]

【問題点を解決するための手段】上記目的は、トルク伝
達系に設けたトルクにより撓むようにした弾性体円筒面
の変位を、トルク伝達系外部に設置した非接触変位計に
より検出することにより達成される。すなわち、トルク
伝達軸の負荷軸と駆動軸の間に円周方向に対し斜め方向
に複数のスリットを等間隔に設けた弾性円筒体を挿入
し、駆動軸、弾性円筒体、負荷軸の回転中心が一致する
ように配置結合する。そして弾性円筒体のスリット成形
部の半径方向の変位を検出できるように、円筒面に直角
に非接触変位センサを配置した構成のトルク検出装置に
より達成できる。なお非接触変位計には、渦電流方式、
静電容量方式、光学式、などが利用できる。
The above object is achieved by detecting the displacement of an elastic cylindrical surface which is deflected by a torque provided in a torque transmission system by a non-contact displacement meter installed outside the torque transmission system. Is done. That is, an elastic cylinder having a plurality of slits provided at equal intervals in a direction oblique to the circumferential direction between the load shaft and the drive shaft of the torque transmission shaft is inserted, and the drive shaft, the elastic cylinder, and the rotation center of the load shaft are rotated. And place them so that they match. This can be achieved by a torque detecting device having a configuration in which a non-contact displacement sensor is disposed at right angles to a cylindrical surface so as to detect a radial displacement of a slit forming portion of the elastic cylindrical body. The non-contact displacement meter has an eddy current method,
A capacitance type, an optical type, and the like can be used.

【0006】[0006]

【作用】負荷軸に加わったトルクにより、弾性円筒体は
その両側がねじられ、中央部の斜めスリット成形部にお
いて、トルクの付加方向がスリットに引っ張り力が働く
方向の場合、絞られ直径が縮み、これと逆方向の場合、
直径が脹らむように変形する。この変形量はトルクの大
きさに比例するので、非接触変位計により検出すること
によりトルクの大きさと方向を知ることができる。
[Function] Due to the torque applied to the load shaft, the elastic cylindrical body is twisted on both sides, and in the oblique slit forming part in the center, if the torque is applied in the direction where the pulling force acts on the slit, it is narrowed and the diameter is reduced. , In the opposite direction,
Deforms to expand in diameter. Since the amount of deformation is proportional to the magnitude of the torque, the magnitude and direction of the torque can be known by detecting with a non-contact displacement meter.

【0007】[0007]

【実施例】以下、図示した実施例に基づき本発明を説明
する。第1図(a)には本発明の一実施例が示されてい
る。弾性体でできた円筒1の中央部の円周方向に対し
て、0及び90度以外のある任意の角度を以て、通常は
20〜70度の角度範囲で等間隔に複数のスリット2を
成形し、このスリット成形部3の軸方向中央部に円筒面
に直角に、非接触変位センサ4を対向して設置してい
る。いま第1図(b)の矢印の方向にトルクが加わる
と、同図に示すようにスリット成形部3は絞られてその
直径が小さくなるように変化する。また第1図(c)に
示すように逆方向にトルクを加えると、スリット成形部
3は、逆に脹らんで直径が大きくなる。この変形量はト
ルクの大きさに比例するため、非接触変位センサ4の出
力は、無負荷状態に対し、直径が縮む変形の場合、出力
レベルが下降し、直径が脹らむ場合出力レベルが上昇す
る。この出力レベルの増減を検出することにより、トル
クの大きさと方向を知ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the illustrated embodiments. FIG. 1A shows an embodiment of the present invention. A plurality of slits 2 are formed at equal intervals, usually in an angle range of 20 to 70 degrees, at an arbitrary angle other than 0 and 90 degrees with respect to the circumferential direction of the center of the cylinder 1 made of an elastic body. A non-contact displacement sensor 4 is installed at the axial center of the slit forming section 3 at right angles to the cylindrical surface. Now, when a torque is applied in the direction of the arrow in FIG. 1 (b), the slit forming portion 3 is narrowed and changes so that its diameter becomes small as shown in FIG. When a torque is applied in the opposite direction as shown in FIG. 1 (c), the slit forming portion 3 expands in the opposite direction and the diameter increases. Since the amount of deformation is proportional to the magnitude of the torque, the output of the non-contact displacement sensor 4 decreases in the case of a deformation in which the diameter is reduced, and increases in the case where the diameter is expanded, with respect to the no-load state. . By detecting the increase or decrease of the output level, the magnitude and direction of the torque can be known.

【0008】第2図(a)は本発明の第2実施例で、弾
性体でできた円筒1の中央部付近に、互いに逆方向の
傾きを持ったスリット2,2’を成形しそれぞれのスリ
ット成形部3’,3”の中央部に非接触変位センサ
4’,4”を円筒面に直角に対向して設置している。い
ま第2図(b)に示す矢印の方向にトルクが働くと左側
のスリット部3’は絞られその直径が縮み、右側のスリ
ット部3”は脹らんで直径が広がるため、それぞれのス
リット部に対向して設置した非接触変位センサの出力は
極性が逆になり、その差分を検出することにより検出感
度を2倍に高くすることができる。
FIG. 2 (a) shows a second embodiment of the present invention.
Slits 2 and 2 'having an inclination are formed, and non-contact displacement sensors 4' and 4 "are installed at the center of each of the slit forming portions 3 'and 3" so as to face the cylindrical surface at right angles. Now, when a torque acts in the direction of the arrow shown in FIG. 2 (b), the slit 3 'on the left side is narrowed and its diameter shrinks, and the slit 3' on the right side expands and expands in diameter. The polarity of the output of the non-contact displacement sensor installed opposite to the sensor is reversed, and the detection sensitivity can be doubled by detecting the difference.

【0009】第3図は本発明の第3実施例で、弾性円筒
体1の軸方向の中央部に全周に複数の斜めスリット2を
等間隔に成形し、スリット部の前方に円周の一部にマー
カ5を成形し、スリットに対面して非接触変位センサ4
を設置し、マーカ5に対応した位置にフォトセンサ6を
設置している。非接触変位センサ4の出力はアンプ7を
経由してA/D変換器9でアナログ信号がデジタル信号
に変換され、演算処理部10に入る。弾性円筒体1が回
転すると非接触変位センサ4の出力は、弾性円筒体1の
偏心と丘部3が非接触変位センサ4の前を通過するとき
に電圧出力が大きくなる第4図aに示す形となる。この
とき1回転に1回マーカがフォトセンサの前を通過する
とき、第4図cに示すトリガ信号が発生する。今無負荷
状態での、トリガ信号を基準に順々にくる山の波形のピ
ークをホールドし、負荷が加わったとき、弾性円筒体の
半径が変化するから、非接触変位センサ4の出力波形は
第4図bのように変化する。従って、トリガ信号を基準
に順々にくる山の波形のピークを無負荷時のそれと比較
することにより、トルクの大きさを知ることができる。
また、演算処理部10に内蔵したタイマにより山の波形
のピーク間の時間を無負荷時と負荷時で比較測定するこ
とにより、回転速度の変動も同時に測定することができ
る。
FIG. 3 shows a third embodiment of the present invention, in which a plurality of oblique slits 2 are formed at equal intervals around the center of the elastic cylindrical body 1 in the axial direction, and a circumferential portion is formed in front of the slit. A marker 5 is partially formed, and the non-contact displacement sensor 4 faces the slit.
Are installed, and the photo sensor 6 is installed at a position corresponding to the marker 5. The output of the non-contact displacement sensor 4 is converted from an analog signal into a digital signal by an A / D converter 9 via an amplifier 7 and enters an arithmetic processing unit 10. When the elastic cylinder 1 rotates, the output of the non-contact displacement sensor 4 is shown in FIG. 4A where the eccentricity of the elastic cylinder 1 and the voltage output increase when the hill 3 passes in front of the non-contact displacement sensor 4. It takes shape. At this time, when the marker passes in front of the photo sensor once per rotation, a trigger signal shown in FIG. 4C is generated. Under no load condition, the peak of the waveform of the mountain that sequentially comes in accordance with the trigger signal is held, and when a load is applied, the radius of the elastic cylindrical body changes. Therefore, the output waveform of the non-contact displacement sensor 4 is It changes as shown in FIG. 4b. Therefore, the magnitude of the torque can be known by comparing the peaks of the waveforms of the peaks that come in order based on the trigger signal with those at the time of no load.
In addition, by comparing and measuring the time between peaks of the peak waveform with no load and with the load using a timer built in the arithmetic processing unit 10, fluctuations in the rotational speed can be measured simultaneously.

【0010】第5図は本発明の第4実施例で、弾性円筒
体1の内部にスリット成形部3の中央部に非接触センサ
4を設置している。弾性円筒体1の外部に非接触変位セ
ンサを設置するスペ−スが必要でなく、トルク検出装置
を小型にできる。本実施例は上記第2の実施例と同様に
スリットの傾斜方向が互いに逆向きのスリット成形部を
2ヵ所設けることにより、検出感度を高めることができ
る。
FIG. 5 shows a fourth embodiment of the present invention, in which a non-contact sensor 4 is installed in the center of a slit forming portion 3 inside an elastic cylindrical body 1. There is no need for a space for installing a non-contact displacement sensor outside the elastic cylindrical body 1, and the torque detection device can be made compact. In this embodiment, as in the second embodiment, the detection sensitivity can be increased by providing two slit forming portions in which the inclination directions of the slits are opposite to each other.

【0011】[0011]

【発明の効果】本発明により、停止及び高速回転まで微
小なトルクを検出できる小型で軽量のトルクセンサを提
供できる。さらに回転数の変動も測定できる。
According to the present invention, it is possible to provide a small and lightweight torque sensor capable of detecting a minute torque up to stop and high-speed rotation. In addition, fluctuations in rotation speed can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の斜視図。FIG. 1 is a perspective view of a first embodiment of the present invention.

【図2】本発明の第2実施例の斜視図。FIG. 2 is a perspective view of a second embodiment of the present invention.

【図3】本発明の第3実施例の斜視図および信号処理系
統図。
FIG. 3 is a perspective view and a signal processing system diagram of a third embodiment of the present invention.

【図4】第3実施例の非接触変位センサからの出力電圧
レベルを示した図。
FIG. 4 is a diagram showing an output voltage level from a non-contact displacement sensor according to a third embodiment.

【図5】本発明の第4実施例の要部断面の斜視図。FIG. 5 is a perspective view of a cross section of a main part of a fourth embodiment of the present invention.

【図6】第1の従来のトルク検出装置の原理を示す斜視
図。
FIG. 6 is a perspective view showing the principle of a first conventional torque detecting device.

【図7】従来の他の方式のトルク検出装置の原理を示す
模式図。
FIG. 7 is a schematic diagram showing the principle of another conventional torque detection device.

【符号の説明】[Explanation of symbols]

1 弾性円筒体 2 スリット 3 スリット
成形部 4 非接触変位センサ 5 マーカ 6 フォ
トセンサ 7 アンプ 8 トリガ信号成形回路 9 A
/D変換器 10 演算処理部
DESCRIPTION OF SYMBOLS 1 Elastic cylindrical body 2 Slit 3 Slit forming part 4 Non-contact displacement sensor 5 Marker 6 Photo sensor 7 Amplifier 8 Trigger signal forming circuit 9 A
/ D converter 10 arithmetic processing unit

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】トルク伝達系のトルクを非接触で検出する
方法において、弾性円筒体の一部に円周全周に円周方向
に対し斜め方向のスリットを複数等間隔に成形し、スリ
ット成形部の円筒面に対面して非接触変位センサを設け
たことを特徴とするトルクセンサ。
In a method for detecting the torque of a torque transmission system in a non-contact manner, a plurality of slits are formed in a part of an elastic cylinder at a regular interval around the entire circumference and oblique to the circumferential direction. A non-contact displacement sensor is provided facing the cylindrical surface of the torque sensor.
【請求項2】弾性円筒体の軸方向2ヵ所に互いにその傾
き方向が円周方向に対し対称な方向に斜めスリットを複
数等間隔にの成形し、それぞれのスリット成形部の円筒
面に対面して非接触変位センサ2個を設けたことを特徴
とする請求項1記載のトルクセンサ。
2. A plurality of oblique slits are formed at equal intervals in two axial directions of the elastic cylindrical body so that their inclination directions are symmetrical with respect to the circumferential direction, and each of the oblique slits faces the cylindrical surface of each slit forming part. 2. The torque sensor according to claim 1, wherein two non-contact displacement sensors are provided.
【請求項3】弾性円筒体の軸方向の中央部に全周に複数
の斜めスリットを等間隔に成形し、円周の一部にマーカ
を成形し、スリットに対面して非接触変位センサを設置
し、マーカ位置に対応して反射型のセンサを設置したこ
とを特徴とする請求項1記載のトルクセンサ。
3. A plurality of slanted slits are formed at equal intervals around the center of the elastic cylinder in the axial direction, markers are formed on a part of the circumference, and a non-contact displacement sensor is formed facing the slits. 2. The torque sensor according to claim 1, wherein a reflection type sensor is installed corresponding to the marker position.
【請求項4】弾性円筒体の軸方向の中央部に全周に複数
の斜めスリットを等間隔に成形し、スリット成形部の円
筒面に対面して非接触変位センサを、円筒体内部に設け
たことを特徴とする請求項1記載のトルクセンサ。
4. A plurality of oblique slits are formed at equal intervals all around the center of the elastic cylindrical body in the axial direction, and a non-contact displacement sensor is provided inside the cylindrical body so as to face the cylindrical surface of the slit forming part. The torque sensor according to claim 1, wherein
JP25183295A 1995-09-05 1995-09-05 Torque sensor Expired - Lifetime JP3278772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25183295A JP3278772B2 (en) 1995-09-05 1995-09-05 Torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25183295A JP3278772B2 (en) 1995-09-05 1995-09-05 Torque sensor

Publications (2)

Publication Number Publication Date
JPH0972795A JPH0972795A (en) 1997-03-18
JP3278772B2 true JP3278772B2 (en) 2002-04-30

Family

ID=17228596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25183295A Expired - Lifetime JP3278772B2 (en) 1995-09-05 1995-09-05 Torque sensor

Country Status (1)

Country Link
JP (1) JP3278772B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6223608B1 (en) 1998-06-02 2001-05-01 Mitsubishi Denki Kabushiki Kaisha Torque detector
JP3480909B2 (en) * 1998-06-02 2003-12-22 三菱電機株式会社 Torque detector
JP2000028450A (en) * 1998-07-09 2000-01-28 Mitsubishi Electric Corp Torque detector
JP3583671B2 (en) * 1999-10-29 2004-11-04 三菱電機株式会社 Torque detector
JP2002300351A (en) 2001-03-30 2002-10-11 Fuji Photo Optical Co Ltd Structure for light source lamp of image reader

Also Published As

Publication number Publication date
JPH0972795A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
US6782766B2 (en) Apparatus for detecting torque, axial position and axial alignment of a rotating shaft
JPH0531928B2 (en)
JP2000508055A (en) Measuring device for torsional couple of rotating shaft
JPS62247222A (en) Torque detection method and apparatus therefor
JP3278772B2 (en) Torque sensor
JPH08506186A (en) Torque measuring device
CA2153118C (en) Rotating torque sensor
EP0379509B1 (en) Device for non-contact measuring of stresses in a bar-shaped body
JP2564055B2 (en) Magnetostrictive torque sensor overload prevention device
JP3692494B2 (en) Torque sensor
JP2001513901A (en) Angle change detection sensor device
JPH11264779A (en) Torque and thrust detecting device
JP2829847B2 (en) Torque detector
JPH05196520A (en) Phase difference type torque detector
JP3395648B2 (en) Rotary torque measuring device
JPH10148641A (en) Angular velocity sensor
JP2545317Y2 (en) Torque detection device for wave gear transmission
RU2326357C1 (en) Torque meter
JP2566617B2 (en) Axis rotation speed detection device
JPS63317732A (en) Torque detector
JPS58174855A (en) Angular velocity detector
JPS60236041A (en) Torque detecting device
JP2733008B2 (en) Rolled material shape detector
JPH11326080A (en) Torque sensor
Abbott Design of a Moiré fringe torque transducer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term