JPH0972767A - Vibration sensor for fluid and flow detector - Google Patents

Vibration sensor for fluid and flow detector

Info

Publication number
JPH0972767A
JPH0972767A JP22795195A JP22795195A JPH0972767A JP H0972767 A JPH0972767 A JP H0972767A JP 22795195 A JP22795195 A JP 22795195A JP 22795195 A JP22795195 A JP 22795195A JP H0972767 A JPH0972767 A JP H0972767A
Authority
JP
Japan
Prior art keywords
pressure chamber
pressure
fluid
flow rate
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22795195A
Other languages
Japanese (ja)
Inventor
Yoshiro Miyazaki
芳郎 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP22795195A priority Critical patent/JPH0972767A/en
Publication of JPH0972767A publication Critical patent/JPH0972767A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect flow rate with high accuracy for a long term using a vibration sensor for fluid which can sustain the detection characteristics for a long term without requiring any adjustment. SOLUTION: The flexure detecting section 6 of a flexure detecting means 8 magnetically detects the flexure of a magnetic membrane 5 caused by the pressure P1 of a fluid introduced into a first pressure chamber 3 and the pressure of a fluid introduced into a second pressure chamber 4 and a signal converting section 7 outputs an electric detection signal SD corresponding to the detected flexure of magnetic membrane 5. Since the signal converting section 7 is not exposed directly to the fluid, corrosion of the electric system is retarded and since a magnetic membrane is employed for detecting the flexure, fluctuation in the characteristics is suppressed thus suppressing the aging and providing a sensor suitable for long term use. Furthermore, the flexure detecting section 6 has low electric impedance and insusceptible to electric noise thus ensuring high reliability and a flow detector employing the flexure detecting section 6 can detect the flow rate with high reliability for a long term.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流体震動検出セン
サ及び流体震動検出センサを用いた流量検出装置に係
り、特にフルイディック震動を利用して流体の流量を計
測するフルイディック流量センサに用いられる流体震動
検出センサ及び流量検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid vibration detection sensor and a flow rate detection device using the fluid vibration detection sensor, and more particularly to a fluidic flow rate sensor for measuring a fluid flow rate by utilizing fluidic vibration. The present invention relates to a fluid vibration detection sensor and a flow rate detection device.

【0002】[0002]

【従来の技術】図7に従来のフルイディック流量センサ
を流量検出装置として構成する場合のフルイディック流
量センサの部分断面斜視図を示す。フルイディック流量
センサ80は、測定対象である流体が流入する流入口8
1と排出管82を結ぶ流路上に、流体の流れを2次元的
な流れに整流するためのセットリングスペース83と、
流体の流れを整流し流体の流路径を縮小するための流路
縮小部84と、流体の流れを整流し所定のジェット流に
変換するためのジェットノズル85と、流体の流路径を
再び拡大するための流路拡大部86と、が設けられてい
る。
2. Description of the Related Art FIG. 7 is a partial cross-sectional perspective view of a conventional fluidic flow sensor when the conventional fluidic flow sensor is configured as a flow rate detecting device. The fluidic flow sensor 80 has an inlet 8 through which a fluid to be measured flows.
A set ring space 83 for rectifying the flow of the fluid into a two-dimensional flow on the flow path connecting 1 and the discharge pipe 82;
A flow path reducing portion 84 for rectifying the flow of the fluid and reducing the flow path diameter of the fluid, a jet nozzle 85 for rectifying the flow of the fluid and converting it into a predetermined jet flow, and the flow path diameter of the fluid is enlarged again. And a flow path expanding portion 86 for

【0003】流路拡大部86内には、流体の振動を誘起
するための誘振子87と、ジェット流の流れ方向を変更
するための流路を構成するサイドブロック88と、サイ
ドブロック88と協働し、ジェット流が衝突することに
よってジェット流の流れを変更するエンドブロック89
と、エンドブロック89のジェット流衝突面とは異なる
面側に配置された排出空間90と、が設けられている。
Inside the flow passage expanding portion 86, a pendulum 87 for inducing vibration of the fluid, a side block 88 for forming a flow passage for changing the flow direction of the jet flow, and a side block 88 cooperate with each other. End block 89 that works and changes the flow of the jet flow by the collision of the jet flow
And a discharge space 90 arranged on a surface side of the end block 89 different from the jet flow collision surface.

【0004】エンドブロック89は、サイドブロック8
8に沿うように流路上流側に向かって延在する壁89a
及び壁89b並びに第1圧力検出孔(導圧口)91a及
び第2圧力検出孔(導圧口)91bが設けられている。
さらに第1圧力検出孔(導圧口)91a及び第2圧力検
出孔(導圧口)91bには、導圧管92a及び導圧管9
2bを介して、後述の流体震動圧力センサを内蔵する流
量検出ユニット93が接続されている。
The end block 89 is the side block 8
A wall 89a extending toward the upstream side of the flow path along 8
A wall 89b, a first pressure detection hole (pressure guide port) 91a, and a second pressure detection hole (pressure guide port) 91b are provided.
Further, the pressure guiding pipe 92a and the pressure guiding pipe 9 are provided in the first pressure detecting hole (pressure guiding port) 91a and the second pressure detecting hole (pressure guiding port) 91b.
A flow rate detection unit 93 incorporating a fluid vibration pressure sensor, which will be described later, is connected via 2b.

【0005】図8(a)に流体震動圧力センサの概要構
成図を示す。流体震動圧力センサは、圧力室101を第
1圧電膜102及び第2圧電膜103の2枚の圧電膜に
より中央室104並びに第1外室105及び第2外室1
06の三つの部屋に分離し、中央室104は図7に示し
たように、フルイディック流量センサのフルイディック
素子内の第1圧力検出孔91aに導圧管92aを介して
連通され、二つの外室105、106はフルイディック
素子内の第2圧力検出孔91bに導圧管92bを介して
連通されている。
FIG. 8A shows a schematic configuration diagram of a fluid vibration pressure sensor. The fluid vibration pressure sensor includes a central chamber 104, a first outer chamber 105, and a second outer chamber 1 in which the pressure chamber 101 is composed of two piezoelectric films, a first piezoelectric film 102 and a second piezoelectric film 103.
As shown in FIG. 7, the central chamber 104 is connected to the first pressure detection hole 91a in the fluidic element of the fluidic flow sensor via the pressure guiding tube 92a, and is divided into two chambers. The chambers 105 and 106 communicate with the second pressure detection hole 91b in the fluidic element via a pressure guiding tube 92b.

【0006】図8(b)に図8(a)の流体震動圧力セ
ンサに対応する検出回路の概要構成を示す。検出回路1
10は、第1圧電膜102の出力電圧を検出し増幅する
第1増幅アンプ111と、第2圧電膜103の出力電圧
を検出し増幅する第2増幅アンプ112と、第1増幅ア
ンプ111の出力信号及び第2増幅アンプ112の出力
信号の差動増幅を行なって出力検出信号を出力する差動
アンプ113と、を備えて構成されている。
FIG. 8 (b) shows a schematic structure of a detection circuit corresponding to the fluid vibration pressure sensor of FIG. 8 (a). Detection circuit 1
Reference numeral 10 denotes a first amplification amplifier 111 that detects and amplifies the output voltage of the first piezoelectric film 102, a second amplification amplifier 112 that detects and amplifies the output voltage of the second piezoelectric film 103, and an output of the first amplification amplifier 111. A differential amplifier 113 that differentially amplifies the signal and the output signal of the second amplification amplifier 112 and outputs an output detection signal.

【0007】ここで、検出回路の動作について説明す
る。第1圧電膜102は、中央室104内の流体圧力と
第1外室105内の流体圧力との差に起因して撓むこと
となる。これにより第1圧電膜102には、撓みの状態
に応じた出力電圧が発生し、第1増幅アンプ111は、
第1圧電膜102の出力電圧を検出し増幅して差動アン
プ113に出力する。
Now, the operation of the detection circuit will be described. The first piezoelectric film 102 will bend due to the difference between the fluid pressure in the central chamber 104 and the fluid pressure in the first outer chamber 105. As a result, an output voltage corresponding to the bending state is generated in the first piezoelectric film 102, and the first amplification amplifier 111 is
The output voltage of the first piezoelectric film 102 is detected, amplified, and output to the differential amplifier 113.

【0008】一方、第2圧電膜103は、中央室104
内の流体圧力と第2外室106内の流体圧力との差に起
因して撓むこととなる。これにより第2圧電膜103に
は、撓みの状態に応じた出力電圧が発生し、第2増幅ア
ンプ112は、第2圧電膜103の出力電圧を検出し増
幅して差動アンプ113に出力する。
On the other hand, the second piezoelectric film 103 has a central chamber 104.
It will bend due to the difference between the fluid pressure inside and the fluid pressure inside the second outer chamber 106. As a result, an output voltage is generated in the second piezoelectric film 103 according to the bending state, and the second amplification amplifier 112 detects the output voltage of the second piezoelectric film 103, amplifies it, and outputs it to the differential amplifier 113. .

【0009】これらの結果、差動アンプ113は、第1
増幅アンプ111の出力信号及び第2増幅アンプ112
の出力信号の差動増幅を行なって出力検出信号を出力す
ることとなり、この出力検出信号に基づいて流量検出ユ
ニットは流体の流量を検出することとなる。
As a result, the differential amplifier 113 has the first
Output signal of amplification amplifier 111 and second amplification amplifier 112
The output detection signal is output by differentially amplifying the output signal of (1), and the flow rate detection unit detects the flow rate of the fluid based on this output detection signal.

【0010】図9に圧電膜の断面図を示す。圧電膜12
0は、電極部121/圧電部122/電極部123とい
う3層で構成されており、電極部121、123が圧力
室101内(中央室104内または外室105、106
内)に露出した状態となっている。
FIG. 9 shows a sectional view of the piezoelectric film. Piezoelectric film 12
0 is composed of three layers of electrode part 121 / piezoelectric part 122 / electrode part 123, and the electrode parts 121 and 123 are inside the pressure chamber 101 (in the central chamber 104 or outside chambers 105 and 106).
It is exposed to the inside).

【0011】[0011]

【発明が解決しようとする課題】上記従来の流体震動圧
力センサにおいては、圧電膜の検出特性に固体差がある
ため、当該圧電膜の検出特性に合せて付帯回路(フィル
タ、シュミット)の調整を行なう必要があり、調整の手
間がかかってしまうという問題点があった。
In the above-mentioned conventional fluid vibration pressure sensor, since the detection characteristics of the piezoelectric film have individual differences, the auxiliary circuit (filter, Schmidt) is adjusted according to the detection characteristics of the piezoelectric film. There is a problem in that it is necessary to carry out the adjustment and it takes time and effort for adjustment.

【0012】また、圧電膜の経時変化により検出特性が
変化するため、長期の使用には向かないという問題点が
あった。さらに圧電膜の電極部が圧力室内(中央室内ま
たは外室内)に露出しているため、測定対象であるガス
に直接触れることとなり、腐食等により検出特性の劣化
が生じやすいという問題点があった。
Further, there is a problem that it is not suitable for long-term use because the detection characteristic changes with the aging of the piezoelectric film. Further, since the electrode portion of the piezoelectric film is exposed in the pressure chamber (the central chamber or the outer chamber), it comes into direct contact with the gas to be measured, and there is a problem that the detection characteristics are likely to deteriorate due to corrosion or the like. .

【0013】そこで、本発明の第1の目的は、調整の手
間がかからず、検出特性を長期にわたって保持でき、長
期使用が可能な流体震動検出センサを提供することにあ
る。また、本発明の第2の目的は、流体震動検出センサ
を用いて流量を長期にわたって高精度で検出可能な流量
検出装置を提供することにある。
Therefore, a first object of the present invention is to provide a fluid vibration detection sensor which requires no adjustment work and can maintain the detection characteristics for a long time and can be used for a long time. A second object of the present invention is to provide a flow rate detecting device that can detect a flow rate with high accuracy over a long period by using a fluid vibration detection sensor.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するた
め、請求項1記載の発明は、図1の基本構成図に示すよ
うに、流体震動圧力センサ1の圧力室2を第1圧力室3
と第2圧力室4とに分離する磁気膜5と、圧力室2内に
設けられ第1圧力室3内に導入された流体の圧力P1
及び第2圧力室内4に導入された流体の圧力P2 に起因
して生じる磁気膜5の撓み状態を磁気的に検出する撓み
検出部6を有し、圧力室2外に設けられた信号変換部7
により磁気膜5の撓み状態に応じた電気検出信号SD を
出力する撓み検出手段8と、を備えて構成する。
In order to solve the above problems, the invention according to claim 1 is such that the pressure chamber 2 of the fluid vibration pressure sensor 1 is replaced by the first pressure chamber 3 as shown in the basic configuration diagram of FIG.
And the magnetic film 5 which is separated into the second pressure chamber 4 and the pressure P1 of the fluid provided in the pressure chamber 2 and introduced into the first pressure chamber 3.
And a signal conversion unit provided outside the pressure chamber 2 having a bending detection unit 6 for magnetically detecting the bending state of the magnetic film 5 caused by the pressure P2 of the fluid introduced into the second pressure chamber 4. 7
Therefore, the deflection detecting means 8 for outputting the electric detection signal SD according to the deflection state of the magnetic film 5 is provided.

【0015】請求項1記載の発明によれば、撓み検出手
段8の撓み検出部6は、1圧力室3内に導入された流体
の圧力P1 及び第2圧力室内4に導入された流体の圧
力P2に起因して生じる磁気膜5の撓み状態を磁気的に
検出する。これにより信号変換部7は、検出した磁気膜
5の撓み状態に応じた電気検出信号SD を出力する。
According to the first aspect of the present invention, the flexure detecting portion 6 of the flexure detecting means 8 has the pressure P1 of the fluid introduced into the first pressure chamber 3 and the pressure of the fluid introduced into the second pressure chamber 4. The bending state of the magnetic film 5 caused by P2 is magnetically detected. As a result, the signal converter 7 outputs the electrical detection signal SD according to the detected bending state of the magnetic film 5.

【0016】請求項2記載の発明は、第1圧力室を第2
圧力室と第3圧力室とに分離する第1磁気膜と、第4圧
力室を第5圧力室と第6圧力室とに分離する第2磁気膜
と、前記第2圧力室と前記第6圧力室を連通する第1連
通路と、前記第3圧力室と前記第5圧力室を連通する第
2連通路と、前記第1圧力室内に設けられ前記第2圧力
室内に導入された流体の圧力及び前記第3圧力室内に導
入された流体の圧力に起因して生じる前記第1磁気膜の
撓み状態を磁気的に検出する撓み第1検出部を有し、前
記第1圧力室外に設けられた第1信号変換部により前記
第1磁気膜の撓み状態に応じた第1電気検出信号を出力
する第1撓み検出手段と、前記第4圧力室内に設けられ
前記第5圧力室内に導入された流体の圧力及び前記第6
圧力室内に導入された流体の圧力に起因して生じる前記
第2磁気膜の撓み状態を磁気的に検出する撓み第2検出
部を有し、前記第4圧力室外に設けられた第2信号変換
部により前記第2磁気膜の撓み状態に応じ、かつ、前記
第1電気検出信号とは逆相の第2電気検出信号を出力す
る第2撓み検出手段と、を備えて構成する。
According to a second aspect of the present invention, the first pressure chamber is provided with the second pressure chamber.
A first magnetic film separating the pressure chamber and the third pressure chamber, a second magnetic film separating the fourth pressure chamber into a fifth pressure chamber and a sixth pressure chamber, the second pressure chamber and the sixth pressure film. A first communication passage communicating with the pressure chamber, a second communication passage communicating with the third pressure chamber and the fifth pressure chamber, and a fluid provided in the first pressure chamber and introduced into the second pressure chamber. A flexure first detector for magnetically detecting the flexure state of the first magnetic film caused by the pressure and the pressure of the fluid introduced into the third pressure chamber is provided outside the first pressure chamber. And a first deflection detecting means for outputting a first electric detection signal according to a deflection state of the first magnetic film by the first signal converting section, and a first deflection detecting means provided in the fourth pressure chamber and introduced into the fifth pressure chamber. Fluid pressure and the sixth
A second signal conversion unit provided outside the fourth pressure chamber, which has a second bending unit for magnetically detecting a bending state of the second magnetic film caused by the pressure of the fluid introduced into the pressure chamber. And a second deflection detecting means for outputting a second electrical detection signal having a phase opposite to that of the first electrical detection signal depending on the bending state of the second magnetic film.

【0017】請求項2記載の発明によれば、第1連通路
は第2圧力室と第6圧力室を連通するので、第2圧力室
内の流体の圧力と第6圧力室内の流体の圧力は等しくな
る。同様に、第2連通路は、第3圧力室と第5圧力室を
連通するので、第3圧力室内の流体の圧力と第5圧力室
内の流体の圧力は等しくなる。
According to the second aspect of the invention, since the first communication passage connects the second pressure chamber and the sixth pressure chamber, the pressure of the fluid in the second pressure chamber and the pressure of the fluid in the sixth pressure chamber are Will be equal. Similarly, since the second communication passage connects the third pressure chamber and the fifth pressure chamber, the pressure of the fluid inside the third pressure chamber and the pressure of the fluid inside the fifth pressure chamber become equal.

【0018】これらと並行して、第1撓み検出手段の第
1検出部は、第2圧力室内に導入された流体の圧力及び
第3圧力室内に導入された流体の圧力に起因して生じる
第1磁気膜の撓み状態を磁気的に検出し、第1信号変換
部は、第1磁気膜の撓み状態に応じた第1電気検出信号
を出力する。
In parallel with these, the first detecting portion of the first deflection detecting means is caused by the pressure of the fluid introduced into the second pressure chamber and the pressure of the fluid introduced into the third pressure chamber. The bending state of the first magnetic film is magnetically detected, and the first signal conversion unit outputs a first electrical detection signal according to the bending state of the first magnetic film.

【0019】また、第2撓み検出手段の第2検出部は、
第5圧力室内に導入された流体の圧力及び第6圧力室内
に導入された流体の圧力に起因して生じる第2磁気膜の
撓み状態を磁気的に検出し、第2信号変換部は、第2磁
気膜の撓み状態に応じ、かつ、第1電気検出信号とは逆
相の第2電気検出信号を出力する。
The second detecting portion of the second deflection detecting means is
The bending state of the second magnetic film caused by the pressure of the fluid introduced into the fifth pressure chamber and the pressure of the fluid introduced into the sixth pressure chamber is magnetically detected, and the second signal conversion unit 2 The second electric detection signal is output according to the bending state of the magnetic film and in the opposite phase to the first electric detection signal.

【0020】請求項2記載の発明によれば、第1連通路
は第2圧力室と第5圧力室を連通するので、第2圧力室
内の流体の圧力と第5圧力室内の流体の圧力は等しくな
る。同様に、第2連通路は、第3圧力室と第5圧力室を
連通するので、第3圧力室内の流体の圧力と第5圧力室
内の流体の圧力は等しくなる。
According to the second aspect of the present invention, since the first communication passage connects the second pressure chamber and the fifth pressure chamber, the pressure of the fluid in the second pressure chamber and the pressure of the fluid in the fifth pressure chamber are Will be equal. Similarly, since the second communication passage connects the third pressure chamber and the fifth pressure chamber, the pressure of the fluid inside the third pressure chamber and the pressure of the fluid inside the fifth pressure chamber become equal.

【0021】これらと並行して、第1撓み検出手段の第
1検出部は、第2圧力室内に導入された流体の圧力及び
第3圧力室内に導入された流体の圧力に起因して生じる
第1磁気膜の撓み状態を磁気的に検出し、第1信号変換
部は、第1磁気膜の撓み状態に応じた第1電気検出信号
を出力する。
In parallel with these, the first detecting section of the first deflection detecting means is caused by the pressure of the fluid introduced into the second pressure chamber and the pressure of the fluid introduced into the third pressure chamber. The bending state of the first magnetic film is magnetically detected, and the first signal conversion unit outputs a first electrical detection signal according to the bending state of the first magnetic film.

【0022】また、第2撓み検出手段の第2検出部は、
第5圧力室内に導入された流体の圧力及び第6圧力室内
に導入された流体の圧力に起因して生じる第2磁気膜の
撓み状態を磁気的に検出し、第2信号変換部は、第2磁
気膜の撓み状態に応じ、かつ、第1電気検出信号とは逆
相の第2電気検出信号を出力する。
The second detector of the second deflection detecting means is
The bending state of the second magnetic film caused by the pressure of the fluid introduced into the fifth pressure chamber and the pressure of the fluid introduced into the sixth pressure chamber is magnetically detected, and the second signal conversion unit 2 The second electric detection signal is output according to the bending state of the magnetic film and in the opposite phase to the first electric detection signal.

【0023】請求項3記載の発明は、請求項1記載の流
体震動検出センサを有し、図1の基本構成図に示すよう
に、フルイディック素子10内の流体震動に基づいて流
体の流量を検出する流量検出装置20であって、フルイ
ディック素子10内の流体Gの流れ方向に対してフルイ
ディック素子内の対称な所定位置に設けられた第1導圧
口11及び第2導圧口12のうち一方の導圧口(図で
は、第1導圧口11)に第1圧力室3が連通され、他方
の導圧口(図1では、第2導圧口12)に第2圧力室4
が連通され、電気検出信号SDに基づいて流体Gの流量
を演算する流量演算手段13と、を備えて構成する。
The invention according to claim 3 has the fluid vibration detection sensor according to claim 1, and as shown in the basic configuration diagram of FIG. 1, the flow rate of the fluid is determined based on the fluid vibration in the fluidic element 10. A flow rate detecting device 20 for detecting, which is a first pressure introducing port 11 and a second pressure introducing port 12 provided at predetermined symmetrical positions in the fluidic element with respect to the flow direction of the fluid G in the fluidic element 10. The first pressure chamber 3 communicates with one of the pressure guide ports (the first pressure guide port 11 in the figure) and the second pressure chamber with the other pressure guide port (the second pressure guide port 12 in FIG. 1). Four
And a flow rate calculating means 13 for calculating the flow rate of the fluid G based on the electricity detection signal SD.

【0024】請求項3記載の発明によれば、フルイディ
ック素子10内の流体Gの流れ方向に対してフルイディ
ック素子10内の対称な所定位置に設けられた第1導圧
口11及び第2導圧口12のうち一方の導圧口11に流
体震動検出センサ1の第1圧力室3が連通され、他方の
導圧口12に第2圧力室4が連通されているので、電気
検出信号SD は第1導圧口11側の流体Gの圧力と第2
導圧口12側の流体Gの圧力の相対関係に基づいてフル
イディック震動に対応する信号となり、この電気検出信
号SD の周波数に基づいて流量演算手段13は、流体G
の流量を演算する。
According to the third aspect of the present invention, the first pressure introducing port 11 and the second pressure introducing port 11 provided at the predetermined symmetrical positions in the fluidic element 10 with respect to the flow direction of the fluid G in the fluidic element 10. One of the pressure guide ports 12 communicates with the first pressure chamber 3 of the fluid vibration detection sensor 1, and the other pressure guide port 12 communicates with the second pressure chamber 4. SD is the pressure of the fluid G on the first pressure guide port 11 side and the second
The signal corresponding to the fluidic vibration is generated based on the relative relationship of the pressure of the fluid G on the pressure guide port 12 side, and the flow rate calculation means 13 determines the fluid G based on the frequency of this electrical detection signal SD.
Calculate the flow rate of.

【0025】請求項4記載の発明は、請求項2記載の流
体震動検出センサを有し、フルイディック素子内の流体
震動に基づいて流体の流量を検出する流量検出装置であ
って、前記フルイディック素子内の前記流体の流れ方向
に対して前記フルイディック素子内の対称な所定位置に
設けられた第1導圧口及び第2導圧口のうち一方の導圧
口に前記第2圧力室及び前記第6圧力室が連通され、他
方の導圧口に前記第3圧力室及び前記第5圧力室が連通
され、前記第1電気検出信号及び前記第2電気検出信号
の差に対応する差信号を出力する差動手段と、前記差信
号に基づいて前記流体の流量を演算する流量検出手段
と、を備えて構成する。
According to a fourth aspect of the present invention, there is provided a fluid flow detection device having the fluid vibration detection sensor according to the second aspect, wherein the flow rate detection device detects the flow rate of the fluid based on the fluid vibration in the fluidic element. One of the first pressure guide port and the second pressure guide port provided at a symmetrical predetermined position in the fluidic device with respect to the flow direction of the fluid in the device has the second pressure chamber and the second pressure chamber. The sixth pressure chamber communicates with the other pressure guide port, the third pressure chamber communicates with the fifth pressure chamber, and a difference signal corresponding to the difference between the first electric detection signal and the second electric detection signal. And a flow rate detecting means for calculating the flow rate of the fluid based on the difference signal.

【0026】請求項4記載の発明によれば、フルイディ
ック素子内の前記流体の流れ方向に対してフルイディッ
ク素子内の対称な所定位置に設けられた第1導圧口及び
第2導圧口のうち一方の導圧口に第2圧力室及び前記第
6圧力室が連通され、他方の導圧口に第3圧力室及び第
5圧力室が連通されているので、第1電気検出信号及び
第2電気検出信号は第1導圧口側の流体の圧力と第2導
圧口側の流体の圧力の相対関係に基づいてフルイディッ
ク震動に対応する信号となり、さらに第2電気検出信号
の位相は、第1電気検出信号の位相と逆相になる。
According to the fourth aspect of the present invention, the first pressure guiding port and the second pressure guiding port provided at symmetrical predetermined positions in the fluidic element with respect to the flow direction of the fluid in the fluidic element. Since the second pressure chamber and the sixth pressure chamber are communicated with one of the pressure guide ports and the third pressure chamber and the fifth pressure chamber are communicated with the other pressure guide port, the first electric detection signal and The second electric detection signal becomes a signal corresponding to fluidic vibration based on the relative relationship between the pressure of the fluid on the first pressure guide side and the pressure of the fluid on the second pressure guide side, and the phase of the second electric detection signal Becomes opposite to the phase of the first electrical detection signal.

【0027】これにより差動手段は、第1電気検出信号
及び第2電気検出信号の差、すなわち、一方の電気検出
信号の振幅を増幅した信号である差信号を出力する。こ
れにより流量検出手段は、差信号に基づいて流体の流量
を演算する。
Thus, the differential means outputs the difference between the first electric detection signal and the second electric detection signal, that is, the difference signal which is a signal obtained by amplifying the amplitude of one electric detection signal. Thereby, the flow rate detection means calculates the flow rate of the fluid based on the difference signal.

【0028】[0028]

【発明の実施の形態】次に本発明の好適な実施形態を図
面を参照して説明する。図2に流体震動検出センサを図
7のフルイディック素子に接続した場合の概要構成図を
示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 2 shows a schematic configuration diagram when the fluid vibration detection sensor is connected to the fluidic element of FIG.

【0029】流体震動検出センサ30は、第1圧力室3
1を第2圧力室32と第3圧力室33とに分離する第1
磁気膜34と、第4圧力室35を第5圧力室36と第6
圧力室37とに分離する第2磁気膜38と、第2圧力室
33と第6圧力室37を連通する第1連通路39と、第
3圧力室33と第5圧力室36を連通する第2連通路4
0と、第1圧力室31内に設けられ第2圧力室32内に
導入された流体の圧力P1 及び第3圧力室33内に導入
された流体の圧力P2 に起因して生じる第1磁気膜34
の撓み状態を磁気的に検出する撓み第1検出部41を有
し、第1圧力室31外に設けられた第1信号変換部42
により第1磁気膜34の撓み状態に応じた第1電気検出
信号SD1を出力する第1撓み検出回路43と、第4圧力
室35内に設けられ第5圧力室36内に導入された流体
の圧力P2 及び第6圧力室37内に導入された流体の圧
力P1 に起因して生じる第2磁気膜38の撓み状態を磁
気的に検出する撓み第2検出部44を有し、第4圧力室
35外に設けられた第2信号変換部45により第2磁気
膜38の撓み状態に応じた第2電気検出信号SD2を出力
する第2撓み検出回路46と、を備えて構成されてい
る。
The fluid vibration detection sensor 30 includes the first pressure chamber 3
1 for separating 1 into a second pressure chamber 32 and a third pressure chamber 33
The magnetic film 34, the fourth pressure chamber 35, and the fifth pressure chamber 36
A second magnetic film 38 which separates into the pressure chamber 37, a first communication passage 39 which connects the second pressure chamber 33 and the sixth pressure chamber 37, and a first communication passage 39 which connects the third pressure chamber 33 and the fifth pressure chamber 36. 2 passages 4
0, and the first magnetic film formed due to the pressure P1 of the fluid introduced into the second pressure chamber 32 provided in the first pressure chamber 31 and the pressure P2 of the fluid introduced into the third pressure chamber 33. 34
The first signal converter 42 provided outside the first pressure chamber 31 has a bending first detector 41 that magnetically detects the bending state of the first pressure chamber 31.
The first deflection detection circuit 43 that outputs the first electrical detection signal SD1 according to the deflection state of the first magnetic film 34 and the fluid that is provided in the fourth pressure chamber 35 and is introduced into the fifth pressure chamber 36 The second pressure detecting portion 44 magnetically detects the bending state of the second magnetic film 38 caused by the pressure P2 and the pressure P1 of the fluid introduced into the sixth pressure chamber 37. A second deflection detection circuit 46 that outputs a second electrical detection signal SD2 according to the deflection state of the second magnetic film 38 by a second signal conversion unit 45 provided outside the circuit 35.

【0030】さらに第1連通路39は、フルイディック
流量センサ80の第1圧力検出孔91aに連通され、第
2連通路40は、フルイディック流量センサ80の第2
圧力検出孔91bに連通されている。図3に本発明の流
量検出装置としての流量検出表示装置の概要構成ブロッ
ク図を示す。
Further, the first communication passage 39 is communicated with the first pressure detection hole 91a of the fluidic flow sensor 80, and the second communication passage 40 is the second pressure passage of the fluidic flow sensor 80.
It communicates with the pressure detection hole 91b. FIG. 3 shows a schematic block diagram of a flow rate detection display device as a flow rate detection device of the present invention.

【0031】流量検出表示装置50は、流体震動検出セ
ンサ30の出力信号である第1電気検出信号SD1を増幅
して第1増幅検出信号ASD1として出力する第1アンプ
51と、流体震動検出センサ30の出力信号である第2
電気検出信号SD2を増幅して第2増幅検出信号ASD2と
して出力する第2アンプ52と、第1増幅検出信号AS
D1と第2増幅検出信号ASD2との差動増幅を行なって差
信号SDEL として出力する差動アンプ53と、差信号S
DEL のノイズ成分を除去すべく所定の周波数帯域成分を
除去して出力するフィルタ回路54と、フィルタ回路5
4の出力信号に基づいて波形整形を行ない、矩形波出力
信号を出力するシュミットトリガ回路55と、シュミッ
トトリガ回路の矩形波出力信号に基づいて演算を行なっ
て、流体の流量を求めるとともに、演算結果を後述のモ
ニタに表示させるための表示制御信号SCDを出力するプ
ロセッサ56と、各種表示を行なう液晶モニタ等のモニ
タ57と、を備えて構成されている。
The flow rate detection display device 50 amplifies the first electric detection signal SD1 which is the output signal of the fluid vibration detection sensor 30 and outputs it as the first amplified detection signal ASD1 and the fluid vibration detection sensor 30. Second output signal of
A second amplifier 52 that amplifies the electrical detection signal SD2 and outputs it as a second amplification detection signal ASD2; and a first amplification detection signal AS
A differential amplifier 53 that differentially amplifies D1 and the second amplified detection signal AS D2 and outputs as a differential signal SDEL, and a differential signal S
A filter circuit 54 for removing and outputting a predetermined frequency band component in order to remove a noise component of DEL, and a filter circuit 5.
The Schmitt trigger circuit 55 that performs the waveform shaping based on the output signal of 4 and outputs the rectangular wave output signal, and the operation based on the rectangular wave output signal of the Schmitt trigger circuit to obtain the flow rate of the fluid and the operation result. Is provided with a processor 56 for outputting a display control signal SCD for displaying on a monitor, which will be described later, and a monitor 57 such as a liquid crystal monitor for performing various displays.

【0032】次に図4乃至図6を参照して流体震動検出
センサ30及び流量検出表示装置50の動作について説
明する。1A) P1 >P2 の場合 図4にP1 >P2 の場合の動作説明図を示す。
Next, the operations of the fluid vibration detection sensor 30 and the flow rate detection display device 50 will be described with reference to FIGS. 1 A) In the case of P1> P2 FIG. 4 shows an operation explanatory diagram in the case of P1> P2.

【0033】P1 >P2 の場合、すなわち、第1圧力検
出孔91a側が流体圧力が高く、第2圧力検出孔91b
側が流体圧力が低い場合は、図4(a)に示すように、
第1圧力室31側では、第2圧力室32側の流体圧力が
低く、第3圧力室33側の流体圧力が高いので、第1磁
気膜34は、第2圧力室32側(図面、上側)に凸にな
るように撓むこととなる。
In the case of P1> P2, that is, the fluid pressure is high on the side of the first pressure detecting hole 91a and the second pressure detecting hole 91b.
When the fluid pressure on the side is low, as shown in FIG.
Since the fluid pressure on the second pressure chamber 32 side is low and the fluid pressure on the third pressure chamber 33 side is high on the first pressure chamber 31 side, the first magnetic film 34 is disposed on the second pressure chamber 32 side (drawing, upper side). ) Will be bent to be convex.

【0034】これにより第1撓み検出回路43の撓み第
1検出部41は、第1磁気膜34の撓み状態を磁気的に
検出し、第1信号変換部42は、第1磁気膜34の撓み
状態に応じた第1電気検出信号SD1(図4(b)(i)
参照)を第1増幅アンプ51に出力する。
As a result, the deflection first detection section 41 of the first deflection detection circuit 43 magnetically detects the deflection state of the first magnetic film 34, and the first signal conversion section 42 causes the deflection of the first magnetic film 34. The first electrical detection signal SD1 (FIG. 4 (b) (i) according to the state
Is output to the first amplification amplifier 51.

【0035】第1増幅アンプ51は、第1電気検出信号
SD1を増幅して第1増幅検出信号ASD1として差動アン
プ53の非反転入力端子に出力する。一方、第4圧力室
35側では、第5圧力室36側の流体圧力が高く、第6
圧力室37側の流体圧力が低いので、第2磁気膜38
は、第6圧力室37側(図面、下側)に凸になるように
撓むこととなる。
The first amplification amplifier 51 amplifies the first electric detection signal SD1 and outputs it as the first amplification detection signal ASD1 to the non-inverting input terminal of the differential amplifier 53. On the other hand, on the fourth pressure chamber 35 side, the fluid pressure on the fifth pressure chamber 36 side is high, and
Since the fluid pressure on the pressure chamber 37 side is low, the second magnetic film 38
Is bent so as to be convex toward the sixth pressure chamber 37 side (the lower side in the drawing).

【0036】これにより第2撓み検出回路46の撓み第
2検出部44は、第2磁気膜38の撓み状態を磁気的に
検出し、第2信号変換部45は、第2磁気膜38の撓み
状態に応じた第2電気検出信号SD2(図4(b)(i
i)参照)を第2増幅アンプ52に出力する。
As a result, the second bending detecting section 44 of the second bending detecting circuit 46 magnetically detects the bending state of the second magnetic film 38, and the second signal converting section 45 bends the second magnetic film 38. The second electrical detection signal SD2 (FIG. 4 (b) (i
i)) is output to the second amplification amplifier 52.

【0037】第2増幅アンプ52は、第2電気検出信号
SD2を増幅して第2増幅検出信号ASD2として差動アン
プ53の反転入力端子に出力する。これらにより、差動
アンプ53は、第1増幅検出信号ASD1と第2増幅検出
信号ASD2との差動増幅を行なって差信号SDEL (図4
(b)(iii)参照)としてフィルタ回路54に出力
する。
The second amplification amplifier 52 amplifies the second electric detection signal SD2 and outputs it as the second amplification detection signal ASD2 to the inverting input terminal of the differential amplifier 53. As a result, the differential amplifier 53 differentially amplifies the first amplification detection signal AS D1 and the second amplification detection signal AS D2 to generate the difference signal SDEL (see FIG. 4).
(B) (see (iii)), and outputs to the filter circuit 54.

【0038】このように第1検出信号SD1(実質的に
は、第1増幅検出信号ASD1)と第2電気検出信号SD2
(実質的には、第2増幅検出信号ASD1)の差動増幅を
行なっているため、流量の微小な変化を容易に検出する
ことができるとともに、双方の信号に含まれる同相のノ
イズ成分が除去され、より精度の高い流量検出が行なえ
るのである。
As described above, the first detection signal SD1 (substantially the first amplification detection signal ASD1) and the second electric detection signal SD2
(Substantially, the second amplification detection signal AS D1) is differentially amplified, so that a minute change in the flow rate can be easily detected, and the in-phase noise component included in both signals can be removed. Therefore, the flow rate can be detected with higher accuracy.

【0039】次にフィルタ回路54は、差信号SDEL の
ノイズ成分を除去すべく所定の周波数帯域成分を除去し
てシュミットトリガ回路55に出力し、シュミットトリ
ガ回路は、フィルタ回路54の出力信号に基づいて波形
整形を行ない、矩形波出力信号をプロセッサ56に出力
する。
Next, the filter circuit 54 removes a predetermined frequency band component in order to remove the noise component of the difference signal SDEL and outputs it to the Schmitt trigger circuit 55. The Schmitt trigger circuit is based on the output signal of the filter circuit 54. Waveform shaping is performed and a rectangular wave output signal is output to the processor 56.

【0040】これによりプロセッサ56は、シュミット
トリガ回路の矩形波出力信号に基づいて演算を行なっ
て、流体の流量を求めるとともに、演算結果をモニタに
表示させるための表示制御信号SCDをモニタに出力し、
モニタには演算結果である流量が表示されることとな
る。B) P1 <P2 の場合 図5にP1 <P2 の場合の動作説明図を示す。
As a result, the processor 56 calculates based on the rectangular wave output signal of the Schmitt trigger circuit to obtain the flow rate of the fluid and outputs the display control signal SCD for displaying the calculation result on the monitor. ,
The flow rate as the calculation result is displayed on the monitor. B) In the case of P1 <P2 FIG. 5 shows the operation explanatory diagram in the case of P1 <P2.

【0041】P1 <P2 の場合、すなわち、第1圧力検
出孔91a側が流体圧力が低く、第2圧力検出孔91b
側が流体圧力が高い場合は、図5(a)に示すように、
第1圧力室31側では、第2圧力室32側の流体圧力が
高く、第3圧力室33側の流体圧力が低いので、第1磁
気膜34は、第3圧力室33側(図面、下側)に凸にな
るように撓むこととなる。
When P1 <P2, that is, the first pressure detecting hole 91a side has a low fluid pressure, and the second pressure detecting hole 91b
When the fluid pressure on the side is high, as shown in FIG.
On the first pressure chamber 31 side, the fluid pressure on the second pressure chamber 32 side is high and the fluid pressure on the third pressure chamber 33 side is low. It will bend so that it is convex to the side).

【0042】これにより第1撓み検出回路43の撓み第
1検出部41は、第1磁気膜34の撓み状態を磁気的に
検出し、第1信号変換部42は、第1磁気膜34の撓み
状態に応じた第1電気検出信号SD1(図5(b)(i)
参照)を第1増幅アンプ51に出力する。
As a result, the flexure first detecting section 41 of the first flexure detecting circuit 43 magnetically detects the flexing state of the first magnetic film 34, and the first signal converting section 42 flexes the first magnetic film 34. The first electric detection signal SD1 according to the state (FIG. 5 (b) (i)
Is output to the first amplification amplifier 51.

【0043】第1増幅アンプ51は、第1電気検出信号
SD1を増幅して第1増幅検出信号ASD1として差動アン
プ53の非反転入力端子に出力する。一方、第4圧力室
35側では、第5圧力室36側の流体圧力が低く、第6
圧力室37側の流体圧力が高いので、第2磁気膜38
は、第5圧力室37側(図面、上側)に凸になるように
撓むこととなる。
The first amplification amplifier 51 amplifies the first electric detection signal SD1 and outputs it as the first amplification detection signal ASD1 to the non-inverting input terminal of the differential amplifier 53. On the other hand, on the fourth pressure chamber 35 side, the fluid pressure on the fifth pressure chamber 36 side is low,
Since the fluid pressure on the pressure chamber 37 side is high, the second magnetic film 38
Is bent so as to be convex toward the fifth pressure chamber 37 side (upper side in the drawing).

【0044】これにより第2撓み検出回路46の撓み第
2検出部44は、第2磁気膜38の撓み状態を磁気的に
検出し、第2信号変換部45は、第2磁気膜38の撓み
状態に応じた第2電気検出信号SD2(図5(b)(i
i)参照)を第2増幅アンプ52に出力する。
As a result, the deflection second detection section 44 of the second deflection detection circuit 46 magnetically detects the deflection state of the second magnetic film 38, and the second signal conversion section 45 causes the deflection of the second magnetic film 38. The second electrical detection signal SD2 (FIG. 5 (b) (i
i)) is output to the second amplification amplifier 52.

【0045】第2増幅アンプ52は、第2電気検出信号
SD2を増幅して第2増幅検出信号ASD2として差動アン
プ53の反転入力端子に出力する。これらにより、差動
アンプ53は、第1増幅検出信号ASD1と第2増幅検出
信号ASD2との差動増幅を行なって差信号SDEL (図5
(b)(iii)参照)としてフィルタ回路54に出力
する。
The second amplification amplifier 52 amplifies the second electric detection signal SD2 and outputs it as the second amplification detection signal ASD2 to the inverting input terminal of the differential amplifier 53. As a result, the differential amplifier 53 differentially amplifies the first amplification detection signal AS D1 and the second amplification detection signal AS D2 to generate the difference signal SDEL (see FIG. 5).
(B) (see (iii)), and outputs to the filter circuit 54.

【0046】このように第1検出信号SD1(実質的に
は、第1増幅検出信号ASD1)と第2電気検出信号SD2
(実質的には、第2増幅検出信号ASD1)の差動増幅を
行なっているため、流量の微小な変化を容易に検出する
ことができるとともに、双方の信号に含まれる同相のノ
イズ成分が除去され、より精度の高い流量検出が行なえ
るのである。
As described above, the first detection signal SD1 (substantially the first amplification detection signal ASD1) and the second electric detection signal SD2
(Substantially, the second amplification detection signal AS D1) is differentially amplified, so that a minute change in the flow rate can be easily detected, and the in-phase noise component included in both signals can be removed. Therefore, the flow rate can be detected with higher accuracy.

【0047】次にフィルタ回路54は、差信号SDEL の
ノイズ成分を除去すべく所定の周波数帯域成分を除去し
てシュミットトリガ回路55に出力し、シュミットトリ
ガ回路は、フィルタ回路54の出力信号に基づいて波形
整形を行ない、矩形波出力信号をプロセッサ56に出力
する。
Next, the filter circuit 54 removes a predetermined frequency band component in order to remove the noise component of the difference signal SDEL and outputs it to the Schmitt trigger circuit 55. The Schmitt trigger circuit is based on the output signal of the filter circuit 54. Waveform shaping is performed and a rectangular wave output signal is output to the processor 56.

【0048】これによりプロセッサ56は、シュミット
トリガ回路の矩形波出力信号に基づいて演算を行なっ
て、流体の流量を求めるとともに、演算結果をモニタに
表示させるための表示制御信号SCDをモニタに出力し、
モニタには演算結果である流量が表示されることとな
る。C) 外部震動等のノイズ発生の場合 図6に外部振動等のノイズが発生した場合の動作説明図
を示す。
As a result, the processor 56 calculates based on the rectangular wave output signal of the Schmitt trigger circuit to obtain the flow rate of the fluid, and outputs the display control signal SCD for displaying the calculation result to the monitor. ,
The flow rate as the calculation result is displayed on the monitor. C) In case of noise such as external vibration Fig. 6 shows an operation explanatory diagram when noise such as external vibration occurs.

【0049】外部震動等のノイズ発生の場合(典型的に
はP1 =P2 の場合を想定すると理解しやすい。)、す
なわち、第1圧力検出孔91a側の流体圧力及び第2圧
力検出孔91b側の流体圧力にかかわらず、外部震動等
により第1磁気膜34及び第2磁気膜38が同方向に撓
むこととなる。
When noise such as an external vibration occurs (it is easy to understand if a case of P1 = P2 is typically assumed), that is, the fluid pressure on the first pressure detecting hole 91a side and the second pressure detecting hole 91b side. Irrespective of the fluid pressure, the first magnetic film 34 and the second magnetic film 38 are bent in the same direction due to external vibration or the like.

【0050】これにより第1撓み検出回路43の撓み第
1検出部41は、第1磁気膜34の撓み状態を磁気的に
検出し、第1信号変換部42は、第1磁気膜34の撓み
状態に応じた第1電気検出信号SD1(図6(b)(i)
参照)を第1増幅アンプ51に出力し、1増幅アンプ5
1は、第1電気検出信号SD1を増幅して第1増幅検出信
号ASD1として差動アンプ53の非反転入力端子に出力
する。
As a result, the deflection first detection section 41 of the first deflection detection circuit 43 magnetically detects the deflection state of the first magnetic film 34, and the first signal conversion section 42 deflects the first magnetic film 34. The first electric detection signal SD1 according to the state (FIG. 6 (b) (i)
Output) to the first amplification amplifier 51, and the 1 amplification amplifier 5
1 amplifies the first electric detection signal SD1 and outputs it to the non-inverting input terminal of the differential amplifier 53 as the first amplification detection signal ASD1.

【0051】同様に第2撓み検出回路46の撓み第2検
出部44は、第2磁気膜38の撓み状態を磁気的に検出
し、第2信号変換部45は、第2磁気膜38の撓み状態
に応じた第2電気検出信号SD2(図6(b)(ii)参
照)を第2増幅アンプ52に出力し、第2増幅アンプ5
2は、第2電気検出信号SD2を増幅して第2増幅検出信
号ASD2として差動アンプ53の反転入力端子に出力す
る。
Similarly, the deflection second detection section 44 of the second deflection detection circuit 46 magnetically detects the deflection state of the second magnetic film 38, and the second signal conversion section 45 causes the deflection of the second magnetic film 38. The second electric detection signal SD2 (see FIG. 6 (b) (ii)) corresponding to the state is output to the second amplification amplifier 52, and the second amplification amplifier 5
2 amplifies the second electric detection signal SD2 and outputs it to the inverting input terminal of the differential amplifier 53 as the second amplification detection signal ASD2.

【0052】これらにより、差動アンプ53は、第1増
幅検出信号ASD1と第2増幅検出信号ASD2との差動増
幅を行なって差信号SDEL (図6(b)(iii)参
照)としてフィルタ回路54に出力する。図6(b)
(iii)に示すようにに第1検出信号SD1(実質的に
は、第1増幅検出信号ASD1)と第2電気検出信号SD2
(実質的には、第2増幅検出信号ASD1)とは差動増幅
により互いに相殺されることとなり、ノイズによる撓み
は検出されることとなる。
As a result, the differential amplifier 53 differentially amplifies the first amplified detection signal AS D1 and the second amplified detection signal AS D2 to obtain a difference signal SDEL (see FIG. 6B (iii)). To 54. Figure 6 (b)
As shown in (iii), the first detection signal SD1 (substantially the first amplified detection signal ASD1) and the second electrical detection signal SD2
(Substantially, the second amplified detection signal AS D1) is canceled by the differential amplification, and the deflection due to noise is detected.

【0053】従って、このような外乱の影響を受けるこ
となく、精度の高い流量検出が行なえることがわかる。
Therefore, it is understood that the flow rate can be detected with high accuracy without being affected by such a disturbance.

【0054】[0054]

【発明の効果】請求項1記載の発明によれば、撓み検出
手段8の撓み検出部6は、1圧力室3内に導入された流
体の圧力P1 及び第2圧力室内4に導入された流体の
圧力に起因して生じる磁気膜5の撓み状態を磁気的に検
出し、信号変換部7は、検出した磁気膜5の撓み状態に
応じた電気検出信号SD を出力するので、信号変換部7
が流体中に直接さらされることがなく、電気系統の腐食
を抑制することができる。また、撓み検出に磁気膜を用
いているため、圧電膜を用いる場合と比較して特性上の
バラツキを小さく抑えられるとともに、経時変化が少な
く長期使用に向いている。さらに撓み検出部6は、電気
インピーダンスを低くすることができ、電気的ノイズに
強くなり、高信頼性を得ることができる。
According to the invention as set forth in claim 1, the flexure detecting portion 6 of the flexure detecting means 8 has the pressure P1 of the fluid introduced into the first pressure chamber 3 and the fluid introduced into the second pressure chamber 4. The bending state of the magnetic film 5 caused by the pressure is magnetically detected, and the signal conversion unit 7 outputs the electric detection signal SD corresponding to the detected bending state of the magnetic film 5. Therefore, the signal conversion unit 7
Is not directly exposed to the fluid, and corrosion of the electric system can be suppressed. Further, since the magnetic film is used for the deflection detection, the variation in characteristics can be suppressed as compared with the case where the piezoelectric film is used, and the change over time is small, which is suitable for long-term use. Further, the deflection detection unit 6 can lower the electrical impedance, resist electrical noise, and obtain high reliability.

【0055】請求項2記載の発明によれば、第1連通路
は第2圧力室と第5圧力室を連通するので、第2圧力室
内の流体の圧力と第5圧力室内の流体の圧力は等しくな
り、同様に、第2連通路は、第3圧力室と第6圧力室を
連通するので、第3圧力室内の流体の圧力と第6圧力室
内の流体の圧力は等しくなり、第1撓み検出手段の第1
検出部は、第2圧力室内に導入された流体の圧力及び第
3圧力室内に導入された流体の圧力に起因して生じる第
1磁気膜の撓み状態を磁気的に検出し、第1信号変換部
は、第1磁気膜の撓み状態に応じた第1電気検出信号を
出力し、第2撓み検出手段の第2検出部は、第5圧力室
内に導入された流体の圧力及び第6圧力室内に導入され
た流体の圧力に起因して生じる第2磁気膜の撓み状態を
磁気的に検出し、第2信号変換部は、第2磁気膜の撓み
状態に応じ、かつ、第1電気検出信号とは逆相の第2電
気検出信号を出力するので、差動増幅を行なうことによ
り第1電気検出信号と第2電気検出信号の双方に含まれ
る同相ノイズ成分を容易に除去することができる。この
結果、外部震動等の外乱ノイズは第1電気検出信号と第
2電気検出信号の双方に同相ノイズとして含まれること
となり、これらの影響を低減することができる。
According to the second aspect of the present invention, since the first communication passage connects the second pressure chamber and the fifth pressure chamber, the pressure of the fluid in the second pressure chamber and the pressure of the fluid in the fifth pressure chamber are Similarly, since the second communication passage connects the third pressure chamber and the sixth pressure chamber, the pressure of the fluid in the third pressure chamber becomes equal to the pressure of the fluid in the sixth pressure chamber, and the first deflection First of detection means
The detection unit magnetically detects the bending state of the first magnetic film caused by the pressure of the fluid introduced into the second pressure chamber and the pressure of the fluid introduced into the third pressure chamber, and performs the first signal conversion. The section outputs a first electric detection signal according to the bending state of the first magnetic film, and the second detecting section of the second bending detecting means is configured to detect the pressure of the fluid introduced into the fifth pressure chamber and the sixth pressure chamber. The bending state of the second magnetic film caused by the pressure of the fluid introduced into the magnetic field is magnetically detected, and the second signal conversion unit is responsive to the bending state of the second magnetic film and detects the first electrical detection signal. Since the second electric detection signal having a phase opposite to that of is output, it is possible to easily remove the common-mode noise component included in both the first electric detection signal and the second electric detection signal by performing differential amplification. As a result, disturbance noise such as external vibration is included as in-phase noise in both the first electrical detection signal and the second electrical detection signal, and these effects can be reduced.

【0056】請求項3記載の発明によれば、フルイディ
ック素子内の流体の流れ方向に対してフルイディック素
子内の対称な所定位置に設けられた第1導圧口及び第2
導圧口のうち一方の導圧口に流体震動検出センサ1の第
1圧力室3が連通され、他方の導圧口に第2圧力室4が
連通され、電気検出信号は第1導圧口側の流体の圧力と
第2導圧口側の流体の圧力の相対関係に基づいてフルイ
ディック震動に対応する信号となり、この電気検出信号
の周波数基づいて流量演算手段は、流体の流量を演算す
るので、信号変換部7が流体中に直接さらされることが
なく、電気系統の腐食を抑制するとともに、撓み検出に
磁気膜を用いているため、圧電膜を用いる場合と比較し
て特性上のバラツキを小さく抑えられるとともに、経時
変化が少なく長期使用に向いており、長期にわたって安
定に流体の流量を検出することができる。さらに撓み検
出部6は、電気インピーダンスを低くすることができ、
電気的ノイズに強くなり、高信頼性の流量データを得る
ことができる。
According to the third aspect of the present invention, the first pressure guide port and the second pressure guide port are provided at predetermined symmetrical positions in the fluidic element with respect to the fluid flow direction in the fluidic element.
One of the pressure guide ports is connected to the first pressure chamber 3 of the fluid vibration detection sensor 1, the other pressure guide port is connected to the second pressure chamber 4, and the electrical detection signal is the first pressure guide port. Is a signal corresponding to fluidic vibration based on the relative relationship between the pressure of the fluid on the side and the pressure of the fluid on the side of the second pressure guide, and the flow rate calculation means calculates the flow rate of the fluid based on the frequency of this electrical detection signal. Therefore, the signal converter 7 is not directly exposed to the fluid, corrosion of the electric system is suppressed, and the magnetic film is used for the deflection detection, so that there is variation in characteristics as compared with the case of using the piezoelectric film. It is suitable for long-term use because it can be suppressed to a small value, has little change over time, and can stably detect the fluid flow rate over a long period of time. Further, the deflection detection unit 6 can lower the electric impedance,
It becomes resistant to electrical noise and highly reliable flow rate data can be obtained.

【0057】請求項4記載の発明によれば、フルイディ
ック素子内の前記流体の流れ方向に対してフルイディッ
ク素子内の対称な所定位置に設けられた第1導圧口及び
第2導圧口のうち一方の導圧口に第2圧力室及び前記第
5圧力室が連通され、他方の導圧口に第3圧力室及び第
6圧力室が連通されているので、第1電気検出信号及び
第2電気検出信号は第1導圧口側の流体の圧力と第2導
圧口側の流体の圧力の相対関係に基づいてフルイディッ
ク震動に対応する信号となり、さらに第2電気検出信号
の位相は、第1電気検出信号の位相と逆相になり、差動
手段は、第1電気検出信号及び第2電気検出信号の差、
すなわち、一方の電気検出信号の振幅を増幅した信号で
ある差信号を出力し、流量検出手段は、差信号に基づい
て流体の流量を演算するので、差動増幅を行なうことに
より第1電気検出信号と第2電気検出信号の双方に含ま
れる同相ノイズ成分を容易に除去することができる。こ
の結果、外部震動等の外乱ノイズは第1電気検出信号と
第2電気検出信号の双方に同相ノイズとして含まれるこ
ととなり、これらの影響を低減して流量を求めることが
できる。
According to the fourth aspect of the present invention, the first pressure guiding port and the second pressure guiding port provided at symmetrical predetermined positions in the fluidic element with respect to the flow direction of the fluid in the fluidic element. Since the second pressure chamber and the fifth pressure chamber are communicated with one of the pressure guide ports and the third pressure chamber and the sixth pressure chamber are communicated with the other pressure guide port, the first electric detection signal and The second electric detection signal becomes a signal corresponding to fluidic vibration based on the relative relationship between the pressure of the fluid on the first pressure guide side and the pressure of the fluid on the second pressure guide side, and the phase of the second electric detection signal Is a phase opposite to the phase of the first electric detection signal, and the differential means is a difference between the first electric detection signal and the second electric detection signal,
That is, the difference signal, which is a signal obtained by amplifying the amplitude of one of the electric detection signals, is output, and the flow rate detecting means calculates the flow rate of the fluid based on the difference signal. Therefore, the first electric detection is performed by performing differential amplification. The in-phase noise component included in both the signal and the second electrical detection signal can be easily removed. As a result, disturbance noise such as external vibration is included as in-phase noise in both the first electric detection signal and the second electric detection signal, and the influence can be reduced to obtain the flow rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構成図である。FIG. 1 is a basic configuration diagram of the present invention.

【図2】流体震動検出センサをフルイディック素子に接
続した場合の概要構成図である。
FIG. 2 is a schematic configuration diagram when a fluid vibration detection sensor is connected to a fluidic element.

【図3】流量検出表示装置の概要構成ブロック図であ
る。
FIG. 3 is a schematic block diagram of a flow rate detection display device.

【図4】流体圧力P1 >流体圧力P2 の場合の動作説明
図である。
FIG. 4 is an operation explanatory view in the case of fluid pressure P1> fluid pressure P2.

【図5】流体圧力P1 <流体圧力P2 の場合の動作説明
図である。
FIG. 5 is an operation explanatory diagram in the case of fluid pressure P1 <fluid pressure P2.

【図6】外部震動等のノイズ発生の場合の動作説明図で
ある。
FIG. 6 is an operation explanatory diagram when noise such as an external vibration occurs.

【図7】フルイディック素子を用いた流量検出装置の概
要構成図である。
FIG. 7 is a schematic configuration diagram of a flow rate detection device using a fluidic element.

【図8】流体震動圧力センサの概要構成及び動作説明図
である。
FIG. 8 is a schematic configuration and operation explanatory diagram of a fluid vibration pressure sensor.

【図9】圧電膜の断面図である。FIG. 9 is a cross-sectional view of a piezoelectric film.

【符号の説明】[Explanation of symbols]

1 流体震動圧力センサ 2 圧力室 3 第1圧力室 4 第2圧力室 5 磁気膜 6 撓み検出部 7 信号変換部 8 撓み検出手段 10 フルイディック素子 11 第1導圧口 12 第2導圧口 13 流量演算手段 20 流量検出装置 G 流体 P1 、P2 流体の圧力 SD 電気検出信号 DESCRIPTION OF SYMBOLS 1 Fluid vibration pressure sensor 2 Pressure chamber 3 1st pressure chamber 4 2nd pressure chamber 5 Magnetic film 6 Deflection detection part 7 Signal conversion part 8 Deflection detection means 10 Fluidic element 11 First pressure port 12 Second pressure port 13 Flow rate calculation means 20 Flow rate detector G Fluid P1, P2 Fluid pressure SD Electric detection signal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧力室を第1圧力室と第2圧力室とに分
離する磁気膜と、 前記圧力室内に設けられ前記第1圧力室内に導入された
流体の圧力及び前記第2圧力室内に導入された流体の圧
力に起因して生じる前記磁気膜の撓み状態を磁気的に検
出する撓み検出部を有し、前記圧力室外に設けられた信
号変換部により前記磁気膜の撓み状態に応じた電気検出
信号を出力する撓み検出手段と、 を備えたことを特徴とする流体震動検出センサ。
1. A magnetic film for separating a pressure chamber into a first pressure chamber and a second pressure chamber, a pressure of a fluid provided in the pressure chamber and introduced into the first pressure chamber, and a second pressure chamber. It has a flexure detecting section for magnetically detecting the flexing state of the magnetic film caused by the pressure of the introduced fluid, and responds to the flexing state of the magnetic film by a signal converting section provided outside the pressure chamber. A fluid vibration detection sensor, comprising: a deflection detection unit that outputs an electrical detection signal;
【請求項2】 第1圧力室を第2圧力室と第3圧力室と
に分離する第1磁気膜と、 第4圧力室を第5圧力室と第6圧力室とに分離する第2
磁気膜と、 前記第2圧力室と前記第6圧力室を連通する第1連通路
と、 前記第3圧力室と前記第5圧力室を連通する第2連通路
と、 前記第1圧力室内に設けられ前記第2圧力室内に導入さ
れた流体の圧力及び前記第3圧力室内に導入された流体
の圧力に起因して生じる前記第1磁気膜の撓み状態を磁
気的に検出する撓み第1検出部を有し、前記第1圧力室
外に設けられた第1信号変換部により前記第1磁気膜の
撓み状態に応じた第1電気検出信号を出力する第1撓み
検出手段と、 前記第4圧力室内に設けられ前記第5圧力室内に導入さ
れた流体の圧力及び前記第6圧力室内に導入された流体
の圧力に起因して生じる前記第2磁気膜の撓み状態を磁
気的に検出する撓み第2検出部を有し、前記第4圧力室
外に設けられた第2信号変換部により前記第2磁気膜の
撓み状態に応じ、かつ、前記第1電気検出信号とは逆相
の第2電気検出信号を出力する第2撓み検出手段と、 を備えたことを特徴とする流体震動検出センサ。
2. A first magnetic film separating the first pressure chamber into a second pressure chamber and a third pressure chamber, and a second magnetic film separating the fourth pressure chamber into a fifth pressure chamber and a sixth pressure chamber.
A magnetic film, a first communication passage that communicates the second pressure chamber and the sixth pressure chamber, a second communication passage that communicates the third pressure chamber and the fifth pressure chamber, and the first pressure chamber Deflection first detection for magnetically detecting a deflection state of the first magnetic film, which is caused by the pressure of the fluid introduced into the second pressure chamber and the pressure of the fluid introduced into the third pressure chamber. A first deflection detecting unit that has a portion and outputs a first electric detection signal according to a deflection state of the first magnetic film by a first signal conversion unit provided outside the first pressure chamber; and the fourth pressure. A flexure magnetically detecting a flexure state of the second magnetic film caused by the pressure of the fluid introduced into the fifth pressure chamber and the pressure of the fluid introduced into the sixth pressure chamber, which is provided inside the chamber; The second signal conversion unit provided outside the fourth pressure chamber has two detection units. Fluid vibration detection, comprising: a second deflection detection means that outputs a second electrical detection signal that is in phase with the first electrical detection signal and that is in phase with the first electrical detection signal. Sensor.
【請求項3】 請求項1記載の流体震動検出センサを有
し、フルイディック素子内の流体震動に基づいて流体の
流量を検出する流量検出装置であって、 前記フルイディック素子内の前記流体の流れ方向に対し
て前記フルイディック素子内の対称な所定位置に設けら
れた第1導圧口及び第2導圧口のうち一方の導圧口に前
記第1圧力室が連通され、他方の導圧口に前記第2圧力
室が連通され、 前記電気検出信号に基づいて前記流体の流量を演算する
流量演算手段と、 を備えたことを特徴とする流量検出装置。
3. A flow rate detection device comprising the fluid vibration detection sensor according to claim 1, wherein the flow rate detection device detects the flow rate of the fluid based on the fluid vibration in the fluidic element. The first pressure chamber is communicated with one pressure guide port of the first pressure guide port and the second pressure guide port provided at a predetermined symmetrical position in the fluidic element with respect to the flow direction, and the other pressure guide port is connected. The second pressure chamber is communicated with a pressure port, and a flow rate calculating device that calculates a flow rate of the fluid based on the electrical detection signal is provided.
【請求項4】 請求項2記載の流体震動検出センサを有
し、フルイディック素子内の流体震動に基づいて流体の
流量を検出する流量検出装置であって、 前記フルイディック素子内の前記流体の流れ方向に対し
て前記フルイディック素子内の対称な所定位置に設けら
れた第1導圧口及び第2導圧口のうち一方の導圧口に前
記第2圧力室及び前記第5圧力室が連通され、他方の導
圧口に前記第3圧力室及び前記第6圧力室が連通され、 前記第1電気検出信号及び前記第2電気検出信号の差に
対応する差信号を出力する差動手段と、 前記差信号に基づいて前記流体の流量を演算する流量検
出手段と、 を備えたことを特徴とする流量検出装置。
4. A flow rate detection device comprising the fluid vibration detection sensor according to claim 2, wherein the flow rate detection device detects the flow rate of the fluid based on the fluid vibration in the fluidic element. The second pressure chamber and the fifth pressure chamber are provided in one pressure guide port of the first pressure guide port and the second pressure guide port provided at a predetermined symmetrical position in the fluidic element with respect to the flow direction. A differential means that communicates with each other and that the third pressure chamber and the sixth pressure chamber communicate with the other pressure guide port and that outputs a difference signal corresponding to the difference between the first electric detection signal and the second electric detection signal. And a flow rate detecting means for calculating a flow rate of the fluid based on the difference signal.
JP22795195A 1995-09-05 1995-09-05 Vibration sensor for fluid and flow detector Withdrawn JPH0972767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22795195A JPH0972767A (en) 1995-09-05 1995-09-05 Vibration sensor for fluid and flow detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22795195A JPH0972767A (en) 1995-09-05 1995-09-05 Vibration sensor for fluid and flow detector

Publications (1)

Publication Number Publication Date
JPH0972767A true JPH0972767A (en) 1997-03-18

Family

ID=16868834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22795195A Withdrawn JPH0972767A (en) 1995-09-05 1995-09-05 Vibration sensor for fluid and flow detector

Country Status (1)

Country Link
JP (1) JPH0972767A (en)

Similar Documents

Publication Publication Date Title
JPH0972767A (en) Vibration sensor for fluid and flow detector
KR920005749Y1 (en) Water meter
JPH09222345A (en) Fluid vibration detection sensor and flow rate detection device
KR920002274Y1 (en) Eddy water meter
JPH09229729A (en) Pressure sensor, fluid vibration sensor, and flowmeter
JPH06229793A (en) Flowmeter
JPH04296622A (en) Vortex flow meter
JPH06201419A (en) Pressure sensor
JP2593142B2 (en) Differential pressure detector for fluid meter
JP2655573B2 (en) Pressure sensor and gas flow meter using pressure sensor
JPH02268230A (en) Pressure sensor and gas flowmeter using it
JPH0619050Y2 (en) Fluid vibration detection end in fluid vibration type flow meter
JPH09178519A (en) Pressure sensor
JPS6340820A (en) Flow rate detector
JPH04116423A (en) Semiconductor mass flow meter
JPH09287984A (en) Karman&#39;s vortex type flowmeter
JPH10115540A (en) Flowmeter making use of differential pressure
JPH01207634A (en) Differential pressure type flowmeter
JP3169110B2 (en) Fluidic flow meter
JPH02268229A (en) Pressure sensor and gas flowmeter using it
JPH07225168A (en) Differential type pressure sensor
JP2001108501A (en) Coriolis mass flowmeter
JPH04147026A (en) Pressure sensor and gas flow meter using it
JPH08159861A (en) Fluid vibration detector sensor and fluidic flow meter using it
JPH04147015A (en) Pressure sensor and gas flowmeter using this pressure sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105