JPH0971813A - Production of b-added high tensile strength steel - Google Patents

Production of b-added high tensile strength steel

Info

Publication number
JPH0971813A
JPH0971813A JP22531395A JP22531395A JPH0971813A JP H0971813 A JPH0971813 A JP H0971813A JP 22531395 A JP22531395 A JP 22531395A JP 22531395 A JP22531395 A JP 22531395A JP H0971813 A JPH0971813 A JP H0971813A
Authority
JP
Japan
Prior art keywords
less
steel
transformation point
cooled
air cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22531395A
Other languages
Japanese (ja)
Other versions
JP3692565B2 (en
Inventor
Yasuhiro Omori
靖浩 大森
Toshiyuki Hoshino
俊幸 星野
Kiyoshi Uchida
清 内田
Akihiro Matsuzaki
明博 松崎
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22531395A priority Critical patent/JP3692565B2/en
Publication of JPH0971813A publication Critical patent/JPH0971813A/en
Application granted granted Critical
Publication of JP3692565B2 publication Critical patent/JP3692565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably and economically produce a B-added low yield ratio high tensile strength steel by subjecting a steel contg. specified amounts of C, Si, Mn, Al, B, N, Ti, Cu, Ni, Cr and Mo to hot rolling and thereafter executing specified cooling. SOLUTION: A steel contg., by weight, 0.05 to 0.30% C, 0.02 to 0.80% Si, 0.50 to 2.50% Mn, 0.005 to 0.100%. Al, 0.0005 to 0.0025% B, <=0.0050% N and Ti; (47.9/14)N to (47.9/14)N+0.01}, furthermore contg. one or more kinds among <1.5% Cu, <2.0%. Ni, <1.0% Cr and <1.0%. Mo, moreover contg., at need, one or two kinds of <0.05% Nb and <0.20% V, and the balance Fe with inevitable impurities is subjected to hot rolling. Immediately after that, this hot rolled sheet is water-cooled, is next heated to an austenitic region and is cooled at a rate more than the air cooling rate. Thereafter, the steel sheet is heated at a two phase temp. of the Ac1 transformation point to the Ac3 transformation point, is cooled at a rate more than the air cooling rate and is furthermore tempered at the Ac1 transformation point or below.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、Bを添加した高
張力鋼の製造方法に関し、特に建築用厚鋼板などとして
用いられる低降伏比高張力鋼の製造に有利に適用される
B添加高張力鋼の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength steel containing B, in particular, a B-added high-strength steel which is advantageously applied to the production of a low-yield ratio high-strength steel used as a thick steel plate for construction. The present invention relates to a method for manufacturing steel.

【0002】[0002]

【従来の技術】建築物などの鋼構造物の分野において、
最近、経済性や耐震性の面から、低降伏比の高張力鋼が
適用される傾向にある。ところで、一般に、鋼の高張力
化を、高価な合金元素を多量に添加しなくても効果的に
達成する方法として、低合金鋼にBの焼入れ性向上効果
を利用する方法が知られている。例えば、「鉄と鋼」第
74年(1988)第5号P910〜917および同第
12号P2337〜2344などには、B添加鋼のオー
ステナイト(γ)単相域からの焼入れ性に関して、B添
加による焼入性向上の機構、その効果を最大にするのに
必要なB量、あるいは熱処理条件等についての研究成果
が報告されている。一方、高張力鋼における降伏強さ
(YS)/引張強さ(TS)の低下、いわゆる低降伏比
(低YR)を図る技術としては、2相域からの焼入れが
効果的であり、例えば、特開平5−171263号公報
には、B添加鋼に、1次焼入れに次いで(α+γ)2相
域からの2次焼入れを施す方法が開示されている。
In the field of steel structures such as buildings,
Recently, from the viewpoint of economy and earthquake resistance, high-strength steel with a low yield ratio tends to be applied. By the way, in general, as a method of effectively increasing the tensile strength of steel without adding a large amount of expensive alloy elements, a method of utilizing the hardenability improving effect of B on low alloy steel is known. . For example, in "Iron and Steel" 1974 (1988) No. 5 P910-917 and No. 12 P2337-2344, B-added steel is hardened from the austenite (γ) single-phase region. Studies have been reported on the mechanism for improving the hardenability by the method, the amount of B necessary to maximize the effect, the heat treatment conditions, and the like. On the other hand, as a technique for reducing the yield strength (YS) / tensile strength (TS) in high-strength steel, that is, a so-called low yield ratio (low YR), quenching from the two-phase region is effective. Japanese Unexamined Patent Publication No. 5-171263 discloses a method in which B-added steel is subjected to primary quenching and then secondary quenching from the (α + γ) 2 phase region.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記特
開平5−171263号公報に開示の技術では、強度レ
ベルが必ずしも十分ではないほか、強度、降伏比および
靱性を含む総合バランスが劣るという問題があった。
However, the technique disclosed in JP-A-5-171263 has a problem that the strength level is not always sufficient and the total balance including strength, yield ratio and toughness is poor. It was

【0004】そこで本発明の目的は、上記既知技術が抱
えていた問題を解決する、低降伏比高張力鋼の製造方法
を提案するところにある。本発明の他の目的は、引張強
さが80kg/mm2 以上、降伏比が85%以下であって、
かつ引張強さ(TS(kg/mm2 ))、降伏比(YR
(%))および靱性(破面遷移温度 vTrs(℃))の総
合バランスを表すパラメーター(TS−80)×(− v
Trs)×(85−YR)/100が10以上である低降
伏比高張力鋼の製造方法を提案するところにある。
Therefore, an object of the present invention is to propose a method for producing a high-strength steel having a low yield ratio, which solves the problems of the above-mentioned known techniques. Another object of the present invention is to have a tensile strength of 80 kg / mm 2 or more and a yield ratio of 85% or less,
And tensile strength (TS (kg / mm 2 )), yield ratio (YR
(%)) And toughness (fracture transition temperature vTrs (° C.)) total balance parameter (TS-80) x (-v
This is to propose a method for producing a low-yield ratio high-strength steel in which Trs) × (85−YR) / 100 is 10 or more.

【0005】[0005]

【課題を解決するための手段】さて、発明者らは、上掲
の目的を実現するべく、B添加鋼を、1次焼入れと(α
+γ)の2相域から焼き入れする2次焼入れとからなる
2回焼入れ処理を行う場合に、とくに2次焼入れ時のB
による焼入性改善が効果的に得られる成分系および前処
理の方法について鋭意研究した。その結果、 Bは、α粒子とα粒子との粒界(α−α粒界)には偏
析せず、γ粒子とγ粒子との粒界(γ−γ粒界)のみに
偏析し、このγ−γ粒界に偏析したBのみが2次焼入れ
性を改善する。 したがって、2次焼入れ性の向上のためにはγ−γ粒
界面積を増やすことが有効であり、そのためには、2次
焼入れの前処理によってγ粒径、組織を適正に制御する
ことが必要である。 また、2次焼入れ時にBNが生成していると焼入れ性
が低下するので、焼入れ性の低下を防止するために、鋼
成分のうちN含有量とTi含有量の関係を適正に制御する
ことが必要である。ことを知見し、本発明を完成するに
至った。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the inventors of the present invention carried out primary hardening of the B-added steel (α
In the case of performing the double quenching treatment consisting of the secondary quenching of quenching from the two-phase region of + γ), especially B in the secondary quenching
The present inventors have conducted intensive studies on the component system and the pretreatment method that can effectively improve the hardenability. As a result, B does not segregate at the grain boundaries between α particles and α particles (α-α grain boundaries), but segregates only at the grain boundaries between γ particles and γ particles (γ-γ grain boundaries). Only B segregated at the γ-γ grain boundary improves the secondary hardenability. Therefore, it is effective to increase the γ-γ grain boundary area in order to improve the secondary hardenability. For that purpose, it is necessary to properly control the γ grain size and the structure by the pretreatment of the secondary quenching. Is. Further, if BN is generated during the secondary quenching, the hardenability deteriorates. Therefore, in order to prevent the hardenability from decreasing, it is necessary to properly control the relationship between the N content and the Ti content in the steel components. is necessary. Based on this finding, the present invention has been completed.

【0006】すなわち本発明の要旨構成は下記のとおり
である。 (1) C:0.05〜0.30wt%、 Si:0.02〜0.80wt%、Mn:
0.50〜2.50wt%、 Al:0.005 〜0.100 wt%、B:0.00
05〜0.0025wt%、N≦ 0.0050 wt%を含み、Ti量を、N
量に応じてTi:(47.9/14)N〜{(47.9/14)N+0.
01}wt%の範囲で含み、かつCu:1.5 wt%未満、 N
i:2.0 wt%未満、Cr:1.0 wt%未満、 Mo:1.0 wt
%未満のうちから選んだ1種または2種以上を含有し、
残部はFeおよび不可避的不純物からなる鋼を熱間圧延し
た後、直ちに水冷し、次いでオーステナイト域に加熱し
て空冷速度以上の速さで冷却し、その後(Ac1変態点)
〜(Ac3変態点)の2相域温度に加熱して空冷速度以上
の速さで冷却し、さらにAc1変態点以下の温度範囲で焼
もどすことを特徴とするB添加高張力鋼の製造方法。
That is, the gist of the present invention is as follows. (1) C: 0.05 to 0.30 wt%, Si: 0.02 to 0.80 wt%, Mn:
0.50 to 2.50 wt%, Al: 0.005 to 0.100 wt%, B: 0.00
05-0.0025wt%, including N ≤ 0.0050wt%, Ti content is N
Ti: (47.9 / 14) N to {(47.9 / 14) N + 0.
01} wt% range and Cu: less than 1.5 wt%, N
i: less than 2.0 wt%, Cr: less than 1.0 wt%, Mo: 1.0 wt%
Contains one or more selected from less than%,
The balance consists of hot-rolled steel consisting of Fe and unavoidable impurities, immediately water-cooled, then heated to the austenite region and cooled at a speed higher than the air-cooling rate, and then (Ac 1 transformation point).
Manufacturing of B-added high-strength steel characterized by heating to a two-phase region temperature of (Ac 3 transformation point), cooling at a rate of air cooling rate or higher, and tempering at a temperature range of Ac 1 transformation point or lower. Method.

【0007】(2) C:0.05〜0.30wt%、 Si:0.02〜0.
80wt%、Mn:0.50〜2.50wt%、 Al:0.005 〜0.100 wt
%、B:0.0005〜0.0025wt%、N≦ 0.0050 wt%を含
み、かつTi量を、N量に応じてTi:(47.9/14)N〜
{(47.9/14)N+0.01}wt%の範囲で含み、かつCu:
1.5 wt%未満、 Ni:2.0 wt%未満、Cr:1.0 wt%未
満、 Mo:1.0 wt%未満、のうちから選んだ1種また
は2種以上を含有し、さらにNb:0.05wt%未満、
V:0.20wt%未満のうちの1種または2種を含有し、残
部はFeおよび不可避的不純物からなる鋼を熱間圧延した
後、直ちに水冷し、次いでオーステナイト域に加熱して
空冷速度以上の速さで冷却し、その後(Ac1変態点)〜
(Ac3変態点)の2相域温度に加熱して空冷速度以上の
速さで冷却し、さらにAc1変態点以下の温度範囲で焼も
どすことを特徴とするB添加高張力鋼の製造方法。
(2) C: 0.05 to 0.30 wt%, Si: 0.02 to 0.
80 wt%, Mn: 0.50 to 2.50 wt%, Al: 0.005 to 0.100 wt
%, B: 0.0005 to 0.0025 wt%, N ≦ 0.0050 wt%, and the Ti content is Ti: (47.9 / 14) N
Included in the range of {(47.9 / 14) N + 0.01} wt% and Cu:
Less than 1.5 wt%, Ni: less than 2.0 wt%, Cr: less than 1.0 wt%, Mo: less than 1.0 wt%, containing one or more selected from, further Nb: less than 0.05 wt%,
V: Steel containing 1 or 2 of less than 0.20 wt% and the balance being Fe and inevitable impurities is hot-rolled, immediately water-cooled, and then heated to an austenite region at an air-cooling rate of at least Cool at a high speed and then (Ac 1 transformation point) ~
A method for producing a high-strength steel containing B, characterized in that it is heated to a two-phase region temperature (Ac 3 transformation point), cooled at a rate higher than the air cooling rate, and tempered in a temperature range lower than the Ac 1 transformation point. .

【0008】[0008]

【発明の実施の形態】以下に、本発明における鋼の成分
組成を限定する理由について説明する。 C:0.05〜0.30wt% Cは、鋼の強度を確保するために0.05wt%以上含有する
必要があるが、0.30wt%を超えると低温靱性を低下さ
せ、溶接割れを引き起こす。したがって、Cの含有量は
0.05〜0.30wt%、好ましくは0.05〜0.20wt%とする。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the chemical composition of steel in the present invention will be described below. C: 0.05 to 0.30 wt% C must be contained in an amount of 0.05 wt% or more in order to secure the strength of the steel, but if it exceeds 0.30 wt%, the low temperature toughness decreases and weld cracking occurs. Therefore, the content of C is
0.05 to 0.30 wt%, preferably 0.05 to 0.20 wt%.

【0009】Si:0.02〜0.80wt% Siは、脱酸および強度確保のために0.02wt%以上含有す
る必要があるが、0.80wt%を超えて添加すると低温靱性
を低下させる。したがって、Siの含有量は0.80wt%、好
ましくは0.02〜0.40wt%とする。
Si: 0.02 to 0.80 wt% Si must be contained in an amount of 0.02 wt% or more for deoxidation and securing of strength, but if added in excess of 0.80 wt%, low temperature toughness decreases. Therefore, the Si content is 0.80 wt%, preferably 0.02 to 0.40 wt%.

【0010】Mn:0.50〜2.50wt% Mnは、強度および靱性の確保のために0.50wt%以上含有
する必要があるが、2.50wt%を超えて添加すると溶接性
を低下させる。したがって、Mnの含有量は0.50〜2.50wt
%、好ましくは0.50〜1.5 wt%とする。
Mn: 0.50 to 2.50 wt% Mn must be contained in an amount of 0.50 wt% or more to secure the strength and toughness, but if it is added in excess of 2.50 wt%, the weldability deteriorates. Therefore, the content of Mn is 0.50 ~ 2.50wt
%, Preferably 0.50 to 1.5 wt%.

【0011】Al:0.005 〜0.100 wt% Alは、脱酸のために0.005 wt%以上は必要であるが、0.
100 wt%を超えて添加するとアルミナ系介在物の増大に
より、靱性の低下をもたらすため、0.005 〜0.100 wt
%、好ましくは0.015 〜0.08wt%とする。
Al: 0.005 to 0.100 wt% Al requires 0.005 wt% or more for deoxidation, but
When added in excess of 100 wt%, the alumina inclusions increase and the toughness decreases, so 0.005 to 0.100 wt
%, Preferably 0.015 to 0.08 wt%.

【0012】B:0.0005〜0.0025wt% Bは、その焼入性向上効果を発揮させるには、0.0005%
以上の添加が必要である。しかし、0.0025%以上に添加
しても焼入性向上の効果が飽和し、かえって低温靱性を
低下させることになる。したがってBの添加量は0.0005
〜0.0025wt%、好ましくは0.0005〜0.0020wt%とする。
B: 0.0005 to 0.0025 wt% B is 0.0005% in order to exert its hardenability improving effect.
The above addition is necessary. However, even if added in an amount of 0.0025% or more, the effect of improving the hardenability saturates, rather lowering the low temperature toughness. Therefore, the amount of B added is 0.0005
To 0.0025 wt%, preferably 0.0005 to 0.0020 wt%.

【0013】N≦ 0.0050 wt% Nは、BNを形成し、Bの焼入性を低下するので皆無にす
ることが望ましい。ただし、微量のNならば、このNを
Tiで固定することにより、Nの弊害をまぬがれることが
できる。しかしながら、このN量が0.0050wt%を超える
と、0.017 wt%を超えるTi量が必要となり、多量に生成
するTiN により靱性の劣化を招く。したがって、N量は
0.005 wt%以下に限定する。
N ≦ 0.0050 wt% N forms BN and deteriorates the hardenability of B, so it is desirable to eliminate N. However, if a small amount of N,
By fixing with Ti, the harmful effect of N can be avoided. However, if the amount of N exceeds 0.0050 wt%, a Ti amount of more than 0.017 wt% is required, and TiN produced in a large amount causes deterioration of toughness. Therefore, the amount of N is
Limited to 0.005 wt% or less.

【0014】Ti:(47.9/14)N〜{(47.9/14)N+
0.01}wt% B、Nが共に存在してBNを形成すると、このBNが変
態の核として作用するため鋼の焼入れ性を低下させる。
そのために、不可避的に含有するこのNの影響を除くた
めには、Tiを添加してNの固定を図る必要がある。そこ
で、不可避的に含有するNを固定するための、Ti量は
(47.9/14)Nwt%以上必要である。一方、このTi量が
{(47.9/14)N+0.01}wt%を超えて添加すると、炭
化物の析出により低温靱性を低下させる。したがって、
Tiの添加量は(47.9/14)N〜{(47.9/14)N+0.0
1}wt%の範囲としなければならない。
Ti: (47.9 / 14) N to {(47.9 / 14) N +
0.01} wt% When both B and N are present to form BN, this BN acts as a nucleus for transformation, and thus hardenability of steel is deteriorated.
Therefore, in order to eliminate the influence of N contained inevitably, it is necessary to add Ti to fix N. Therefore, the Ti amount for fixing the N contained inevitably needs to be (47.9 / 14) Nwt% or more. On the other hand, when the Ti content exceeds {(47.9 / 14) N + 0.01} wt%, the low temperature toughness decreases due to the precipitation of carbides. Therefore,
The amount of Ti added is (47.9 / 14) N to {(47.9 / 14) N + 0.0
It must be in the range of 1} wt%.

【0015】Cu:1.5 wt%未満、Ni:2.0 wt%未満、C
r:1.0 wt%未満、Mo:1.0 wt%未満 Cu、Ni、CrおよびMoは、鋼の強度、靱性を向上させる元
素であるが、過剰に添加しても効果が飽和するほか、溶
接性を低下させるので、それぞれCu:1.5 wt%未満、N
i:2.0 wt%未満、Cr:1.0 wt%未満、Mo:1.0 wt%未
満の範囲でこれらの元素のうちの少なくとも1種を添加
するものとする。なお、好ましい添加量は、Cu:0.5 wt
%以下、Ni:1.2 wt%以下、Cr:0.6 wt%以下、Mo:0.
7 wt%以下である。
Cu: less than 1.5 wt%, Ni: less than 2.0 wt%, C
r: less than 1.0 wt%, Mo: less than 1.0 wt% Cu, Ni, Cr and Mo are elements that improve the strength and toughness of steel, but even if added in excess, the effect saturates and weldability is improved. Cu: less than 1.5 wt%, N
At least one of these elements should be added in the range of i: less than 2.0 wt%, Cr: less than 1.0 wt%, Mo: less than 1.0 wt%. The preferable addition amount is Cu: 0.5 wt.
% Or less, Ni: 1.2 wt% or less, Cr: 0.6 wt% or less, Mo: 0.
It is 7 wt% or less.

【0016】Nb:0.05wt%未満、V:0.20wt%未満 Nb、Vは、鋼のさらなる強度、靱性を向上させる元素で
あるが、過剰に添加しても効果が飽和するほか、溶接性
を低下させるので、それぞれNb:0.05wt%未満、V:0.
20wt%未満の範囲でこれらの元素のうちの少なくとも1
種を添加するものとする。なお、好ましい添加量は、N
b:0.03wt%以下、V:0.1 wt%以下である。
Nb: less than 0.05 wt%, V: less than 0.20 wt% Nb and V are elements that improve the strength and toughness of steel, but if added in excess, the effect saturates and weldability is increased. Nb: less than 0.05 wt%, V: 0.
At least one of these elements in the range of less than 20 wt%
Seeds shall be added. The preferable addition amount is N
b: 0.03 wt% or less, V: 0.1 wt% or less.

【0017】上述した成分系からなる鋼を通常の造塊ま
たは連鋳法によりスラブとした後、このスラブを熱間圧
延して所定板厚の鋼板として、本発明に特有な次のよう
な熱処理を施すことが必要である。すなわち、熱間圧延
した後、直ちに水冷し、次いでオーステナイト域に加熱
して空冷速度以上の速さで冷却(1次焼入れ)し、その
後(Ac1変態点)〜(Ac3変態点)の2相域温度に加熱
して空冷速度以上の速さで冷却(2次焼入れ)する。以
下に、本発明において、このような熱処理を行う理由に
ついて説明する。
After the steel consisting of the above-mentioned component system is made into a slab by the usual ingot casting or continuous casting method, this slab is hot-rolled into a steel plate having a predetermined plate thickness, and the following heat treatment peculiar to the present invention is carried out. It is necessary to apply. That is, immediately after hot rolling, water cooling is performed, followed by heating to an austenite region and cooling (primary quenching) at a speed equal to or higher than the air cooling rate, and thereafter (Ac 1 transformation point) to (Ac 3 transformation point) It is heated to the phase region temperature and cooled (secondary quenching) at a speed higher than the air cooling speed. The reason why such heat treatment is performed in the present invention will be described below.

【0018】図1は、表1の組成からなる鋼スラブを板
厚40mmの鋼板に熱間圧延し、直ちに空冷または水冷によ
り冷却し、この鋼板を920℃に加熱して空冷または水
冷の速さで冷却(1次焼入れ)し、さらに780℃に加
熱して2相域焼入れ(2次焼入れ)を行い、550℃で
焼もどし処理した場合における、それぞれのYSとTS
の値を示すものである。この図からわかるように、YS
とTSの値はいずれも、圧延直後の冷却を水冷にしたと
きに高く、これよりも遅い空冷にしたときには低下す
る。したがって、高強度鋼を得るためには、圧延直後の
冷却は水冷することが有効であるといえる。なお、この
ときの圧延終了温度は、フェライト生成を抑制し、水冷
(1次焼き入れ)後の組織のマルテンサイト比率を高め
て最終製品の強度を確保するために、Ar3変態点以上の
温度範囲とするのが望ましい。
FIG. 1 shows that a steel slab having the composition shown in Table 1 is hot-rolled into a steel plate having a plate thickness of 40 mm, immediately cooled by air cooling or water cooling, and the steel plate is heated to 920 ° C. to perform air cooling or water cooling. YS and TS when cooled at 550 ° C (primary quenching), further heated to 780 ° C for two-phase region quenching (secondary quenching), and tempered at 550 ° C
It indicates the value of. As you can see from this figure, YS
Both the values of TS and TS are high when water cooling is performed immediately after rolling, and decrease when air cooling is performed later than this. Therefore, in order to obtain high-strength steel, it can be said that cooling with water immediately after rolling is effective. The rolling end temperature at this time is a temperature above the Ar 3 transformation point in order to suppress the formation of ferrite and increase the martensite ratio of the structure after water cooling (primary quenching) to secure the strength of the final product. It is desirable to set the range.

【0019】[0019]

【表1】 [Table 1]

【0020】このことは、顕微鏡による組織観察の結
果、圧延直後の冷却が水冷のときには、γ粒径が小さく
かつ、焼入れ組織がマルテンサイトとなり、そのため次
のオーステナイト温度域への加熱時にγ粒径が微細とな
り、2相域加熱時には微細化する結果、γ−γ粒界が増
加し、Bの焼入れ性向上効果が有効に発揮されたことに
よるものである。これに対し、圧延直後の冷却が空冷の
ときには、γ粒が粗粒であるか、ベイナイト組織が生成
するか、あるいはこれらの両者が同時に起こるかのいず
れかとなり、その結果、その後の組織が粗大となり、γ
−γ粒界が減少し、Bの焼入れ性向上効果が低下したこ
とによるものである。なお、1次焼入れ後の冷却速度
は、水冷および空冷のいずれの冷却においても得られる
ので空冷以上の冷却速度とし、この1次焼入れ時の加熱
温度はオーステナイト域であればよい。
As a result of microscopic observation of the structure, when the cooling immediately after rolling is water cooling, the γ grain size is small and the quenched structure becomes martensite, so that the γ grain size is heated during heating to the next austenite temperature range. Becomes finer and becomes finer during heating in the two-phase region. As a result, γ-γ grain boundaries increase, and the effect of improving the hardenability of B is effectively exhibited. On the other hand, when cooling immediately after rolling is air cooling, either the γ grains are coarse grains, the bainite structure is generated, or both of them occur at the same time, and as a result, the subsequent structure becomes coarse. And γ
-This is because the γ grain boundaries are reduced and the hardenability improving effect of B is lowered. Since the cooling rate after the primary quenching can be obtained with either water cooling or air cooling, the cooling rate is equal to or higher than the air cooling, and the heating temperature during the primary quenching may be in the austenite range.

【0021】次に、2相域焼入れ(2次焼入れ)条件で
あるが、圧延後の冷却および1次焼入れの条件を前述の
とおりにすれば、Ac1変態点〜Ac3変態点の2相域温度
から空冷速度以上の速さで焼入れた場合に、Bの焼入性
向上効果が認めれれる。すなわち、この2次焼入れ条件
において、冷却速度を空冷速度よりも速い速度にする理
由は、例えば板厚100mm 程度の厚肉材では空冷速度より
も遅い冷却になると焼入性が低下し、2相域焼入れによ
るγ相の変態組織はマルテンサイトからフェライト+ベ
イナイト組織となるため強度が低下するので、空冷以上
の冷却速度とするのである。また、二次焼入れ温度をA
c1変態点〜Ac3変態点の範囲とする理由は、Ac1変態点
未満では焼きもどし後の高強度が得られなくなること、
一方Ac3変態点を超えるγ単相域からの焼入れではマル
テンサイトもしくはベイナイト組織となり高強度が得ら
れるものの、YRが高くなり、YR≦85%の低降伏比
の鋼が得られなくなるからである。
Next, regarding the two-phase region quenching (secondary quenching) conditions, if the cooling after rolling and the primary quenching conditions are as described above, two phases of the Ac 1 transformation point to the Ac 3 transformation point are obtained. When quenching from the zone temperature at a speed higher than the air cooling rate, the effect of improving the hardenability of B is recognized. That is, in this secondary quenching condition, the reason why the cooling rate is set to be higher than the air cooling rate is that, for example, for a thick material with a plate thickness of about 100 mm, if the cooling rate is slower than the air cooling rate, the hardenability decreases and Since the transformation structure of the γ phase due to the area quenching changes from martensite to ferrite + bainite structure, the strength decreases, so the cooling rate is higher than air cooling. Also, the secondary quenching temperature is set to A
The reason for setting the range of c 1 transformation point to Ac 3 transformation point is that high strength after tempering cannot be obtained below the Ac 1 transformation point,
On the other hand, when quenching from the γ single-phase region exceeding the Ac 3 transformation point, a martensite or bainite structure is formed and high strength is obtained, but YR is increased and a steel with a low yield ratio of YR ≦ 85% cannot be obtained. .

【0022】また、焼もどし温度は、Ac1変態点を超え
ると2次焼入れによる硬質相が消失し、強度低下が起こ
るので、焼もどし温度はAc1変態点以下とする。また、
焼もどし温度の下限は、目標とする強度と靱性により変
わるが、靱性確保のためには、500℃以上とするのが
好ましい。なお、焼もどし時間は板厚によって適正時間
は異なり材質均一化のためには1hr/25mm程度と
するのが望ましい。
When the tempering temperature exceeds the Ac 1 transformation point, the hard phase disappears due to the secondary quenching and the strength decreases, so the tempering temperature is set to the Ac 1 transformation point or lower. Also,
The lower limit of the tempering temperature varies depending on the target strength and toughness, but it is preferably 500 ° C. or higher to secure the toughness. The appropriate tempering time differs depending on the plate thickness, and it is desirable to set the tempering time to about 1 hr / 25 mm in order to make the material uniform.

【0023】上述した理由により、本発明において、T
S≧80kg/mm2 以上、YR≦85%で、かつTS、Y
Rおよび靱性( vTrs(℃))の総合バランスが、(T
S−80)×(− vTrs)×(85−YR)/100≧
10を達成するためには、熱間圧延した後、直ちに水冷
し、次いでオーステナイト域に加熱して空冷速度以上の
速さで冷却し、その後(Ac1変態点)〜(Ac3変態点)
の2相域温度に加熱して空冷速度以上の速さで冷却する
ことが必要となる。そして、このような熱処理工程を経
ることにより、微細な軟質のフェライトと硬質相の複合
組織とすることで、これらすべての特性を満たす低降伏
比高張力鋼の製造が可能となる。
For the above reason, in the present invention, T
S ≧ 80 kg / mm 2 or more, YR ≦ 85%, and TS, Y
The total balance of R and toughness (vTrs (° C)) is (T
S-80) × (−vTrs) × (85−YR) / 100 ≧
In order to achieve 10, after hot rolling, immediately water cooling, followed by heating to an austenite region and cooling at a speed higher than the air cooling rate, and then (Ac 1 transformation point) to (Ac 3 transformation point)
It is necessary to heat it to the temperature of the two-phase region and to cool it at a speed higher than the air cooling speed. Then, by undergoing such a heat treatment step, a composite structure of fine soft ferrite and a hard phase is formed, whereby it becomes possible to manufacture a low yield ratio high tensile steel satisfying all these characteristics.

【0024】[0024]

【実施例】用いた鋼(供試材)の化学成分を表2に示
す。供試材A〜C鋼は、本発明方法に適合する成分組成
を有する鋼で、D〜H鋼は本発明の条件から外れる比較
鋼である。これらの鋼を溶製、鋳造してスラブとし、熱
間圧延を施して冷却し、一次焼入れ処理、2次焼入れお
よび焼きもどし処理を施し、機械的性質を調べた。それ
らの製造条件と材質調査の結果を表3に示す。
[Examples] Table 2 shows the chemical composition of the steel (test material) used. Specimens A to C are steels having a composition that is compatible with the method of the present invention, and steels D to H are comparative steels that deviate from the conditions of the present invention. These steels were melted and cast into slabs, subjected to hot rolling, cooled, subjected to primary quenching treatment, secondary quenching and tempering treatment, and examined for mechanical properties. Table 3 shows the manufacturing conditions and the results of material inspection.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】表3に示す結果からわかるように、比較例
のうち、A6〜A9,E,Hでは、TS:59〜78kg
f/mm2 しか得られず、またD,F,GではTS:80〜
83kgf/mm2は得られるものの、 vTrsは−45〜−4
6℃と劣る。また比較例では、機械特性の総合バラン
ス、(TS−80)×(− vTrs)×(85−YR)/
100も−110〜1の範囲に止まる。これに対し、本
発明にかかる方法A1〜A5,B,Cでは、2相域焼入
れにおいてもBの効果が十分に発揮され、TS:80kg
/mm2 以上、YR:85%以下、(TS−80)×(−
vTrs)×(85−YR)/100:10〜27であり
優れた機械特性を有していると言える。
As can be seen from the results shown in Table 3, among the comparative examples, A6 to A9, E and H had TS: 59 to 78 kg.
Only f / mm 2 can be obtained, and TS for D, F, G is 80-
Although 83kgf / mm 2 can be obtained, vTrs is -45 to -4
Inferior to 6 ° C. Further, in the comparative example, the total balance of mechanical properties, (TS-80) × (−vTrs) × (85−YR) /
100 also stops in the range of -101-1. On the other hand, in the methods A1 to A5, B, and C according to the present invention, the effect of B is sufficiently exhibited even in the two-phase region quenching, and TS: 80 kg
/ Mm 2 or more, YR: 85% or less, (TS-80) x (-
vTrs) × (85−YR) / 100: 10 to 27, and it can be said to have excellent mechanical properties.

【0028】[0028]

【発明の効果】かくして本発明方法によれば、B添加鋼
の焼入性の向上を発揮させることが不十分あった2相域
焼入れ法においても、Bの効果を十分に発揮させること
が可能となり、強度、降伏比および靱性の総合バランス
が優れた低降伏比高張力鋼の製造が安定して、しかも経
済的に製造可能となる。
As described above, according to the method of the present invention, the effect of B can be sufficiently exerted even in the two-phase region quenching method in which the improvement of the hardenability of the B-added steel was not sufficiently exerted. Therefore, it becomes possible to stably manufacture the low yield ratio high tensile steel excellent in the overall balance of strength, yield ratio and toughness and economically.

【図面の簡単な説明】[Brief description of drawings]

【図1】圧延後の冷却、1次焼入れ時の冷却と引張特性
の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between cooling after rolling and cooling during primary quenching and tensile properties.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 清 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 松崎 明博 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 天野 虔一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kiyoshi Uchida 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Prefecture (without street number) Inside the Mizushima Works, Kawasaki Steel Co., Ltd. (72) Akihiro Matsuzaki 1-shima-shima Kawasaki, Kurashiki-shi, Okayama Prefecture Chome (without street number) Inside Kawashima Steel Co., Ltd. Mizushima Steel Works (72) Inventor Shinichi Amano 1-chome, Kawashima-dori Mizushima Kawasaki City, Okayama Prefecture (No street) Inside Kawashima Steel Co., Ltd. Mizushima Steel Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】C:0.05〜0.30wt%、 Si:0.02〜0.80wt
%、 Mn:0.50〜2.50wt%、 Al:0.005 〜0.100 wt%、 B:0.0005〜0.0025wt%、N≦ 0.0050 wt%を含み、Ti
量を、N量に応じて Ti:(47.9/14)N〜{(47.9/14)N+0.01}wt%の
範囲で含み、かつ Cu:1.5 wt%未満、 Ni:2.0 wt%未満、 Cr:1.0 wt%未満、 Mo:1.0 wt%未満のうちから選
んだ1種または2種以上を含有し、残部はFeおよび不可
避的不純物からなる鋼を熱間圧延した後、直ちに水冷
し、次いでオーステナイト域に加熱して空冷速度以上の
速さで冷却し、その後(Ac1変態点)〜(Ac3変態点)
の2相域温度に加熱して空冷速度以上の速さで冷却し、
さらにAc1変態点以下の温度範囲で焼もどすことを特徴
とするB添加高張力鋼の製造方法。
1. C: 0.05 to 0.30 wt%, Si: 0.02 to 0.80 wt
%, Mn: 0.50 to 2.50 wt%, Al: 0.005 to 0.100 wt%, B: 0.0005 to 0.0025 wt%, N ≤ 0.0050 wt%, Ti
Content of Ti: (47.9 / 14) N to {(47.9 / 14) N + 0.01} wt% depending on the amount of N, and Cu: less than 1.5 wt%, Ni: less than 2.0 wt%, Cr : Less than 1.0 wt%, Mo: less than 1.0 wt%, containing one or more selected from the rest, the balance consisting of Fe and unavoidable impurities hot-rolled steel, then immediately water-cooled, then austenite Heating to the region and cooling at a speed higher than the air cooling speed, and then (Ac 1 transformation point) to (Ac 3 transformation point)
It is heated to the temperature of the two-phase region and cooled at a speed higher than the air cooling speed,
A method for producing a B-added high-strength steel, which further comprises tempering in a temperature range not higher than the Ac 1 transformation point.
【請求項2】C:0.05〜0.30wt%、 Si:0.02〜0.80wt
%、 Mn:0.50〜2.50wt%、 Al:0.005 〜0.100 wt%、 B:0.0005〜0.0025wt%、N≦ 0.0050 wt%を含み、か
つTi量を、N量に応じて Ti:(47.9/14)N〜{(47.9/14)N+0.01}wt%の
範囲で含み、かつ Cu:1.5 wt%未満、 Ni:2.0 wt%未満、 Cr:1.0 wt%未満、 Mo:1.0 wt%未満、のうちから
選んだ1種または2種以上を含有し、さらに Nb:0.05wt%未満、 V:0.20wt%未満のうちの1種
または2種を含有し、残部はFeおよび不可避的不純物か
らなる鋼を熱間圧延した後、直ちに水冷し、次いでオー
ステナイト域に加熱して空冷速度以上の速さで冷却し、
その後(Ac1変態点)〜(Ac3変態点)の2相域温度に
加熱して空冷速度以上の速さで冷却し、さらにAc1変態
点以下の温度範囲で焼もどすことを特徴とするB添加高
張力鋼の製造方法。
2. C: 0.05 to 0.30 wt%, Si: 0.02 to 0.80 wt
%, Mn: 0.50 to 2.50 wt%, Al: 0.005 to 0.100 wt%, B: 0.0005 to 0.0025 wt%, N ≤ 0.0050 wt%, and the Ti content depends on the N content: Ti: (47.9 / 14 ) N to {(47.9 / 14) N + 0.01} wt%, and Cu: less than 1.5 wt%, Ni: less than 2.0 wt%, Cr: less than 1.0 wt%, Mo: less than 1.0 wt%. Steel containing one or more selected from the above, Nb: less than 0.05 wt%, V: less than 0.20 wt%, one or two, with the balance Fe and unavoidable impurities After hot rolling, immediately water-cooled, then heated in the austenite region and cooled at a rate of air cooling speed or more,
After that, it is characterized in that it is heated to a two-phase region temperature of (Ac 1 transformation point) to (Ac 3 transformation point), cooled at a speed higher than the air cooling rate, and further tempered in a temperature range lower than the Ac 1 transformation point. Manufacturing method of B-added high-strength steel.
JP22531395A 1995-09-01 1995-09-01 Method for producing B-added high-strength steel Expired - Fee Related JP3692565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22531395A JP3692565B2 (en) 1995-09-01 1995-09-01 Method for producing B-added high-strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22531395A JP3692565B2 (en) 1995-09-01 1995-09-01 Method for producing B-added high-strength steel

Publications (2)

Publication Number Publication Date
JPH0971813A true JPH0971813A (en) 1997-03-18
JP3692565B2 JP3692565B2 (en) 2005-09-07

Family

ID=16827402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22531395A Expired - Fee Related JP3692565B2 (en) 1995-09-01 1995-09-01 Method for producing B-added high-strength steel

Country Status (1)

Country Link
JP (1) JP3692565B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481435A (en) * 2021-06-29 2021-10-08 鞍钢股份有限公司 900 MPa-grade hot-rolled complex phase steel and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481435A (en) * 2021-06-29 2021-10-08 鞍钢股份有限公司 900 MPa-grade hot-rolled complex phase steel and production method thereof

Also Published As

Publication number Publication date
JP3692565B2 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
KR101977489B1 (en) Steel plate for welded steel pipe having excellent low-temperature toughness, post weld heat treated steel plate and manufacturing method thereof
EP2143814A1 (en) Steel material having excellent high-temperature strength and toughness, and method for production thereof
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JPH07278656A (en) Production of low yield ratio high tensile strength steel
KR101467052B1 (en) Ultra-high strength cold-rolled steel sheet and method for manufacturing the same
JPH09279233A (en) Production of high tension steel excellent in toughness
JP2662409B2 (en) Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness
JPH09256037A (en) Production of thick high tensile strength steel plate for stress relieving annealing treatment
JPH05209223A (en) Production of reinforcing bar having low yield ratio and high yield elongation
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JPH07258788A (en) Production of thick steel plate excellent in brittle fracture propagation stop characteristic and low temperature toughness
JPH04358023A (en) Production of high strength steel
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JP3692565B2 (en) Method for producing B-added high-strength steel
JPH0717947B2 (en) Low yield ratio high strength steel sheet manufacturing method
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties
KR100431848B1 (en) Method for manufacturing high carbon wire rod containing high silicon without low temperature structure
KR101400634B1 (en) Cold-rolled steel sheet and method of manufacturing the cold-rolled steel sheet
JPS6410565B2 (en)
JPH03223420A (en) Production of high strength steel
JPH06145787A (en) Production of high tensile strength steel excellent in weldability

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees