JPH0969766A - Opposite-conduction voltage clamp circuit - Google Patents

Opposite-conduction voltage clamp circuit

Info

Publication number
JPH0969766A
JPH0969766A JP24855495A JP24855495A JPH0969766A JP H0969766 A JPH0969766 A JP H0969766A JP 24855495 A JP24855495 A JP 24855495A JP 24855495 A JP24855495 A JP 24855495A JP H0969766 A JPH0969766 A JP H0969766A
Authority
JP
Japan
Prior art keywords
voltage
resistor
switching element
semiconductor switching
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24855495A
Other languages
Japanese (ja)
Other versions
JP3551338B2 (en
Inventor
Toshihiro Sawa
沢  俊裕
Tsuneo Kume
常生 久米
Sumitoshi Sonoda
澄利 園田
Kenji Yamada
健二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP24855495A priority Critical patent/JP3551338B2/en
Publication of JPH0969766A publication Critical patent/JPH0969766A/en
Application granted granted Critical
Publication of JP3551338B2 publication Critical patent/JP3551338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a voltage clamping circuit which has the characteristic of a Zener diode used in a power converter or the like and has a high voltage and a large capacity. SOLUTION: A semiconductor switching element (for example, an IGBT insulated gate bipolar transistor TR) 1 and a diode 2 which has the cathode and the anode connected in antiparallel to the collector and the emitter of the semiconductor switching element 1 are provided, and a first resistance R1 (3) is connected between the collector and the gate of the semiconductor switching element 1, and a second resistance R2 (4) is connected between the sate and the emitter. First and second resistances R1 and R2 are so selected that VCE=VGES×[(R1+R2)/R2] is true with respect to relations between a clamp voltage VCE and a threshold VGES of the voltage between the gate and the emitter which switches the cut-off state between the collector and the emitter of the semiconductor switching element 1 to the conduction state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ツェナーダイオードの
機能を持ち、かつ電流容量の大きな逆導通特性を持つ電
圧クランプ回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage clamp circuit having the function of a Zener diode and having a reverse conduction characteristic with a large current capacity.

【0002】[0002]

【従来の技術】従来、電圧をクランプする小信号回路に
はツェナーダイオードが用いられ、雷サージなど瞬時高
電圧のクランプにはバリスタなど酸化亜鉛を用いた半導
体素子が使用されてきた。一方、電力用半導体素子を使
用した電力変換回路などでスナバ回路などツェナーダイ
オード特性を持つ回路には、図7[従来のダイオードク
リッパ回路]に示すダイオード11とコンデンサ12を
用いたダイオードクリッパと呼ばれる電圧クランプ回路
が使用されてきた。そして、電圧をクランプした結果、
コンデンサ12に蓄えられた電荷は、放電回路として接
続された抵抗器13で放電(ジュール熱として消費)し
ていた[以下、これらを総称して『従来例1』とい
う]。さらに従来例2として、特開平3−250311
・正負電圧出力切換回路がある。これは正負出力端を有
する直流電源、前記直流電源の負出力端と接地との間に
そのカソードが接地されるように接続される第1のツェ
ナーダイオード、前記直流電源の正出力端と前記第1の
ツェナーダイオードのアノードとの間に接続される抵
抗,レギュレータ回路および前記第1のツェナーダイオ
ードより大きいツェナー電圧を有する第2のツェナーダ
イオードの直列回路、前記第2のツェナーダイオードの
アノードと前記レギュレータ回路との接続点から引き出
される出力端子、および前記第1および第2のツェナー
ダイオードのそれぞれのカソード間に接続されるバイア
ス抵抗を備える、正負電圧出力切換回路である。
2. Description of the Related Art Conventionally, a Zener diode has been used for a small signal circuit for clamping a voltage, and a semiconductor element using zinc oxide such as a varistor has been used for clamping an instantaneous high voltage such as lightning surge. On the other hand, in a circuit having a Zener diode characteristic such as a snubber circuit in a power conversion circuit using a power semiconductor element, a voltage called a diode clipper using a diode 11 and a capacitor 12 shown in FIG. 7 [conventional diode clipper circuit] is used. Clamp circuits have been used. And as a result of clamping the voltage,
The electric charge stored in the capacitor 12 was discharged (consumed as Joule heat) by the resistor 13 connected as a discharge circuit [hereinafter, these are collectively referred to as "conventional example 1"]. Further, as a second conventional example, JP-A-3-250311
・ There is a positive / negative voltage output switching circuit. This is a direct current power source having positive and negative output terminals, a first Zener diode whose cathode is connected between the negative output terminal of the direct current power source and ground, and a positive output terminal of the direct current power source and the first Zener diode. A resistor connected between the anode of the first Zener diode, a regulator circuit, and a series circuit of a second Zener diode having a Zener voltage higher than the first Zener diode, an anode of the second Zener diode, and the regulator. A positive / negative voltage output switching circuit including an output terminal drawn from a connection point with the circuit, and a bias resistor connected between cathodes of the first and second Zener diodes.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来例1の
電圧クランプ回路はいずれも次に挙げるような欠点があ
り、電力変換装置の要求を満たすのではなかった。すな
わち、ツェナーダイオードは図5[従来のツェナーダイ
オードのアノード・カソード間電圧に対応するアノード
電流の特性図]のように、電圧クランプ特性は良いが容
量が精々数Wで、複数個のツェナーダイオードを並列接
続して使用しなければならない。しかもその場合、ツェ
ナー電圧が揃ったものを組合せなければならない。バリ
スタは図6[従来のバリスタのバリスタ電圧に対応する
バリスタ電流の特性図]のように数100Vの高電圧で
の電圧クランプ特性は良いが、吸収エネルギー量が小さ
く、連続使用ができない。また、両方向対称な動作特性
であり、ツェナーダイオードのような逆導通性を持たせ
るには、逆並列接続のダイオードが必要である。図7の
ダイオードクリッパ回路は電圧クランプ時の電力をダイ
オード11を通してコンデンサ12に蓄積するため、ク
ランプ電圧が変動し特性上望ましくない。更に蓄積電力
を瞬時に消費せず、電荷として蓄えていて抵抗13で放
電するので、逆導通特性を持たせるには図8[図7の回
路構成にさらに逆導通機能を持たせたダイオードクリッ
パ回路]のように2個のダイオードが必要である。さら
に、従来例2は電子写真式複写機やレーザビームプリン
タ等における現像器に所定の直流電圧(中圧電圧)を供
給する正負電圧出力切換回路であって、瞬時高電圧が要
求される回路には適切ではなく、しかも正負電圧出力切
換を必要としない用途にはコスト的にも不利である。本
発明は上記問題点に鑑み、電力変換装置などに使用され
るツェナーダイオードの特性を持った高電圧で、容量の
大きい電圧クランプ回路を提供することを目的とする。
However, each of the voltage clamp circuits of Conventional Example 1 has the following drawbacks, and it has not satisfied the demands of the power conversion device. That is, as shown in FIG. 5 [a characteristic diagram of the anode current corresponding to the voltage between the anode and the cathode of the conventional Zener diode], the Zener diode has a good voltage clamp characteristic, but has a capacity of several W at the most, and a plurality of Zener diodes are used. Must be used in parallel. Moreover, in that case, those having the same Zener voltage must be combined. As shown in FIG. 6 [Characteristic diagram of varistor current corresponding to varistor voltage of conventional varistor], the varistor has a good voltage clamp characteristic at a high voltage of several hundreds of volts, but the amount of absorbed energy is small and it cannot be used continuously. In addition, since the operation characteristics are bidirectionally symmetric, an antiparallel connection diode is required in order to provide reverse conductivity like a Zener diode. Since the diode clipper circuit of FIG. 7 stores the electric power at the time of voltage clamping in the capacitor 12 through the diode 11, the clamp voltage fluctuates, which is not desirable in characteristics. Further, since the stored power is not instantly consumed but is stored as electric charge and is discharged by the resistor 13, in order to provide reverse conduction characteristics, the diode clipper circuit in which the circuit configuration of FIG. 7 is further provided with a reverse conduction function. ], Two diodes are required. Further, the conventional example 2 is a positive / negative voltage output switching circuit for supplying a predetermined DC voltage (medium voltage) to a developing device in an electrophotographic copying machine, a laser beam printer or the like, which is a circuit requiring an instantaneous high voltage. Is not appropriate, and is disadvantageous in cost for applications that do not require switching between positive and negative voltage outputs. In view of the above problems, it is an object of the present invention to provide a high voltage, large voltage clamp circuit having the characteristics of a Zener diode used in a power converter or the like.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明の電圧クランプ回路は、半導体スイッチング
素子と、その半導体スイッチング素子のコレクタとエミ
ッタにそれぞれカソードとアノードを接続した逆並列接
続のダイオードと、前記半導体スイッチング素子のコレ
クタとゲートの間に第1の抵抗R1を接続し、ゲートと
エミッタの間に第2の抵抗R2を接続し、第1の抵抗R
1と第2の抵抗R2の抵抗値が、クランプ電圧である所
要のコレクタ・エミッタ電圧VCEと前記半導体スイッ
チング素子のコレクタ・エミッタ間を遮断状態から導通
状態にするゲート・エミッタ間電圧の閾値VGESとの
関係から、略VCE=VGES×{(R1+R2)/R
2}の関係を満たすように選んで所要のクランプ電圧を
得るものである。また、半導体スイッチング素子のコレ
クタとゲート間に第1の抵抗R1の代わりに、コレクタ
・エミッタ電圧VCEとゲート・エミッタ間電圧の閾値
VGESにより、ツェナー電圧VD≒VCE−VGES
となるツェナーダイオードに置き換えたり、第1の抵抗
R1,第2の抵抗R2のうち少なくとも一方を可変抵抗
器に置き換えたり、第1の抵抗R1と第2の抵抗R2の
間に可変抵抗器を挿入しその摺動部の端子を半導体スイ
ッチング素子のゲートに接続し、所要のコレクタ・エミ
ッタ電圧VCEを調整可能にする手段である。すなわ
ち、半導体スイッチング素子と、その半導体スイッチン
グ素子のコレクタとエミッタにカソードとアノードを逆
並列に接続したダイオードを備え、前記半導体スイッチ
ング素子のコレクタとゲート間に第1の抵抗R1を接続
し、前記半導体スイッチング素子のゲートとエミッタ間
に第2の抵抗R2を接続し、前記半導体スイッチング素
子のクランプ電圧VCEと、前記半導体スイッチング素
子のコレクタ・エミッタ間を遮断状態から導通状態にす
るゲート・エミッタ間電圧の閾値VGESの関係が、略 VCE=VGES×{(R1+R2)/R2} になるように第1の抵抗R1と第2の抵抗R2を選んで
回路を構成した逆導通電圧クランプ回路であり、またク
ランプ電圧VCEと閾値VGESにより、略 ツェナー電圧VD=VCE−VGES となるツェナーダイオードを第1の抵抗R1に置換した
前項に記載の逆導通電圧クランプ回路であり、さらに第
1の抵抗R1,第2の抵抗R2のうち少なくとも一方
を、可変抵抗器に置換して回路を構成した前々項に記載
の逆導通電圧クランプ回路であり、さらにまた第1の抵
抗R1と第2の抵抗R2の間に可変抵抗器を挿入接続
し、可変抵抗器の摺動部の端子を、半導体スイッチング
素子のゲートに接続した第1項に記載の逆導通電圧クラ
ンプ回路であり、そしてこれまでの項に記載の逆導通電
圧クランプ回路において、半導体スイッチング素子がI
GBTである逆導通電圧クランプ回路である。
In order to solve the above-mentioned problems, a voltage clamp circuit of the present invention comprises a semiconductor switching element and an anti-parallel connection in which a cathode and an anode are connected to a collector and an emitter of the semiconductor switching element, respectively. A first resistor R1 is connected between the diode and the collector and gate of the semiconductor switching element, a second resistor R2 is connected between the gate and emitter, and a first resistor R1 is connected.
The resistance values of the first and second resistors R2 are the required collector-emitter voltage VCE, which is a clamp voltage, and the threshold voltage VGES of the gate-emitter voltage that brings the collector-emitter of the semiconductor switching element from the cut-off state to the conductive state. From the relationship of VCE = VGES × {(R1 + R2) / R
2} is selected so that the required clamp voltage is obtained. Further, instead of the first resistor R1 between the collector and the gate of the semiconductor switching element, the Zener voltage VD≈VCE-VGES is obtained by the collector-emitter voltage VCE and the threshold value VGES of the gate-emitter voltage.
Or a variable resistor at least one of the first resistor R1 and the second resistor R2, or a variable resistor is inserted between the first resistor R1 and the second resistor R2. This is means for connecting the terminal of the sliding portion to the gate of the semiconductor switching element so that the required collector-emitter voltage VCE can be adjusted. That is, a semiconductor switching element and a diode in which a cathode and an anode are connected in antiparallel to a collector and an emitter of the semiconductor switching element are provided, and a first resistor R1 is connected between the collector and the gate of the semiconductor switching element, The second resistor R2 is connected between the gate and the emitter of the switching element, and the clamp voltage VCE of the semiconductor switching element and the gate-emitter voltage for turning the collector-emitter of the semiconductor switching element from the cutoff state to the conduction state It is a reverse conduction voltage clamp circuit in which the circuit is configured by selecting the first resistor R1 and the second resistor R2 so that the relation of the threshold value VGES becomes approximately VCE = VGES × {(R1 + R2) / R2}. Based on the voltage VCE and the threshold VGES, the approximate Zener voltage VD = VCE- The reverse conduction voltage clamp circuit according to the above paragraph, wherein the Zener diode serving as GES is replaced with the first resistor R1, and further, at least one of the first resistor R1 and the second resistor R2 is replaced with a variable resistor. The reverse conduction voltage clamp circuit according to the preceding two paragraphs, wherein the variable resistance is inserted between the first resistor R1 and the second resistor R2, and the sliding portion of the variable resistor is connected. Is a reverse conduction voltage clamp circuit according to the first paragraph in which the terminal is connected to the gate of the semiconductor switching element, and in the reverse conduction voltage clamp circuit according to the preceding paragraphs, the semiconductor switching element is I
It is a reverse conduction voltage clamp circuit which is a GBT.

【0005】[0005]

【作用】本発明は、コレクタ・エミッタ電圧VCE≒ゲ
ート・エミッタ電圧閾値VGES×{(R1+R2)/
R2} そしてツェナー電圧VD≒VCE−VGES
の関係のクランプ電圧が得られ、従来例1のツェナーダ
イオードやバリスタに変わる高電圧大容量のツェナーダ
イオード特性が得られる。また、抵抗器を可変抵抗器に
置き換え、所要のコレクタ・エミッタ電圧VCEを調整
可能にして、従来例1にない高電圧大容量でかつ可変電
圧のツェナーダイオード特性が得られる。
According to the present invention, the collector-emitter voltage VCE≈gate-emitter voltage threshold VGES × {(R1 + R2) /
R2} and Zener voltage VD≈VCE-VGES
A clamp voltage having the relationship of is obtained, and a Zener diode characteristic of high voltage and large capacity, which is a substitute for the Zener diode or varistor of Conventional Example 1, is obtained. Further, the resistor is replaced with a variable resistor to make it possible to adjust the required collector-emitter voltage VCE, so that a Zener diode characteristic of high voltage, large capacity and variable voltage, which is not present in Conventional Example 1, can be obtained.

【0006】[0006]

【実施例】以下、本発明の各実施例を図面に基づいて説
明する。なお、各図面において、同一符号は同一もしく
は相当部材を表す。図1は本発明の第1の実施例におけ
る電圧クランプ回路の回路構成を示すブロック図であ
る。この電圧クランプ回路は、半導体スイッチング素子
[本実施例においては絶縁ゲート形バイポーラトランジ
スタ Insulated Gate Bipolar Transistor(単に『IG
BT』と称呼する)を適用する]・1と、その半導体ス
イッチング素子・1のコレクタとエミッタにそれぞれカ
ソードとアノードを接続した逆並列接続のダイオード2
と、半導体スイッチング素子・1のコレクタとゲートの
間に第1の抵抗器3を接続し、ゲートとエミッタの間に
第2の抵抗器4を接続する。
Embodiments of the present invention will be described below with reference to the drawings. In each drawing, the same reference numerals represent the same or corresponding members. 1 is a block diagram showing a circuit configuration of a voltage clamp circuit according to a first embodiment of the present invention. This voltage clamp circuit is a semiconductor switching device [Insulated Gate Bipolar Transistor (in this embodiment, simply referred to as “IG
BT ”)] and 1 and its semiconductor switching element. The diode 2 of the anti-parallel connection in which the cathode and anode are connected to the collector and emitter of 1 respectively.
, The first resistor 3 is connected between the collector and the gate of the semiconductor switching element 1 and the second resistor 4 is connected between the gate and the emitter.

【0007】ここで、半導体スイッチング素子・1の電
圧・電流特性を説明する。ゲート・エミッタ間電圧を上
昇させて、そのゲート・エミッタ間電圧が閾値電圧VG
ESを越えると、コレクタ・エミッタ間に電流が流れ始
め、半導体スイッチング素子・1は遮断状態から導通状
態に変化する。回路のインピーダンスとの関係もある
が、導通状態になれば、半導体スイッチング素子・1の
コレクタ・エミッタ電圧は低下する。図1の回路で半導
体スイッチング素子・1のコレクタ・エミッタ電圧を上
昇させると、ゲート・エミッタ間電圧も略VGES×R
2/{(R1+R2)}の関係で上昇する。ただし、R
1とR2はそれぞれ第1の抵抗器3と第2の抵抗器4の
抵抗値である。
Here, the voltage / current characteristics of the semiconductor switching element 1 will be described. The gate-emitter voltage is raised, and the gate-emitter voltage is changed to the threshold voltage VG.
When it exceeds ES, a current starts to flow between the collector and the emitter, and the semiconductor switching element 1 changes from the cutoff state to the conduction state. Although there is a relationship with the impedance of the circuit, when it becomes conductive, the collector-emitter voltage of the semiconductor switching element-1 decreases. When the collector-emitter voltage of the semiconductor switching element-1 is increased in the circuit of FIG. 1, the gate-emitter voltage is also approximately VGES × R.
It rises in the relationship of 2 / {(R1 + R2)}. Where R
1 and R2 are the resistance values of the first resistor 3 and the second resistor 4, respectively.

【0008】半導体スイッチング素子・1のコレクタ・
エミッタ間電圧の上昇により、ゲート・エミッタ間は遮
断状態から導通状態になり、半導体スイッチング素子・
1のコレクタ・エミッタ間電圧は低下する。それに伴い
ゲート・エミッタ間電圧も低下するので、半導体スイッ
チング素子・1は導通状態から遮断状態に戻ろうとす
る。しかし、この領域ではゲート・エミッタ間電圧に対
するコレクタ電流のゲインが有限であり、最終的にはゲ
ート・エミッタ間電圧が閾値VGESになるコレクタ・
エミッタ間電圧に収束する。すなわち、コレクタ・エミ
ッタ間電圧VCEは、略 VCE=VGES×{(R1+R2)/R2} を満たす値になる。
Semiconductor switching element 1 collector
Due to the rise of the voltage between the emitters, the gate-emitter is switched from the cutoff state to the conduction state, and the semiconductor switching element
The collector-emitter voltage of 1 decreases. Along with this, the gate-emitter voltage also drops, so that the semiconductor switching element 1 tries to return from the conductive state to the cutoff state. However, in this region, the gain of the collector current with respect to the gate-emitter voltage is finite, and the gate-emitter voltage eventually becomes the threshold VGES.
It converges to the voltage between emitters. That is, the collector-emitter voltage VCE has a value that substantially satisfies VCE = VGES × {(R1 + R2) / R2}.

【0009】半導体スイッチング素子・1は電圧駆動素
子であり、コレクタ・エミッタ間に逆電圧印加時は、ダ
イオード2によりダイオード特性となる。半導体スイッ
チング素子・1は1000V以上,数100A以上,数
100W以上の素子があり、上記回路により高電圧大容
量のツェナーダイオード特性を持つ電圧クランプ回路が
実現できる。図1の半導体スイッチング素子・1のコレ
クタ・ゲート間の抵抗器3の代わりに、図2のようにコ
レクタ・エミッタ間電圧VCEとゲート・エミッタ間電
圧が閾値VGESにより、ツェナー電圧VD≒VCE−
VGESとなるツェナーダイオード5に置き換えること
も可能である。また、図1の抵抗器3または抵抗器4も
しくは両方を、図3のように可変抵抗器6と可変抵抗器
7に置き換えもできる。さらに、図1の抵抗器3と抵抗
器4の間に可変抵抗器8を挿入し、図4のようにその摺
動部の端子を半導体スイッチング素子・1のゲートに接
続し、所要のコレクタ・エミッタ間電圧VCEを調整可
能にすることも可能である。
The semiconductor switching element 1 is a voltage driving element, and when a reverse voltage is applied between the collector and the emitter, the diode 2 has a diode characteristic. The semiconductor switching element 1 has elements of 1000 V or more, several hundred A or more, several hundred W or more, and the above circuit can realize a voltage clamp circuit having a high-voltage large-capacity Zener diode characteristic. Instead of the resistor 3 between the collector and the gate of the semiconductor switching device 1 in FIG. 1, the collector-emitter voltage VCE and the gate-emitter voltage are set by the threshold value VGES as shown in FIG. 2, and the Zener voltage VD≈VCE−
It is also possible to replace with the Zener diode 5 which becomes VGES. Further, the resistor 3 or the resistor 4 or both of FIG. 1 can be replaced with the variable resistor 6 and the variable resistor 7 as shown in FIG. Further, the variable resistor 8 is inserted between the resistor 3 and the resistor 4 of FIG. 1, and the terminal of the sliding portion thereof is connected to the gate of the semiconductor switching element 1 as shown in FIG. It is also possible to make the emitter-to-emitter voltage VCE adjustable.

【0010】[0010]

【発明の効果】以上説明したように、本発明の電圧クラ
ンプ回路を使用すれば、従来例1のツェナーダイオード
やバリスタに代わる高電圧大容量のツェナーダイオード
特性を得、かつ抵抗器を可変抵抗器に置き換えれば、所
要のコレクタ・エミッタ間電圧VCEを調整可能にし
て、従来例1にない高電圧大容量でかつ可変電圧のツェ
ナーダイオード特性を得ることが可能という特段の効果
を奏することができる。
As described above, if the voltage clamp circuit of the present invention is used, a Zener diode characteristic of a high voltage and a large capacity can be obtained in place of the Zener diode or varistor of Conventional Example 1, and the resistor can be a variable resistor. If it is replaced with, the required collector-emitter voltage VCE can be adjusted, and a special effect that a high-voltage large-capacity and variable-voltage Zener diode characteristic that is not present in Conventional Example 1 can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における回路構成を示す
ブロック図
FIG. 1 is a block diagram showing a circuit configuration according to a first embodiment of the present invention.

【図2】本発明の第2の実施例[一方の抵抗器をツェナ
ーダイオードに置換]の回路構成を示すブロック図
FIG. 2 is a block diagram showing a circuit configuration of a second embodiment [replacing one resistor with a zener diode] of the present invention.

【図3】本発明の第3の実施例[一方の抵抗器または他
方の抵抗器もしくは両方を可変抵抗器に置換]における
回路構成を示すブロック図
FIG. 3 is a block diagram showing a circuit configuration in a third embodiment of the present invention [replacing one resistor or the other resistor or both with a variable resistor].

【図4】本発明の第4の実施例[一方の抵抗器と他方の
抵抗器の間に可変抵抗器を挿入し、その摺動部の端子を
半導体スイッチング素子のゲートに接続]の回路構成を
示すブロック図
FIG. 4 is a circuit configuration of a fourth embodiment of the present invention [a variable resistor is inserted between one resistor and the other resistor, and a terminal of a sliding portion thereof is connected to a gate of a semiconductor switching element]. Block diagram showing

【図5】従来例1のツェナーダイオードのアノード・カ
ソード間電圧に対応するアノード電流の特性図
FIG. 5 is a characteristic diagram of the anode current corresponding to the voltage between the anode and the cathode of the Zener diode of Conventional Example 1.

【図6】従来例1のバリスタのバリスタ電圧に対応する
バリスタ電流の特性図
FIG. 6 is a characteristic diagram of varistor current corresponding to the varistor voltage of the varistor of Conventional Example 1.

【図7】従来例1のダイオードクリッパ回路FIG. 7 is a diode clipper circuit of Conventional Example 1

【図8】図7の回路構成にさらに逆導通機能を持たせた
ダイオードクリッパ回路
8 is a diode clipper circuit in which the circuit configuration of FIG. 7 is further provided with a reverse conduction function.

【符号の説明】[Explanation of symbols]

1 半導体スイッチング素子[例えばIGBT・絶縁ゲ
ート形バイポーラトランジスタ・ Insulated Gate Bipo
lar Transistorをいう] 2,11,14ダイオード 3,4,13 抵抗器 5 ツェナーダイオード 6,7,8 可変抵抗器 12 コンデンサ
1 Semiconductor switching element [eg IGBT, insulated gate bipolar transistor, Insulated Gate Bipo
lar Transistor] 2,11,14 Diode 3,4,13 Resistor 5 Zener diode 6,7,8 Variable resistor 12 Capacitor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 健二 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Yamada, No. 2 Kurosaki Shiroishi, Yawatanishi-ku, Kitakyushu, Fukuoka Prefecture Yasukawa Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体スイッチング素子と、前記半導体
スイッチング素子のコレクタとエミッタにカソードとア
ノードを逆並列に接続したダイオードを備え、前記半導
体スイッチング素子のコレクタとゲート間に第1の抵抗
R1を接続し、前記半導体スイッチング素子のゲートと
エミッタ間に第2の抵抗R2を接続し、前記半導体スイ
ッチング素子のクランプ電圧VCEと、前記半導体スイ
ッチング素子のコレクタ・エミッタ間を遮断状態から導
通状態にするゲート・エミッタ間電圧の閾値VGESの
関係が、略 VCE=VGES×{(R1+R2)/R2} になるように前記第1の抵抗R1と前記第2の抵抗R2
を選んで回路を構成したことを特徴とする逆導通電圧ク
ランプ回路。
1. A semiconductor switching element, and a diode in which a cathode and an anode are connected in antiparallel to a collector and an emitter of the semiconductor switching element, and a first resistor R1 is connected between the collector and the gate of the semiconductor switching element. , A second resistor R2 is connected between the gate and the emitter of the semiconductor switching element to make the clamp voltage VCE of the semiconductor switching element and the collector-emitter of the semiconductor switching element from a cutoff state to a conduction state The first resistor R1 and the second resistor R2 such that the relationship between the threshold voltages VGES of the inter-voltage is approximately VCE = VGES × {(R1 + R2) / R2}.
The reverse conduction voltage clamp circuit is characterized in that the circuit is selected.
【請求項2】 前記クランプ電圧VCEと前記閾値VG
ESにより、略 ツェナー電圧VD=VCE−VGES となるツェナーダイオードを前記第1の抵抗R1に置換
したことを特徴とする請求項1記載の逆導通電圧クラン
プ回路。
2. The clamp voltage VCE and the threshold VG
2. The reverse conduction voltage clamp circuit according to claim 1, wherein a Zener diode having a substantially Zener voltage VD = VCE-VGES is replaced by the first resistor R1 by ES.
【請求項3】 前記第1の抵抗R1,前記第2の抵抗R
2のうち少なくとも一方を、可変抵抗器に置換して回路
を構成したことを特徴とする請求項1記載の逆導通電圧
クランプ回路。
3. The first resistor R1 and the second resistor R
2. The reverse conduction voltage clamp circuit according to claim 1, wherein at least one of the two is replaced with a variable resistor to configure the circuit.
【請求項4】 前記第1の抵抗R1と前記第2の抵抗R
2の間に可変抵抗器を挿入接続し、前記可変抵抗器の摺
動部の端子を、前記半導体スイッチング素子のゲートに
接続したことを特徴とする請求項1記載の逆導通電圧ク
ランプ回路。
4. The first resistor R1 and the second resistor R
2. The reverse conduction voltage clamp circuit according to claim 1, wherein a variable resistor is inserted and connected between the two, and a terminal of a sliding portion of the variable resistor is connected to a gate of the semiconductor switching element.
【請求項5】 請求項1ないし請求項4記載の逆導通電
圧クランプ回路において、前記半導体スイッチング素子
がIGBTであることを特徴とする逆導通電圧クランプ
回路。
5. The reverse conduction voltage clamp circuit according to claim 1, wherein the semiconductor switching element is an IGBT.
JP24855495A 1995-08-31 1995-08-31 Reverse conduction voltage clamp circuit Expired - Fee Related JP3551338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24855495A JP3551338B2 (en) 1995-08-31 1995-08-31 Reverse conduction voltage clamp circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24855495A JP3551338B2 (en) 1995-08-31 1995-08-31 Reverse conduction voltage clamp circuit

Publications (2)

Publication Number Publication Date
JPH0969766A true JPH0969766A (en) 1997-03-11
JP3551338B2 JP3551338B2 (en) 2004-08-04

Family

ID=17179902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24855495A Expired - Fee Related JP3551338B2 (en) 1995-08-31 1995-08-31 Reverse conduction voltage clamp circuit

Country Status (1)

Country Link
JP (1) JP3551338B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7852698B2 (en) 2007-11-08 2010-12-14 Samsung Electronics Co., Ltd. Voltage supply device and nonvolatile memory device having the same
JP2012229974A (en) * 2011-04-26 2012-11-22 Mitsubishi Electric Corp Reverse bias safe operation area measuring device
EP3334044A1 (en) 2016-12-07 2018-06-13 Fujitsu Limited Protective circuit, amplifier, and switching power supply apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7852698B2 (en) 2007-11-08 2010-12-14 Samsung Electronics Co., Ltd. Voltage supply device and nonvolatile memory device having the same
JP2012229974A (en) * 2011-04-26 2012-11-22 Mitsubishi Electric Corp Reverse bias safe operation area measuring device
EP3334044A1 (en) 2016-12-07 2018-06-13 Fujitsu Limited Protective circuit, amplifier, and switching power supply apparatus
KR20180065921A (en) 2016-12-07 2018-06-18 후지쯔 가부시끼가이샤 Protective circuit, amplifier, and switching power supply apparatus
US10615788B2 (en) 2016-12-07 2020-04-07 Fujitsu Limited Variable capacitance protection circuit of a circuit element, amplifier, and switching power supply apparatus

Also Published As

Publication number Publication date
JP3551338B2 (en) 2004-08-04

Similar Documents

Publication Publication Date Title
US4360744A (en) Semiconductor switching circuits
WO2021175085A1 (en) Driving circuit of power switching device, and driving system
US7701279B2 (en) Driving circuit for an emitter-switching configuration
KR20010048380A (en) Passive auxiliary circuit for series connection of IGBTs
US4740722A (en) Composite semiconductor device
JP2664678B2 (en) Power supply circuit
US4564769A (en) Saturation control of a switching transistor
JP7047898B2 (en) Switching device and control method of switching device
EP0388616A2 (en) Overcurrent protective circuit for electrostatic self-turn-off devices
US5172290A (en) Gate-source protective circuit for a power mosfet
US11061425B2 (en) Voltage stabilizer
JP3551338B2 (en) Reverse conduction voltage clamp circuit
US20010040480A1 (en) Switching device with separated driving signal input and driving circuit of the same
JP3602011B2 (en) Control circuit
US4217504A (en) Semiconductor switch with thyristors
GB2053606A (en) Improvements in and relating to semiconductor switching circuits
CN215378891U (en) Switch for E-type GaN device
JPH027714A (en) Protection device for component when fault current flows
US20220209645A1 (en) Driving apparatus
JP3319797B2 (en) Drive circuit for electrostatic induction thyristor
US4571501A (en) Electronic control circuit
SE450068B (en) CONTROL CIRCUIT FOR GRIND CONTROLLED DIODOSTS
CN217445249U (en) Power protection circuit and electronic equipment
JPH10136637A (en) Snubber circuit of semiconductor switching device
JPS582153Y2 (en) Gate control circuit of gate turn-off thyristor

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20031211

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040415

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100514

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100514

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110514

LAPS Cancellation because of no payment of annual fees