JPH0969416A - Organic resistor with positive temperature characteristics - Google Patents

Organic resistor with positive temperature characteristics

Info

Publication number
JPH0969416A
JPH0969416A JP24882495A JP24882495A JPH0969416A JP H0969416 A JPH0969416 A JP H0969416A JP 24882495 A JP24882495 A JP 24882495A JP 24882495 A JP24882495 A JP 24882495A JP H0969416 A JPH0969416 A JP H0969416A
Authority
JP
Japan
Prior art keywords
resistor
resistance
conductive
organic
carbon black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24882495A
Other languages
Japanese (ja)
Inventor
Junji Niihara
淳二 新原
Chisato Manome
千里 馬目
Hisashi Kobuke
恆 小更
Kenji Shibata
憲治 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP24882495A priority Critical patent/JPH0969416A/en
Publication of JPH0969416A publication Critical patent/JPH0969416A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a small type resistor, having non-decreasing withstand voltage and positive temperature characteristics, which can be used for a large current. SOLUTION: This organic resistor element 7 is composed of an organic resistor layer 5, on which conductive fillers are dispersively mixed into a thermoplastic polymer, and conductive internal electrodes 6a and 6b which are alternately laminated so that the number of layers of the organic resistor layer 5 located between the internal electrodes 6a and 6b becomes two or more layers. External electrodes 8a and 8b are provided on the side face of the resistor element 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正の温度特性(PT
C)を有する有機抵抗体に関する。
BACKGROUND OF THE INVENTION The present invention has a positive temperature characteristic (PT
C) with an organic resistor.

【0002】[0002]

【従来の技術】一般に、結晶性の熱可塑性重合体中に1
種またはそれ以上の導電性充填剤、例えばカーボンブラ
ックまたは微粉化された金属を分散させた抵抗体は正の
抵抗温度係数を有する。このような正の抵抗温度特性を
有する抵抗体として良く知られたものとしては、高密度
ポリエチレンにカーボンブラックを導電性フィラーとし
て添加したものがある(特公昭64−3322号公
報)。図5はその一例を示すもので、カーボンブラック
または微粉化された金属を熱可塑性重合体に分散混合さ
せた抵抗体PTC素体1の両面に電極2を固着し、該各
電極2にそれぞれリード線3を固着し、このような電極
2およびリード線3を設けた素体1全体を、モールド重
合体4によりリード線3の先端部を除いて一体にモール
ドしたものである。
2. Description of the Prior Art Generally, 1 in a crystalline thermoplastic polymer.
Resistors dispersed with one or more conductive fillers, such as carbon black or finely divided metal, have a positive temperature coefficient of resistance. A well-known resistor having such a positive resistance temperature characteristic is a resistor in which carbon black is added as a conductive filler to high-density polyethylene (Japanese Patent Publication No. 64-3322). FIG. 5 shows an example thereof, in which electrodes 2 are fixed on both surfaces of a resistor PTC element body 1 in which carbon black or finely divided metal is dispersed and mixed in a thermoplastic polymer, and leads are respectively attached to the electrodes 2. The wire 3 is fixed, and the entire element body 1 provided with the electrodes 2 and the lead wires 3 is integrally molded with the mold polymer 4 except for the tip portions of the lead wires 3.

【0003】また、特開平7−14702号公報には、
チタン酸バリウムのようなセラミック層と内部電極とを
積層した積層形としてPTCの抵抗体を構成したものが
ある。
Further, in Japanese Patent Laid-Open No. 7-14702,
There is a PTC resistor as a laminated type in which a ceramic layer such as barium titanate and an internal electrode are laminated.

【0004】[0004]

【発明が解決しようとする課題】前記特公昭64−33
22号公報に記載の導電フィラーとしてカーボンブラッ
クのみを用いた正の温度特性の有機抵抗体には下記のよ
うな問題点がある。前述のように、カーボンブラックを
導電性フィラーとして用いた実用可能な有機抵抗体で
は、せいぜい室温比抵抗が2Ωcm程度にしか低くする
ことはできず、大電流用途には不向きであった。また、
PTC特性の有機抵抗体を低抵抗化できれば、小型化が
可能であり、例えば電池等における過大電流による放電
あるいは充電を防止するものとして電池内収容あるいは
電池外への取付けに至便な小型のものが提供できるが、
前述のように、従来のカーボンブラック使用のものでは
低抵抗化に制限があるため、小型化が達成できず、取付
け上、省スペース化されたものの提供が困難である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The organic resistor having positive temperature characteristics, which uses only carbon black as the conductive filler described in Japanese Patent No. 22 has the following problems. As described above, a practical organic resistor using carbon black as a conductive filler can have a room temperature resistivity of at most about 2 Ωcm, which is unsuitable for high current applications. Also,
If the resistance of the PTC-characteristic organic resistor can be reduced, the size can be reduced. For example, a small size that is convenient for accommodating inside or outside the battery as a device for preventing discharge or charging due to excessive current in a battery or the like. Can be provided,
As described above, the conventional carbon black using carbon black is limited in resistance reduction, so that it is not possible to achieve miniaturization and it is difficult to provide a space-saving product in terms of mounting.

【0005】また、低抵抗化できれば、同じ電流でも発
熱が押えられ、PTCとして動作せず、大電流で使用す
れば発熱するため、大電流での使用が可能となるが、前
述したカーボンブラック使用のものでは、低抵抗化に制
限があるため、大電流での使用ができない。もし、低抵
抗化を図るために、導電性フィラーの量を増やすと、抵
抗変化率が小さくなり、異常時の電流遮断がしにくくな
るという欠点がでてくる。
Further, if the resistance can be lowered, the heat generation is suppressed even with the same current, it does not operate as a PTC, and it generates heat when used with a large current, so that it can be used with a large current. However, it is not possible to use it with a large current because it has a limitation in reducing the resistance. If the amount of the conductive filler is increased in order to reduce the resistance, the rate of change in resistance becomes small, which makes it difficult to interrupt the current in the event of an abnormality.

【0006】また、製品として抵抗を下げるためには、
PTC抵抗体を薄くすることが必要であるが、その場
合、耐圧が低下してしまうという問題点がある。
In order to reduce the resistance as a product,
It is necessary to make the PTC resistor thin, but in that case, there is a problem that the breakdown voltage decreases.

【0007】一方、前記特開平7−14702号公報に
記載のものは、PTC特性を得るためにセラミックを用
いているため、内部電極間の比抵抗が高く、せいぜい5
Ωcm程度のものしか得られないから、大電流量化する
には大型となり、小型化には不向きである。また、抵抗
値を下げるには、各内部電極間のセラミック層の厚みを
薄くしなければならず、このため、耐圧が低くなり、1
00Vを超えるような比較的高い電圧における使用には
不向きであるという問題点がある。また、耐圧を高くす
るために内部電極間のセラミック層の厚みを厚くする
と、全体としての厚みが厚くなるという問題点がある。
On the other hand, the one described in Japanese Patent Laid-Open No. 7-14702 has a high specific resistance between the internal electrodes because it uses a ceramic to obtain the PTC characteristics, and the ceramic resistance is 5 at most.
Since only about Ωcm can be obtained, it is large for increasing the amount of current and not suitable for downsizing. Further, in order to reduce the resistance value, the thickness of the ceramic layer between the internal electrodes must be reduced, which results in a low breakdown voltage.
There is a problem that it is unsuitable for use at a relatively high voltage exceeding 00V. Further, if the thickness of the ceramic layer between the internal electrodes is increased in order to increase the breakdown voltage, there is a problem in that the overall thickness is increased.

【0008】本発明は、上記した問題点に鑑み、耐圧が
低下せず、小型で大電流用途に用いられる正の温度特性
を持つ抵抗体を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a resistor having a positive temperature characteristic which is small in withstand voltage and is small in size and used in large current applications.

【0009】[0009]

【課題を解決するための手段】この目的を達成するた
め、本発明は、熱可塑性重合体に導電性フィラーを分散
混合した有機抵抗体層と、導体からなる内部電極とを、
内部電極間の抵抗体層の層数が2層以上となるように交
互に積層して有機抵抗体素体を構成し、該素体の側面
に、それぞれ対向する内部電極に接続される外部電極を
設けたことを特徴とする。
In order to achieve this object, the present invention provides an organic resistor layer in which a conductive filler is dispersed and mixed in a thermoplastic polymer, and an internal electrode made of a conductor.
The organic resistor element body is formed by alternately laminating the resistor layers between the internal electrodes so that the number of the resistor layers is two or more, and external electrodes connected to the internal electrodes facing each other on the side surfaces of the element body. Is provided.

【0010】本発明において、導電性フィラーは、スパ
イク状の金属粉末と、カーボンブラックと、導電物質で
被覆することにより導電性を持たせたウイスカー状の導
電酸化物とにより構成することが好ましい。また、前記
内部電極は、金属箔もしくは薄膜形成技術により成膜さ
れた薄膜からなることが好ましい。
In the present invention, the conductive filler is preferably composed of spiked metal powder, carbon black, and a whisker-shaped conductive oxide which is made conductive by being coated with a conductive substance. Further, the internal electrodes are preferably made of a metal foil or a thin film formed by a thin film forming technique.

【0011】[0011]

【作用】本発明においては、熱可塑性重合体に導電性フ
ィラーを分散混合した有機抵抗体抗体と内部電極とを積
層形に形成することにより、各層の内部電極の面積の総
和として広い電極面積が得られ、室温比抵抗を低くする
ことが可能となる。また、有機抵抗体を用いているた
め、大電流用途とするために内部電極間を薄くする必要
がなく、従って耐圧を低くすることもない。
In the present invention, by forming the organic resistor antibody in which the conductive filler is dispersed and mixed in the thermoplastic polymer and the internal electrode in a laminated form, a wide electrode area can be obtained as the total area of the internal electrodes in each layer. As a result, the room temperature specific resistance can be lowered. Further, since the organic resistor is used, it is not necessary to thin the space between the internal electrodes for the purpose of large current application, and therefore the breakdown voltage is not lowered.

【0012】[0012]

【実施例】図1は本発明による有機抵抗体の一実施例を
示す断面図であり、この有機抵抗体は、例えばポリフッ
化ビニリデンからなる熱可塑性重合体内に導電性フィラ
ーを分散混合してなるPTC抵抗体層5と内部電極6
a、6bとを、内部電極6a、6b間の抵抗体層の層数
が2層以上(図示例は3層)積層して、有機抵抗体素体
7を構成し、該素体7の側面に、それぞれ対向する内部
電極6a、6bに接続された外部電極8a、8bを設け
たものである。
1 is a sectional view showing an embodiment of an organic resistor according to the present invention. This organic resistor is formed by dispersing and mixing a conductive filler in a thermoplastic polymer made of polyvinylidene fluoride, for example. PTC resistor layer 5 and internal electrode 6
a and 6b are laminated in such a manner that the number of resistor layers between the internal electrodes 6a and 6b is two or more (three in the illustrated example) to form an organic resistor element body 7, and a side surface of the element body 7 is formed. External electrodes 8a and 8b connected to the internal electrodes 6a and 6b facing each other.

【0013】図2はこの有機抵抗体の製造工程を示す図
であり、結晶性の熱可塑性重合体の一例であるポリフッ
化ビニリデンと、導電性フィラーとしてのカーボンブラ
ックと、架橋剤とを200℃で1時間混練し(S1)、
このように混練した材料を押出機によりもしくはプレス
によりシート状に形成し(S2)、電子線等により架橋
処理し(S3)、その後、シートの両面にニッケル、
金、銅、アルミニウム等の箔を200℃の加熱状態にお
いて加圧して付けるかあるいは薄膜形成技術(スパッタ
リング、メッキあるいは蒸着)によってこれらの金属で
なる電極6a、6bを形成し(S4)、このように電極
6a、6bを付けたシート状の素材を加温加圧状態で積
層した(S5)後、所定形状に打ち抜き(S6)、その
後、側面に導電ペーストの塗布や金属キャップを付けて
外部電極8a、8bとする(S7)。
FIG. 2 is a diagram showing a manufacturing process of this organic resistor, in which polyvinylidene fluoride, which is an example of a crystalline thermoplastic polymer, carbon black as a conductive filler, and a cross-linking agent are mixed at 200.degree. Knead for 1 hour (S1),
The material kneaded in this way is formed into a sheet by an extruder or a press (S2) and cross-linked by an electron beam or the like (S3).
Foil of gold, copper, aluminum or the like is applied under pressure at 200 ° C. under pressure, or electrodes 6a and 6b made of these metals are formed by a thin film forming technique (sputtering, plating or vapor deposition) (S4). Sheet-like materials with electrodes 6a and 6b attached to them are laminated in a heated and pressurized state (S5), punched into a predetermined shape (S6), and then a conductive paste is applied or a metal cap is attached to the side surfaces of the external electrodes. 8a and 8b (S7).

【0014】表1は、図1のように、内部電極6a、6
b間の有機抵抗体層5を3層、すなわち内部電極6a、
6bの層数を4層とした場合における初期比抵抗と抵抗
変化率と破壊電圧(温度上昇状態において短絡を起こす
電圧)を示すものである。なお、前記抵抗変化率は、l
og(最大抵抗値/25℃における抵抗値)で表現され
る値であり、また、表1ないし以降の表中における%は
体積%を表す。試験に供した素子は、全体形状を矩形と
し、従来のように抵抗体1の両面に電極2を固着した1
層型のものは縦(L)を4.5mm、横(W)を3.2
mm、厚さ(T)を0.5mmとし、カーボンブラック
充填率は体積率で22.5%とした。一方、本発明によ
るものは、内部電極6a、6b間の間隔と縦L、横Wの
寸法を従来型のもの同じとして厚さ(T)のみを変えて
2.0mmとした。
Table 1 shows the internal electrodes 6a, 6 as shown in FIG.
Three organic resistor layers 5 between b, that is, internal electrodes 6a,
6 shows the initial specific resistance, the rate of resistance change, and the breakdown voltage (voltage causing a short circuit in a temperature rising state) when the number of layers of 6b is four. The resistance change rate is l
It is a value expressed by og (maximum resistance value / resistance value at 25 ° C.), and% in Table 1 to the following tables represents volume%. The element used in the test had a rectangular overall shape, and electrodes 2 were fixed to both surfaces of the resistor 1 as in the conventional case.
The layer type has a length (L) of 4.5 mm and a width (W) of 3.2.
mm, the thickness (T) was 0.5 mm, and the carbon black filling rate was 22.5% by volume. On the other hand, according to the present invention, the distance between the internal electrodes 6a and 6b, the length L and the width W are the same as those of the conventional type, and only the thickness (T) is changed to 2.0 mm.

【0015】その結果、室温比抵抗(25℃における比
抵抗)は、本発明による場合、0.75Ωcmとなり、
従来品の1.8Ωcmの約4割程度に低下し、抵抗変化
率は従来品の5.3に対して本発明による場合には5.
1と殆ど変わらず、また、破壊電圧(短絡する電圧)が
従来品の200Vに対して本発明の場合は195Vと殆
ど変わらないという結果が得られた。
As a result, the room temperature specific resistance (specific resistance at 25 ° C.) is 0.75 Ωcm in the case of the present invention,
The resistance change rate is about 40% of 1.8 Ωcm of the conventional product, and the resistance change rate is 5.3 in the case of the present invention as compared with 5.3 of the conventional product.
It was found that the breakdown voltage (short-circuit voltage) was almost the same as that of No. 1 and that the breakdown voltage (short-circuit voltage) was almost the same as 195V in the case of the present invention as compared with 200V of the conventional product.

【0016】また、前記のように、内部電極6a、6b
間の抵抗体層5の層数を3層とした場合、内部電極6
a、6b間の対向面積の総和が従来の約3倍程度となる
から、大幅な小型化、大電流化が達成できる。また、チ
タン酸バリウムをPTC抵抗体に用いた場合に小型化、
薄型化するために、内部電極6a、6bの間隔を狭くす
れば耐圧が低くなり、比較的高圧で用いる用途には適し
なくなるが、本発明による場合には、内部電極6a、6
b間の間隔を狭くする必要がないので、耐圧が低くなる
ことはなく、高圧用に用いることができる。
Further, as described above, the internal electrodes 6a and 6b are
If the number of resistor layers 5 between the inner electrodes is 3
Since the total of the facing areas between a and 6b is about three times as large as that in the conventional case, it is possible to achieve a significant reduction in size and an increase in current. In addition, when barium titanate is used for the PTC resistor, downsizing,
If the distance between the internal electrodes 6a and 6b is narrowed to reduce the thickness, the withstand voltage becomes low, which makes it unsuitable for use at relatively high pressure. However, according to the present invention, the internal electrodes 6a and 6b are not suitable.
Since it is not necessary to narrow the interval between b, the breakdown voltage does not decrease and it can be used for high voltage.

【0017】また、前記供試品について、DC12V−
15Aの通電を15秒行い、150秒休止するという繰
り返し通電試験を行ったところ、図3に示すように、1
万回の繰り返しにおいて、従来品では初期の室温抵抗値
に対し、繰り返し後の室温抵抗値は約23%上昇した
が、本発明による場合には、この抵抗値の変化が約12
%程度に押えられ、長期にわたって低い抵抗値が保持で
きることが分かった。
Regarding the above-mentioned sample, DC12V-
When a repetitive energization test was conducted in which energization of 15 A was performed for 15 seconds and then stopped for 150 seconds, as shown in FIG.
After repeated 10,000 times, the room temperature resistance value after repetition increased by about 23% with respect to the initial room temperature resistance value in the conventional product, but in the case of the present invention, the change in this resistance value was about 12%.
It was found that the resistance value was suppressed to about 10% and that the low resistance value could be maintained for a long time.

【0018】なお、内部電極6a、6bの形成は、導電
ペーストの印刷等による塗布によっても形成できるが、
前述のように、これを金属箔の固着や薄膜形成技術によ
る形成によって行うことにより、薄くて抵抗の低い内部
電極6a、6bを形成でき、抵抗体全体の薄型化に寄与
できる。
The internal electrodes 6a and 6b can be formed by applying a conductive paste or the like.
As described above, by performing this by fixing the metal foil or forming it by the thin film forming technique, the thin internal electrodes 6a and 6b having low resistance can be formed, which can contribute to the thinning of the entire resistor.

【0019】PTC抵抗体を構成する導電性フィラーと
しは、カーボンブラック以外に、金属粉末を用いること
ができ、また、他の添加物を導電助剤として混入したも
のを用いることができる。そして、より好ましくは、導
電性フィラーの主剤としての金属粉末と、室温被抵抗を
低下させるための導電助剤としてのカーボンブラック
と、抵抗変化率を上げるための導電助剤としてのウイス
カ状導電酸化物とを混合し、結晶性の熱可塑性重合体に
分散、混合してなるものがより好ましい。
As the conductive filler constituting the PTC resistor, a metal powder can be used in addition to carbon black, and a mixture of other additives as a conductive auxiliary agent can be used. And, more preferably, a metal powder as a main component of the conductive filler, carbon black as a conductive auxiliary agent for reducing the resistance at room temperature, and whisker-like conductive oxidation as a conductive auxiliary agent for increasing the resistance change rate. It is more preferable that the compound is mixed with a substance, and dispersed and mixed in a crystalline thermoplastic polymer.

【0020】このよな導電性フィラーの組成とする場
合、金属粉末としてはスパイク状のニッケル粉末(粒体
の周囲に多数の突起を有する粉末)とすることが好まし
い。また、導電酸化物としては、ウイスカ状のチタン酸
カリウムのような酸化物粉末の表面を、銀、ニッケル、
炭素、二酸化錫(SnO2)等の導電物で被覆したもの
とすることが好ましい。
In the case of using such a conductive filler composition, it is preferable to use spike-shaped nickel powder (a powder having a large number of protrusions around the particles) as the metal powder. Further, as the conductive oxide, the surface of an oxide powder such as whisker-like potassium titanate, silver, nickel,
It is preferably coated with a conductive material such as carbon or tin dioxide (SnO 2 ).

【0021】上述のように製造された有機抵抗体におい
て、ポリフッ化ビニリデンとして呉羽化学社製KF10
00、ニッケル粉末としてインコ(INCO)社製#2
55、カーボンブラックとしてケッチェンブラック・イ
ンターナショナル社製EC600JD、カーボンコート
チタン酸カリウムとして大塚化学社製デントールBK3
00を用い、それぞれの体積%を表2の組成として、抵
抗体そのものの抵抗特性を調べるため、図5に示した構
造でPTC抵抗体を構成した場合、25℃における初期
比抵抗が0.82Ωcmのものが得られ、従来のカーボ
ンブラックを導電性フィラーとして充填した有機抵抗体
に比較し、かなり低い初期比抵抗が得られた。また、温
度変化に対する比抵抗の変化は図4に示す通りとなり、
抵抗変化率[=log(最大抵抗値/初期抵抗値)]は
8.6、すなわち6桁以上となり、十分実用可能な値と
なった。なお、図4に示す比較例1、2は、それぞれ表
2に示す下記の組成からなる。 比較例1:ポリフッ化ビニリデン(前記KF1000)
75体積%、カーボンブラック(東海カーボン社製#4
500)25体積% 比較例2:ポリフッ化ビニリデン(前記KF1000)
75体積%、ニッケル粉末(前記#255)15体積
%、カーボンブラック(前記EC600JD)10体積
In the organic resistor manufactured as described above, KF10 manufactured by Kureha Chemical Co., Ltd. is used as polyvinylidene fluoride.
00, nickel powder # 2 manufactured by INCO
55, carbon black EC600JD made by Ketjen Black International, carbon coated potassium titanate Dentsu BK3 made by Otsuka Chemical
In order to investigate the resistance characteristics of the resistor itself, the initial specific resistance at 25 ° C. is 0.82 Ωcm when the PTC resistor is constructed with the structure shown in FIG. Was obtained, and the initial resistivity was considerably lower than that of an organic resistor filled with a conventional carbon black as a conductive filler. Moreover, the change in the specific resistance with respect to the temperature change is as shown in FIG.
The rate of change in resistance [= log (maximum resistance value / initial resistance value)] was 8.6, that is, 6 digits or more, which was a sufficiently practical value. In addition, Comparative Examples 1 and 2 shown in FIG. 4 have the following compositions shown in Table 2, respectively. Comparative Example 1: Polyvinylidene fluoride (KF1000 above)
75% by volume, carbon black (# 4 manufactured by Tokai Carbon Co., Ltd.
500) 25% by volume Comparative Example 2: Polyvinylidene fluoride (KF1000 described above)
75% by volume, nickel powder (# 255) 15% by volume, carbon black (EC600JD) 10% by volume

【0022】図4から分かるように、本実施例によれ
ば、比較例1、2、すなわちカーボンブラック単独、あ
るいはカーボンブラックとニッケルを混入した抵抗体に
比較して、大きな抵抗変化率が得られた。また、前記特
願平6−79390号のように、金属粉末のみを用いた
場合には、抵抗変化率が最大6.0程度であったが、本
発明によれば、この金属粉末だけの場合よりも大きな抵
抗変化率が得られた。
As can be seen from FIG. 4, according to the present embodiment, a large resistance change rate can be obtained as compared with Comparative Examples 1 and 2, that is, the resistors having carbon black alone or the mixture of carbon black and nickel. It was Further, as in the above-mentioned Japanese Patent Application No. 6-79390, when only the metal powder was used, the resistance change rate was about 6.0 at maximum, but according to the present invention, in the case of only this metal powder. A larger rate of resistance change was obtained.

【0023】本発明において、金属粉末として用いられ
る材料としては、比較的酸化しにくいものが好ましく、
この酸化しにくい化合物としては、炭化物、窒化物、ホ
ウ化物等がある。また、酸化しにくい金属としては、
銀、ニッケルがある。その中から、比較的安価で比抵抗
も低い前記ニッケル粉末と、炭化チタンと炭化タングス
テンを導電性フィラーに用いた場合の初期比抵抗と抵抗
変化率を比較した。
In the present invention, the material used as the metal powder is preferably one that is relatively resistant to oxidation,
Examples of compounds that are difficult to oxidize include carbides, nitrides and borides. Also, as a metal that is difficult to oxidize,
There are silver and nickel. Among them, the nickel powder, which is relatively inexpensive and has a low specific resistance, was compared with the initial specific resistance and the rate of resistance change when titanium carbide and tungsten carbide were used as the conductive filler.

【0024】試作品は、表3に示すように、重合体に前
記ポリフッ化ビニリデンを用い、これらの金属粉末の重
合体に対する充填率をほぼ同じ(15.2体積%または
16.8体積%)、カーボンブラックの重合体に対する
充填率を3.0体積%、カーボンコートチタン酸カリウ
ムの重合体に対する充填率を11.1体積%〜11.2
体積%とした。これらの金属粉末を用いた素体の初期比
抵抗と抵抗変化率は表3に示す通りであり、表3から分
かるように、スパイク状のニッケル粉末を用いれば、初
期比抵抗を大幅に低減でき、抵抗変化率も6桁以上の値
が得られ、金属粉末としてスパイク状のニッケル粉末を
用いることが好ましいことが分かる。なお、導電性フィ
ラー充填率とは、例えば導電性フィラー(ニッケルまた
はカーボンブラックもしくはチタン酸カリウム)の体積
をa、重合体の体積をbとすると、重合体に対する充填
率(%)={a/(a+b)}×100である。
As shown in Table 3, in the prototype, the polyvinylidene fluoride was used as the polymer, and the packing ratio of these metal powders to the polymer was almost the same (15.2% by volume or 16.8% by volume). The filling ratio of carbon black to the polymer is 3.0% by volume, and the filling ratio of carbon-coated potassium titanate to the polymer is 11.1% to 11.2%.
% By volume. The initial resistivity and resistance change rate of the element body using these metal powders are as shown in Table 3. As can be seen from Table 3, the spike-shaped nickel powder can significantly reduce the initial resistivity. A resistance change rate of 6 digits or more is obtained, and it is understood that it is preferable to use spike-shaped nickel powder as the metal powder. The conductive filler filling rate means, for example, that the volume of the conductive filler (nickel, carbon black or potassium titanate) is a and the volume of the polymer is b, the filling rate (%) of the polymer = {a / (A + b)} × 100.

【0025】なおこのようにスパイク状のニッケル粉末
を用いた場合、ニッケル粉末の平均粒径を1.0μm〜
4.0μmとし、見掛密度を0.5g/cm3〜0.8
g/cm3とすることが好ましい。平均粒径が1.0μ
m未満であると、酸化しやすくなって経年変化を起こし
易くなり、また、4.0μmを超えると、抵抗値が高く
なる。また、見掛密度が0.5g/cm3未満であると
抵抗値が上り、見掛密度が0.8g/cm3を超えると
抵抗変化率が低くなる。
When the spike-shaped nickel powder is used as described above, the average particle size of the nickel powder is 1.0 μm to
4.0 μm and an apparent density of 0.5 g / cm 3 to 0.8
It is preferably g / cm 3 . Average particle size is 1.0μ
When it is less than m, it is easy to oxidize and secular change easily occurs, and when it exceeds 4.0 μm, the resistance value becomes high. Further, when the apparent density is less than 0.5 g / cm 3 , the resistance value increases, and when the apparent density exceeds 0.8 g / cm 3 , the rate of resistance change decreases.

【0026】一方、前記ウイスカ状導電酸化物は、これ
を導電性フィラーとして添加することにより、抵抗変化
率を上げることができるが、無処理のまま使用すると、
抵抗値が高くなってしまう。そこでウイスカ状導電酸化
物の表面を導電物で被覆して抵抗値を下げることが好ま
しく、抵抗値を下げるため、炭素、銀、酸化錫、ニッケ
ルでチタン酸カリウムのウイスカ状粉末をコートしたと
ころ、初期比抵抗、抵抗変化率共に十分な値が得られ
た。表4は炭素、銀、酸化錫でコートしたウイスカ状導
電酸化物を導電性フィラーの一部に用い、他の導電性フ
ィラーや重合体を前記同様とした場合の初期比抵抗と抵
抗変化率とを示す。銀をウイスカ状導電酸化物のコート
材に用いると高価になるため、実用的には炭素コートで
十分である。
On the other hand, the whisker-like conductive oxide can increase the rate of resistance change by adding it as a conductive filler, but if it is used without treatment,
The resistance value becomes high. Therefore, it is preferable to coat the surface of the whisker-like conductive oxide with a conductive material to reduce the resistance value.To reduce the resistance value, carbon, silver, tin oxide, nickel was coated with whisker-like powder of potassium titanate, Sufficient values were obtained for both the initial resistivity and the rate of resistance change. Table 4 shows the initial specific resistance and the rate of change in resistance when a whisker-like conductive oxide coated with carbon, silver or tin oxide was used as a part of the conductive filler and other conductive fillers or polymers were used as described above. Indicates. If silver is used as a coating material for the whisker-like conductive oxide, it becomes expensive, so carbon coating is sufficient for practical use.

【0027】本発明において、抵抗値を低くする導電助
剤として用いるカーボンブラックは、比表面積が大きい
程、抵抗値を下げる効果が大きかった。比表面積の小さ
なカーボンブラックを増すと抵抗値は下がるが、添加量
が増えると、抵抗変化率が低くなる。そこで、いかに少
ない添加量で抵抗値を下げるかがポイントであり、カー
ボンブラックの比表面積と初期比抵抗および抵抗変化率
について検討した。表4はその結果を示す表であり、表
5の試料において、ニッケル粉末およびカーボンコート
チタン酸カリウムは表2について説明したものと同じも
のを用いた。また、表5の比表面積はBET法によるも
のであり、No.1の試料のカーボンブラックは、東海
カーボン社製#4500、No.2はキャボット(Ca
bot)社製ブルカン(Vulcan)XC−72、N
o.3はケッチェンブラック・インターナショナル社製
EC、No.4はケッチェンブラック・インターナショ
ナル社製EC600JDを用いた。
In the present invention, the larger the specific surface area of the carbon black used as the conductive additive for lowering the resistance value, the greater the effect of lowering the resistance value. The resistance value decreases as the carbon black having a small specific surface area increases, but the resistance change rate decreases as the addition amount increases. Therefore, the point is how to reduce the resistance value with a small addition amount, and the specific surface area of carbon black, the initial specific resistance, and the rate of resistance change were examined. Table 4 is a table showing the results, and in the sample of Table 5, the same nickel powder and carbon-coated potassium titanate as those described in Table 2 were used. Further, the specific surface area in Table 5 is based on the BET method, and No. The carbon black of the sample No. 1 was No. 4500, No. 4 manufactured by Tokai Carbon Co., Ltd. 2 is Cabot (Ca
Bot) Vulcan XC-72, N
o. No. 3 is EC, No. 3 manufactured by Ketjen Black International. 4 used EC600JD manufactured by Ketjen Black International.

【0028】表5に示すように、比表面積が58m2
g以上のカーボンブラックを用いたものにおいて、5桁
以上の抵抗変化率が得られるものの、初期比抵抗が高く
なる。表5に示す組成において、比表面積と初期比抵抗
との関係から、おおよそ800m2/g以上であれば、
初期比抵抗を2Ωcm以下に押えることができることが
判明した。また、この比表面積の上限は、5桁以上の抵
抗変化率を得るため、1300m2/g以下とすること
が好ましい。
As shown in Table 5, the specific surface area is 58 m 2 /
In the case of using carbon black of g or more, although the resistance change rate of five digits or more can be obtained, the initial specific resistance becomes high. In the composition shown in Table 5, from the relationship between the specific surface area and the initial specific resistance, if approximately 800 m 2 / g or more,
It was found that the initial specific resistance can be suppressed to 2 Ωcm or less. The upper limit of the specific surface area is preferably 1300 m 2 / g or less in order to obtain a resistance change rate of 5 digits or more.

【0029】次に導電粉末としてのニッケル粉末の充填
量について検討した結果を説明する。比抵抗を下げるに
は、重合体中に導電性フィラーを多く添加すればよいわ
けであるが、あまり添加量が多過ぎると、重合体が膨張
した後も導電性フィラー間の接触が解けずに抵抗が上が
らず、抵抗変化率が小さいため、PTC抵抗体として実
用に耐えない。そこで、表6に示すように、カーボンブ
ラックのポリフッ化ビニリデンに対する充填率を3.0
体積%、カーボンブラックのポリフッ化ビニリデンに対
する充填率を11.1体積%といずれもほぼ一定にし、
ポリフッ化ビニリデンとニッケル粉末の割合、すなわち
ニッケル粉末の充填率を種々に変え、初期比抵抗と抵抗
変化率とを測定した。その結果、重合体に対するニッケ
ル粉末の充填率が10体積%を下まわると、抵抗が大き
過ぎ、25体積%を上まわると抵抗変化率も5桁以下に
なり、実用に耐えないことが判明した。
Next, the result of studying the filling amount of the nickel powder as the conductive powder will be described. In order to reduce the specific resistance, it is sufficient to add a large amount of conductive filler in the polymer, but if the addition amount is too large, the contact between the conductive fillers cannot be broken even after the polymer expands. Since the resistance does not increase and the resistance change rate is small, it cannot be practically used as a PTC resistor. Therefore, as shown in Table 6, the filling ratio of carbon black to polyvinylidene fluoride is 3.0.
%, The filling rate of carbon black to polyvinylidene fluoride is 11.1% by volume, which is almost constant.
The initial specific resistance and the rate of resistance change were measured while changing the ratio of polyvinylidene fluoride and nickel powder, that is, the filling rate of nickel powder. As a result, it was found that when the filling rate of the nickel powder with respect to the polymer was less than 10% by volume, the resistance was too large, and when it exceeded 25% by volume, the rate of change in resistance was 5 digits or less, which was not practical. .

【0030】ウィスカー状のチタン酸カリウムの添加の
目的は、ニッケル単体の添加に比べ、抵抗変化率を大き
くすることにある。しかしながら、チタン酸カリウムが
少な過ぎたり、多過ぎたりすると、抵抗変化率が小さく
なってしまう。よってその適正な添加量について検討し
た。表7はポリフッ化ビニリデンに対するニッケル粉
末、カーボンブラックの充填率をそれぞれ15.0体積
%〜15.1体積%、3.0体積%とほぼ一定にし、ポ
リフッ化ビニリデンとカーボンコートチタン酸カリウム
との充填率を種々に変化させて初期比抵抗と抵抗変化率
とを測定した結果を示す。表7の結果から、チタン酸カ
リウムは重合体に対する充填率が5体積%〜20体積%
が適当な量であれば初期比抵抗としてほぼ4Ωcm以下
の値が得られ、抵抗変化率も5桁以上の値が得られるこ
とが判った。
The purpose of adding whisker-like potassium titanate is to increase the rate of resistance change as compared with the case of adding nickel alone. However, if the amount of potassium titanate is too small or too large, the rate of resistance change becomes small. Therefore, the proper addition amount was examined. Table 7 shows that the filling rates of nickel powder and carbon black with respect to polyvinylidene fluoride were set to be substantially constant at 15.0% by volume to 15.1% by volume and 3.0% by volume, respectively. The results of measuring the initial specific resistance and the rate of resistance change by varying the filling rate are shown below. From the results in Table 7, potassium titanate has a filling rate of 5% to 20% by volume with respect to the polymer.
It has been found that when the value is an appropriate amount, a value of about 4 Ωcm or less can be obtained as the initial specific resistance and a rate of resistance change of 5 digits or more can be obtained.

【0031】また、カーボンブラックの添加により、少
量の添加量であっても比抵抗を低くできるため、ニッケ
ル粉末の助剤として、その添加量を検討した。このカー
ボンブラックの充填量は、ニッケル粉末の場合と同様
に、あまり多過ぎると抵抗変化率が小さくなってしま
う。表8は重合体に対するニッケル粉末とカーボンコー
トチタン酸カリウムの充填率を、それぞれ15.0体積
%〜15.1体積%、11.0体積%〜11.1体積%
とほぼ一定にし、カーボンブラックの重合体に対する充
填率を変えて初期比抵抗と抵抗変化率を測定した結果を
示すものであり、重合体に対するカーボンブラックの充
填率が1体積%〜5体積%であれば、初期比抵抗が約2
Ωcmより低くすることができ、抵抗変化率も5桁以上
の値を得ることができることが判明した。
Further, the addition of carbon black can reduce the specific resistance even with a small amount of addition, so the amount of addition was examined as an auxiliary agent for nickel powder. As in the case of nickel powder, if the carbon black filling amount is too large, the resistance change rate will be small. Table 8 shows the filling rates of nickel powder and carbon-coated potassium titanate with respect to the polymer, respectively, from 15.0% by volume to 15.1% by volume and 11.0% by volume to 11.1% by volume.
The results show that the initial specific resistance and the rate of change in resistance were measured by changing the filling rate of carbon black with respect to the polymer, and the filling rate of carbon black with respect to the polymer was 1% by volume to 5% by volume. If so, the initial resistivity is about 2
It was found that the value can be made lower than Ωcm and the rate of change in resistance can be obtained in a value of 5 digits or more.

【0032】本発明において用いる熱可塑性重合体とし
ては、ポリフッ化ビニリデン以外に高密度ポリエチレ
ン、ポリプロピレン、ポリアミド樹脂、ポリアセター
ル、ポリン塩化ビニリデン、ポリ四フッ化エチレン等が
挙げられる。(以下余白)
Examples of the thermoplastic polymer used in the present invention include high density polyethylene, polypropylene, polyamide resin, polyacetal, porin vinylidene chloride, and polytetrafluoroethylene in addition to polyvinylidene fluoride. (Below margin)

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【表5】 [Table 5]

【0038】[0038]

【表6】 [Table 6]

【0039】[0039]

【表7】 [Table 7]

【0040】[0040]

【表8】 [Table 8]

【0041】[0041]

【発明の効果】請求項1によれば、熱可塑性重合体に導
電性フィラーを分散混合した有機抵抗体層と、導体から
なる内部電極とを、内部電極間の抵抗体層数が2層以上
となるように交互に積層して有機抵抗体素体を構成し、
該素体の側面に、それぞれ対向する内部電極に接続され
る外部電極を設けたので、電極間の対向面積が増え、見
かけ上の比抵抗を大幅に低減することができ、また、抵
抗体にセラミックを用いる場合に比較して、抵抗体層の
比抵抗が低いため、全体の厚みや大きさをそれほど大き
くすることなく、しかも耐圧性能を落とすことなく、よ
り大電流用のPTC有機抵抗体を提供することができ、
ひいてはPTC有機抵抗体の小型化を達成できる。
According to the first aspect of the present invention, an organic resistor layer in which a conductive filler is dispersed and mixed in a thermoplastic polymer and an internal electrode made of a conductor are provided, and the number of resistor layers between the internal electrodes is two or more. To be laminated alternately to form an organic resistor element body,
Since the external electrodes connected to the internal electrodes facing each other are provided on the side surfaces of the element body, the facing area between the electrodes can be increased, and the apparent specific resistance can be significantly reduced. Compared to the case of using ceramics, the resistivity of the resistor layer is low, so that a PTC organic resistor for a larger current can be provided without increasing the overall thickness and size, and without lowering the withstand voltage performance. Can be provided,
As a result, it is possible to reduce the size of the PTC organic resistor.

【0042】請求項2によれば、金属粉末とウイスカ状
導電酸化物およびカーボンブラックを結晶性の熱可塑性
重合体に分散、混合してPTC特性の有機抵抗体を構成
したので、カーボンブラックからなる単一の導電性フィ
ラーのものに比較し、室温比抵抗を低く押えることがで
き、しかも金属粉末単独あるいは金属粉末とカーボンブ
ラックとからなる導電性フィラーを用いたものよりも大
きな抵抗変化率が得られ、大電流用途への使用可能なP
TC特性の有機抵抗体が得られる。また、小型化が達成
できるので、取付け上有利なPTC特性の有機抵抗体を
提供できる。
According to the second aspect, the metal powder, the whisker-like conductive oxide, and the carbon black are dispersed and mixed in the crystalline thermoplastic polymer to form the organic resistor having the PTC characteristic. Compared with a single conductive filler, the room temperature resistivity can be kept low, and a larger rate of change in resistance can be obtained than with metal powder alone or a conductive filler consisting of metal powder and carbon black. Available P for high current applications
An organic resistor having TC characteristics can be obtained. Further, since miniaturization can be achieved, it is possible to provide an organic resistor having a PTC characteristic which is advantageous in mounting.

【0043】請求項3によれば、内部電極は、金属箔も
しくは薄膜形成技術により成膜された薄膜で構成したの
で、薄くて抵抗の低い内部電極を形成でき、抵抗体全体
の薄型化に寄与できる。
According to the third aspect, since the internal electrode is formed of a metal foil or a thin film formed by a thin film forming technique, a thin internal electrode having low resistance can be formed, which contributes to thinning of the entire resistor. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるPTC特性の有機抵抗体の一実施
例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of an organic resistor having PTC characteristics according to the present invention.

【図2】本実施例の製造工程図である。FIG. 2 is a manufacturing process diagram of the present embodiment.

【図3】本実施例について繰り返し通電試験を行った場
合における抵抗値の変化を従来例と対比して示すグラフ
である。
FIG. 3 is a graph showing a change in resistance value in a case where a repeated energization test is performed on the present example, in comparison with a conventional example.

【図4】本実施例の温度に対する抵抗値の変化を比較例
と対比して示すグラフである。
FIG. 4 is a graph showing a change in resistance value with respect to temperature in the present example in comparison with a comparative example.

【図5】従来のPTC特性の有機抵抗体を示す断面図で
ある。
FIG. 5 is a cross-sectional view showing a conventional PTC characteristic organic resistor.

【符号の説明】[Explanation of symbols]

5:PTC抵抗体層、6a、6b:内部電極、7:抵抗
体素体、8a、8b:外部電極
5: PTC resistor layer, 6a, 6b: internal electrode, 7: resistor element body, 8a, 8b: external electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 憲治 東京都中央区日本橋一丁目13番1号 ティ −ディ−ケイ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Shibata 1-13-1, Nihonbashi, Chuo-ku, Tokyo T-DK Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】熱可塑性重合体に導電性フィラーを分散混
合した有機抵抗体層と、導体からなる内部電極とを、内
部電極間に介在する有機抵抗体層の層数が2層以上とな
るように交互に積層して有機抵抗体素体を構成し、該素
体の側面に、それぞれ対向する内部電極に接続される外
部電極を設けたことを特徴とする正の温度特性を持つ有
機抵抗体。
1. An organic resistor layer in which a conductive filler is dispersed and mixed in a thermoplastic polymer and an internal electrode made of a conductor, and the number of organic resistor layers interposed between the internal electrodes is two or more. An organic resistor element body having positive temperature characteristics, characterized in that an organic resistor element body is formed by alternately laminating the external element bodies, and external electrodes connected to the opposing internal electrodes are provided on the side surfaces of the element body. body.
【請求項2】請求項1において、前記導電性フィラー
は、スパイク状の金属粉末と、カーボンブラックと、導
電物質で被覆することにより導電性を持たせたウイスカ
ー状の導電酸化物とからなることを特徴とする正の温度
特性を持つ有機抵抗体。
2. The conductive filler according to claim 1, comprising spiked metal powder, carbon black, and a whisker-like conductive oxide which is made conductive by being coated with a conductive substance. An organic resistor with positive temperature characteristics.
【請求項3】請求項1または2において、前記内部電極
は、金属箔もしくは薄膜形成技術により成膜された薄膜
からなることを特徴とする正の温度特性を持つ有機抵抗
体。
3. The organic resistor according to claim 1, wherein the internal electrode is made of a metal foil or a thin film formed by a thin film forming technique.
JP24882495A 1995-08-31 1995-08-31 Organic resistor with positive temperature characteristics Pending JPH0969416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24882495A JPH0969416A (en) 1995-08-31 1995-08-31 Organic resistor with positive temperature characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24882495A JPH0969416A (en) 1995-08-31 1995-08-31 Organic resistor with positive temperature characteristics

Publications (1)

Publication Number Publication Date
JPH0969416A true JPH0969416A (en) 1997-03-11

Family

ID=17183972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24882495A Pending JPH0969416A (en) 1995-08-31 1995-08-31 Organic resistor with positive temperature characteristics

Country Status (1)

Country Link
JP (1) JPH0969416A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000030127A1 (en) * 1998-11-13 2000-05-25 Bourns, Inc. Multilayer conductive polymer device and method of manufacturing same
EP1130606A1 (en) * 1998-10-16 2001-09-05 Matsushita Electric Industrial Co., Ltd. Ptc chip thermistor
EP1139352A1 (en) * 1998-10-13 2001-10-04 Matsushita Electric Industrial Co., Ltd. Pct chip thermistor and method of manufacture thereof
US6441717B1 (en) 1998-04-09 2002-08-27 Matsushita Electric Industrial Co., Ltd. PTC thermister chip
US6704997B1 (en) 1998-11-30 2004-03-16 Murata Manufacturing Co., Ltd. Method of producing organic thermistor devices
WO2004042745A1 (en) * 2002-11-06 2004-05-21 Matsushita Electric Industrial Co., Ltd. Ptc material and method for producing same, and circuit protection part using such ptc material and method for manufacturing same
US6838972B1 (en) 1999-02-22 2005-01-04 Littelfuse, Inc. PTC circuit protection devices
WO2017140830A1 (en) * 2016-02-18 2017-08-24 Phoenix Contact Gmbh & Co.Kg Overvoltage protection device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441717B1 (en) 1998-04-09 2002-08-27 Matsushita Electric Industrial Co., Ltd. PTC thermister chip
EP1139352A4 (en) * 1998-10-13 2007-05-02 Matsushita Electric Ind Co Ltd Pct chip thermistor and method of manufacture thereof
EP1139352A1 (en) * 1998-10-13 2001-10-04 Matsushita Electric Industrial Co., Ltd. Pct chip thermistor and method of manufacture thereof
EP1130606A4 (en) * 1998-10-16 2007-05-02 Matsushita Electric Ind Co Ltd Ptc chip thermistor
US6593844B1 (en) 1998-10-16 2003-07-15 Matsushita Electric Industrial Co., Ltd. PTC chip thermistor
EP1130606A1 (en) * 1998-10-16 2001-09-05 Matsushita Electric Industrial Co., Ltd. Ptc chip thermistor
WO2000030127A1 (en) * 1998-11-13 2000-05-25 Bourns, Inc. Multilayer conductive polymer device and method of manufacturing same
US6704997B1 (en) 1998-11-30 2004-03-16 Murata Manufacturing Co., Ltd. Method of producing organic thermistor devices
US6838972B1 (en) 1999-02-22 2005-01-04 Littelfuse, Inc. PTC circuit protection devices
WO2004042745A1 (en) * 2002-11-06 2004-05-21 Matsushita Electric Industrial Co., Ltd. Ptc material and method for producing same, and circuit protection part using such ptc material and method for manufacturing same
WO2017140830A1 (en) * 2016-02-18 2017-08-24 Phoenix Contact Gmbh & Co.Kg Overvoltage protection device
CN109075535A (en) * 2016-02-18 2018-12-21 菲尼克斯电气公司 A kind of overvoltage protection device
CN109075535B (en) * 2016-02-18 2020-04-14 菲尼克斯电气公司 Overvoltage protection equipment

Similar Documents

Publication Publication Date Title
KR0165998B1 (en) Solid electrolytic capacitor having two solid electrolyte layers and method of manufacturing the same
JP4664556B2 (en) Conductive polymer composition
KR19980703168A (en) Conductive Polymer Compositions and Devices
JPH07169607A (en) Composite material
JPH0969416A (en) Organic resistor with positive temperature characteristics
WO1992004720A1 (en) Positive characteristic thermistor and manufacturing method therefor
TW200910396A (en) Conductive paste for solid electrolytic capacitor electrode and process for producing solid electrolytic capacitor electrode using the same
JPH0967462A (en) Organic resistor having positive temperature characteristic
JP2810351B2 (en) Organic positive temperature coefficient thermistor
IE42714B1 (en) Improvements in varistors
KR20090103491A (en) low resistor polymer PTC thermistor and thereof.
JP2004006519A (en) Multi-terminal varistor
US10950372B2 (en) Surface mounted fuse device having positive temperature coefficient body
KR20190130998A (en) Conductive metal powder for forming electrode, manufacturing method tereof and conductive paste for electronic component termination electrode
JP3070350B2 (en) Al electrode material for lead piezoelectric element
JP2001052901A (en) Chip organic positive temperature coefficient thermistor and manufacturing method therefor
JPS629208B2 (en)
JPH099481A (en) Overcurrent protection circuit element
KR100792205B1 (en) Device for protecting surge and method for manufacturing thereof
JP3606467B2 (en) Manufacturing method of multilayer voltage nonlinear resistor
JPH0373121B2 (en)
WO1998026433A1 (en) Overcurrent protective circuit element
JPS5919447B2 (en) Sandwich type thick film varistor
JP2001289718A (en) Thin pressure sensitive sensor and its manufacturing method
JP2000133502A (en) Organic positive temperature coefficient thermistor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Effective date: 20040412

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040525