JPH0968199A - Axial blower and air conditioner - Google Patents

Axial blower and air conditioner

Info

Publication number
JPH0968199A
JPH0968199A JP22409395A JP22409395A JPH0968199A JP H0968199 A JPH0968199 A JP H0968199A JP 22409395 A JP22409395 A JP 22409395A JP 22409395 A JP22409395 A JP 22409395A JP H0968199 A JPH0968199 A JP H0968199A
Authority
JP
Japan
Prior art keywords
blade
radius
boss
point
leading edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22409395A
Other languages
Japanese (ja)
Other versions
JP2932975B2 (en
Inventor
Hisafumi Ikeda
尚史 池田
Takayuki Yoshida
孝行 吉田
Katsuhisa Otsuta
勝久 大蔦
Yasuo Hironaka
康雄 廣中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22409395A priority Critical patent/JP2932975B2/en
Publication of JPH0968199A publication Critical patent/JPH0968199A/en
Application granted granted Critical
Publication of JP2932975B2 publication Critical patent/JP2932975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable an axial blower to broaden particularly its aerodynamic performance to a limit, relating to the axial blower used in a ventilating fan, air conditioner, etc. SOLUTION: This axial blower is provided with a boss part 2 rotated by mounting a blade 1 and the blade constituting the periphery from a blade leading edge part facing the direction of rotation, from a blade trailing edge part facing an opposite direction of rotation and from a blade peripheral part opposed to the boss part. In a projection drawing projecting the axial blower to a plane orthogonal to a rotary shaft of axial blower the rotary shaft serves as an origin O, and a straight line O-1bs' connecting the origin O to an arbitrary point 1bs' on the blade leading edge part is rotated in the direction of rotation with the origin O serving as the center. A blade shape is formed by connecting an intersection 1bb', between this straight line O-1bs' and a boss part side surface which is a boss part radius, and a tangent in the point 1bs' by an arbitrary curve such as being a hollow relating to the direction of rotation, so as to provide a blade leading edge part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、家庭用、工業用な
どの空気調和装置等に広く用いられる軸流送風機に関し
て、特に空力騒音を極限まで低くすることを可能にした
軸流送風機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axial blower widely used in air conditioners for domestic use, industrial use, etc., and more particularly to an axial blower capable of reducing aerodynamic noise to an extremely low level. is there.

【0002】[0002]

【従来の技術】送風機は、空調機や換気扇等に幅広く使
われており、その羽根車から発生する騒音をできる限り
低くすることは、社会的にも非常に重要である。従来技
術の中で、低騒音化を図る手法としては、特公平2−2
000号公報に見られるように、羽根車の3次元形状を
決めるパラメータを明らかにし、形状を最適化すること
によるものであった。図97は特公平2ー2000号公
報に示された従来の羽根車を示す斜視図である。図にお
いて1は羽根車の羽根、1aは羽根先端部、1bは羽根
前縁部、1cは羽根後縁部、1dは羽根外周部、2は羽
根を取り付けるボス部、3は回転軸、4は回転方向であ
る。
Blowers are widely used for air conditioners, ventilation fans and the like, and it is very important for society to reduce the noise generated from the impeller as much as possible. Among the conventional techniques, Japanese Patent Publication No. 2-2
As disclosed in Japanese Laid-Open Patent Publication No. 000, this was done by clarifying the parameters that determine the three-dimensional shape of the impeller and optimizing the shape. FIG. 97 is a perspective view showing a conventional impeller disclosed in Japanese Patent Publication No. 2000-2000. In the figure, 1 is a blade of an impeller, 1a is a blade tip portion, 1b is a blade leading edge portion, 1c is a blade trailing edge portion, 1d is a blade outer peripheral portion, 2 is a boss portion for attaching the blade, 3 is a rotating shaft, 4 is a It is the direction of rotation.

【0003】また、図98は回転軸3と直交する平面に
羽根車を投影したときの投影図で、1’は平面投影図に
おける羽根、1a’は平面投影図における羽根先端部、
1b’は平面投影図における羽根前縁部、1c’は平面
投影図における羽根後縁部、1d’は平面投影図におけ
る羽根外周部である。また図100は図99におけるボ
ス部翼弦線中心点Pb’から外周部翼弦線中心点Pt’
までの半径方向への軌跡Pb’−PR’−Pt’につい
て、任意の半径Rにおける翼弦線中心点PRを平面OX
面に半径Rで回転投影した翼弦線中心点PRの半径方向
分布、および羽根1の同一位置での断面を示している。
また図100は、翼弦戦中心点PRを相対的な原点とし
て羽根面を形成したとき、羽根1を半径Rの円筒面で切
断し、その断面を2次元平面に展開して得られる展開図
で、5はそり線、5aは羽根負圧面、5bは羽根圧力
面、6は回転軸平行線である。
FIG. 98 is a projection view of the impeller projected on a plane orthogonal to the rotation axis 3, where 1'is a blade in the plan view and 1a 'is a tip of the blade in the plan view.
1b 'is a blade leading edge portion in the plan view, 1c' is a blade trailing edge portion in the plan view, and 1d 'is a blade outer peripheral portion in the plan view. Further, FIG. 100 shows that from the wing chord line center point Pb ′ in FIG. 99 to the outer peripheral chord line center point Pt ′.
For the locus Pb'-PR'-Pt 'in the radial direction up to, the blade chord line center point PR at an arbitrary radius R is set to the plane OX.
The radial direction distribution of the chord line center point PR, which is rotationally projected on the surface with the radius R, and the cross section of the blade 1 at the same position are shown.
Further, FIG. 100 is a development view obtained by cutting the blade 1 with a cylindrical surface having a radius R and developing the cross section into a two-dimensional plane when the blade surface is formed with the chord battle center point PR as a relative origin. 5 is a warp line, 5a is a blade negative pressure surface, 5b is a blade pressure surface, and 6 is a rotation axis parallel line.

【0004】この羽根車において、羽根1を構成する諸
因子を明確にすることにより羽根1の3次元的曲面形状
を具体化に定義している。図98における回転軸と直交
する平面に羽根車を投影したときの投影面において、上
記羽根のボス部を半径Rbの円筒面で切断したときの断
面における翼弦線中心点をPb’とし、上記回転軸を原
点Oとして、上記O点とPb’点とを結ぶ直線をX軸と
した座標系で、上記羽根を半径Rの円筒面で切断したと
きの翼弦線中心点をPR’として、直線Pb’として、
直線Pb’−Oと上記X軸とのなす角度をδθ(δθ:
回転方向前進角)とした場合、δθの半径方向分布をδ
θ=δθt×(R−Rb)/(Rt−Rb)(Rt:羽
根チップ半径、Rb:羽根ボス部半径、δθt:直線P
R’−OとX軸とのなす角度)で与え、δθt=40゜
〜50゜とし、かつ図98において、回転軸を中心とす
る半径Rの円筒面で羽根車を切断したときの断面におけ
る翼弦線中心点PRと、羽根のボス部を半径Rbの円筒
面で切断したときの断面における翼弦線中心点Pbを通
り、上記回転軸と直交する平面SCとの距離をLsとし
たとき、気流の吸込側を正方向とした座標系において上
記翼弦線中心点PRを上記SC平面に対して常に正方向
に位置させ、δZ=tan−1(LS/(R−Rb))
(δZ:吸込方向前傾角)で表現できるδZの値をδZ
=12.5゜〜32.5゜とし、
In this impeller, the three-dimensional curved surface shape of the blade 1 is concretely defined by clarifying various factors constituting the blade 1. In the projection plane when the impeller is projected on the plane orthogonal to the rotation axis in FIG. 98, the chord line center point in the cross section when the boss portion of the blade is cut by the cylindrical surface of the radius Rb is Pb ′, and In the coordinate system with the axis of rotation as the origin O and the straight line connecting the point O and the point Pb ′ as the X axis, the blade chord line center point when the blade is cut by the cylindrical surface of radius R is PR ′, As a straight line Pb ',
The angle formed by the straight line Pb′-O and the X axis is δθ (δθ:
(Advancing angle in the rotation direction), the radial distribution of δθ is δ
θ = δθt × (R−Rb) / (Rt−Rb) (Rt: blade tip radius, Rb: blade boss radius, δθt: straight line P
R'-O and the X axis), δθt = 40 ° to 50 °, and in FIG. 98, in a cross section when the impeller is cut along a cylindrical surface having a radius R centered on the rotation axis. When the distance between the chord line center point PR and the plane SC passing through the chord line center point Pb in the cross section when the boss portion of the blade is cut by the cylindrical surface of the radius Rb and orthogonal to the rotation axis is Ls , In the coordinate system in which the suction side of the airflow is in the positive direction, the chord line center point PR is always positioned in the positive direction with respect to the SC plane, and δZ = tan−1 (LS / (R−Rb))
The value of δZ that can be expressed by (δZ: Suction direction forward tilt angle) is δZ
= 12.5 ° to 32.5 °,

【0005】かつ図100において、羽根を半径Rの円
筒面で切断し、その断面を2次元平面に展開して得られ
る展開図において、その羽根断面におけるそり線の形状
を円弧形状とし、その円弧形状を形成するための中心角
をθ(θ:そり角)とした場合、θの半径方向分布をθ
=(θt−θb)×(R−Rb)/(Rt−Rb)+θ
b(θt:羽根チップでのそり角、θb:羽根ボス部で
のそり角)で与え、θt=20゜〜30゜、θb=27゜
〜37゜、θt<θbとし、また、羽根の取付位置はそ
の翼弦線1b−1cと、回転軸3と平行で羽根前縁部1
bを通る直線6とのなす角度を食い違い角ξとした場
合、ξの半径方向分布を、ξ=(ξt−ξb)×(R−
Rb)/(Rt−Rb)+ξb(ξt:羽根チップでの
食い違い角、ξb:羽根ボス部での食い違い角)で与
え、ξt=62゜〜72゜、ξb=53゜〜63゜、ξt>
ξbとし、さらに、この図100におけるLは翼弦長で
あり、図101に示した羽根間の円周方向距離Tを用い
た節弦比T/Lで羽根の大きさを限定しており、各半径
の点においてT/L=1〜1.1としている。このよう
な3次元曲面形状の羽根車にすることにより、羽根面上
の境界層の発達が抑制されたり、放出渦の状態が変化す
るため、ある程度広い動作領域にわたり、相当低騒音の
軸流送風機となっていた。
Further, in FIG. 100, in a development view obtained by cutting the blade with a cylindrical surface of radius R and developing the cross section into a two-dimensional plane, the shape of the warp line in the blade cross section is an arc shape, and the arc When the central angle for forming a shape is θ (θ: warp angle), the radial distribution of θ is θ
= (Θt−θb) × (R−Rb) / (Rt−Rb) + θ
b (θt: warp angle at blade tip, θb: warp angle at blade boss), θt = 20 ° to 30 °, θb = 27 ° to 37 °, θt <θb, and blade mounting The position is parallel to the chord line 1b-1c and the rotation axis 3, and the blade front edge portion 1
When the angle formed by the straight line 6 passing through b is the stagger angle ξ, the radial distribution of ξ is ξ = (ξt−ξb) × (R−
Rb) / (Rt−Rb) + ξb (ξt: stagger angle at blade tip, ξb: stagger angle at blade boss), and ξt = 62 ° to 72 °, ξb = 53 ° to 63 °, ξt>
Further, L in FIG. 100 is the chord length, and the blade size is limited by the node chord ratio T / L using the circumferential distance T between the blades shown in FIG. T / L = 1 to 1.1 at each radius point. By using such an impeller having a three-dimensional curved surface, the development of the boundary layer on the impeller surface is suppressed and the state of the discharge vortex is changed, so that the axial blower with a considerably low noise over a relatively wide operating region. It was.

【0006】[0006]

【発明が解決しようとする課題】従来の軸流送風機は以
上のよう低騒音の特徴を有しているが、風量が多く、風
圧がさほどかからない動作点付近では、図102に示す
ように羽根前縁ボス部付近では吸い込む空気が羽根の負
圧面側へ衝突し、羽根負圧面上の流れに乱れを発生させ
圧力変動をもたらし、騒音増大するという問題があっ
た。また、吸込流れの圧損が大きいとき、すなわち吸込
口側にホコリ等が付着し、吸込みにくくなったときなど
には、羽根負圧面上では羽根前縁付近で流れの剥離現象
が生じ、大きな乱れを含んだ流れが羽根負圧面上を流れ
るため大きな圧力変動が生じ、騒音が増大するという問
題点があった。
The conventional axial-flow blower has the characteristics of low noise as described above, but in the vicinity of the operating point where the air volume is large and the wind pressure is not so high, as shown in FIG. In the vicinity of the edge boss, the air sucked collides with the suction surface side of the blade, causing turbulence in the flow on the suction surface of the blade, causing pressure fluctuation, and increasing noise. Also, when the pressure loss of the suction flow is large, that is, when dust etc. adheres to the suction port side and it becomes difficult to suction, a flow separation phenomenon occurs near the blade leading edge on the blade negative pressure surface, causing large turbulence. Since the included flow flows on the suction surface of the blade, there is a problem that a large pressure fluctuation occurs and noise increases.

【0007】さらに従来の軸流送風機の羽根は強度上、
羽根前縁ボス部付近の板厚を一部厚くすることにより応
力集中を逃がす傾向にあった。そのため、羽根前縁部が
局所的に厚くなることにより、流れがこの板厚の厚い羽
根前縁ボス部に衝突し、それにより生じた乱れが羽根面
上の流れに乱れを与え、圧力変動の増大を招き、騒音が
悪化する傾向にあった。本発明は、上記のような問題点
を解消するためになされたもので、羽根前縁ボス部での
吸込流れの衝突を防ぐとともに、高静圧化も図った高性
能、低騒音でかつ強度的にも十分な軸流送風機を得るこ
とを目的とする。さらに又、本発明は低騒音の空気調和
機を得ることを目的とする。
Further, the blade of the conventional axial blower is strong in terms of strength.
There was a tendency for stress concentration to escape by partially thickening the plate thickness near the blade leading edge boss. Therefore, the blade leading edge becomes locally thick, and the flow collides with the thick blade leading edge boss, and the resulting turbulence gives rise to turbulence in the flow on the blade surface, resulting in pressure fluctuations. There was a tendency for the noise to worsen with an increase. The present invention has been made to solve the above-described problems, and prevents the suction flow from colliding with the blade leading edge boss portion, and also has a high static pressure, high performance, low noise, and high strength. The purpose is to obtain a sufficient axial flow fan. Still another object of the present invention is to obtain an air conditioner with low noise.

【0008】[0008]

【課題を解決するための手段】第1の発明に係る軸流送
風機は、回転するボス部に取りつけられ、回転方向に面
する羽根前縁部、回転方向と反対方向に面する羽根後縁
部、及び上記ボス部に対向する羽根外周部により周囲が
構成される羽根と、羽根前縁部の前記ボス部よりに沿っ
て一辺が、羽根前縁部に隣接したボス部の外周に沿って
他辺が配置されるとともに、少なくとも羽根前縁部また
はボス部のいずれか一方に取りつけられて羽根に一体に
形成される、厚みがほぼ羽根厚と同一の板状部材と、を
備えたものである。
The axial blower according to the first aspect of the present invention is attached to a rotating boss and has a blade leading edge facing the rotational direction and a blade trailing edge facing the opposite direction. , And a blade whose periphery is formed by the outer peripheral portion of the blade facing the boss portion, and one side along the outer periphery of the boss portion adjacent to the front edge portion of the blade and the other side along the outer periphery of the boss portion of the blade front edge portion. And a plate-shaped member having a thickness substantially equal to the thickness of the blade, which is arranged integrally with the blade and is attached to at least one of the leading edge portion and the boss portion of the blade. .

【0009】又、第2の発明に係る軸流送風機は、回転
の軸中心を原点Oとし、任意半径における羽根前縁部上
の点1bs’との半径O−1bs’を回転方向に角度β
回転させたときのボス部外周上との交点を1bb’とし
て、板状部材が上記1bs’と上記1bb’とを通るよ
うなほぼ三角形の形状としたものである。又、第3の発
明に係る軸流送風機は、回転の軸中心を原点Oとし、任
意半径における羽根前縁部上の点1bs’との半径O−
1bs’を回転方向に角度β回転させたときのボス部外
周上との交点を1bb’として、板状部材が上記1b
s’と上記1bb’との間に配置される際、角度βを1
0〜40度に選択したものである。
Further, in the axial blower according to the second aspect of the present invention, the center of rotation is the origin O, and the radius O-1bs 'with the point 1bs' on the blade leading edge portion at an arbitrary radius is an angle β in the rotation direction.
An intersection with the outer periphery of the boss portion when rotated is 1bb ', and the plate-shaped member has a substantially triangular shape so as to pass through 1bs' and 1bb'. Further, in the axial blower according to the third aspect of the present invention, the origin is O at the axis of rotation, and the radius O- with the point 1bs' on the blade leading edge portion at an arbitrary radius.
Let 1bb 'be the intersection with the outer circumference of the boss portion when 1bs' is rotated by an angle β in the rotation direction, and the plate-shaped member is the above 1b.
When placed between s'and the above 1bb ', the angle β is set to 1
It is selected from 0 to 40 degrees.

【0010】又、第4の発明に係る軸流送風機は、回転
の軸中心を原点Oとし、任意半径における羽根前縁部上
の点1bs’とし、羽根外周部半径をRtとして、板状
部材の一辺が羽根前縁部の1bs’とボス部との間に配
置される際、半径O−1bs’を羽根外周部半径Rtの
40〜75%に選択したものである。又、第5の発明に
係る軸流送風機は、板状部材は、羽根前縁部に回転方向
から密着して取りつけられるものである。
In the axial blower according to the fourth aspect of the present invention, the center of rotation is the origin O, the point 1bs' on the blade leading edge portion at an arbitrary radius is set, and the blade outer peripheral radius is set to Rt. The radius O-1bs 'is selected to be 40 to 75% of the blade outer peripheral radius Rt when one side is arranged between 1bs' of the blade leading edge portion and the boss portion. Further, in the axial blower according to the fifth aspect of the present invention, the plate-shaped member is attached to the blade leading edge portion in close contact with each other in the rotation direction.

【0011】又、第6の発明に係る軸流送風機は、回転
するボス部に取りつけられ、回転方向に面する羽根前縁
部、回転方向と反対方向に面する羽根後縁部、及びボス
部に対向する羽根外周部により周囲が構成される羽根
と、羽根前縁部の前記ボス部寄りに沿って一辺が、羽根
前縁部に隣接したボス部の外周に沿って他辺が配置され
るとともに、少なくとも羽根前縁部またはボス部のいず
れか一方に取りつけられて羽根に一体に形成される、厚
みがほぼ羽根厚と同一の板状部材であって、回転の軸中
心を原点Oとし、任意半径における羽根前縁部上の点1
bs’とし、前記bs’と原点Oとの半径O−1bs’
を回転方向に角度β回転させたときのボス部外周上との
交点を1bb’として、1bs’と1bb’とを通るよ
うな板状部材と、を備え、角度βを10〜40度に選択
し、半径O−1bs’を羽根外周部半径Rtの40〜7
5%に選択したものである。
The axial blower according to the sixth aspect of the present invention is attached to a rotating boss portion, and has a blade front edge portion facing the rotational direction, a blade rear edge portion facing the opposite direction, and a boss portion. And a blade whose periphery is defined by the outer peripheral portion of the blade, and one side of which is arranged along the boss portion of the blade leading edge portion, and the other side of which is arranged along the outer periphery of the boss portion adjacent to the blade leading edge portion. At the same time, it is a plate-shaped member that is attached to at least one of the blade leading edge portion or the boss portion and is integrally formed with the blade, and has a thickness that is substantially the same as the blade thickness, with the axis O of rotation as the origin O. Point 1 on the blade leading edge at any radius
bs', and the radius O-1bs' between the bs' and the origin O
The angle β is selected to be 10 to 40 degrees, with a plate-shaped member that passes through 1bs ′ and 1bb ′ with 1 bb ′ as the intersection with the outer circumference of the boss portion when the is rotated by the angle β in the rotation direction. Then, set the radius O-1bs' to 40 to 7 of the blade outer peripheral radius Rt.
It was selected to be 5%.

【0012】又、第7の発明に係る軸流送風機は、回転
するボス部に取りつけられ、回転方向に面する羽根前縁
部、回転方向と反対方向に面する羽根後縁部、及びボス
部に対向する羽根外周部により周囲が構成される羽根
と、回転の軸中心を原点Oとし、任意半径における羽根
前縁部上の点1bs’との半径O−1bs’を回転方向
に角度β回転させたときのボス部外周上との交点を1b
b’として、1bs’と1bb’とを通るような形状に
羽根前縁部のボス部寄り部分を回転方向に延長させた羽
根形状と、を備え、角度βを10〜40度に選択したも
のである。又、第8の発明に係る軸流送風機は、半径O
−1bs’を羽根外周部半径Rtの40〜75%に選択
したものである。又、第9の発明に係る軸流送風機は、
個個の羽根に対し角度βを変化させた複数の羽根を有す
るものである。又、第10の発明に係る軸流送風機は、
個個の羽根に対し半径O−1bs’を変化させた複数の
羽根を有するものである。
In the axial blower according to the seventh aspect of the invention, the blade is attached to the rotating boss portion and faces the rotation direction, the blade front edge portion, the blade rear edge portion facing the opposite direction, and the boss portion. The origin of the blade is the outer periphery of the blade and the center of rotation is the origin O, and the radius O-1bs 'with the point 1bs' on the blade leading edge at an arbitrary radius is rotated by the angle β in the rotation direction. The intersection with the outer circumference of the boss when it is moved is 1b
As b ', a blade shape in which a portion near the boss portion of the blade front edge is extended in the rotational direction in a shape that passes through 1bs' and 1bb', and the angle β is selected to be 10 to 40 degrees. Is. The axial blower according to the eighth invention has a radius O
-1bs' is selected as 40 to 75% of the outer peripheral radius Rt of the blade. The axial blower according to the ninth invention is
It has a plurality of blades whose angle β is changed for each blade. The axial blower according to the tenth invention is
It has a plurality of blades whose radius O-1bs' is changed for each blade.

【0013】又、第11の発明に係る軸流送風機は、羽
根前縁部のボス部より部分を回転方向延長させた羽根形
状を、1bs’及び1bb’における接線を回転方向に
対し、凹となるような曲線で結び羽根前縁部とするよう
に形成したものである。又、第12の発明に係る軸流送
風機は、羽根前縁部とボス部との接続部を羽根外周部半
径の15〜35%の大きさの半径とする回転方向に対し
凹となるような曲線で結び、羽根前縁部とするように羽
根形状を形成したものである。
Also, in the axial blower according to the eleventh aspect of the present invention, the blade shape obtained by extending a portion from the boss portion of the blade front edge portion in the rotational direction is formed such that the tangent lines at 1bs 'and 1bb' are concave with respect to the rotational direction. It is formed so as to form the front edge of the knotting blade with such a curved line. Further, the axial blower according to the twelfth aspect of the invention is such that the connecting portion between the blade leading edge portion and the boss portion is concave with respect to the rotational direction having a radius of 15 to 35% of the radius of the blade outer peripheral portion. The blade shape is formed so that it is connected by a curved line to form the blade leading edge portion.

【0014】又、第13の発明に係る軸流送風機は、羽
根を取り付けて回転するボス部と、回転方向に面する羽
根前縁部、回転方向と反対方向に面する羽根後縁部、お
よびボス部に対向する羽根外周部から周が構成される羽
根と、回転の軸中心を原点Oとし、原点Oと羽根前縁部
上の任意の点1bs’とを結ぶ直線1bs’−Oを原点
Oを中心に回転方向に回転させたときの、直線1bs’
− Oとボス部半径であるボス部側面との交点1bb’
と点1bs’における接線を回転方向に対し、凹となる
ような任意曲線で結び羽根前縁部とするように羽根形状
を形成したものである。
In the axial blower according to the thirteenth aspect of the present invention, the boss portion having the blade attached thereto and rotated, the blade front edge portion facing in the rotation direction, the blade rear edge portion facing in the direction opposite to the rotation direction, and A vane whose circumference is composed of the vane outer peripheral portion facing the boss portion, and an origin O that is the axis of rotation, and a straight line 1bs'-O that connects the origin O and an arbitrary point 1bs' on the vane leading edge portion. Straight line 1bs' when rotated in the direction of rotation around O
-Intersection point 1bb 'between O and the side surface of the boss, which is the radius of the boss.
And the blade shape is formed so that the tangent line at the point 1bs' is connected to the blade front edge by an arbitrary curve that is concave with respect to the rotation direction.

【0015】又、第14発明に係る軸流送風機は、回転
の軸中心を原点Oとし、羽根の付け根の羽根前縁部上の
点1baO ’と原点Oを結んだ直線1baO’−O
を、原点Oを中心に回転方向に20〜50°の間である
角度δαb分回転させた時のボス部半径Rbの点1b
b’と羽根外周部半径の40〜70%の半径Rsをもつ
羽根前縁部上の点1bs’の間の形状を、羽根前縁部を
基準として、羽根のボス部半径Rbである羽根前縁部上
の点1ba’から角度δαb分回転方向に回転させたと
きのボス部半径Rbの羽根前縁部上の点1bb’の間に
存在するボス部半径Rb〜半径Rsの間の半径Rcの点
1bC’と原点Oを結んだ直線1bC’−Oと直線1b
a’−Oとのなす角度を示すδαの半径方向分布を δα=(δαb/(Rb−RS)2)×(R−RS)2
(Rb≦R≦Rs) で与え、羽根と連続するように、羽根前縁部上の点1b
s’よりボス部寄り部分の羽根前縁部を回転方向に延長
し、羽根形状を形成したものである。
In the axial blower according to the fourteenth aspect of the invention, the origin O is the center of rotation, and the straight line 1baO'-O connecting the origin O with the point 1baO 'on the blade leading edge of the root of the blade.
Is rotated about the origin O by an angle δαb which is between 20 and 50 ° in the rotation direction, and the point 1b of the boss radius Rb.
Before the blade, the shape between b ′ and the point 1bs ′ on the blade leading edge having a radius Rs of 40 to 70% of the blade outer peripheral radius is the boss radius Rb of the blade with respect to the blade leading edge. The radius Rc between the boss radius Rb and the radius Rs existing between the point 1bb 'on the blade leading edge of the boss radius Rb when rotated from the point 1ba' on the edge by the angle δαb. Line 1bC'-O connecting the point 1bC 'and the origin O and the line 1b
The radial distribution of δα indicating the angle formed by a′-O is δα = (δαb / (Rb-RS) 2) × (R-RS) 2
(Rb ≦ R ≦ Rs), so that the point 1b on the blade leading edge is continuous with the blade.
The blade shape is formed by extending the blade front edge portion closer to the boss portion than s ′ in the rotation direction.

【0016】又、第15の発明に係る送風機は、回転の
軸中心を原点Oとし、ベースの羽根1O’のボス部半径
Rbにおける羽根前縁部上の点1baO’と原点Oを結
んだ直線1baO’−Oを、原点Oを中心に回転方向に
20〜50°の間である角度δαb分回転させた時の点
を羽根前縁ボス部延長終点1bb’としたとき、羽根を
任意半径Rの円筒面で切断し、その断面を2次元平面に
展開して得られる展開図において、羽根1Oとそり角
θ、食い違い角ξが同一のまま、ボス部半径Rbでの翼
弦を、点1bbまで延長し、このときの羽根1Oのボス
部半径Rbにおける翼弦長LbOと前記点1bb〜羽根
後縁部1Cbまでの翼弦長Lb、この差を△Lbとし、
羽根外周部半径の40〜60%の半径Rsでの羽根前縁
部上の点1bsでの翼弦長LSとすると、ボス部半径R
bから羽根前縁部上の点1bsまでの翼弦長Lの半径方
向分布を L=△Lb/(Rs−Rb)2×(R−Rs)2+LS
(Rb≦R≦Rs) で与え、羽根形状を形成したものである。
Further, in the blower according to the fifteenth aspect of the present invention, the center of rotation is set as an origin O, and a straight line connecting the origin O with the point 1baO 'on the blade leading edge portion at the boss radius Rb of the blade 1O' of the base. When 1baO'-O is rotated about the origin O in the rotation direction by an angle δαb that is between 20 and 50 ° and the blade front edge boss extension end point 1bb 'is defined, the blade has an arbitrary radius R In a development view obtained by cutting the cross section at a cylindrical surface and developing the cross section into a two-dimensional plane, the blade chord at the boss radius Rb is set to the point 1bb while the blade 1O has the same warp angle θ and stagger angle ξ. The chord length LbO at the boss radius Rb of the blade 1O at this time and the chord length Lb from the point 1bb to the blade trailing edge portion 1Cb, and the difference is ΔLb,
Assuming that the chord length LS at the point 1bs on the blade leading edge at a radius Rs of 40 to 60% of the blade outer peripheral radius is the boss radius R
The radial distribution of the chord length L from b to the point 1bs on the blade leading edge is L = ΔLb / (Rs−Rb) 2 × (R−Rs) 2 + LS
(Rb ≦ R ≦ Rs) to form a blade shape.

【0017】又、第16の発明に係る軸流送風機は、軸
流送風機の羽根を任意半径Rの円筒面で切断し、その断
面を2次元平面に展開して得られる展開図において、そ
の羽根断面におけるそり線の形状を円弧形状とし、その
円弧を形成するための中心角をθ(θ:そり角)とした
場合、θの半径方向分布をθ=(θt−θb)×(R−
Rb)/(Rt−Rb)+θb(θt:羽根外周部での
そり角、θb:羽根ボス部半径Rbにおけるそり角)で
与え、θt=25゜〜35゜、θb=30゜〜55゜、θt
<θbとし、上記展開図において、羽根の翼弦線と上記
回転軸と平行で上記羽根の前縁部を通る直線とのなす角
度をξ(ξ:食い違い角)とするとき、ξの半径方向分
布を、ξ=(ξt−ξb)×(R−Rb)/(Rt−R
b)+ξb(ξt:羽根外周部での食い違い角ξ、ξ
b:ボス部半径Rbにおける食い違い角)で与え、ξt
=55゜〜70゜、ξb=40゜〜65゜、ξt>ξbと
し、さらに、翼弦長L、羽根間の円周方向距離(ピッ
チ)であるTとの比で定義される節弦比T/Lの値を、
各半径点においてT/L=1.1〜2.0とし、かつ上
記回転軸と直交する平面に軸流送風機を投影した投影図
において、上記羽根のボス部半径Rbの円筒面で切断し
たときの断面における翼弦線中心点をPb’とし、上記
回転軸を原点Oとして、上記O点とPb’点とを結ぶ直
線をX軸とした座標系で、上記羽根を任意半径Rの円筒
面で切断した時の翼弦線中心点をPR’として、直線P
R’−Oと上記X軸とのなす角度をδθ(δθ:回転方
向前進角)とした場合、δθの半径方向分布を δθ=δθt×(R−Rb)/(Rt−Rb) (Rt:羽根外周部半径、Rb:羽根ボス部半径、δθ
t:直線Pt’−OとX軸のなす角度)で与え、δθt
を25〜40°とし、まず羽根形状を形成し、この時の
羽根の付け根の羽根前縁部上の点1ba’と原点Oを結
んだ直線1ba’−Oを、原点Oを中心に回転方向に2
0〜50°の間である角度δαb分回転させた時のボス
部半径Rbの点1bb’と羽根外周部半径の40〜70
%の半径Rsをもつ羽根前縁部上の点1bs’の間の形
状を、前記羽根前縁部を基準として、前記羽根のボス部
半径Rbである羽根前縁部上の点1ba’から前記角度
δαb分回転方向に回転させたときのボス部半径Rbの
羽根前縁部上の点1bb’の間に存在するボス部半径R
b〜半径Rsの間の半径Rcの点1bC’と原点Oを結
んだ直線1bC’−Oと直線1ba’−Oとのなす角度
を示すδαの半径方向分布を δα=(δαb/(Rb−RS)2)×(R−RS)2
(Rb≦R≦Rs) で与え、前記羽根と連続するように、羽根前縁部上の点
1bs’よりボス部寄り部分の羽根前縁部を回転方向に
延長し、羽根形状を形成したものである。
In the axial blower according to the sixteenth invention, the blade of the axial blower is cut along a cylindrical surface having an arbitrary radius R and the cross section is developed into a two-dimensional plane. When the shape of the warp line in the cross section is an arc shape and the central angle for forming the arc is θ (θ: warp angle), the radial distribution of θ is θ = (θt−θb) × (R−
Rb) / (Rt−Rb) + θb (θt: warp angle at blade outer periphery, θb: warp angle at blade boss radius Rb), θt = 25 ° to 35 °, θb = 30 ° to 55 °, θt
<Θb, and in the above developed view, when the angle formed by the chord line of the blade and the straight line parallel to the rotation axis and passing through the leading edge of the blade is ξ (ξ: stagger angle), the radial direction of ξ The distribution is ξ = (ξt−ξb) × (R−Rb) / (Rt−R
b) + ξb (ξt: stagger angle ξ, ξ at the outer periphery of the blade
b: stagger angle at boss radius Rb), ξt
= 55 ° to 70 °, ξb = 40 ° to 65 °, ξt> ξb, and a chord ratio defined by the ratio of the chord length L and the circumferential distance (pitch) T between the blades. The value of T / L is
When T / L = 1.1 to 2.0 at each radius point and a projection view in which the axial blower is projected on a plane orthogonal to the rotation axis, when cut by a cylindrical surface having a boss radius Rb of the blade. The center point of the chord line in the cross section of Fig. 4 is Pb ', the axis of rotation is the origin O, and the straight line connecting the point O and Pb' is the X axis, and the blade is a cylindrical surface of arbitrary radius R. Let PR ′ be the center point of the chord line when cut with
When the angle between R′-O and the X axis is δθ (δθ: forward angle of rotation), the radial distribution of δθ is δθ = δθt × (R−Rb) / (Rt−Rb) (Rt: Blade outer radius, Rb: Blade boss radius, δθ
t: angle formed by the straight line Pt′−O and the X axis), and δθt
Is set to 25 to 40 °, a blade shape is first formed, and a straight line 1ba′-O connecting a point 1ba ′ on the blade leading edge portion of the blade root and an origin O at this time is rotated about the origin O. To 2
A point 1bb ′ of the boss radius Rb when rotated by an angle δαb between 0 and 50 ° and a blade outer peripheral radius of 40 to 70.
The shape between points 1bs ′ on the blade leading edge having a radius Rs of% is defined from the point 1ba ′ on the blade leading edge which is the boss radius Rb of the blade with the blade leading edge as a reference. The boss radius R existing between the points 1bb 'on the blade leading edge of the boss radius Rb when rotated in the rotation direction by the angle δαb.
The radial direction distribution of δα, which represents the angle between the straight line 1bC′-O connecting the point 1bC ′ of the radius Rc between the radius b and the radius Rs and the origin O, is δα = (δαb / (Rb- RS) 2) x (R-RS) 2
(Rb ≦ R ≦ Rs), and a blade shape is formed by extending the blade front edge portion closer to the boss from the point 1bs ′ on the blade front edge portion in the rotation direction so as to be continuous with the blade. Is.

【0018】又、第17の発明に係る軸流送風機は、軸
流送風機の羽根を任意半径Rの円筒面で切断し、その断
面を2次元平面に展開して得られる展開図において、そ
の羽根断面におけるそり線の形状を円弧形状とし、その
円弧を形成するための中心角をθ(θ:そり角)とした
場合、θの半径方向分布をθ=(θt−θb)×(R−
Rb)/(Rt−Rb)+θb(θt:羽根外周部での
そり角、θb:羽根ボス部半径Rbにおけるそり角)で
与え、θt=25゜〜35゜、θb=30゜〜55゜、θt
<θbとし、上記展開図において、羽根の翼弦線と上記
回転軸と平行で上記羽根の前縁部を通る直線とのなす角
度をξ(ξ:食い違い角)とするとき、ξの半径方向分
布を、ξ=(ξt−ξb)×(R−Rb)/(Rt−R
b)+ξb(ξt:羽根外周部での食い違い角ξ、ξ
b:ボス部半径Rbにおける食い違い角)で与え、ξt
=55゜〜70゜、ξb=40゜〜65゜、ξt>ξbと
し、かつ上記回転軸と直交する平面に軸流送風機を投影
した投影図において、上記羽根のボス部半径Rbの円筒
面で切断したときの断面における翼弦線中心点をPb
O’とし、上記回転軸を原点Oとして、上記O点とPb
O’点とを結ぶ直線をX軸とした座標系で、上記羽根を
任意半径Rの円筒面で切断した時の翼弦線中心点をPR
O’として、直線PRO’−Oと上記X軸とのなす角度
をδθ(δθ:回転方向前進角)とした場合、δθの半
径方向分布を δθ=δθt×(R−Rb)/(Rt−Rb) (Rt:羽根外周部半径、Rb:羽根ボス部半径、δθ
t:直線PtO’−OとX軸のなす角度)で与え、δθ
tを25〜40°とし、さらに、翼弦長LO、羽根間の
円周方向距離(ピッチ)であるTとの比で定義される節
弦比T/LOの値を、各半径点においてT/LO=1.
1〜2.0とし、まず羽根形状1O’を形成し、前記投
影図において、羽根1O’のボス部半径Rbにおける羽
根前縁部上の点1baO’と原点Oを結んだ直線1ba
O’−Oを、原点Oを中心に回転方向に20〜50°の
間である角度δαb分回転させた時の点を羽根前縁ボス
部延長終点1bb’としたとき、羽根を任意半径Rの円
筒面で切断し、その断面を2次元平面に展開して得られ
る展開図において、前記羽根1Oとそり角θ、食い違い
角ξが同一のまま、ボス部半径Rbでの翼弦を、前記点
1bbまで延長し、このときの前記羽根1Oのボス部半
径Rbにおける翼弦長LbOと前記点1bb〜羽根後縁
部1Cbまでの翼弦長Lb、この差を△Lbとし、羽根
外周部半径の40〜60%の半径Rsでの羽根前縁部上
の点1bsでの翼弦長LSとすると、ボス部半径Rbか
ら前記羽根前縁部上の点1bsまでの翼弦長Lの半径方
向分布を L=△Lb/(Rs−Rb)2×(R−Rs)2+LS
(Rb≦R≦Rs) で与え、羽根形状を形成したものである。又、第18の
発明に係る空気調和機は上述の軸流送風機を使用したも
のである。
In the axial blower according to the seventeenth aspect of the present invention, the blade of the axial blower is cut along a cylindrical surface having an arbitrary radius R, and its cross section is developed into a two-dimensional plane. When the shape of the warp line in the cross section is an arc shape and the central angle for forming the arc is θ (θ: warp angle), the radial distribution of θ is θ = (θt−θb) × (R−
Rb) / (Rt−Rb) + θb (θt: warp angle at blade outer periphery, θb: warp angle at blade boss radius Rb), θt = 25 ° to 35 °, θb = 30 ° to 55 °, θt
<Θb, and in the above developed view, when the angle formed by the chord line of the blade and the straight line parallel to the rotation axis and passing through the leading edge of the blade is ξ (ξ: stagger angle), the radial direction of ξ The distribution is ξ = (ξt−ξb) × (R−Rb) / (Rt−R
b) + ξb (ξt: stagger angle ξ, ξ at the outer periphery of the blade
b: stagger angle at boss radius Rb), ξt
= 55 ° to 70 °, ξb = 40 ° to 65 °, ξt> ξb, and a projection view of the axial blower projected on a plane orthogonal to the rotation axis, a cylindrical surface having a boss radius Rb of the blade Let Pb be the center point of the chord line in the cross section when cut.
O ′, the rotation axis as the origin O, and the point O and Pb
In a coordinate system with the straight line connecting the O'point as the X axis, the center point of the chord line when the blade is cut along a cylindrical surface with an arbitrary radius R is PR
As O ′, when the angle between the straight line PRO′-O and the X-axis is δθ (δθ: forward angle of rotation), the radial distribution of δθ is δθ = δθt × (R−Rb) / (Rt− Rb) (Rt: blade outer radius, Rb: blade boss radius, δθ
t: angle formed by the straight line PtO'-O and the X-axis), and δθ
Further, t is set to 25 to 40 °, and the value of the chord chord ratio T / LO defined by the ratio of the blade chord length LO and the circumferential distance (pitch) between the blades T is T at each radius point. / LO = 1.
1 to 2.0, first, a blade shape 1O 'is formed, and in the above projection, a straight line 1ba connecting a point 1baO' on the blade leading edge portion at the boss radius Rb of the blade 1O 'and an origin O.
When the point when the O′-O is rotated about the origin O in the rotation direction by an angle δαb that is between 20 and 50 ° is taken as the blade leading edge boss extension end point 1bb ′, the blade has an arbitrary radius R In a developed view obtained by cutting the cross section into a two-dimensional plane by cutting it along the cylindrical surface of, the blade chord at the boss radius Rb is the same as that of the blade 10 and the warp angle θ and the stagger angle ξ are the same. The blade chord length LbO at the boss radius Rb of the blade 1O at this time and the chord length Lb from the point 1bb to the blade trailing edge 1Cb at this time, the difference being ΔLb, and the blade outer circumference radius And a chord length LS at a point 1bs on the blade leading edge at a radius Rs of 40 to 60% of the radial direction of the chord length L from the boss radius Rb to the point 1bs on the blade leading edge. Distribution is L = ΔLb / (Rs−Rb) 2 × (R−Rs) 2 + LS
(Rb ≦ R ≦ Rs) to form a blade shape. An air conditioner according to the 18th aspect of the invention uses the axial blower described above.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施例1 以下、一実施例を図に基づいて説明する。図1はこの発
明における軸流送風機の一実施例を示す斜視図である。
例えば3枚羽根形状のものであり、動作については、主
に1枚の羽根1について述べるが、他の羽根についても
同様である。図において、1は3次元形状を持つ軸流送
風機の羽根、2はこの羽根を取り付けるボス部、3は羽
根1の回転軸、4は回転方向を示す矢印、1bは羽根前
縁部、1dは羽根外周部、1Cは羽根後縁部、7は羽根
前縁部1bのボス部よりに取り付けられる三角形平板で
ある。図2は図1の平面図である。
Example 1 An example will be described below with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of the axial blower according to the present invention.
For example, it has a shape of three blades, and the operation will be described mainly for one blade 1, but the same applies to the other blades. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion to which the blade is attached, 3 is a rotation axis of the blade 1, 4 is an arrow indicating a rotation direction, 1b is a blade leading edge portion, and 1d is a blade. The outer peripheral portion of the blade, 1C is a trailing edge portion of the blade, and 7 is a triangular flat plate attached from the boss portion of the leading edge portion 1b of the blade. FIG. 2 is a plan view of FIG.

【0020】図3は、回転軸3と直交する平面に羽根1
を投影した投影図である。図において、図1と同一符号
のものは同一のものを示す。1’は投影図における羽
根、1b’は投影図における羽根前縁部、1c’は投影
図における羽根後縁部、1d’は投影図における羽根外
周部である。図において、羽根厚とほぼ同一でかつほぼ
三角形した平板7’を、一辺7b’がほぼボス部2の円
周に沿い、他の一辺7c’は羽根前縁部1b’のボス部
よりに密着させ、回転方向から羽根に一体になるように
外挿し、羽根形状を形成している。図4は、図3の三角
形平板7’と羽根前縁部1b’付近を任意半径Rの円筒
面で切断したY−Y断面を、二次元平面に展開した拡大
図である。図において、1は軸流送風機の羽根、7は羽
根前縁部1bのボス部寄りに外挿される三角形平板、7
cはこの三角形平板7と羽根前縁部1bとの接着面、7
aは羽根前縁部1bと連続する三角形平板7の吸い込み
側端部を示す。
FIG. 3 shows the blade 1 on a plane orthogonal to the rotation axis 3.
It is the projection figure which projected. In the figure, the same symbols as those in FIG. 1 indicate the same components. Reference numeral 1'denotes a blade in the projection drawing, 1b 'denotes a blade leading edge portion in the projection drawing, 1c' denotes a blade trailing edge portion in the projection drawing, and 1d 'denotes a blade outer peripheral portion in the projection drawing. In the figure, a flat plate 7'having almost the same thickness as the blade and having a substantially triangular shape is attached so that one side 7b 'is substantially along the circumference of the boss portion 2 and the other side 7c' is closer to the boss portion of the blade front edge portion 1b '. Then, the blade is formed so as to be integrated with the blade in the rotation direction so as to be integrated with the blade. FIG. 4 is an enlarged view in which a YY cross section obtained by cutting the triangular flat plate 7 ′ and the vicinity of the blade leading edge portion 1b ′ of FIG. 3 with a cylindrical surface having an arbitrary radius R is developed into a two-dimensional plane. In the figure, 1 is a blade of an axial blower, 7 is a triangular flat plate that is externally inserted near the boss portion of the blade front edge portion 1b, 7
c is a bonding surface between the triangular flat plate 7 and the blade front edge portion 1b, 7
Reference symbol a indicates the suction side end of the triangular flat plate 7 which is continuous with the blade front edge 1b.

【0021】このように形成することにより、高圧損
時、図3のX−X断面を示す図5のように三角形平板7
の羽根前縁部1bにつながる一辺7aで圧力面9から負
圧面8への流れの回り込みにより発生する安定した縦渦
10により、流れは羽根面上に沿い、かつ吸い込み流れ
12が、この縦渦10に誘導されながら外部へ送風され
る。これにより、従来の軸流送風機における問題点とし
て、図101に示したような、高圧損時における羽根前
縁部1b付近の吸い込み流れ12の剥離による羽根負圧
面8上の流れ11の乱れを無くせ、低騒音化を図ること
ができる。図6は、従来の軸流送風機と上記の発明の一
実施例による軸流送風機との流量係数φに対する圧力係
数ψの関係および比騒音Ks[dB(A)]を実験的に求
めた特性図である。
By forming in this way, the triangular flat plate 7 is formed at the time of high pressure loss as shown in FIG. 5 showing the XX cross section of FIG.
The stable longitudinal vortex 10 generated by the wraparound of the flow from the pressure surface 9 to the suction surface 8 at one side 7a connected to the blade leading edge portion 1b causes the flow along the blade surface and the suction flow 12 The air is blown outside while being guided by 10. Thus, as a problem in the conventional axial blower, it is possible to eliminate the turbulence of the flow 11 on the blade suction surface 8 due to the separation of the suction flow 12 near the blade leading edge portion 1b at the time of high pressure loss as shown in FIG. It is possible to reduce noise. FIG. 6 is a characteristic diagram obtained by experimentally determining the relationship between the pressure coefficient ψ and the specific noise Ks [dB (A)] of the conventional axial flow fan and the axial flow fan according to the embodiment of the invention described above. Is.

【0022】ここで、流量係数φ、圧力係数ψ、比騒音
Ksについて説明する。流量係数φは、以下のように表
せ、無次元数である。 φ=Q/(π2/4・D3・(1-ν2)・N) Q:風量[m3/min] D:羽根外周部半径[m] ν:ボス比(ボス部半径/羽根外周部半径) N:回転数[r.p.m] また、圧力係数ψは、羽根外周速uに相当する動圧と圧
力上昇Pの比の無次元数である。 ψ=7200Ps/(ρ(πDN)2) Ps:静圧[Pa] D:羽根外周部半径[m] N:回転数[r.p.m] ρ:空気密度[Kg/m3] 一方、比騒音Ksは次式のように定義される。 Ks=SPL−10Log(Q・Ps2.5) SPL:騒音特性(SOUND PRESSURE LEVEL)[dB
(A)] Q :風量[m3/min] Ps:静圧[mmAq]
The flow coefficient φ, the pressure coefficient ψ, and the specific noise Ks will be described. The flow coefficient φ can be expressed as follows and is a dimensionless number. φ = Q / (π2 / 4 ・ D3 ・ (1-ν2) ・ N) Q: Air volume [m3 / min] D: Blade outer radius [m] ν: Boss ratio (boss radius / blade outer radius) N: Number of revolutions [rpm] Further, the pressure coefficient ψ is a dimensionless number of the ratio of the dynamic pressure corresponding to the blade outer peripheral speed u to the pressure increase P. ψ = 7200Ps / (ρ (πDN) 2) Ps: Static pressure [Pa] D: Blade outer radius [m] N: Rotation speed [rpm] ρ: Air density [Kg / m3] On the other hand, the specific noise Ks is It is defined like an expression. Ks = SPL-10Log (Q ・ Ps2.5) SPL: Noise characteristic (SOUND PRESSURE LEVEL) [dB
(A)] Q: Air volume [m3 / min] Ps: Static pressure [mmAq]

【0023】図中黒丸、黒四角は従来の軸流送風機の特
性、最小比騒音を、×、□はこの発明の一実施例におけ
る軸流送風機の特性、最小比騒音を示す。この特性図か
らわかるように、従来に比べ、羽根が失速していない動
作領域が低風量側まで延びかつ全体的に高静圧化が図れ
ている。一方、比騒音Ksは最大で1[dB(A)]の低減
が図れ低騒音である。
In the figure, black circles and black squares show the characteristics and the minimum specific noise of the conventional axial flow fan, and x and □ show the characteristics and the minimum specific noise of the axial flow fan in one embodiment of the present invention. As can be seen from this characteristic diagram, compared to the conventional case, the operating region in which the blades do not stall extends to the low air volume side and the static pressure is increased as a whole. On the other hand, the specific noise Ks can be reduced by 1 [dB (A)] at the maximum, which is low noise.

【0024】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、およびボス部に対向す
る羽根外周部から周が構成される羽根とを有する軸流送
風機の回転軸と直交する平面に軸流送風機を投影した投
影図において、羽根前縁部に厚みが羽根厚とほぼ同一の
平板を一辺がほぼボス部円周に沿い、他の一辺は羽根前
縁部のボス部寄りに密着させるように、回転方向から外
挿するように羽根に一体に形成したものであるので、吸
い込み口にホコリが堆積した時などの高圧損時、三角形
平板の羽根前縁部につながる一辺で圧力面から負圧面へ
の流れの回り込みにより発生する縦渦により、流れは羽
根面上に沿い、かつ吸い込み流れが、この縦渦に誘導さ
れながら外部へ送風されることにより、高圧損時におけ
る羽根前縁部1b付近の吸い込み流れ12の剥離による
羽根負圧面8上の流れ11の乱れを無くせ、低騒音化を
図ることができる。
In this axial blower, a boss portion having blades attached thereto and rotating, a blade front edge portion facing in the rotation direction, a blade trailing edge portion facing in the opposite direction to the rotation direction, and a blade outer periphery facing the boss portion. In a projection view in which the axial blower is projected on a plane orthogonal to the rotation axis of the axial blower having a blade whose periphery is composed of a portion, a flat plate whose thickness is almost the same as the blade thickness is approximately one side at the leading edge of the blade. Along the circumference of the boss, the other side is formed integrally with the blade so as to be attached to the front edge of the blade close to the boss, so that dust is accumulated on the suction port. At the time of high pressure loss, such as when a high pressure loss occurs, the longitudinal vortex generated by the wraparound of the flow from the pressure surface to the suction surface on one side connected to the blade leading edge of the triangular flat plate causes the flow to follow the blade surface and the suction flow Sending to the outside while being guided by the vertical vortex By being, Nakuse flow disturbances 11 on the blade suction surface 8 due to separation of the suction flow 12 near the blade leading edge 1b at the time of the high pressure loss, it is possible to reduce noise.

【0025】実施例2 以下、他の一実施例を図に基づいて説明する。図7はこ
の発明における軸流送風機の一実施例を示す斜視図で、
例えば3枚羽根形状のものであり、動作については、主
に1枚の羽根1について述べるが、他の羽根についても
同様である。図において、1は3次元形状を持つ軸流送
風機の羽根、2はこの羽根を取り付けるボス部、3は羽
根1の回転軸、4は回転方向を示す矢印、1bは羽根前
縁部、1dは羽根外周部、1Cは羽根後縁部、7は羽根
前縁部1bのボス部よりに取り付けられる三角形平板で
ある。また図8は図7の平面図である。
Second Embodiment Another embodiment will be described below with reference to the drawings. FIG. 7 is a perspective view showing an embodiment of the axial blower according to the present invention.
For example, it has a shape of three blades, and the operation will be described mainly for one blade 1, but the same applies to the other blades. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion to which the blade is attached, 3 is a rotation axis of the blade 1, 4 is an arrow indicating a rotation direction, 1b is a blade leading edge portion, and 1d is a blade. The outer peripheral portion of the blade, 1C is a trailing edge portion of the blade, and 7 is a triangular flat plate attached from the boss portion of the leading edge portion 1b of the blade. FIG. 8 is a plan view of FIG.

【0026】図9は、回転軸3と直交する平面に羽根1
を投影した投影図である。図において、図8と同一符号
のものは同一のものを示す。1’は投影図における羽
根、1b’は投影図における羽根前縁部、1c’は投影
図における羽根後縁部、1d’は投影図における羽根外
周部である。図において、回転軸を原点Oとし、上記O
点と羽根前縁部1b’上の任意の点1bs’とを結ぶ直
線をX軸とした座標系において、直線O−1bs’を原
点Oを中心に回転方向にβ回転させたときのボス部側面
との交点1bb’と前記点1bs’を通るように、羽根
厚とほぼ同一でかつほぼ三角形した平板7’を、一辺7
b’がほぼボス部2’の円周に沿うようにし、他の一辺
7c’は羽根前縁部1b’のボス部よりに密着させ、回
転方向から羽根に一体になるように外挿し、接着材によ
り接着または溶着することにより羽根形状を形成してい
る。
FIG. 9 shows the blade 1 on a plane orthogonal to the rotation axis 3.
It is the projection figure which projected. In the figure, the same symbols as in FIG. 8 indicate the same components. Reference numeral 1'denotes a blade in the projection view, 1b 'denotes a blade front edge portion in the projection view, 1c' denotes a blade trailing edge portion in the projection view, and 1d 'denotes a blade outer peripheral portion in the projection view. In the figure, the rotation axis is the origin O, and the above O
In a coordinate system with a straight line connecting the point and the arbitrary point 1bs' on the blade leading edge 1b 'as the X axis, the straight line O-1bs' is rotated by .beta. A flat plate 7'having substantially the same thickness as the blade and having a substantially triangular shape is attached to one side 7 so as to pass through the intersection 1bb 'with the side surface and the point 1bs'.
b'almost along the circumference of the boss portion 2 ', and the other side 7c' is brought into close contact with the boss portion of the blade front edge portion 1b ', and is externally attached so as to be integrated with the blade in the rotation direction, and adhered. The blade shape is formed by adhering or welding with a material.

【0027】図10は、図9の三角形平板7’と羽根前
縁部1b’付近を任意半径Rの円筒面で切断したY−Y
断面を、二次元平面に展開した拡大図である。図におい
て、1’は軸流送風機の羽根、7’は羽根前縁部1bの
ボス部寄りに外挿される三角形平板、7c’はこの三角
形平板7’と羽根前縁部1b’との接着面、7a’は羽
根前縁部1b’と三角形平板吸い込み側端部を示す。図
11は、三角形平板7を羽根前縁部1bに取り付け方法
の一例を示したものである。14は三角形平板の挿入方
向、15は3次元可動な取付冶具、1は羽根、2はボス
部、3は回転軸を示す。三角形平板7の取付方法は、ま
ず冶具15を回転軸に挿入し、三角形平板7を取り付け
る羽根前縁部1bの高さ、角度に合わせた後、三角形平
板7の羽根前縁部1bに密着させる部分7c凹部とボス
部側面と密着させる部分7b 平面部に接着剤を塗り、
冶具15を挿入方向14のように移動させることにより
取り付ける。
FIG. 10 is a Y-Y obtained by cutting the triangular flat plate 7'and the blade leading edge portion 1b 'shown in FIG. 9 by a cylindrical surface having an arbitrary radius R.
It is an enlarged view which expanded the cross section to a two-dimensional plane. In the figure, 1'is a blade of an axial blower, 7'is a triangular flat plate externally inserted near the boss portion of the blade leading edge 1b, and 7c 'is an adhesive surface between the triangular flat plate 7'and the blade leading edge 1b'. , 7a 'indicate the blade leading edge portion 1b' and the triangular plate suction side end portion. FIG. 11 shows an example of a method of attaching the triangular flat plate 7 to the blade front edge portion 1b. Reference numeral 14 is a direction of inserting the triangular flat plate, 15 is a three-dimensionally movable mounting jig, 1 is a blade, 2 is a boss portion, and 3 is a rotation axis. As for the method of attaching the triangular flat plate 7, first, the jig 15 is inserted into the rotary shaft, the height and angle of the blade front edge 1b to which the triangular flat plate 7 is attached are adjusted, and then the triangular flat plate 7 is brought into close contact with the blade front edge 1b. Part 7c Part 7b that is in close contact with the recess and the side surface of the boss
The jig 15 is attached by moving it in the insertion direction 14.

【0028】以上のように羽根形状を形成することによ
り、高圧損時、図9のX−X断面を示す図12のように
三角形平板7の羽根前縁部1bにつながる一辺7aで圧
力面9から負圧面8への流れの回り込みにより発生する
安定した縦渦10により、流れは羽根面上に沿い、かつ
吸い込み流れ12がこの縦渦10に誘導されながら外部
へ送風される。これにより、従来の軸流送風機における
問題点として、図102に示したような、高圧損時にお
ける羽根前縁部1b付近の吸い込み流れ12の剥離によ
る羽根負圧面8上の流れ11の乱れを無くせ、低騒音化
を図ることができる。また、既存の軸流送風機を容易に
改良できる。
By forming the blade shape as described above, at the time of high pressure loss, the pressure surface 9 is formed at one side 7a connected to the blade front edge portion 1b of the triangular flat plate 7 as shown in FIG. Due to the stable vertical vortex 10 generated by the wraparound of the flow from the suction surface 8 to the suction surface 8, the flow follows the vane surface, and the suction flow 12 is blown to the outside while being guided by the vertical vortex 10. Thus, as a problem in the conventional axial blower, it is possible to eliminate the turbulence of the flow 11 on the blade suction surface 8 due to the separation of the suction flow 12 near the blade leading edge portion 1b at the time of high pressure loss as shown in FIG. It is possible to reduce noise. In addition, the existing axial blower can be easily improved.

【0029】ここで、前記三角形平板7の一頂点が通る
羽根前縁部1b上の点1bsおよび前記直線O−1bs
を原点O中心に回転させ、ボス部2の側面との交点1b
bを求める時の回転角度βが、大きすぎたり、小さすぎ
ると逆に羽根に乱れを与えてしまい、騒音悪化してしま
う。従って、この羽根前縁部1b上の点1bsの位置お
よび回転角度βの最適範囲が存在する。図13は回転角
度β=一定の時例えば、約20〜30度の時、羽根前縁
部1b上の点1bsの位置を羽根外周部半径Rtに対す
る点1bsでの半径Rsの比率によって、騒音特性への
影響を実験的に求めたものである。このとき比騒音Ks
は、動作点によって変化するため、比騒音Ksが最小と
なる動作点での値を最小比騒音Ksminとしてグラフ
化している。ここで、比騒音Ksは次式のように定義さ
れる。 Ks=SPL−10Log(Q・Ps2.5) SPL:騒音特性(SOUND PRESSURE LEVEL)[dB
(A)] Q :風量[m3/min] Ps:静圧[mmAq] 図に示すように、羽根前縁部1b上の点1bsの位置で
の半径Rsは、羽根外周部半径Rtの0.4〜0.75倍の値
の間にあるとき、最小比騒音Ksminの値は小さく低
騒音である。また、図中Rs/Rt=0(Y軸上)は平
板を取り付けていない従来の軸流送風機の値を示すが、
従来の値に比べ、最大1[dB(A)]低騒音になっている
ことが分かる。
Here, a point 1bs on the blade leading edge 1b through which one apex of the triangular flat plate 7 passes and the straight line O-1bs.
Is rotated about the origin O and the intersection point 1b with the side surface of the boss portion 2
If the rotation angle β at the time of obtaining b is too large or too small, on the contrary, the blades are disturbed and the noise is deteriorated. Therefore, there is an optimum range of the position of the point 1bs on the blade leading edge 1b and the rotation angle β. FIG. 13 shows a noise characteristic when the rotation angle β = constant, for example, when the rotation angle β is about 20 to 30 degrees, the position of the point 1bs on the blade leading edge 1b is determined by the ratio of the radius Rs at the point 1bs to the blade outer peripheral radius Rt. This is an experimentally obtained effect. At this time, the specific noise Ks
Changes depending on the operating point, so the value at the operating point where the specific noise Ks is the minimum is plotted as the minimum specific noise Ksmin. Here, the specific noise Ks is defined by the following equation. Ks = SPL-10Log (Q ・ Ps2.5) SPL: Noise characteristic (SOUND PRESSURE LEVEL) [dB
(A)] Q: Air volume [m3 / min] Ps: Static pressure [mmAq] As shown in the figure, the radius Rs at the position of the point 1bs on the blade leading edge 1b is 0.4 to 0.4 of the blade outer peripheral radius Rt. When the value is between 0.75 times, the value of the minimum specific noise Ksmin is small and the noise is low. Further, in the figure, Rs / Rt = 0 (on the Y-axis) shows the value of the conventional axial blower to which the flat plate is not attached,
It can be seen that the maximum noise is 1 [dB (A)] lower than the conventional value.

【0030】図14は点1bsの位置を示す比率Rs/
Rt=一定の時、例えば0.6〜0.7の時、の図9に
おける回転角度βによる騒音特性への影響を実験的に求
めたものである。このとき比騒音Ksは動作点によって
変化するため比騒音Ksが最小となる動作点での値を最
小比騒音Ksminとしてグラフ化している。図に示す
ように、羽根前縁部1b上の点1bsと原点Oを結んだ
直線O−1bsを原点O中心にファン回転方向へ回転させ
るときの回転角度βは、10°〜40°の間にあると
き、最小比騒音Ksminの値は小さく低騒音である。
また、図中約ー10°付近の値は、平板を取り付けてい
ない従来の軸流送風機の値を示すが、従来の値に比べ、
最大1[dB(A)]低騒音になっていることが分かる。
FIG. 14 shows a ratio Rs / indicating the position of the point 1bs.
This is an experimentally obtained effect of the rotation angle β in FIG. 9 on the noise characteristic when Rt = constant, for example, 0.6 to 0.7. At this time, since the specific noise Ks changes depending on the operating point, the value at the operating point where the specific noise Ks becomes the minimum is graphed as the minimum specific noise Ksmin. As shown in the figure, when the straight line O-1bs connecting the point 1bs on the blade leading edge portion 1b and the origin O is rotated in the fan rotation direction around the origin O, the rotation angle β is between 10 ° and 40 °. In the case of, the value of the minimum specific noise Ksmin is small and the noise is low.
Also, the value around -10 ° in the figure shows the value of the conventional axial blower without the flat plate attached, but compared with the conventional value,
It can be seen that the maximum noise is 1 [dB (A)].

【0031】図15は1bsの位置の半径Rsと羽根外
周部半径Rtとの比率Rs/Rtと前記回転角度βの騒
音特性への影響を実験的に検討し、比騒音Ksが最小に
なる動作点での値をグラフ化した結果を示す。図15よ
り、0.4≦Rs/Rt≦0.75かつ10°≦β≦40°で
あれば、最小比騒音Ksminは十分小さく、低騒音で
ある。
FIG. 15 shows experimentally the effect of the ratio Rs / Rt between the radius Rs at the position of 1bs and the blade outer radius Rt and the rotation angle β on the noise characteristics, and the operation that minimizes the specific noise Ks. The results of graphing the values at points are shown. From FIG. 15, if 0.4 ≦ Rs / Rt ≦ 0.75 and 10 ° ≦ β ≦ 40 °, the minimum specific noise Ksmin is sufficiently small and the noise is low.

【0032】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、および上記ボス部に対
向する羽根外周部から周が構成される羽根とを有する軸
流送風機の回転軸と直交する平面に軸流送風機を投影し
た投影図において、羽根前縁部に厚みが羽根厚とほぼ同
一で、かつほぼ三角形をした平板を一辺がボス部円周に
沿い、かつ回転軸を原点Oとし上記O点と任意半径にお
ける羽根前縁部上の点1bs’とを結ぶ直線をX軸とし
た座標系において、直線O−1bs’を原点Oを中心に
回転方向に角度β分回転させたときの半径Rbのボス部
との交点を1bb’を頂点とし、上記角度βを10゜〜
40゜とし、他の一辺は羽根外周部半径Rtの40〜7
5%の羽根前縁部上の点1bs’を通るような形状に
し、羽根前縁部のボス部寄りに密着させ、回転方向から
外挿するように羽根に一体に形成したものであるので、
高圧損時、三角形平板7の羽根前縁部1bにつながる一
辺7aで圧力面から負圧面への流れの回り込みにより発
生する縦渦により、流れは羽根面上に沿い、かつ吸い込
み流れがこの縦渦に誘導されながら外部へ送風されるこ
とにより、高圧損時における羽根前縁部1b付近の吸い
込み流れ12の剥離による羽根負圧面8上の流れの11
の乱れを無くせ、低騒音化を図ることができる。
In this axial blower, a boss portion having blades attached thereto and rotating, a blade front edge portion facing in the rotation direction, a blade trailing edge portion facing in the direction opposite to the rotation direction, and a blade facing the boss portion. In a projection view in which the axial blower is projected on a plane orthogonal to the rotation axis of the axial blower having a vane whose circumference is formed from the outer peripheral portion, the thickness is almost the same as the blade thickness at the leading edge of the vane, and is substantially triangular. In the coordinate system with one side along the circumference of the boss and the axis of rotation as the origin O and the line connecting the point O and the point 1bs' on the blade leading edge at an arbitrary radius as the X axis, When O-1bs 'is rotated about the origin O in the rotation direction by an angle β, the intersection point with the boss portion having the radius Rb is 1bb', and the angle β is 10 ° to 10 °.
40 °, and the other side is 40 to 7 of the blade outer radius Rt.
Since it is shaped so as to pass through the point 1bs' on the blade leading edge portion of 5%, it is closely attached to the blade leading edge portion near the boss portion, and is integrally formed on the blade so as to be extrapolated from the rotational direction.
At the time of high pressure loss, the longitudinal vortex generated by the wraparound of the flow from the pressure surface to the suction surface at one side 7a connected to the blade front edge portion 1b of the triangular flat plate 7 causes the flow to follow the blade surface and the suction flow to be the longitudinal vortex. Of the flow on the blade negative pressure surface 8 due to separation of the suction flow 12 near the blade leading edge portion 1b at the time of high pressure loss by being blown to the outside while being guided to
Disturbance can be eliminated, and noise can be reduced.

【0033】実施例3 以下、他の一実施例を図に基づいて説明する。図16は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す矢印、1bは
羽根前縁部、1dは羽根外周部、1Cは羽根後縁部を示
す。
Third Embodiment Another embodiment will be described below with reference to the drawings. FIG. 16 is a perspective view showing an embodiment of the axial blower according to the present invention, which has, for example, a shape of three blades, and the operation will be mainly described for one blade 1, but the same applies to other blades. Is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion to which the blade is attached,
Reference numeral 3 denotes a rotation axis of the blade 1, 4 denotes an arrow indicating a rotation direction, 1b denotes a blade leading edge portion, 1d denotes a blade outer peripheral portion, and 1C denotes a blade trailing edge portion.

【0034】また、図17は、図16の平面図である。
図18は、回転軸3と直交する平面に羽根1を投影した
投影図である。図において、図17と同一符号のものは
同一のものを示す。1’は投影図における羽根、1b’
は投影図における羽根前縁部、1c’は投影図における
羽根後縁部、1d’は投影図における羽根外周部であ
る。図において、回転軸を原点Oとし、上記O点と羽根
前縁部1b’上の任意の点1bs’とを結ぶ直線をX軸
とした座標系において、直線O−1bs’を原点Oを中
心に回転方向に角度β回転させたときのボス部側面との
交点1bb’と前記点1bs’を通る直線1bb’−1
bs’が羽根前縁部1b’となるように、羽根前縁部1
b’のボス部2寄りの部分を軸流送風機の回転方向に延
長したような羽根形状を形成している。
FIG. 17 is a plan view of FIG.
FIG. 18 is a projection view in which the blade 1 is projected on a plane orthogonal to the rotation axis 3. In the figure, the same symbols as those in FIG. 17 indicate the same components. 1'is the blade in the projection, 1b '
Is a blade front edge portion in the projection view, 1c ′ is a blade trailing edge portion in the projection view, and 1d ′ is a blade outer peripheral portion in the projection view. In the figure, in the coordinate system with the rotation axis as the origin O and the straight line connecting the point O and any point 1bs' on the blade leading edge 1b 'as the X axis, the straight line O-1bs' is centered at the origin O. A straight line 1bb'-1 passing through the intersection point 1bb 'with the side surface of the boss and the point 1bs' when rotated by the angle β in the rotation direction.
so that bs 'becomes the blade leading edge 1b', the blade leading edge 1
A blade shape is formed such that a portion of b ′ near the boss portion 2 is extended in the rotation direction of the axial blower.

【0035】このように形成することにより、高圧損
時、図18の羽根前縁部1b’の一部である1bs’−
1bb’のX−X断面である図19において、前記1b
s−1bbの圧力面9から負圧面8への流れの回り込み
により発生する安定した縦渦10により、流れは羽根面
上に沿い、かつ吸い込み流れ12がこの縦渦10に誘導
されながら外部へ送風される。これにより、従来の軸流
送風機における問題点として、図102に示したよう
な、高圧損時における羽根前縁部1b付近の吸い込み流
れ12の剥離による羽根負圧面8上の流れ11の乱れを
無くせ、低騒音化を図ることができる。
By forming in this way, at the time of high pressure loss, 1bs'- which is a part of the blade leading edge 1b 'of FIG.
In FIG. 19, which is an XX cross section of 1bb ′,
By the stable vertical vortex 10 generated by the sneak of the flow from the pressure surface 9 to the suction surface 8 of s-1bb, the flow is along the vane surface, and the suction flow 12 is guided to the vertical vortex 10 and is blown to the outside. To be done. Thus, as a problem in the conventional axial blower, it is possible to eliminate the turbulence of the flow 11 on the blade suction surface 8 due to the separation of the suction flow 12 near the blade leading edge portion 1b at the time of high pressure loss as shown in FIG. It is possible to reduce noise.

【0036】また、実施例2のように別部品を取り付け
ることにより羽根形状を形成するのと違い、羽根を一体
成形で製作することから、つなぎ目での凹部や接着剤に
よる凸部による流れの乱れの発生を防げ、低騒音化を図
ることができる。ここで、羽根前縁部1bのボス部2よ
りの部分1bs’−1bb’を回転方向に延長する際の
点1bsの位置および前記直線O−1bsを原点O中心
に回転させ、ボス部2の側面との交点1bbを決定する
時の回転角度βが、大きすぎたり、小さすぎると逆に羽
根に乱れを与えてしまい、騒音悪化してしまう。従っ
て、この羽根前縁部1b上の点1bsの位置および回転
角度βの最適範囲が存在する。図20は回転角度β=一
定の時の、羽根前縁部1b上の点1bsの位置を羽根外
周部半径Rtに対する点1bsでの半径Rsの比率によ
って、騒音特性への影響を実験的に求めたものである。
このとき比騒音Ksは、動作点によって変化するため、
比騒音Ksが最小となる動作点での値を最小比騒音Ks
minとしてグラフ化している。ここで、比騒音Ksは
次式のように定義される。 Ks=SPL−10Log(Q・Ps2.5) SPL:騒音特性(SOUND PRESSURE LEVEL)[dB
(A)] Q :風量[m3/min] Ps:静圧[mmAq]
Further, unlike the case where the blade shape is formed by attaching another component as in the second embodiment, since the blade is integrally formed, the flow is disturbed by the concave portion at the joint or the convex portion due to the adhesive. It is possible to prevent the occurrence of noise and reduce noise. Here, the position of the point 1bs at the time of extending the portion 1bs'-1bb 'from the boss portion 2 of the blade leading edge portion 1b in the rotation direction and the straight line O-1bs are rotated about the origin O, and the boss portion 2 is rotated. If the rotation angle β at the time of determining the intersection 1bb with the side surface is too large or too small, on the contrary, the blade is disturbed and noise is deteriorated. Therefore, there is an optimum range of the position of the point 1bs on the blade leading edge 1b and the rotation angle β. FIG. 20 shows experimentally the influence on the noise characteristic of the position of the point 1bs on the blade leading edge 1b when the rotation angle β = constant, by the ratio of the radius Rs at the point 1bs to the blade outer radius Rt. It is a thing.
At this time, the specific noise Ks changes depending on the operating point.
The value at the operating point where the specific noise Ks is the minimum is the minimum specific noise Ks
Graphed as min. Here, the specific noise Ks is defined by the following equation. Ks = SPL-10Log (Q ・ Ps2.5) SPL: Noise characteristic (SOUND PRESSURE LEVEL) [dB
(A)] Q: Air volume [m3 / min] Ps: Static pressure [mmAq]

【0037】図に示すように、羽根前縁部1b上の点1
bsの位置での半径Rsは、羽根外周部半径Rtの0.4
〜0.75倍の値の間にあるとき、最小比騒音Ksminの
値は小さく低騒音である。また、図中Rs/Rt=0
(Y軸上)は平板を取り付けていない従来の軸流送風機
の値を示すが、従来の値に比べ、最大2[dB(A)]低騒
音になっていることが分かる。
As shown in the figure, the point 1 on the blade leading edge 1b
The radius Rs at the position of bs is 0.4 of the outer radius Rt of the blade.
The value of the minimum specific noise Ksmin is small and low when it is between 0.75 and 0.75 times. Further, in the figure, Rs / Rt = 0
(On the Y-axis) shows the value of the conventional axial flow fan without the flat plate attached, but it can be seen that the maximum noise is 2 [dB (A)] lower than the conventional value.

【0038】図21は点1bsの位置を示す比率Rs/
Rt=一定の時の、図18における回転角度βによる騒
音特性への影響を実験的に求めたものである。このとき
比騒音Ksは動作点によって変化するため比騒音Ksが
最小となる動作点での値を最小比騒音Ksminとして
グラフ化している。図に示すように、羽根前縁部1b上
の点1bsと原点Oを結んだ直線O−1bsを原点O中
心にファン回転方向へ回転させるときの回転角度βは、1
0°〜40°の間にあるとき、最小比騒音Ksminの
値は小さく低騒音である。また、図中約ー10°付近の
値は、平板を取り付けていない従来の軸流送風機の値を
示すが、従来の値に比べ、最大2[dB(A)]低騒音にな
っていることが分かる。
FIG. 21 shows a ratio Rs / indicating the position of the point 1bs.
It is an experimental result of the influence of the rotation angle β in FIG. 18 on the noise characteristics when Rt = constant. At this time, since the specific noise Ks changes depending on the operating point, the value at the operating point where the specific noise Ks becomes the minimum is graphed as the minimum specific noise Ksmin. As shown in the figure, when the straight line O-1bs connecting the point 1bs on the blade leading edge 1b and the origin O is rotated in the fan rotation direction about the origin O, the rotation angle β is 1.
When it is between 0 ° and 40 °, the value of the minimum specific noise Ksmin is small and the noise is low. In addition, the value around -10 ° in the figure shows the value of the conventional axial flow fan without the flat plate attached, but it is 2 [dB (A)] low noise at maximum compared to the conventional value. I understand.

【0039】図22は1bsの位置の半径Rsと羽根外
周部半径Rtとの比率Rs/Rtと前記回転角度βの騒
音特性への影響を実験的に検討し、比騒音Ksが最小に
なる動作点での値をグラフ化した結果を示す。図22よ
り、0.4≦Rs/Rt≦0.75かつ10°≦β≦40°で
あれば、最小比騒音Ksminは十分小さく、低騒音で
ある。
FIG. 22 experimentally examines the effect of the ratio Rs / Rt of the radius Rs at the position of 1 bs and the outer peripheral radius Rt of the blade and the rotation angle β on the noise characteristics, and the operation that minimizes the specific noise Ks. The results of graphing the values at points are shown. From FIG. 22, if 0.4 ≦ Rs / Rt ≦ 0.75 and 10 ° ≦ β ≦ 40 °, the minimum specific noise Ksmin is sufficiently small and the noise is low.

【0040】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、およびボス部に対向す
る羽根外周部から周が構成される羽根とを有する軸流送
風機の回転軸と直交する平面に軸流送風機を投影した投
影図において、回転軸Oと羽根前縁部上の羽根外周部半
径の40〜75%の半径である点1bs’とを結ぶ直線
O−1bs’を原点Oを中心に回転方向に10〜40°
の間である角度分回転させ、この直線O−1bs’とボ
ス部半径であるボス部側面との交点1bb’と前記1b
s’を直線で結び、羽根前縁部のボス部寄りの部分を回
転方向に延長させた羽根形状を形成したものであるの
で、高圧損時、羽根前縁部1b’の一部であるX−X断
面において、圧力面9から負圧面8への流れの回り込み
により発生する縦渦により、流れは羽根面上に沿い、か
つ吸い込み流れがこの縦渦に誘導されながら外部へ送風
されることにより、高圧損時における羽根前縁部1b付
近の吸い込み流れ12の剥離による羽根負圧面8上の流
れ11の乱れを無くせ、低騒音化を図ることができる。
This axial-flow blower has a boss portion that is rotated by attaching a blade, a blade front edge portion that faces in the rotation direction, a blade trailing edge portion that faces in the opposite direction to the rotation direction, and a blade outer periphery facing the boss portion. In a projection view in which the axial blower is projected on a plane orthogonal to the rotation axis of the axial blower having a blade whose periphery is formed by a portion, a rotation axis O and a blade outer peripheral radius of 40 to 75 on a blade leading edge portion are included. The straight line O-1bs 'connecting with the point 1bs' having a radius of 10% is rotated about the origin O in the rotation direction by 10 to 40 °.
Between the straight line O-1bs' and the side surface of the boss portion which is the radius of the boss portion 1bb 'and 1b'.
Since s'is connected by a straight line and a blade shape is formed by extending a portion of the blade leading edge portion near the boss portion in the rotational direction, X is a part of the blade leading edge portion 1b 'during high pressure loss. In the −X cross section, the longitudinal vortex generated by the wraparound of the flow from the pressure surface 9 to the suction surface 8 causes the flow to follow the vane surface, and the suction flow is blown to the outside while being guided by the vertical vortex. The disturbance of the flow 11 on the blade negative pressure surface 8 due to the separation of the suction flow 12 near the blade front edge portion 1b at the time of high pressure loss can be eliminated, and noise can be reduced.

【0041】実施例4 以下、他の一実施例を図に基づいて説明する。図23は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す矢印、1bは
羽根前縁部、1dは羽根外周部、1Cは羽根後縁部であ
る。
Fourth Embodiment Another embodiment will be described below with reference to the drawings. FIG. 23 is a perspective view showing an embodiment of the axial blower according to the present invention, which has, for example, a three-blade shape, and the operation will be described mainly for one blade 1, but the same applies to other blades. Is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion to which the blade is attached,
Reference numeral 3 is a rotation axis of the blade 1, 4 is an arrow indicating a rotation direction, 1b is a blade leading edge portion, 1d is a blade outer peripheral portion, and 1C is a blade trailing edge portion.

【0042】図24は、回転軸3と直交する平面に羽根
1を投影した投影図である。図において、図23と同一
符号のものは同一のものを示す。1I’は投影図におけ
る羽根、1bI’は投影図における羽根前縁部、1cI’
は投影図における羽根後縁部、1I’は投影図における
羽根外周部である。また、添字II、IIIは他の羽根の同
一のものを示す。図において、回転軸を原点Oとし、上
記O点と各羽根で異なる羽根外周部半径Rtの40〜7
5%の半径における羽根前縁部1b’上の点1bs’と
を結ぶ直線をX軸とした座標系において、直線O−1b
s’を原点Oを中心に回転方向に角度β回転させたとき
のボス部側面との交点1bb’と前記点1bs’を通る
直線1bb’−1bs’が羽根前縁部1b’となるよう
に、各羽根の羽根前縁部1b’のボス部2寄りの部分を
軸流送風機の回転方向に延長したような羽根形状を形成
している。このように形成することにより、高圧損時、
図24の羽根前縁部1b’の一部である1bs’−1b
b’のA−A断面である図25において、前記1bs−
1bbの圧力面9から負圧面8への流れの回り込みによ
り発生する安定した縦渦10により、流れは羽根面上に
沿い、かつ吸い込み流れ12がこの縦渦10に誘導され
ながら外部へ送風される。これにより、従来の軸流送風
機における問題点として、図101に示したような、高
圧損時における羽根前縁部1b付近の吸い込み流れ12
の剥離による羽根負圧面8上の流れ11の乱れを無く
せ、低騒音化を図ることができる。
FIG. 24 is a projection view in which the blade 1 is projected on a plane orthogonal to the rotation axis 3. In the figure, the same symbols as those in FIG. 23 indicate the same components. 1I 'is the blade in the projection, 1bI' is the leading edge of the blade in the projection, 1cI '
Is the trailing edge of the blade in the projected view, and 1I 'is the outer peripheral portion of the blade in the projected view. Also, the subscripts II and III indicate the same of the other blades. In the drawing, the rotation axis is the origin O, and the blade outer radius Rt of 40 to 7 different from the above point O for each blade.
In the coordinate system with the X axis being the straight line connecting the point 1bs 'on the blade leading edge 1b' at the radius of 5%, the straight line O-1b
The straight line 1bb'-1bs 'passing through the point 1bs' and the intersection 1bb 'with the side surface of the boss portion when s'is rotated by the angle β in the rotation direction about the origin O becomes the blade leading edge 1b'. A blade shape is formed such that a portion of each blade near the boss portion 2 of the blade leading edge portion 1b ′ is extended in the rotation direction of the axial blower. By forming in this way, at the time of high pressure loss,
1bs'-1b which is a part of the blade leading edge portion 1b 'of FIG.
In FIG. 25 which is an AA cross section of b ′, 1bs-
A stable vertical vortex 10 generated by the wraparound of the flow from the pressure surface 9 of 1 bb to the suction surface 8 causes the flow to follow the vane surface, and the suction flow 12 is guided to the vertical vortex 10 and blown to the outside. . Therefore, as a problem in the conventional axial blower, the suction flow 12 near the blade leading edge portion 1b at the time of high pressure loss as shown in FIG.
It is possible to eliminate the turbulence of the flow 11 on the blade negative pressure surface 8 due to the separation of, and to reduce the noise.

【0043】また、各羽根の羽根前縁部1bI’、1bI
I’、1bIII’のボス部より部分が異なるため、図26
のように、従来図中実線で示した羽根枚数Zと回転数N
[r.p.m]により決まる回転音およびこの発生周波数
(NZ/60[Hz])の正数倍の音によるピーク音が破線
のようになくなり、特定周波数による音を低減できる。
これにより、製品で問題になる異常音を回避できる。
Further, the blade leading edges 1bI ', 1bI of each blade
Since the part is different from the boss part of I ', 1bIII',
As shown in FIG.
The rotation sound determined by [rpm] and the peak sound due to a sound that is a positive multiple of the generated frequency (NZ / 60 [Hz]) are eliminated as indicated by the broken line, and the sound at the specific frequency can be reduced.
As a result, it is possible to avoid the abnormal sound that is a problem in the product.

【0044】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、およびボス部に対向す
る羽根外周部から周が構成される羽根とを有する軸流送
風機の回転軸と直交する平面に軸流送風機を投影した投
影図において、回転軸Oと羽根前縁部上の羽根外周部半
径の40〜75%の半径である点1bs’とを結ぶ直線
O−1bs’を原点Oを中心に回転方向に10〜40°
の間である角度分回転させ、この直線O−1bs’とボ
ス部半径であるボス部側面との交点1bb’を、範囲で
各羽根ごとに変えて羽根形状を形成したものであるの
で、高圧損時、羽根前縁部1b’の一部である1bs’
−1bb’の圧力面9から負圧面8への流れの回り込み
により発生する安定した縦渦10により、流れは羽根面
上に沿い、かつ吸い込み流れ12がこの縦渦10に誘導
されながら外部へ送風されことにより、高圧損時におけ
る羽根前縁部1b付近の吸い込み流れ12の剥離による
羽根負圧面8上の流れ11の乱れを無くせ、低騒音化を
図ることができる。また、各羽根の羽根前縁部のボス部
より部分が異なるため、従来の軸流送風機における羽根
枚数Zと回転数N[r.p.m]により決まる回転音および
この発生周波数(NZ/60[Hz])の正数倍の音による
ピーク音がなくなり、特定周波数による音を低減でき
る。これにより、製品で問題になる異常音を回避でき
る。
This axial-flow blower has a boss portion with the blades attached and rotating, a blade front edge portion facing the rotation direction, a blade trailing edge portion facing the direction opposite to the rotation direction, and a blade outer periphery facing the boss portion. In a projection view in which the axial blower is projected on a plane orthogonal to the rotation axis of the axial blower having a blade whose periphery is formed by a portion, a rotation axis O and a blade outer peripheral radius of 40 to 75 on a blade leading edge portion are included. The straight line O-1bs 'connecting the point 1bs' having a radius of 10% is rotated about the origin O in the rotation direction by 10 to 40 °
The blade shape is formed by changing the intersection point 1bb 'between this straight line O-1bs' and the boss side surface, which is the radius of the boss section, for each blade within a range, At the time of loss, 1bs 'which is a part of the blade leading edge 1b'
By the stable vertical vortex 10 generated by the wraparound of the flow from the pressure surface 9 of -1bb 'to the suction surface 8, the flow is along the blade surface, and the suction flow 12 is guided to the vertical vortex 10 and is blown to the outside. As a result, turbulence of the flow 11 on the blade negative pressure surface 8 due to separation of the suction flow 12 near the blade front edge portion 1b at the time of high pressure loss can be eliminated, and noise can be reduced. In addition, since the portion of each blade that is different from the boss portion of the blade leading edge is different, the rotation noise determined by the number of blades Z and the rotation speed N [rpm] in the conventional axial blower, and the generation frequency (NZ / 60 [Hz]) The peak sound due to a sound that is a positive multiple of is eliminated, and the sound due to the specific frequency can be reduced. As a result, it is possible to avoid the abnormal sound that is a problem in the product.

【0045】実施例5 以下、他の一実施例を図に基づいて説明する。図27は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す矢印、1bは
羽根前縁部、1dは羽根外周部、1Cは羽根後縁部であ
る。図28は図27の正面図である。
Fifth Embodiment Another embodiment will be described below with reference to the drawings. FIG. 27 is a perspective view showing an embodiment of the axial blower according to the present invention, which has, for example, a three-blade shape, and the operation will be mainly described for one blade 1, but the same applies to other blades. Is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion to which the blade is attached,
Reference numeral 3 is a rotation axis of the blade 1, 4 is an arrow indicating a rotation direction, 1b is a blade leading edge portion, 1d is a blade outer peripheral portion, and 1C is a blade trailing edge portion. 28 is a front view of FIG. 27.

【0046】図29は、回転軸3と直交する平面に羽根
1を投影した投影図である。図において、図28と同一
符号のものは同一のものを示す。1’は投影図における
羽根、1b’は投影図における羽根前縁部、1c’は投
影図における羽根後縁部、1d’は投影図における羽根
外周部である。投影図において、回転軸Oと羽根前縁部
上の任意の点1bs’とを結ぶ直線O−1bs’を原点
Oを中心に回転方向に回転させたときの、直線O−1b
s’とボス部半径であるボス部側面との交点1bb’と
前記点1bs’における接線を回転方向に対し、凹とな
るような任意曲線で結び羽根前縁部とするように羽根形
状を形成している。
FIG. 29 is a projection view in which the blade 1 is projected on a plane orthogonal to the rotation axis 3. In the figure, the same symbols as in FIG. 28 indicate the same items. Reference numeral 1'denotes a blade in the projection drawing, 1b 'denotes a blade leading edge portion in the projection drawing, 1c' denotes a blade trailing edge portion in the projection drawing, and 1d 'denotes a blade outer peripheral portion in the projection drawing. In the projection view, a straight line O-1bs ′ connecting the rotation axis O and an arbitrary point 1bs ′ on the blade front edge portion is rotated about the origin O in the rotation direction to obtain a straight line O-1b.
A blade shape is formed so that a tangent line at an intersection point 1bb ′ between s ′ and a side surface of the boss which is the radius of the boss and the tangent line at the point 1bs ′ is an arbitrary curve which is concave with respect to the rotation direction to form a blade leading edge portion. are doing.

【0047】このように形成することにより、高圧損
時、図29のX−X断面を示す図30のように、羽根前
縁部1bのボス部寄りの部分の羽根の圧力面9から負圧
面8への流れの回り込みにより発生する安定した縦渦1
0により、流れは羽根面上に沿い、かつ吸い込み流れ1
2が、この縦渦10に誘導されながら図31のように外
部へ送風される。これにより、従来の軸流送風機におけ
る問題点として、図102に示したような、高圧損時に
おける羽根前縁部1b付近の吸い込み流れ12の剥離に
よる羽根負圧面8上の流れ11の乱れを無くせ、低騒音
化を図ることができる。図32は、従来の軸流送風機と
上記第5の発明の一実施例による軸流送風機との流量係
数φに対する圧力係数ψの関係および比騒音Ks[dB
(A)]を実験的に求めた特性図である。図中黒丸、黒四
角は従来の軸流送風機の特性、最小比騒音を、×、□は
この発明の一実施例における軸流送風機の特性、最小比
騒音を示す。この特性図からわかるように、従来に比
べ、動作領域が低風量側まで延びかつ全体的に高静圧化
が図れている。一方、比騒音Ksは最大で2.5[dB
(A)]の低減が図れ低騒音である。
With this structure, at the time of high pressure loss, as shown in FIG. 30 showing the XX cross section of FIG. 29, the blade pressure surface 9 to the suction surface of the blade front edge portion 1b near the boss portion. Stable vertical vortex 1 generated by wraparound flow
By 0, the flow is along the vane surface, and the suction flow is 1
2 is blown to the outside as shown in FIG. 31 while being guided by the vertical vortex 10. Thus, as a problem in the conventional axial blower, it is possible to eliminate the turbulence of the flow 11 on the blade suction surface 8 due to the separation of the suction flow 12 near the blade leading edge portion 1b at the time of high pressure loss as shown in FIG. It is possible to reduce noise. FIG. 32 shows the relationship between the flow coefficient φ and the pressure coefficient ψ and the specific noise Ks [dB of the conventional axial flow fan and the axial flow fan according to the embodiment of the fifth invention.
It is a characteristic view which calculated | required (A)] experimentally. In the figure, black circles and black squares show the characteristics and the minimum specific noise of the conventional axial flow fan, and x and □ show the characteristics and the minimum specific noise of the axial flow fan in one embodiment of the present invention. As can be seen from this characteristic diagram, compared with the conventional case, the operating region extends to the low air volume side and the static pressure is increased as a whole. On the other hand, the maximum specific noise Ks is 2.5 [dB
(A)] and low noise.

【0048】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、およびボス部に対向す
る羽根外周部から周が構成される羽根とを有する軸流送
風機の回転軸と直交する平面に軸流送風機を投影した投
影図において、回転軸Oと羽根前縁部上の任意の点1b
s’とを結ぶ直線O−1bs’を原点Oを中心に回転方
向に回転させたときの、直線O−1bs’とボス部半径
であるボス部側面との交点1bb’と前記点1bs’に
おける接線を回転方向に対し、凹となるような任意曲線
で結び羽根前縁部とするように羽根形状を形成したもの
であるので、高圧損時、羽根前縁部のボス部寄りの部分
の羽根の圧力面9から負圧面8への流れの回り込みによ
り発生する縦渦により、流れは羽根面上に沿い、かつ吸
い込み流れが、この縦渦に誘導されながら外部へ送風さ
れることにより、高圧損時における羽根前縁部1b付近
の吸い込み流れの剥離による羽根負圧面上の流れの乱れ
を無くせ、低騒音化を図ることができる。
In this axial blower, a boss portion having blades attached thereto and rotated, a blade front edge portion facing in the rotation direction, a blade trailing edge portion facing in the direction opposite to the rotation direction, and a blade outer periphery facing the boss portion. In a projection view in which the axial blower is projected on a plane orthogonal to the rotation axis of the axial blower having a blade whose periphery is composed of a portion, the rotation axis O and an arbitrary point 1b on the blade leading edge portion
When the straight line O-1bs 'connecting to s'is rotated in the rotation direction about the origin O, the intersection point 1bb' between the straight line O-1bs 'and the side surface of the boss portion, which is the radius of the boss portion, and the point 1bs' Since the blade shape is formed by connecting the tangent line with an arbitrary curve that is concave with respect to the rotation direction to form the blade leading edge, the blade at the portion near the boss at the blade leading edge at high pressure loss Of the flow from the pressure surface 9 to the suction surface 8 due to the vertical vortex, the flow follows the blade surface, and the suction flow is blown to the outside while being guided by the vertical vortex. At this time, the disturbance of the flow on the blade negative pressure surface due to the separation of the suction flow near the blade front edge portion 1b can be eliminated, and the noise can be reduced.

【0049】実施例6 以下、他の一実施例を図に基づいて説明する。図33は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す矢印、1bは
羽根前縁部、1dは羽根外周部、1Cは羽根後縁部であ
る。図34は図33の正面図である。
Sixth Embodiment Another embodiment will be described below with reference to the drawings. FIG. 33 is a perspective view showing an embodiment of the axial blower according to the present invention, which has, for example, a three-blade shape. The operation will be described mainly for one blade 1, but the same applies to the other blades. Is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion to which the blade is attached,
Reference numeral 3 is a rotation axis of the blade 1, 4 is an arrow indicating a rotation direction, 1b is a blade leading edge portion, 1d is a blade outer peripheral portion, and 1C is a blade trailing edge portion. 34 is a front view of FIG. 33.

【0050】図35は、回転軸3と直交する平面に羽根
1を投影した投影図である。図において、図34と同一
符号のものは同一のものを示す。1’は投影図における
羽根、1b’は投影図における羽根前縁部、1c’は投
影図における羽根後縁部、1d’は投影図における羽根
外周部である。図において、回転軸を原点Oとし、上記
O点と羽根前縁部1b’上の任意の点1bs’とを結ぶ
直線をX軸とした座標系において、直線O−1bs’を
原点Oを中心に回転方向にβ回転させたときのボス部側
面との交点1bb’と前記点1bs’における接線を回
転方向に対し、凹となるような任意曲線で結び羽根前縁
部1b’とするように結んだ羽根形状を形成している。
FIG. 35 is a projection view in which the blade 1 is projected on a plane orthogonal to the rotation axis 3. In the figure, the same symbols as in FIG. 34 indicate the same components. Reference numeral 1'denotes a blade in the projection drawing, 1b 'denotes a blade leading edge portion in the projection drawing, 1c' denotes a blade trailing edge portion in the projection drawing, and 1d 'denotes a blade outer peripheral portion in the projection drawing. In the figure, in the coordinate system with the rotation axis as the origin O and the straight line connecting the point O and the arbitrary point 1bs' on the blade leading edge 1b 'as the X axis, the straight line O-1bs' is centered at the origin O. The tangent line at the intersection point 1bb ′ with the side surface of the boss portion when rotated by β in the rotational direction and the tangent line at the point 1bs ′ are knotted blade front edge portion 1b ′ with an arbitrary curve that is concave with respect to the rotational direction. It forms a blade shape that is tied together.

【0051】このように形成することにより、高圧損
時、図35の羽根前縁部1b’の一部である1bs’−
1bb’のX−X断面である図36における前記1bs
−1bbの圧力面9から負圧面8への流れの回り込みに
より発生する安定した縦渦10により、流れは羽根面上
に沿い、かつ吸い込み流れ12がこの縦渦10に誘導さ
れながら外部へ送風される。これにより、従来の軸流送
風機における問題点として、図102に示したような、
高圧損時における羽根前縁部1b付近の吸い込み流れ1
2の剥離による羽根負圧面8上の流れの乱れを無くせ、
低騒音化を図ることができる。
By forming in this way, at the time of high pressure loss, 1bs'- which is a part of the blade leading edge 1b 'in FIG.
The 1bs in FIG. 36, which is an X-X section of 1bb ′.
By the stable vertical vortex 10 generated by the wraparound of the flow from the pressure surface 9 of -1 bb to the suction surface 8, the flow follows the vane surface, and the suction flow 12 is blown to the outside while being guided by the vertical vortex 10. It Accordingly, as a problem in the conventional axial blower, as shown in FIG.
Suction flow 1 near the blade leading edge 1b at the time of high pressure loss
The turbulence of the flow on the blade negative pressure surface 8 due to the separation of 2 can be eliminated,
It is possible to reduce noise.

【0052】ここで、羽根前縁部1bのボス部2よりの
部分1bs’−1bb’を回転方向に延長する際の点1
bsの位置および前記直線O−1bsを原点O中心に回
転させ、ボス部2の側面との交点1bbを決定する時の
回転角度βが、大きすぎたり、小さすぎると逆に羽根に
乱れを与えてしまい、騒音悪化してしまう。従って、こ
の羽根前縁部1b上の点1bsの位置および回転角度β
の最適範囲が存在する。図37は回転角度β=一定の時
の、羽根前縁部1b上の点1bsの位置を羽根外周部半
径Rtに対する点1bsでの半径Rsの比率によって、
騒音特性への影響を実験的に求めたものである。このと
き比騒音Ksは、動作点によって変化するため、比騒音
Ksが最小となる動作点での値を最小比騒音Ksmin
としてグラフ化している。ここで、比騒音Ksは次式の
ように定義される。 Ks=SPL−10Log(Q・Ps2.5) SPL:騒音特性(SOUND PRESSURE LEVEL)[dB
(A)] Q :風量[m3/min]
Here, the point 1 when extending the portion 1bs'-1bb 'from the boss portion 2 of the blade front edge portion 1b in the rotational direction
If the rotation angle β when the position of bs and the straight line O-1bs is rotated about the origin O and the intersection point 1bb with the side surface of the boss portion 2 is determined is too large or too small, the blades are disturbed on the contrary. And the noise gets worse. Therefore, the position of the point 1bs on the blade leading edge 1b and the rotation angle β
There exists an optimum range of. FIG. 37 shows the position of the point 1bs on the blade leading edge portion 1b when the rotation angle β is constant by the ratio of the radius Rs at the point 1bs to the blade outer peripheral radius Rt.
This is an experimentally obtained effect on noise characteristics. At this time, since the specific noise Ks changes depending on the operating point, the value at the operating point where the specific noise Ks becomes the minimum is the minimum specific noise Ksmin.
Is graphed as. Here, the specific noise Ks is defined by the following equation. Ks = SPL-10Log (Q ・ Ps2.5) SPL: Noise characteristic (SOUND PRESSURE LEVEL) [dB
(A)] Q: Air volume [m3 / min]

【0053】Ps:静圧[mmAq] 図に示すように、羽根前縁部1b上の点1bsの位置で
の半径Rsは、羽根外周部半径Rtの0.4〜0.75倍の値
の間にあるとき、最小比騒音Ksminの値は小さく低
騒音である。また、図中Rs/Rt=0(Y軸上)は従
来の軸流送風機の値を示す。この結果、従来の値に比
べ、最大2[dB(A)]低騒音になっていることが分か
る。図38は点1bsの位置を示す比率Rs/Rt=一
定の時の、図35における回転角度βによる騒音特性へ
の影響を実験的に求めたものである。このとき比騒音K
sは動作点によって変化するため比騒音Ksが最小とな
る動作点での値を最小比騒音Ksminとしてグラフ化
している。
Ps: Static pressure [mmAq] As shown in the figure, when the radius Rs at the position of the point 1bs on the blade leading edge 1b is between 0.4 and 0.75 times the blade outer radius Rt. The value of the minimum specific noise Ksmin is small and the noise is low. Further, Rs / Rt = 0 (on the Y-axis) in the figure indicates the value of the conventional axial-flow blower. As a result, it can be seen that the maximum noise level is 2 [dB (A)] lower than the conventional value. FIG. 38 shows experimentally obtained influence of the rotation angle β in FIG. 35 on the noise characteristic when the ratio Rs / Rt indicating the position of the point 1bs is constant. At this time, the specific noise K
Since s changes depending on the operating point, the value at the operating point where the specific noise Ks is minimum is plotted as the minimum specific noise Ksmin.

【0054】図に示すように、羽根前縁部1b上の点1
bsと原点Oを結んだ直線O−1bsを原点O中心にファ
ン回転方向へ回転させるときの回転角度βは、10°〜
40°の間にあるとき、最小比騒音Ksminの値は小
さく低騒音である。また、図中約ー10°付近の値は、
従来の軸流送風機の値を示すが、本発明による軸流送風
機は従来に比べ、最大2[dB(A)]低騒音になっている
ことが分かる。図39は羽根前縁部上の点1bsの位置
の半径Rsと羽根外周部半径Rtとの比率Rs/Rtと
前記回転角度βの騒音特性への影響を実験的に検討し、
比騒音Ksが最小になる動作点での値をグラフ化した結
果を示す。図39より、0.4≦Rs/Rt≦0.75かつ1
0°≦β≦40°であれば、最小比騒音Ksminは十
分小さく、低騒音である。
As shown in the figure, the point 1 on the blade leading edge 1b
The rotation angle β when the straight line O-1bs connecting bs and the origin O is rotated in the fan rotation direction around the origin O is 10 ° to
When it is between 40 °, the value of the minimum specific noise Ksmin is small and the noise is low. Also, the value around -10 ° in the figure is
The values of the conventional axial blower are shown, and it can be seen that the axial blower according to the present invention has a maximum noise of 2 [dB (A)] as compared with the conventional one. FIG. 39 is an experimental study of the influence of the ratio Rs / Rt of the radius Rs at the position of the point 1bs on the blade leading edge to the blade outer radius Rt and the rotation angle β on the noise characteristics.
The results of graphing the values at the operating point where the specific noise Ks is minimized are shown. From FIG. 39, 0.4 ≦ Rs / Rt ≦ 0.75 and 1
If 0 ° ≦ β ≦ 40 °, the minimum specific noise Ksmin is sufficiently small and the noise is low.

【0055】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、およびボス部に対向す
る羽根外周部から周が構成される羽根とを有する軸流送
風機の回転軸と直交する平面に軸流送風機を投影した投
影図において、回転軸Oと羽根前縁部上の羽根外周部半
径の40〜75%の半径である点1bs’とを結ぶ直線
O−1bs’を原点Oを中心に回転方向に10〜40°
の間である角度分回転させ、この直線O−1bs’とボ
ス部半径であるボス部側面との交点1bb’と前記1b
s’における接線を回転方向に対し、凹となるような任
意曲線で結び羽根前縁部とするように羽根形状を形成し
たものであるので、高圧損時、羽根前縁部のボス部付近
である1bs’−1bb’の圧力面9から負圧面8への
流れの回り込みにより発生する縦渦により、流れは羽根
面上に沿い、かつ吸い込み流れがこの縦渦に誘導されな
がら外部へ送風されることにより、高圧損時における羽
根前縁部1b付近の吸い込み流れの剥離による羽根負圧
面上の流れの乱れを無くせ、低騒音化を図ることができ
る。
In this axial blower, a boss portion having blades attached thereto and rotating, a blade front edge portion facing in the rotation direction, a blade trailing edge portion facing in the direction opposite to the rotation direction, and a blade outer periphery facing the boss portion. In a projection view in which the axial blower is projected on a plane orthogonal to the rotation axis of the axial blower having a blade whose periphery is formed by a portion, a rotation axis O and a blade outer peripheral radius of 40 to 75 on a blade leading edge portion are included. The straight line O-1bs 'connecting the point 1bs' having a radius of 10% is rotated about the origin O by 10 to 40 °
Between the straight line O-1bs' and the side surface of the boss portion which is the radius of the boss portion 1bb 'and 1b'.
Since the blade shape is formed by connecting the tangent line at s ′ with an arbitrary curve that is concave with respect to the rotation direction to form the blade leading edge portion, at the time of high pressure loss, near the boss portion of the blade leading edge portion. A longitudinal vortex generated by the wraparound of the flow from a certain 1bs'-1bb 'pressure surface 9 to the suction surface 8 causes the flow to follow the vane surface, and the suction flow is guided to this longitudinal vortex and is blown to the outside. As a result, the disturbance of the flow on the blade negative pressure surface due to the separation of the suction flow near the blade front edge portion 1b at the time of high pressure loss can be eliminated, and noise can be reduced.

【0056】実施例7 以下、他の一実施例を図に基づいて説明する。図40は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す矢印、1bは
羽根前縁部、1dは羽根外周部、1Cは羽根後縁部を示
す。また、図41は図40の正面図を示す。図42は、
回転軸3と直交する平面に羽根1を投影した投影図であ
る。図において、図41と同一符号のものは同一のもの
を示す。1’は投影図における羽根、1b’は投影図に
おける羽根前縁部、1c’は投影図における羽根後縁
部、1d’は投影図における羽根外周部である。図にお
いて、羽根外周部半径Rtの15〜35%の大きさを半
径とするR曲線で羽根前縁部とボス部との接続部を結
び、羽根前縁部とするように羽根形状を形成している。
Seventh Embodiment Another embodiment will be described below with reference to the drawings. FIG. 40 is a perspective view showing an embodiment of the axial blower according to the present invention, which has, for example, a three-blade shape, and the operation will be mainly described for one blade 1, but the same applies to other blades. Is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion to which the blade is attached,
Reference numeral 3 denotes a rotation axis of the blade 1, 4 denotes an arrow indicating a rotation direction, 1b denotes a blade leading edge portion, 1d denotes a blade outer peripheral portion, and 1C denotes a blade trailing edge portion. 41 shows a front view of FIG. 40. FIG. 42 shows
FIG. 3 is a projection view in which a blade 1 is projected on a plane orthogonal to a rotation axis 3. In the figure, the same symbols as in FIG. 41 indicate the same components. Reference numeral 1'denotes a blade in the projection drawing, 1b 'denotes a blade leading edge portion in the projection drawing, 1c' denotes a blade trailing edge portion in the projection drawing, and 1d 'denotes a blade outer peripheral portion in the projection drawing. In the figure, the blade shape is formed so that the connecting portion between the blade leading edge portion and the boss portion is connected by an R curve having a radius of 15 to 35% of the blade outer peripheral portion radius Rt to form the blade leading edge portion. ing.

【0057】このように形成することにより、高圧損
時、図42の羽根前縁部1b’のA−A断面である図4
3において、圧力面9から負圧面8への流れの回り込み
により発生する安定した縦渦10により、流れは羽根面
上に沿い、かつ吸い込み流れ12がこの縦渦10に誘導
されながら図44のように外部へ送風される。これによ
り、従来の軸流送風機における問題点として、図102
に示したような、高圧損時における羽根前縁部1b付近
の吸い込み流れ12の剥離による羽根負圧面8上の流れ
11の乱れを無くせ、低騒音化を図ることができる。
By forming in this way, at the time of high pressure loss, the blade leading edge portion 1b 'of FIG.
In Fig. 3, the stable longitudinal vortex 10 generated by the wraparound of the flow from the pressure surface 9 to the suction surface 8 causes the flow to follow the vane surface, and the suction flow 12 is guided to the longitudinal vortex 10 as shown in Fig. 44. Is blown to the outside. Therefore, as a problem in the conventional axial blower, FIG.
It is possible to eliminate the turbulence of the flow 11 on the blade suction surface 8 due to the separation of the suction flow 12 near the blade front edge portion 1b at the time of high pressure loss as shown in FIG.

【0058】また、従来の軸流送風機では、台風などの
強風により強制的にファンが高回転するときの対処とし
て、図98のように羽根前縁部1bのボス部寄り付近と
ボス部2との接続部の羽根の板厚を一部厚くして、羽根
の付け根の強風による応力集中を回避し、破損を防止し
ていた。そのため、図98のB−B断面を展開した展開
図である図103に示すように、板厚の厚い羽根前縁部
1bで吸い込み流れ12が衝突し、負圧面上の吸い込み
流れ11が乱れていた。本発明において、羽根前縁部1
bのボス部寄り付近とボス部2との接続部は大きなR曲
線であるため、応力集中を回避でき、板厚を局部的に厚
くする必要がなくなる。しかし、羽根前縁部1bとボス
部2との接続部のR曲線の半径RRが小さすぎたり、大
きすぎたりすると逆に騒音悪化し、また強度不足にな
る。従って、このR曲線の半径RRの最適範囲が存在す
る。
Further, in the conventional axial blower, as a measure against the forced high rotation of the fan due to a strong wind such as a typhoon, as shown in FIG. 98, the blade front edge portion 1b near the boss portion and the boss portion 2 are provided. A part of the blade of the connecting part was thickened to avoid the stress concentration due to the strong wind at the base of the blade and prevent the damage. Therefore, as shown in FIG. 103, which is a developed view of the BB cross section of FIG. 98, the suction flow 12 collides with the blade leading edge portion 1b having a large plate thickness, and the suction flow 11 on the suction surface is disturbed. It was In the present invention, the blade leading edge portion 1
Since the connecting portion between b near the boss portion and the boss portion 2 has a large R curve, stress concentration can be avoided and it is not necessary to locally increase the plate thickness. However, if the radius RR of the R curve of the connecting portion between the blade leading edge portion 1b and the boss portion 2 is too small or too large, the noise is worsened and the strength becomes insufficient. Therefore, there is an optimum range of the radius RR of this R curve.

【0059】図45は、R曲線の半径RRの大きさに対
する羽根外周部半径Rtとの比率(=RR/Rt)によ
って、騒音特性への影響を実験的に求めたものである。
このとき比騒音Ksは、動作点によって変化するため、
比騒音Ksが最小となる動作点での値を最小比騒音Ks
minとしてグラフ化している。図45より、R曲線の
半径RRが、羽根外周部半径Rtの10〜35%の間の
大きさであれば、最小比騒音Ksminは小さく従来に
比べ、1[dB(A)]低騒音である。また図46は、R曲
線の半径RRの大きさに対する羽根外周部半径Rtとの
比率(=RR/Rt)によって、羽根前縁部ボス部寄り
の最大応力σの値を実験的に求めたものである。図46
より、R曲線の半径RRが羽根外周部半径Rtの15%
以上であれば、十分強度があることがわかる。よって、
図45、図46よりR曲線の半径RRが、羽根外周部半
径Rtの15〜35%の間にあれば、低騒音で、かつ強
度が十分である。
FIG. 45 shows the effect on noise characteristics experimentally obtained by the ratio (= RR / Rt) of the radius Rr of the R curve to the radius Rt of the outer circumference of the blade.
At this time, the specific noise Ks changes depending on the operating point.
The value at the operating point where the specific noise Ks is the minimum is the minimum specific noise Ks
Graphed as min. From FIG. 45, if the radius RR of the R curve is between 10% and 35% of the blade outer peripheral radius Rt, the minimum specific noise Ksmin is small and 1 [dB (A)] low noise compared to the conventional case. is there. Further, in FIG. 46, the value of the maximum stress σ near the blade front edge boss portion is experimentally obtained by the ratio of the blade outer peripheral radius Rt to the size of the radius RR of the R curve (= RR / Rt). Is. Figure 46
Therefore, the radius RR of the R curve is 15% of the blade outer radius Rt.
If it is above, it turns out that it has sufficient strength. Therefore,
45 and 46, if the radius RR of the R curve is within 15 to 35% of the blade outer peripheral radius Rt, the noise is low and the strength is sufficient.

【0060】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、およびボス部に対向す
る羽根外周部から周が構成される羽根とを有する軸流送
風機の回転軸と直交する平面に軸流送風機を投影した投
影図において、羽根前縁部とボス部の接続部分を、羽根
外周部半径の15〜35%の大きさを半径とするR曲線
で結び、羽根前縁部とするように羽根形状を形成したも
のであるので、高圧損時、羽根前縁部1b’のボス部寄
り部分において、圧力面9から負圧面8への流れの回り
込みにより発生する縦渦により、流れは羽根面上に沿
い、かつ吸い込み流れがこの縦渦に誘導されながら外部
へ送風され、高圧損時における羽根前縁部1b付近の吸
い込み流れの剥離による羽根負圧面8上の流れの乱れを
無くせ、低騒音化を図ることができ、かつ台風などの強
風により強制的にファンが高回転するときの対処とし
て、羽根前縁部1bのボス部寄り付近とボス部2との接
続部の羽根の板厚を一部厚くして、羽根の付け根の強風
による応力集中を回避し、破損を防止することなく、羽
根前縁部1bのボス部寄り付近ととボス部との接続部は
大きなR曲線であるため、応力集中を回避でき、板厚を
局部的に厚くする必要がなくなる。
In this axial blower, a boss portion having blades attached thereto and rotated, a blade front edge portion facing in the rotation direction, a blade trailing edge portion facing in the opposite direction to the rotation direction, and a blade outer periphery facing the boss portion. In a projection view in which the axial blower is projected on a plane orthogonal to the rotation axis of the axial blower having a blade whose periphery is formed by a portion, the connecting portion between the blade leading edge portion and the boss portion is defined by the blade outer peripheral radius of 15 Since the blade shape is formed so as to be the blade front edge portion by connecting with an R curve having a radius of ˜35% as a radius, at the time of high pressure loss, in the blade front edge portion 1b ′ near the boss portion, A longitudinal vortex generated by the wraparound of the flow from the pressure surface 9 to the suction surface 8 causes the flow to follow the vane surface, and the suction flow is blown to the outside while being guided by the longitudinal vortex. Due to the separation of the suction flow near section 1b The turbulence of the flow on the blade negative pressure surface 8 can be eliminated, noise can be reduced, and as a countermeasure when the fan is forced to rotate at high speed due to strong wind such as a typhoon, the blade front edge portion 1b is closer to the boss portion. Near the boss portion of the blade front edge portion 1b, without increasing the thickness of the blade at the connecting portion between the vicinity and the boss portion 2 to avoid stress concentration due to the strong wind at the root of the blade and preventing damage. Since the connecting portion between and and the boss portion has a large R curve, stress concentration can be avoided, and it becomes unnecessary to locally increase the plate thickness.

【0061】実施例8 以下、他の一実施例を図に基づいて説明する。図47は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す矢印、1bは
羽根前縁部、1dは羽根外周部、1Cは羽根後縁部を示
す。また、図48は図47の正面図を示す。
Embodiment 8 Another embodiment will be described below with reference to the drawings. FIG. 47 is a perspective view showing an embodiment of an axial blower according to the present invention, which has, for example, a three-blade shape, and the operation will be described mainly for one blade 1, but the same applies to other blades. Is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion to which the blade is attached,
Reference numeral 3 denotes a rotation axis of the blade 1, 4 denotes an arrow indicating a rotation direction, 1b denotes a blade leading edge portion, 1d denotes a blade outer peripheral portion, and 1C denotes a blade trailing edge portion. 48 shows a front view of FIG. 47.

【0062】図49は、回転軸3と直交する平面に羽根
1を投影した投影図である。図において、図48と同一
符号のものは同一のものを示す。1’は投影図における
羽根、1b’は投影図における羽根前縁部、1c’は投
影図における羽根後縁部、1d’は投影図における羽根
外周部である。図において、図中破線で示したベースの
羽根1O’の羽根外周部半径Rtと羽根ボス部半径Rb
の間である任意半径Rsをもつ羽根前縁部1bO’上の
点1bs’(1bs’:羽根前縁ボス部延長開始点)、
羽根の付け根であるボス部半径Rbの羽根前縁部1b
O’上の点1baO’と原点Oを結んだ直線1baO’
−Oを、原点Oを中心に回転方向に角度δαb(δα
b:羽根前縁ボス部前進延長角)分回転させた時の点1
bb’(1bb’:羽根前縁ボス部延長終点)とする
時、前記直線1baO’−Oを、0°〜前記羽根前縁ボ
ス部前進延長角δαbの間の任意角度δα分回転させ、
羽根外周部方向に延長したときの半径Rbと半径Rsの
間の任意半径Rcにおける点1bc’とすると、この時
の任意回転角度δαの半径方向分布を δα=(δαb/(Rb−RS)2)×(R−RS)2
(Rb≦R≦Rs) で与え、前記羽根と連続するように、ベースの羽根1
O’の羽根前縁部1bO’を基準にして、半径Rsの羽
根前縁ボス部延長開始点1bs’から前記点1bc’を
通り、ボス部半径Rbの羽根前縁ボス部延長終点1b
b’の間の羽根前縁部1bO’を回転方向に前進延長さ
せ、羽根形状を形成したものである。
FIG. 49 is a projection view in which the blade 1 is projected on a plane orthogonal to the rotation axis 3. In the figure, the same symbols as in FIG. 48 indicate the same items. Reference numeral 1'denotes a blade in the projection drawing, 1b 'denotes a blade leading edge portion in the projection drawing, 1c' denotes a blade trailing edge portion in the projection drawing, and 1d 'denotes a blade outer peripheral portion in the projection drawing. In the figure, the blade outer peripheral radius Rt and the blade boss radius Rb of the base blade 10 'shown by the broken line in the figure
Point 1bs' on the blade leading edge 1bO 'having an arbitrary radius Rs between (1bs': blade leading edge boss extension start point),
Blade front edge 1b having a boss radius Rb which is the base of the blade
A straight line 1baO 'connecting the origin O with the point 1baO' on O '
-O is an angle δαb (δα
b: Point 1 when rotated by the blade leading edge boss advance extension angle)
bb '(1bb': blade leading edge boss extension end point), the straight line 1baO'-O is rotated by an arbitrary angle δα between 0 ° and the blade leading edge boss extension extension angle δαb,
Assuming a point 1bc ′ at an arbitrary radius Rc between the radius Rb and the radius Rs when extended in the blade outer peripheral direction, the radial distribution of the arbitrary rotation angle δα at this time is δα = (δαb / (Rb-RS) 2 ) × (R-RS) 2
(Rb ≦ R ≦ Rs) so that the base blade 1 is continuous with the blade 1.
Based on the blade leading edge 1b of O ', the blade leading edge boss extension end point 1b of radius Rs passes from the blade leading edge boss extension start point 1bs' to the point 1bc'.
A blade shape is formed by advancing and extending the blade leading edge portion 1bO ′ between b ′ in the rotation direction.

【0063】図50は、図49における図中破線で示し
たベースの羽根1O’のボス部半径Rbでの翼弦線中心
点PbO’を相対的な原点として、羽根面を形成したと
き、べースの羽根1O’をボス部半径Rbの円筒面で切
断し、その断面を二次元平面に展開して得られる展開図
を示す。なお実線が本発明の羽根1を示す。図中、ベー
スの羽根のそり線5を円弧形状とし、その円弧を形成す
るための中心角であるそり角θ、円弧を形成する半径を
RRとする。このようにベースの羽根1Oに対し、本発
明での軸流送風機の羽根は、図49で示した直線1ba
O’−Oを原点O中心に回転方向にδαb回転させた時
のボス部半径Rbにおける点1bb’の図50の展開図
における点1bbまでを、同一円弧で回転方向に延長さ
せたものである。
In FIG. 50, when the blade surface is formed with the blade chord line center point PbO ′ at the boss radius Rb of the base blade 1O ′ shown by the broken line in FIG. 49 as the relative origin, A development view obtained by cutting the blade 1O ′ of the base with a cylindrical surface having a boss radius Rb and developing the cross section into a two-dimensional plane is shown. The solid line indicates the blade 1 of the present invention. In the figure, the warp line 5 of the blades of the base has an arc shape, a warp angle θ that is a central angle for forming the arc, and a radius RR that forms the arc. Thus, the blade of the axial blower according to the present invention is different from the blade 1O of the base in the straight line 1ba shown in FIG.
The point 1bb 'at the boss radius Rb when the O'-O is rotated about the origin O in the direction of rotation by δαb is extended to the point 1bb in the development view of FIG. 50 by the same arc in the direction of rotation. ..

【0064】このように形成することにより、高圧損
時、図49の半径RcにおけるX−X断面である図51
において、圧力面9から負圧面8への流れの回り込みに
より発生する安定した縦渦10により、流れは羽根面上
に沿い、かつ吸い込み流れ12がこの縦渦10に誘導さ
れながら図52のように外部へ送風される。これによ
り、従来の軸流送風機における問題点として、図102
に示したような、高圧損時における羽根前縁部1b付近
の吸い込み流れ12の剥離による羽根負圧面8上の流れ
11の乱れを無くせ、低騒音化を図ることができる。ま
た、従来の軸流送風機では、台風などの強風により強制
的にファンが高回転するときの対処として、図98のよ
うに羽根前縁部1bのボス部寄り付近とボス部2との接
続部の羽根の板厚を一部厚くして、羽根の付け根の強風
による応力集中を回避し、破損を防止していた。そのた
め、図98のB−B断面を展開した展開図である図10
3に示すように、板厚の厚い羽根前縁部1bで吸い込み
流れ12が衝突し、負圧面上の吸い込み流れ11が乱れ
ていた。本発明において、図37のように羽根1とボス
部の接続部をR形状ぎみに羽根形状を形成したものであ
るため、応力集中を回避でき、板厚を局部的に厚くする
必要がなくなる。
By forming in this way, at the time of high pressure loss, it is an XX cross section taken along the radius Rc in FIG.
In Fig. 52, the stable longitudinal vortex 10 generated by the wraparound of the flow from the pressure surface 9 to the suction surface 8 causes the flow to follow the vane surface, and the suction flow 12 is guided by the longitudinal vortex 10 as shown in Fig. 52. It is blown to the outside. Therefore, as a problem in the conventional axial blower, FIG.
It is possible to eliminate the turbulence of the flow 11 on the blade suction surface 8 due to the separation of the suction flow 12 near the blade front edge portion 1b at the time of high pressure loss as shown in FIG. Further, in the conventional axial blower, as a measure against the forced high rotation of the fan due to a strong wind such as a typhoon, as shown in FIG. 98, the connecting portion between the boss portion 2 near the boss portion of the blade front edge portion 1b is connected. Part of the blade of the blade was thickened to avoid stress concentration due to strong wind at the root of the blade and prevent damage. Therefore, FIG. 10 which is a developed view of the BB cross section of FIG. 98.
As shown in FIG. 3, the suction flow 12 collided with the blade leading edge portion 1b having a large plate thickness, and the suction flow 11 on the suction surface was disturbed. In the present invention, as shown in FIG. 37, since the connecting portion between the blade 1 and the boss portion is formed in a rounded shape with a rounded shape, stress concentration can be avoided and it is not necessary to locally increase the plate thickness.

【0065】しかし、前記直線1ba’−Oを原点O中
心に回転方向させる時の羽根ボス部前進延長角δαbお
よび羽根前縁ボス部延長開始点1bs’での半径Rsが
大きすぎると図50に相当する図53のように吸い込み
流れ12が羽根前縁部1bbで衝突し、羽根面に乱れを
発生させ騒音悪化し、小さすぎると効果がなくなり、か
つ強度不足となる。従って、この角度δαbおよび半径
Rsの最適範囲が存在する。図54は、羽根前縁ボス部
延長開始点1bsにおける半径Rs=一定の時の羽根前
縁ボス部前進延長角δαbの大きさによって、騒音特性
への影響を実験的に求めたものである。このとき比騒音
Ksは、動作点によって変化するため、比騒音Ksが最
小となる動作点での値を最小比騒音Ksminとしてグ
ラフ化している。図に示すように、羽根前縁ボス部前進
延長角δαbが20〜50°の間であれば、ベースの羽
根である従来の軸流送風機に対し、最小比騒音Ksmi
nの値は小さく、最高2.5[dB(A)]低騒音である。
However, when the blade boss advance extension angle δαb and the radius Rs at the blade leading edge boss extension start point 1bs' when the straight line 1ba'-O is rotated around the origin O are too large, the result is shown in FIG. As shown in the corresponding FIG. 53, the suction flow 12 collides with the blade leading edge portion 1bb, causing turbulence on the blade surface and deteriorating noise. Therefore, there is an optimum range of the angle δαb and the radius Rs. FIG. 54 is a graph in which the influence on the noise characteristics is experimentally obtained by the size of the blade leading edge boss extension extension angle δαb when the radius Rs at the blade leading edge boss extension starting point 1bs is constant. At this time, since the specific noise Ks changes depending on the operating point, the value at the operating point where the specific noise Ks becomes the minimum is plotted as the minimum specific noise Ksmin. As shown in the figure, if the blade leading edge boss advance extension angle δαb is between 20 and 50 °, the minimum specific noise Ksmi is lower than that of the conventional axial flow fan that is the base blade.
The value of n is small, and the maximum noise is 2.5 [dB (A)].

【0066】図55は、羽根前縁ボス部前進延長角δα
b=一定の時の、図49における羽根前縁ボス部延長開
始点1bs’における半径Rsと羽根外周部半径Rtの
比率(=Rs/Rt)の大きさによって、騒音特性への
影響を実験的に求めたものである。このとき比騒音Ks
は、動作点によって変化するため、比騒音Ksが最小と
なる動作点での値を最小比騒音Ksminとしてグラフ
化している。図に示すように、羽根前縁ボス部延長開始
点1bs’における半径Rsが羽根外周部半径Rtの4
0〜70%の間にあれば、最小比騒音Ksminは低
く、ベースの羽根である従来の軸流送風機に対し、最高
2.5[dB(A)]低騒音である。図56は、羽根前縁ボ
ス部延長開始点1bsにおける半径Rsと羽根外周部半
径Rtの比率(=Rs/Rt)と羽根前縁ボス部前進延
長角δαbの騒音特性への影響を実験的に検討し、比騒
音Ksが最小になる動作点での値をグラフ化したもので
ある。図より、0.4≦Rs/Rt≦0.7かつ20°≦δα
b≦50°であれば、最小比騒音Ksminは十分小さ
く、最高2.5[dB(A)]低騒音である。
FIG. 55 shows the advance extension angle δα of the blade leading edge boss portion.
When b = constant, the influence on the noise characteristics was experimentally determined by the size of the ratio (= Rs / Rt) of the radius Rs at the blade leading edge boss extension extension start point 1bs ′ in FIG. Is what I asked for. At this time, the specific noise Ks
Changes depending on the operating point, so the value at the operating point where the specific noise Ks is the minimum is plotted as the minimum specific noise Ksmin. As shown in the figure, the radius Rs at the blade leading edge boss extension starting point 1bs ′ is 4 of the blade outer peripheral radius Rt.
If it is in the range of 0 to 70%, the minimum specific noise Ksmin is low, which is a maximum of 2.5 [dB (A)] low noise as compared with the conventional axial flow fan that is the blade of the base. FIG. 56 shows experimentally the effect of the ratio (= Rs / Rt) of the radius Rs and the outer radius Rt of the blade at the blade leading edge boss extension start point 1bs and the effect of the blade leading edge boss advance extension angle δαb on the noise characteristics. This is a graph of the values at the operating point where the specific noise Ks was minimized after examination. From the figure, 0.4 ≦ Rs / Rt ≦ 0.7 and 20 ° ≦ δα
If b ≦ 50 °, the minimum specific noise Ksmin is sufficiently small and the maximum noise is 2.5 [dB (A)].

【0067】図57は、羽根前縁ボス部延長開始点1b
sにおける半径Rsと羽根外周部半径Rtの比率と羽根
前縁ボス部前進延長角δαbの羽根への最大応力σへの
影響を実験的に検討したものである。図中Rb/Rtで
の値を示す●はベースの羽根である軸流送風機の羽根前
縁部ボス部より部分を局所的に板厚を厚くしなかった場
合の最大応力である。図より、0.4≦Rs/Rtかつ
20°≦δαbであれば、羽根の強度は十分である。従
って、図56、57より0.4≦Rs/Rt≦0.7かつ20
°≦δαb≦50°であれば、低騒音でかつ強度が十分
な羽根を得られる。
FIG. 57 shows the blade start edge boss extension starting point 1b.
It is an experimental study of the influence of the ratio of the radius Rs of the blade to the blade outer peripheral radius Rt and the blade front edge boss advance extension angle δαb on the maximum stress σ on the blade. In the figure, the value in Rb / Rt indicates the maximum stress when the plate thickness is not locally thickened from the boss portion of the blade of the axial flow fan, which is the blade of the base. From the figure, if 0.4 ≦ Rs / Rt and 20 ° ≦ δαb, the strength of the blade is sufficient. Therefore, from FIGS. 56 and 57, 0.4 ≦ Rs / Rt ≦ 0.7 and 20
If ° ≦ δαb ≦ 50 °, a blade with low noise and sufficient strength can be obtained.

【0068】この発明に係る軸流送風機は、羽根を取り
付けて回転するボス部と、回転方向に面する羽根前縁
部、回転方向と反対方向に面する羽根後縁部、および上
記ボス部に対向する羽根外周部から周が構成される羽根
とを有する軸流送風機の回転軸と直交する平面に軸流送
風機を投影した投影図において、回転軸を原点Oとし、
羽根の付け根の羽根前縁部上の点1baO ’と原点O
を結んだ直線1baO ’−Oを、原点Oを中心に回転
方向に20〜50°の間である角度δαb分回転させた
時のボス部半径Rbの点1bb’と羽根外周部半径の4
0〜70%の半径Rsをもつ羽根前縁部上の点1bs’
の間の形状を、前記羽根前縁部を基準として、前記羽根
のボス部半径Rbである羽根前縁部上の点1ba’から
前記角度δαb分回転方向に回転させたときのボス部半
径Rbの羽根前縁部上の点1bb’の間に存在するボス
部半径Rb〜半径Rsの間の半径Rcの点1bC’と原
点Oを結んだ直線1bC’−Oと直線1ba’−Oとの
なす角度を示すδαの半径方向分布を δα=(δαb/(Rb−RS)2)×(R−RS)2
(Rb≦R≦Rs) で与え、前記羽根と連続するように、羽根前縁部上の点
1bs’よりボス部寄り部分の羽根前縁部を回転方向に
延長し、羽根形状を形成したものである。
In the axial blower according to the present invention, the boss portion having the blade attached thereto and rotated, the blade front edge portion facing in the rotation direction, the blade rear edge portion facing in the direction opposite to the rotation direction, and the boss portion are provided. In a projection view in which the axial blower is projected on a plane orthogonal to the rotary axis of the axial blower having vanes whose circumferences are formed from opposing vane outer peripheral portions, the rotary axis is the origin O,
Point 1baO 'on the front edge of the blade at the base of the blade and the origin O
The straight line 1baO'-O connecting the points 1bbO'-O is rotated about the origin O by an angle δαb which is between 20 and 50 ° and the point 1bb ′ of the boss radius Rb and the blade outer radius 4
Point 1bs' on the blade leading edge with radius Rs of 0-70%
With respect to the shape of the blade, the boss radius Rb when the blade is rotated in the rotation direction by the angle δαb from the point 1ba ′ on the blade front edge which is the boss radius Rb of the blade. Of a straight line 1bC'-O and a straight line 1ba'-O connecting the origin O with a point 1bC 'having a radius Rc between the radius Rb and the radius Rs existing between the points 1bb' on the leading edge of the blade. The radial distribution of δα indicating the angle formed is δα = (δαb / (Rb-RS) 2) × (R-RS) 2
(Rb ≦ R ≦ Rs), and a blade shape is formed by extending the blade front edge portion closer to the boss from the point 1bs ′ on the blade front edge portion in the rotation direction so as to be continuous with the blade. Is.

【0069】この発明に係る軸流送風機は、羽根を取り
付けて回転するボス部と、回転方向に面する羽根前縁
部、回転方向と反対方向に面する羽根後縁部、および上
記ボス部に対向する羽根外周部から周が構成される羽根
とを有する軸流送風機の回転軸と直交する平面に軸流送
風機を投影した投影図において、回転軸を原点Oとし、
羽根の付け根の羽根前縁部上の点1baO ’と原点O
を結んだ直線1baO ’−Oを、原点Oを中心に回転
方向に20〜50°の間である角度δαb分回転させた
時のボス部半径Rbの点1bb’と羽根外周部半径の4
0〜70%の半径Rsをもつ羽根前縁部上の点1bs’
の間の形状を、前記羽根前縁部を基準として、前記羽根
のボス部半径Rbである羽根前縁部上の点1baO ’
から前記角度δαb分回転方向に回転させたときのボス
部半径Rbの羽根前縁部上の点1bb’の間に存在する
ボス部半径Rb〜半径Rsの間の半径Rcの点1bC’
と原点Oを結んだ直線1bC’−Oと直線1baO ’
−Oとのなす角度を示すδαの半径方向分布を δα=(δαb/(Rb−RS)2)×(R−RS)2
(Rb≦R≦Rs) で与え、前記羽根と連続するように、羽根前縁部上の点
1bs’よりボス部寄り部分の羽根前縁部を回転方向に
延長し、羽根形状を形成したものであるので、高圧損
時、羽根前縁部のボス部寄り部分において、圧力面9か
ら負圧面8への流れの回り込みにより発生する縦渦によ
り、流れは羽根面上に沿い、かつ吸い込み流れがこの縦
渦に誘導されながら外部へ送風され、高圧損時における
羽根前縁部1b付近の吸い込み流れ12の剥離による羽
根負圧面8上の流れ11の乱れを無くせ、低騒音化を図
ることができ、かつ、台風などの強風により強制的にフ
ァンが高回転するときの対処として、羽根前縁部のボス
部寄り付近とボス部との接続部の羽根の板厚を一部厚く
して、羽根の付け根の強風による応力集中を回避し、破
損を防止することなく、羽根1とボス部の接続部をR形
状ぎみに羽根形状を形成したものであるため、応力集中
を回避でき、板厚を局部的に厚くする必要がなくなる。
In the axial blower according to the present invention, the boss portion having the blade attached thereto and rotated, the blade front edge portion facing in the rotation direction, the blade trailing edge portion facing in the direction opposite to the rotation direction, and the boss portion are provided. In a projection view in which the axial blower is projected on a plane orthogonal to the rotation axis of the axial blower having blades whose circumferences are formed from opposing blade outer peripheral portions, the rotation axis is the origin O,
Point 1baO 'on the front edge of the blade at the base of the blade and the origin O
The straight line 1baO'-O connecting the points 1bbO'-O is rotated about the origin O by an angle δαb which is between 20 and 50 ° and the point 1bb ′ of the boss radius Rb and the blade outer radius 4
Point 1bs' on the blade leading edge with radius Rs of 0-70%
With reference to the front edge of the blade, the shape between the points is a point 1baO ′ on the front edge of the blade that is the boss radius Rb of the blade.
From the point 1bC ′ of the radius Rc between the radius Rb and the radius Rs existing between the points 1bb ′ on the blade leading edge portion of the boss radius Rb when rotated in the rotation direction by the angle δαb.
And a straight line 1bC'-O connecting the origin O and a straight line 1baO '
The radial distribution of δα indicating the angle formed with −O is δα = (δαb / (Rb-RS) 2) × (R-RS) 2
(Rb ≦ R ≦ Rs), and the blade shape is formed by extending the blade front edge portion closer to the boss from the point 1bs ′ on the blade front edge portion in the rotation direction so as to be continuous with the blade. Therefore, at the time of high pressure loss, the flow along the blade surface and the suction flow due to the vertical vortex generated by the wraparound of the flow from the pressure surface 9 to the suction surface 8 at the boss portion of the blade front edge portion. It is possible to eliminate the turbulence of the flow 11 on the blade suction surface 8 due to the separation of the suction flow 12 near the blade leading edge portion 1b at the time of high pressure loss, while being guided by this vertical vortex and to reduce noise. In addition, as a countermeasure when the fan is forced to rotate at high speed due to a strong wind such as a typhoon, part of the blade thickness near the boss near the blade front edge and the boss is thickened to Avoid stress concentration due to strong wind at the base of Without preventing, since they are the connection portion of the blade 1 and the boss portion forming the blade shape R shape Gimi, you can avoid stress concentration, it is not necessary to increase the plate thickness locally.

【0070】この発明に係る軸流送風機は、羽根を取り
付けて回転するボス部と、回転方向に面する羽根前縁
部、回転方向と反対方向に面する羽根後縁部、および上
記ボス部に対向する羽根外周部から周が構成される羽根
とを有する軸流送風機の回転軸と直交する平面に軸流送
風機を投影した投影図において、羽根の付け根の羽根前
縁部上の点1ba’と原点Oを結んだ直線1ba’−O
を、原点Oを中心に回転方向に20〜50°の間である
角度δαb分回転させた時のボス部半径Rbの点1b
b’と羽根外周部半径の40〜70%の半径Rsをもつ
羽根前縁部上の点1bs’の間の形状を、前記羽根前縁
部を基準として、前記羽根のボス部半径Rbである羽根
前縁部上の点1ba’から前記角度δαb分回転方向に
回転させたときのボス部半径Rbの羽根前縁部上の点1
bb’の間に存在するボス部半径Rb〜半径Rsの間の
半径Rcの点1bC’と原点Oを結んだ直線1bC’−
Oと直線1ba’−Oとのなす角度を示すδαの半径方
向分布を δα=(δαb/(Rb−RS)2)×(R−RS)2
(Rb≦R≦Rs) で与え、前記羽根と連続するように、羽根前縁部上の点
1bs’よりボス部寄り部分の羽根前縁部を回転方向に
延長し、羽根形状を形成したものであるので、高圧損
時、羽根前縁部のボス部寄り部分において、圧力面9か
ら負圧面8への流れの回り込みにより発生する縦渦によ
り、流れは羽根面上に沿い、かつ吸い込み流れがこの縦
渦に誘導されながら外部へ送風され、高圧損時における
羽根前縁部1b付近の吸い込み流れ12の剥離による羽
根負圧面8上の流れ11の乱れを無くせ、低騒音化を図
ることができ、かつ、台風などの強風により強制的にフ
ァンが高回転するときの対処として、羽根前縁部のボス
部寄り付近とボス部との接続部の羽根の板厚を一部厚く
して、羽根の付け根の強風による応力集中を回避し、破
損を防止することなく、羽根1とボス部の接続部をR形
状ぎみに羽根形状を形成したものであるため、応力集中
を回避でき、板厚を局部的に厚くする必要がなくなる。
In the axial blower according to the present invention, the boss portion having the blade attached thereto and rotated, the blade front edge portion facing in the rotation direction, the blade rear edge portion facing in the direction opposite to the rotation direction, and the boss portion are provided. In a projection view in which the axial blower is projected on a plane orthogonal to the rotation axis of the axial blower having a vane having a vane whose outer circumferences are opposed to each other, a point 1ba ′ on the vane front edge portion of the root of the vane Straight line 1ba'-O connecting origin O
Is rotated about the origin O by an angle δαb which is between 20 and 50 ° in the rotation direction, and the point 1b of the boss radius Rb.
The shape between b ′ and a point 1bs ′ on the blade leading edge having a radius Rs of 40 to 70% of the blade outer peripheral radius is a boss radius Rb of the blade with the blade leading edge as a reference. Point 1 on the blade leading edge of the boss radius Rb when rotated in the rotation direction by the angle δαb from point 1ba ′ on the blade leading edge.
A straight line 1bC 'that connects the origin O with a point 1bC' having a radius Rc between the radius Rb and the radius Rs existing between bb 'and bb'.
The radial distribution of δα indicating the angle between O and the straight line 1ba′-O is δα = (δαb / (Rb-RS) 2) × (R-RS) 2
(Rb ≦ R ≦ Rs), and the blade shape is formed by extending the blade front edge portion closer to the boss from the point 1bs ′ on the blade front edge portion in the rotation direction so as to be continuous with the blade. Therefore, at the time of high pressure loss, the flow along the blade surface and the suction flow due to the vertical vortex generated by the wraparound of the flow from the pressure surface 9 to the suction surface 8 at the boss portion of the blade front edge portion. It is possible to eliminate the turbulence of the flow 11 on the blade suction surface 8 due to the separation of the suction flow 12 near the blade leading edge portion 1b at the time of high pressure loss, while being guided by this vertical vortex and to reduce noise. In addition, as a countermeasure when the fan is forced to rotate at high speed due to a strong wind such as a typhoon, part of the blade thickness near the boss near the blade front edge and the boss is thickened to Avoid stress concentration due to strong wind at the base of Without preventing, since they are the connection portion of the blade 1 and the boss portion forming the blade shape R shape Gimi, you can avoid stress concentration, it is not necessary to increase the plate thickness locally.

【0071】実施例9 以下、他の一実施例を図に基づいて説明する。図58は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す
Ninth Embodiment Another embodiment will be described below with reference to the drawings. FIG. 58 is a perspective view showing an embodiment of the axial blower according to the present invention, which has, for example, a three-blade shape, and the operation will be mainly described for one blade 1, but the same applies to other blades. Is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion to which the blade is attached,
3 indicates the rotation axis of the blade 1 and 4 indicates the rotation direction

【0072】また、図59は図58の正面図を示す。こ
の図におけるLは翼弦長であり、羽根間の円周方向距離
(ピッチ)Tを示す。また、Lsは、羽根外周部半径R
tの40〜60%の半径Rsである羽根前縁部1b上の
点1bsを通る翼弦の長さを示す。図60は、回転軸3
と直交する平面に羽根1を投影した投影図である。図に
おいて、図59と同一符号のものは同一のものを示す。
1’は投影図における羽根、1b’は投影図における羽
根前縁部、1c’は投影図における羽根後縁部、1d’
は投影図における羽根外周部である。図中破線で示した
ベースの羽根1O’の羽根外周部半径Rtと羽根ボス部
半径Rbの間である任意半径Rsをもつ羽根前縁部1b
O’上の点1bs’(1bs’:羽根前縁ボス部延長開
始点)、羽根の付け根であるボス部半径Rbの羽根前縁
部1bO’上の点1baO’と原点Oを結んだ直線1b
aO’−Oを、原点Oを中心に回転方向に角度δαb
(δαb:羽根前縁ボス部前進延長角)分回転させた時
の点1bb’(1bb’:羽根前縁ボス部延長終点)と
するとき、前記羽根前縁ボス部延長開始点における半径
Rsから羽根前縁ボス部延長終点1bb’における半径
Rbまでの羽根の翼弦長を回転方向に延長した形状であ
る。また、半径Rs〜ボス部半径Rbの間の任意半径R
である上記延長後の羽根前縁部1b’上の点を1bR’
とする。
FIG. 59 shows a front view of FIG. L in this figure is the chord length, and indicates the circumferential distance (pitch) T between the blades. Further, Ls is a blade outer peripheral radius R
The chord length passing through the point 1bs on the blade leading edge portion 1b having a radius Rs of 40 to 60% of t is shown. FIG. 60 shows the rotary shaft 3
It is a projection view which projected wing 1 on the plane which intersects perpendicularly. In the figure, the same reference numerals as those in FIG. 59 denote the same elements.
1'is a blade in the projected view, 1b 'is a leading edge of the blade in the projected view, 1c' is a trailing edge of the blade in the projected view, 1d '
Is the outer peripheral portion of the blade in the projected view. A blade leading edge 1b having an arbitrary radius Rs between the blade outer radius Rt and the blade boss radius Rb of the base blade 10 'shown by the broken line in the figure.
A point 1bs' on O '(1bs': start point of the blade leading edge boss extension), a point 1baO' on the blade leading edge 1bO 'having a boss radius Rb which is the root of the blade, and a straight line 1b connecting the origin O.
aO'-O is rotated about the origin O by an angle δαb
(Δαb: blade leading edge boss advance extension angle) When the point is 1bb ′ (1bb ′: blade leading edge boss extension end point) when rotated, from the radius Rs at the blade leading edge boss extension start point This is a shape in which the chord length of the blade up to the radius Rb at the blade leading edge boss extension end point 1bb ′ is extended in the rotational direction. Also, an arbitrary radius R between the radius Rs and the boss radius Rb
The point on the blade leading edge 1b ′ after the above extension is 1bR ′
And

【0073】図61は、図60における図中破線で示し
たベースの羽根1O’のボス部半径Rbでの弧1ba
O’−1cb’の中点である翼弦線中心点PbO’を相
対的な原点として、羽根面を形成したとき、べースの羽
根1O’をボス部半径Rbの円筒面で切断し、その断面
を二次元平面に展開して得られる展開図を示す。なお実
線が本発明の羽根1を示す。図中、ベースの羽根のそり
線5を円弧形状とし、その円弧を形成するための中心角
であるそり角θ、円弧を形成する半径をRROとする。
図中ベースの羽根1Oに対し、羽根1は、前記羽根1O
とそり角θ、食い違い角ξが同一のまま、ボス部半径R
bでの翼弦を、図60で示した羽根前縁ボス部延長終点
1bb’まで回転方向に延長し、本図における前記羽根
1Oのボス部半径Rbにおける翼弦長LbOと点1bb
〜羽根後縁部1Cbまでの翼弦長Lb、この差を△Lb
(=Lb−LbO)とし、羽根ボス部延長開始点1bs
における半径Rsでの翼弦長LSとすると、ボス部半径
Rbから前記半径Rsまでの翼弦長Lの半径方向分布を L=△Lb/(Rs−Rb)2×(R−Rs)2+LS
(Rb≦R≦Rs) で与え、羽根形状を形成したものである。
FIG. 61 shows an arc 1ba at the boss radius Rb of the base blade 1O 'shown by the broken line in FIG.
When the blade surface is formed with the chord line center point PbO ′, which is the midpoint of O′-1cb ′, as the relative origin, when the blade surface is formed, the blade 10O ′ of the base is cut by the cylindrical surface of the boss radius Rb, The development view obtained by developing the cross section in a two-dimensional plane is shown. The solid line indicates the blade 1 of the present invention. In the figure, the warp line 5 of the blades of the base is formed into an arc shape, and the warp angle θ which is the central angle for forming the arc and the radius forming the arc are RRO.
The blade 1 is the same as the blade 1O of the base in the figure.
While the warp angle θ and the stagger angle ξ are the same, the boss radius R
The chord at b is extended in the rotational direction to the blade leading edge boss extension end point 1bb ′ shown in FIG. 60, and the chord length LbO and the point 1bb at the boss radius Rb of the blade 1O in this figure.
~ Chord length Lb to the blade trailing edge 1Cb, this difference is ΔLb
(= Lb-LbO), and the blade boss extension start point 1bs
Is the chord length LS at the radius Rs at R, the radial distribution of the chord length L from the boss radius Rb to the radius Rs is L = ΔLb / (Rs-Rb) 2 × (R-Rs) 2 + LS
(Rb ≦ R ≦ Rs) to form a blade shape.

【0074】このように形成することにより、図61の
ようにベースの羽根1Oに比べ翼弦長が長くなり、羽根
面上での圧力上昇が稼げるとともに、高圧損時、図60
のX−X断面である図62において、圧力面9から負圧
面8への流れの回り込みにより発生する安定した縦渦1
0により、流れは羽根面上に沿い、かつ吸い込み流れ1
2がこの縦渦10に誘導されながら図63のように外部
へ送風される。これにより、従来の軸流送風機における
問題点として、図101に示したような、高圧損時にお
ける羽根前縁部1b付近の吸い込み流れ12の剥離によ
る羽根負圧面8上の流れ11の乱れを無くせ、低騒音化
を図ることができる。
With this structure, the chord length becomes longer than that of the base blade 1O as shown in FIG. 61, and the pressure rise on the blade surface can be increased.
62, which is an X-X cross section of FIG.
By 0, the flow is along the vane surface, and the suction flow is 1
The air 2 is guided to the vertical vortex 10 and is blown to the outside as shown in FIG. Thus, as a problem in the conventional axial blower, it is possible to eliminate the turbulence of the flow 11 on the blade suction surface 8 due to the separation of the suction flow 12 near the blade leading edge portion 1b at the time of high pressure loss as shown in FIG. It is possible to reduce noise.

【0075】また、従来の軸流送風機では、台風などの
強風により強制的にファンが高回転するときの対処とし
て、図97のように羽根前縁部1bのボス部寄り付近と
ボス部2との接続部の羽根の板厚を一部厚くして、羽根
の付け根の強風による応力集中を回避し、破損を防止し
ていた。そのため、図97のB−B断面を展開した展開
図である図102に示すように、板厚の厚い羽根前縁部
1bで吸い込み流れ12が衝突し、負圧面上の吸い込み
流れ11が乱れていた。本発明において、図60のよう
に羽根1とボス部の接続部をR形状ぎみに羽根形状を形
成したものであるため、応力集中を回避でき、板厚を局
部的に厚くする必要がなくなる。
Further, in the conventional axial-flow blower, as a measure against the forced high rotation of the fan due to strong wind such as typhoon, as shown in FIG. 97, the blade front edge portion 1b near the boss portion and the boss portion 2 are provided. A part of the blade thickness of the connection part was thickened to avoid the stress concentration due to the strong wind at the root of the blade and prevent the damage. Therefore, as shown in FIG. 102 which is a developed view of the BB cross section of FIG. 97, the suction flow 12 collides with the blade leading edge portion 1b having a thick plate thickness, and the suction flow 11 on the suction surface is disturbed. It was In the present invention, as shown in FIG. 60, the connecting portion between the blade 1 and the boss portion is formed into a blade shape with a rounded shape, so that stress concentration can be avoided and it is not necessary to locally increase the plate thickness.

【0076】しかし、前記直線1baO ‘−Oを原点
O中心に回転方向させる時の羽根ボス部前進延長角δα
bつまり、ボス部半径Rbにおける翼弦長Lbが大きす
ぎると図61に相当する図64図において、羽根後縁部
1Cb付近で、羽根負圧面8上の流れ11や縦渦10が
羽根負圧面8から剥離を起こしたり、図65に示す軸流
送風機全周をボス部半径Rbの円筒面で切断し、その断
面を二次元平面に展開して得られる全周展開図に示すよ
うに、羽根1の負圧面8を剥離した負圧面上の流れ11
と縦渦10が次に旋回してくる羽根1Nの圧力面9Nの
流れ13に乱れを与え、騒音悪化が起こり、また、羽根
前縁ボス部延長開始点1bs’での半径Rsが小さすぎ
ると効果がなくなり、かつ強度不足となる。
However, when the straight line 1baO'-O is rotated about the origin O, the blade boss advance extension angle δα
b That is, when the chord length Lb at the boss radius Rb is too large, in FIG. 64 corresponding to FIG. 61, in the vicinity of the blade trailing edge portion 1Cb, the flow 11 and the vertical vortex 10 on the blade suction surface 8 are the blade suction surface. No. 8 is caused, or the entire circumference of the axial blower shown in FIG. 65 is cut by a cylindrical surface having a boss radius Rb, and its cross section is expanded into a two-dimensional plane. Flow 11 on the suction surface separated from suction surface 8
And the vertical vortex 10 disturbs the flow 13 of the pressure surface 9N of the blade 1N that swirls next, causing noise deterioration, and if the radius Rs at the blade leading edge boss extension start point 1bs' is too small. The effect is lost and the strength is insufficient.

【0077】従って、この角度δαbおよび半径Rsの
最適範囲が存在する。図66は、ベースになる従来の軸
流送風機と上記第9の発明の一実施例による軸流送風機
との流量係数φに対する圧力係数ψの関係および比騒音
Ks[dB(A)]を実験的に求めた特性図である。図中
黒丸、黒四角は従来の軸流送風機の特性、最小比騒音
を、×、□は第9の発明の一実施例における軸流送風機
の特性、最小比騒音を示す。この特性図からわかるよう
に、従来に比べ、動作領域が低風量側まで延びかつ全体
的に高静圧化が図れている。一方、比騒音Ksは最大で
3[dB(A)]の低減が図れ低騒音である。
Therefore, there is an optimum range of the angle δαb and the radius Rs. FIG. 66 shows experimentally the relationship between the flow coefficient φ and the pressure coefficient ψ and the specific noise Ks [dB (A)] of the conventional conventional axial flow fan and the axial flow fan according to the embodiment of the ninth invention. FIG. In the figure, black circles and black squares show the characteristics and the minimum specific noise of the conventional axial flow fan, and x and □ show the characteristics and the minimum specific noise of the axial flow fan in the embodiment of the ninth invention. As can be seen from this characteristic diagram, compared with the conventional case, the operating region extends to the low air volume side and the static pressure is increased as a whole. On the other hand, the specific noise Ks can be reduced by 3 [dB (A)] at the maximum, which is low noise.

【0078】図67は、羽根前縁ボス部延長開始点1b
sにおける半径Rs=一定の時の羽根前縁ボス部前進延
長角δαbの大きさによって、騒音特性への影響を実験
的に求めたものである。このとき比騒音Ksは、動作点
によって変化するため、比騒音Ksが最小となる動作点
での値を最小比騒音Ksminとしてグラフ化してい
る。図に示すように、羽根前縁ボス部前進延長角δαb
が20〜50°の間であれば、ベースの羽根である従来
の軸流送風機に対し、最小比騒音Ksminの値は小さ
く、最高3.0[dB(A)]低騒音である。
FIG. 67 shows the starting point 1b of the blade leading edge boss extension.
The effect on the noise characteristics was experimentally obtained by the size of the blade leading edge boss advance extension angle δαb when the radius Rs at s = constant. At this time, since the specific noise Ks changes depending on the operating point, the value at the operating point where the specific noise Ks becomes the minimum is plotted as the minimum specific noise Ksmin. As shown in the figure, the blade leading edge boss advance extension angle δαb
Is between 20 and 50 °, the minimum specific noise Ksmin is small and the maximum noise is 3.0 [dB (A)] as compared with the conventional axial flow fan that is the base blade.

【0079】図68は、羽根前縁ボス部前進延長角δα
b=一定の時の、図60における羽根前縁ボス部延長開
始点1bs’における半径Rsと羽根外周部半径Rtの
比率(=Rs/Rt)の大きさによって、騒音特性への
影響を実験的に求めたものである。このとき比騒音Ks
は、動作点によって変化するため、比騒音Ksが最小と
なる動作点での値を最小比騒音Ksminとしてグラフ
化している。図に示すように、羽根前縁ボス部延長開始
点1bs’における半径Rsが羽根外周部半径Rtの4
0〜60%の間にあれば、最小比騒音Ksminは低
く、ベースの羽根である従来の軸流送風機に対し、最高
3.0[dB(A)]低騒音である。図69は、羽根前縁ボ
ス部延長開始点1bsにおける半径Rsと羽根外周部半
径Rtの比率(=Rs/Rt)と羽根前縁ボス部前進延
長角δαbの騒音特性への影響を実験的に検討し、比騒
音Ksが最小になる動作点での値をグラフ化したもので
ある。
FIG. 68 shows the forward extension angle δα of the blade leading edge boss.
When b = constant, the influence on the noise characteristics was experimentally determined by the size of the ratio (= Rs / Rt) of the radius Rs at the blade leading edge boss extension starting point 1bs ′ in FIG. 60 and the blade outer peripheral radius Rt. Is what I asked for. At this time, the specific noise Ks
Changes depending on the operating point, so the value at the operating point where the specific noise Ks is the minimum is plotted as the minimum specific noise Ksmin. As shown in the figure, the radius Rs at the blade leading edge boss extension starting point 1bs ′ is 4 of the blade outer peripheral radius Rt.
If it is in the range of 0 to 60%, the minimum specific noise Ksmin is low, and the maximum noise is 3.0 [dB (A)] lower than that of the conventional axial flow fan that is the blade of the base. FIG. 69 shows experimentally the influence of the ratio (= Rs / Rt) of the radius Rs and the blade outer radius Rt at the blade leading edge boss extension start point 1bs and the effect of the blade leading edge boss advance extension angle δαb on the noise characteristics. This is a graph of the values at the operating point where the specific noise Ks was minimized after examination.

【0080】図より、0.4≦Rs/Rt≦0.6かつ20°
≦δαb≦50°であれば、最小比騒音Ksminは十
分小さく低騒音である。図70は、羽根前縁ボス部延長
開始点1bsにおける半径Rsと羽根外周部半径Rtの
比率と羽根前縁ボス部前進延長角δαbの羽根への最大
応力σへの影響を実験的に検討したものである。図中R
b/Rtでの値を示す●はベースの羽根である軸流送風
機の羽根前縁部ボス部より部分を局所的に板厚を厚くし
なかった場合の最大応力である。図より、0.4≦Rs
/Rtかつ20°≦δαbであれば、羽根の強度は十分
である。従って、図69、70より0.4≦Rs/Rt≦
0.6かつ20°≦δαb≦50°であれば、低騒音でか
つ強度が十分な羽根を得られる。
From the figure, 0.4 ≦ Rs / Rt ≦ 0.6 and 20 °
If ≦ δαb ≦ 50 °, the minimum specific noise Ksmin is sufficiently small and the noise is low. FIG. 70 is an experimental study on the influence of the ratio of the radius Rs and the outer radius Rt of the blade at the blade leading edge boss extension start point 1bs and the blade leading edge boss advance extension angle δαb on the maximum stress σ to the blade. It is a thing. R in the figure
The value indicated by b / Rt indicates the maximum stress when the plate thickness is not locally thickened from the blade front edge boss portion of the axial flow fan, which is the blade of the base. From the figure, 0.4 ≦ Rs
If / Rt and 20 ° ≦ δαb, the strength of the blade is sufficient. Therefore, from FIGS. 69 and 70, 0.4 ≦ Rs / Rt ≦
If 0.6 and 20 ° ≦ δαb ≦ 50 °, a blade with low noise and sufficient strength can be obtained.

【0081】この発明に係る軸流送風機は、羽根を取り
付けて回転するボス部と、回転方向に面する羽根前縁
部、回転方向と反対方向に面する羽根後縁部、および上
記ボス部に対向する羽根外周部から周が構成される羽根
とを有する軸流送風機の回転軸と直交する平面に軸流送
風機を投影した投影図において、回転軸を原点Oとし、
ベースの羽根1O’のボス部半径Rbにおける羽根前縁
部上の点1baO’と原点Oを結んだ直線1baO’−
Oを、原点Oを中心に回転方向に20〜50°の間であ
る角度δαb分回転させた時の点を羽根前縁ボス部延長
終点1bb’としたとき、羽根を任意半径Rの円筒面で
切断し、その断面を2次元平面に展開して得られる展開
図において、前記羽根1Oとそり角θ、食い違い角ξが
同一のまま、ボス部半径Rbでの翼弦を、前記点1bb
まで延長し、このときの前記羽根1Oのボス部半径Rb
における翼弦長LbOと前記点1bb〜羽根後縁部1C
bまでの翼弦長Lb、この差を△Lbとし、羽根外周部
半径の40〜60%の半径Rsでの羽根前縁部上の点1
bsでの翼弦長LSとすると、ボス部半径Rbから前記
羽根前縁部上の点1bsまでの翼弦長Lの半径方向分布
を L=△Lb/(Rs−Rb)2×(R−Rs)2+LS
(Rb≦R≦Rs) で与え、羽根形状を形成したものである。
In the axial blower according to the present invention, the boss portion having the blade attached thereto and rotated, the blade front edge portion facing in the rotation direction, the blade rear edge portion facing in the direction opposite to the rotation direction, and the boss portion are provided. In a projection view in which the axial blower is projected on a plane orthogonal to the rotation axis of the axial blower having blades whose circumferences are formed from opposing blade outer peripheral portions, the rotation axis is the origin O,
A straight line 1baO'-connecting the origin O with the point 1baO 'on the blade leading edge at the boss radius Rb of the blade 1O' of the base-
When O is rotated about the origin O in the rotation direction by an angle δαb that is between 20 and 50 °, and the point is the blade leading edge boss extension end point 1bb ′, the blade has a cylindrical surface with an arbitrary radius R. In a development view obtained by cutting the cross section with the blade and expanding the cross section into a two-dimensional plane, the chord at the boss radius Rb is set to the point 1bb while the blade 1O has the same warp angle θ and stagger angle ξ.
To the boss radius Rb of the blade 10 at this time
Chord length LbO and point 1bb to blade trailing edge portion 1C
The chord length Lb up to b, the difference being ΔLb, and the point 1 on the blade leading edge portion at a radius Rs of 40 to 60% of the blade outer peripheral radius.
Letting the chord length LS at bs, the radial distribution of the chord length L from the boss radius Rb to the point 1bs on the blade leading edge is L = ΔLb / (Rs−Rb) 2 × (R− Rs) 2 + LS
(Rb ≦ R ≦ Rs) to form a blade shape.

【0082】この発明に係る軸流送風機は、羽根を取り
付けて回転するボス部と、回転方向に面する羽根前縁
部、回転方向と反対方向に面する羽根後縁部、および上
記ボス部に対向する羽根外周部から周が構成される羽根
とを有する軸流送風機の回転軸と直交する平面に軸流送
風機を投影した投影図において、回転軸を原点Oとし、
ベースの羽根1O’のボス部半径Rbにおける羽根前縁
部上の点1baO’と原点Oを結んだ直線1baO’−
Oを、原点Oを中心に回転方向に20〜50°の間であ
る角度δαb分回転させた時の点を羽根前縁ボス部延長
終点1bb’としたとき、羽根を任意半径Rの円筒面で
切断し、その断面を2次元平面に展開して得られる展開
図において、前記羽根1Oとそり角θ、食い違い角ξが
同一のまま、ボス部半径Rbでの翼弦を、前記点1bb
まで延長し、このときの前記羽根1Oのボス部半径Rb
における翼弦長LbOと前記点1bb〜羽根後縁部1C
bまでの翼弦長Lb、この差を△Lbとし、羽根外周部
半径の40〜60%の半径Rsでの羽根前縁部上の点1
bsでの翼弦長LSとすると、ボス部半径Rbから前記
羽根前縁部上の点1bsまでの翼弦長Lの半径方向分布
を L=△Lb/(Rs−Rb)2×(R−Rs)2+LS
(Rb≦R≦Rs) で与え、羽根形状を形成したものであるので、ベースの
羽根1Oに比べ翼弦長が長くなり、羽根面上での圧力上
昇が稼げるとともに、高圧損時、羽根前縁部のボス部寄
り部分において、圧力面9から負圧面8への流れの回り
込みにより発生する縦渦により、流れは羽根面上に沿
い、かつ吸い込み流れがこの縦渦に誘導されながら外部
へ送風され、高圧損時における羽根前縁部付近の吸い込
み流れの剥離による羽根負圧面上の流れの乱れを無く
せ、低騒音化を図ることができ、かつ、台風などの強風
により強制的にファンが高回転するときの対処として、
羽根前縁部のボス部寄り付近とボス部との接続部の羽根
の板厚を一部厚くして、羽根の付け根の強風による応力
集中を回避し、破損を防止することなく、羽根とボス部
の接続部をR形状ぎみに羽根形状を形成したものである
ため、応力集中を回避でき、板厚を局部的に厚くする必
要がなくなる。
In the axial blower according to the present invention, the boss portion having the blade attached thereto and rotated, the blade front edge portion facing in the rotation direction, the blade rear edge portion facing in the direction opposite to the rotation direction, and the boss portion are provided. In a projection view in which the axial blower is projected on a plane orthogonal to the rotation axis of the axial blower having blades whose circumferences are formed from opposing blade outer peripheral portions, the rotation axis is the origin O,
A straight line 1baO'-connecting the origin O with the point 1baO 'on the blade leading edge at the boss radius Rb of the blade 1O' of the base-
When O is rotated about the origin O in the rotation direction by an angle δαb that is between 20 and 50 °, and the point is the blade leading edge boss extension end point 1bb ′, the blade has a cylindrical surface with an arbitrary radius R. In a development view obtained by cutting the cross section with the blade and expanding the cross section into a two-dimensional plane, the chord at the boss radius Rb is set to the point 1bb while the blade 1O has the same warp angle θ and stagger angle ξ.
To the boss radius Rb of the blade 10 at this time
Chord length LbO and point 1bb to blade trailing edge portion 1C
The chord length Lb up to b, the difference being ΔLb, and the point 1 on the blade leading edge portion at a radius Rs of 40 to 60% of the blade outer peripheral radius.
Letting the chord length LS at bs, the radial distribution of the chord length L from the boss radius Rb to the point 1bs on the blade leading edge is L = ΔLb / (Rs−Rb) 2 × (R− Rs) 2 + LS
(Rb ≦ R ≦ Rs), the blade shape is formed, so that the chord length is longer than that of the base blade 10 and the pressure rise on the blade surface is increased. At the edge of the edge portion near the boss portion, the flow is along the blade surface due to the vertical vortex generated by the wraparound of the flow from the pressure surface 9 to the negative pressure surface 8, and the suction flow is guided to this vertical vortex and is blown to the outside. As a result, the disturbance of the flow on the suction surface of the blade due to the separation of the suction flow near the blade front edge at the time of high pressure loss can be eliminated, and noise can be reduced, and the fan is forced to rise by strong wind such as typhoon. As a measure when rotating,
A part of the blade is thickened near the boss near the front edge of the blade and at the connection between the boss and the blade to avoid stress concentration due to strong wind at the root of the blade and prevent damage to the blade and boss. Since the connecting portion of each portion is formed into a blade shape with a radius of R, stress concentration can be avoided and it is not necessary to locally increase the plate thickness.

【0083】この発明に係る軸流送風機は、羽根を取り
付けて回転するボス部と、回転方向に面する羽根前縁
部、回転方向と反対方向に面する羽根後縁部、および上
記ボス部に対向する羽根外周部から周が構成される羽根
とを有する軸流送風機の回転軸と直交する平面に軸流送
風機を投影した投影図において、ベースの羽根1O’の
ボス部半径Rbにおける羽根前縁部上の点1baO’と
原点Oを結んだ直線1baO’−Oを、原点Oを中心に
回転方向に20〜50°の間である角度δαb分回転さ
せた時の点を羽根前縁ボス部延長終点1bb’としたと
き、羽根を任意半径Rの円筒面で切断し、その断面を2
次元平面に展開して得られる展開図において、前記羽根
1Oとそり角θ、食い違い角ξが同一のまま、ボス部半
径Rbでの翼弦を、前記点1bbまで延長し、このとき
の前記羽根1Oのボス部半径Rbにおける翼弦長LbO
と前記点1bb〜羽根後縁部1Cbまでの翼弦長Lb、
この差を△Lbとし、羽根外周部半径の40〜60%の
半径Rsでの羽根前縁部上の点1bsでの翼弦長LSと
すると、ボス部半径Rbから前記羽根前縁部上の点1b
sまでの翼弦長Lの半径方向分布を L=△Lb/(Rs−Rb)2×(R−Rs)2+LS
(Rb≦R≦Rs) で与え、羽根形状を形成したものであるので、ベースの
羽根1Oに比べ翼弦長が長くなり、羽根面上での圧力上
昇が稼げるとともに、高圧損時、羽根前縁部のボス部寄
り部分において、圧力面9から負圧面8への流れの回り
込みにより発生する縦渦により、流れは羽根面上に沿
い、かつ吸い込み流れがこの縦渦に誘導されながら外部
へ送風され、高圧損時における羽根前縁部付近の吸い込
み流れの剥離による羽根負圧面上の流れの乱れを無く
せ、低騒音化を図ることができ、かつ、台風などの強風
により強制的にファンが高回転するときの対処として、
羽根前縁部のボス部寄り付近とボス部との接続部の羽根
の板厚を一部厚くして、羽根の付け根の強風による応力
集中を回避し、破損を防止することなく、羽根とボス部
の接続部をR形状ぎみに羽根形状を形成したものである
ため、応力集中を回避でき、板厚を局部的に厚くする必
要がなくなる。
In the axial blower according to the present invention, the boss portion having the blade attached thereto and rotated, the blade front edge portion facing in the rotation direction, the blade rear edge portion facing in the direction opposite to the rotation direction, and the boss portion are provided. In a projection view in which the axial blower is projected on a plane orthogonal to the rotation axis of the axial blower having vanes whose circumferences are formed of opposing vane outer peripheral portions, the vane leading edge at the boss radius Rb of the vane 1O ′ of the base Point 1baO 'on the part and a straight line 1baO'-O connecting the origin O are rotated about the origin O by an angle δαb which is between 20 and 50 °. When the extension end point is 1 bb ', the blade is cut along a cylindrical surface with an arbitrary radius R and its cross section is divided into 2
In a development view obtained by developing on a three-dimensional plane, the chord at the boss radius Rb is extended to the point 1bb with the same deflection angle θ and stagger angle ξ as the blade 10 and the blade at this time. Chord length LbO at boss radius Rb of 10
And the chord length Lb from the point 1bb to the blade trailing edge portion 1Cb,
Let this difference be ΔLb, and let the chord length LS at the point 1bs on the blade leading edge portion at a radius Rs of 40 to 60% of the blade outer peripheral radius be the boss radius Rb on the blade leading edge portion. Point 1b
The radial distribution of the chord length L up to s is L = ΔLb / (Rs−Rb) 2 × (R−Rs) 2 + LS
(Rb ≦ R ≦ Rs), the blade shape is formed, so that the chord length is longer than that of the base blade 10 and the pressure rise on the blade surface is increased. At the edge of the edge portion near the boss portion, the flow is along the blade surface due to the vertical vortex generated by the wraparound of the flow from the pressure surface 9 to the negative pressure surface 8, and the suction flow is guided to this vertical vortex and is blown to the outside. As a result, the disturbance of the flow on the suction surface of the blade due to the separation of the suction flow near the blade front edge at the time of high pressure loss can be eliminated, and noise can be reduced, and the fan is forced to rise by strong wind such as typhoon. As a measure when rotating,
A part of the blade is thickened near the boss near the front edge of the blade and at the connection between the boss and the blade to avoid stress concentration due to strong wind at the root of the blade and prevent damage to the blade and boss. Since the connecting portion of each portion is formed into a blade shape with a radius of R, stress concentration can be avoided and it is not necessary to locally increase the plate thickness.

【0084】実施例10 以下、他の一実施例を図に基づいて説明する。図71は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す矢印、1bは
羽根前縁部、1dは羽根外周部、1Cは羽根後縁部を示
す。図72は、図71における正面図である。図中Lは
翼弦長であり、羽根間の円周方向距離(ピッチ)である
Tとの比で定義される節弦比T/Lの値を各半径点にお
いて、T/L=1.1〜2.0としている。図73は、
回転軸3と直交する平面に羽根1を投影した投影図であ
る。図において、図72と同一符号のものは同一のもの
を示す。1’は投影図における羽根、1b’は投影図に
おける羽根前縁部、1c’は投影図における羽根後縁
部、1d’は投影図における羽根外周部である。また、
図中破線は、本発明による軸流送風機の羽根1’を形成
する際のベースになる羽根1O’で、1bO’はベース
になる羽根の羽根前縁部、1dO’はベースになる羽根
の羽根外周部、1CO’はベースになる羽根の羽根後縁
部を示す。
Tenth Embodiment Another embodiment will be described below with reference to the drawings. FIG. 71 is a perspective view showing an embodiment of the axial blower according to the present invention, which has, for example, a three-blade shape, and the operation will be mainly described for one blade 1, but the same applies to other blades. Is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion to which the blade is attached,
Reference numeral 3 denotes a rotation axis of the blade 1, 4 denotes an arrow indicating a rotation direction, 1b denotes a blade leading edge portion, 1d denotes a blade outer peripheral portion, and 1C denotes a blade trailing edge portion. FIG. 72 is a front view of FIG. 71. In the figure, L is the chord length, and the value of the chord ratio T / L defined by the ratio with T, which is the circumferential distance (pitch) between the blades, is T / L = 1. It is set to 1 to 2.0. FIG. 73 shows
FIG. 3 is a projection view in which a blade 1 is projected on a plane orthogonal to a rotation axis 3. In the figure, the same reference numerals as those in FIG. 72 indicate the same elements. Reference numeral 1'denotes a blade in the projection drawing, 1b 'denotes a blade leading edge portion in the projection drawing, 1c' denotes a blade trailing edge portion in the projection drawing, and 1d 'denotes a blade outer peripheral portion in the projection drawing. Also,
In the figure, the broken line is a blade 10O 'which becomes a base when forming the blade 1'of the axial blower according to the present invention, 1bO' is a blade leading edge portion of the base blade, and 1dO 'is a blade blade of the base. The outer peripheral portion, 1CO ', indicates the blade trailing edge portion of the blade that is the base.

【0085】また回転軸3から任意半径Rの円筒面でベ
ースの羽根1O’を切断し、その断面を二次元平面に展
開して得られる展開図における円弧1bRO’−PR
O’−1cRO’は、羽根断面形状となる。ここで、P
RO’は弧1bRO’−1cRO’の中点であり、回転
軸3と直交する平面に羽根1O’を投影した投影図にお
ける翼弦線中心点となる。この投影図におけるPRO’
の位置を明確化するために、ボス部半径Rbの円筒面で
羽根1O’を切断し、その断面を二次元平面に展開して
得られる展開図におけるボス部翼弦線中心点PbO’と
し、回転軸3の投影図における位置Oとを結ぶ直線Pb
O’−OをX軸として、Oを原点とした座標系を投影図
に形成する。またPtO’は羽根外周部半径Rtにおけ
る羽根外周部1dO’での翼弦線中心点とする。上記座
標系において、直線PRO’−OとX軸のなす角度をδ
θ(δθ:回転方向前進角)とし、羽根外周部での翼弦
線中心点PtO’と原点Oを結んだ直線PtO’−Oと
X軸のなす角度をδθtとし、δθ=δθt×(R−R
b)/(Rt−Rb)で与え、δθt=25〜40°と
している。
Further, the blade 1O 'of the base is cut from the rotary shaft 3 with a cylindrical surface of an arbitrary radius R, and its cross section is developed into a two-dimensional plane.
O'-1cRO 'has a blade cross-sectional shape. Where P
RO 'is the midpoint of the arc 1bRO'-1cRO', and is the chord line center point in the projection drawing in which the blade 1O 'is projected on the plane orthogonal to the rotation axis 3. PRO 'in this projection
In order to clarify the position of, the blade 1O ′ is cut at the cylindrical surface of the boss radius Rb and the cross section is developed into a two-dimensional plane, which is taken as the boss chord chord line center point PbO ′, A straight line Pb connecting the position O on the projection of the rotation axis 3
A coordinate system with O′-O as the X axis and O as the origin is formed on the projection view. Further, PtO ′ is the center point of the chord line in the blade outer peripheral portion 1dO ′ at the blade outer peripheral portion radius Rt. In the above coordinate system, the angle between the straight line PRO'-O and the X axis is δ
θ (δθ: advancing angle in the rotational direction), the angle between the straight line PtO′−O connecting the chord line center point PtO ′ at the blade outer periphery and the origin O and the X axis is δθt, and δθ = δθt × (R -R
b) / (Rt-Rb), and δθt = 25-40 °.

【0086】本発明による軸流送風機は、この前記図中
は破線で示したベースの羽根1O’の羽根外周部半径R
tと羽根ボス部半径Rbの間である任意半径Rsをもつ
羽根前縁部1bO’上の点1bs’(1bs’:羽根前
縁ボス部延長開始点)、羽根の付け根であるボス部半径
Rbの羽根前縁部1bO’上の点1baO’と原点Oを
結んだ直線1baO’−Oを、原点Oを中心に回転方向
に角度δαb(δαb:羽根前縁ボス部前進延長角)分
回転させた時の点1bb’(1bb’:羽根前縁ボス部
延長終点)とする時、前記直線1baO’−Oを、0°
〜前記羽根前縁ボス部前進延長角δαbの間の任意角度
δα分回転させ、羽根外周部方向に延長したときの半径
Rbと半径Rsの間の任意半径Rcにおける点1bc’
とすると、この時の任意回転角度δαの半径方向分布を δα=(δαb/(Rb−RS)2)×(R−RS)2
(Rb≦R≦Rs) で与え、前記羽根と連続するように、ベースの羽根1
O’の羽根前縁部1bO’を基準にして、半径Rsの羽
根前縁ボス部延長開始点1bs’から前記点1bc’を
通り、ボス部半径Rbの羽根前縁ボス部延長終点1b
b’の間の羽根前縁部1bO’を回転方向に前進延長さ
せ、羽根形状を形成したものである。
In the axial blower according to the present invention, the outer peripheral radius R of the blade 10O 'of the base shown by the broken line in the figure is R.
Point 1bs'(1bs': blade leading edge boss extension start point) on blade leading edge 1bO 'having an arbitrary radius Rs between t and blade boss radius Rb, boss radius Rb which is the root of the blade The straight line 1baO'-O connecting the point 1baO 'on the blade leading edge 1bO' and the origin O is rotated about the origin O by an angle δαb (δαb: blade leading edge boss advance extension angle). When the point is 1 bb '(1 bb': end point of the blade leading edge boss extension) when the straight line 1 baO'-O is 0 °
-A point 1bc 'at an arbitrary radius Rc between the radius Rb and the radius Rs when the blade is rotated by an arbitrary angle δα between the blade leading edge boss advance extension angles δαb and extended in the blade outer peripheral direction.
Then, the radial distribution of the arbitrary rotation angle δα at this time is δα = (δαb / (Rb-RS) 2) × (R-RS) 2
(Rb ≦ R ≦ Rs) so that the base blade 1 is continuous with the blade 1.
Based on the blade leading edge 1b of O ', the blade leading edge boss extension end point 1b of radius Rs passes from the blade leading edge boss extension start point 1bs' to the point 1bc'.
A blade shape is formed by advancing and extending the blade leading edge portion 1bO ′ between b ′ in the rotation direction.

【0087】図74は、図73における図中破線で示し
たベースの羽根1O’のボス部半径Rbでの翼弦線中心
点PbO’を相対的な原点として、羽根面を形成したと
き、べースの羽根1O’をボス部半径Rbの円筒面で切
断し、その断面を二次元平面に展開して得られる展開図
を示す。なお実線が本発明の羽根1を示す。図中、ベー
スの羽根のそり線5を円弧形状とし、その円弧を形成す
るための中心角であるそり角θ、円弧を形成する半径を
RRとする。このとき、そり角θの半径方向分布を θ=(θt−θb)×(R−Rb)/(Rt−Rb)+
θb (θt:羽根外周部でのそり角、θb:羽根ボス
部でのそり角) とし、θt=25〜35°、θb=30〜55°、θt
<θbとしている。また、羽根の取付位置は、その翼弦
線1baO−1COと、回転軸3と平行でベースの羽根
1Oの羽根前縁部1baOを通る直線6とのなす角度を
食い違い角ξとし、ξに半径方向の分布をもたせること
により決定する。すなわちξの半径方向分布を ξ=(ξt−ξb)×(R−Rb)/(Rt−Rb)+
ξb (ξt:羽根外周部での食い違い角、ξb:羽
根ボス部での食い違い角) とし、ξt=55〜70°、ξb=40〜65°、ξt
>ξbとしている。このようなベースの羽根1Oに対
し、本発明での軸流送風機の羽根は、図73で示した直
線1baO’−Oを原点O中心に回転方向にδαb回転
させた時のボス部半径Rbにおける点1bb’の図74
の展開図における点1bbまでを、同一円弧で回転方向
に延長させたものである。
In FIG. 74, when the blade surface is formed with the blade chord line center point PbO ′ at the boss radius Rb of the base blade 1O ′ shown by the broken line in FIG. 73 as the relative origin, A development view obtained by cutting the blade 1O ′ of the base with a cylindrical surface having a boss radius Rb and developing the cross section into a two-dimensional plane is shown. The solid line indicates the blade 1 of the present invention. In the figure, the warp line 5 of the blades of the base has an arc shape, a warp angle θ that is a central angle for forming the arc, and a radius RR that forms the arc. At this time, the radial distribution of the deflection angle θ is θ = (θt−θb) × (R−Rb) / (Rt−Rb) +
Let θb (θt: warp angle at blade outer periphery, θb: warp angle at blade boss portion), θt = 25 to 35 °, θb = 30 to 55 °, θt
<Θb. The blade mounting position is defined by the angle ξ between the chord line 1baO-1CO and the straight line 6 parallel to the rotating shaft 3 and passing through the blade front edge 1baO of the base blade 1O, and the radius ξ It is determined by giving the distribution of directions. That is, the radial distribution of ξ is ξ = (ξt−ξb) × (R−Rb) / (Rt−Rb) +
ξb (ξt: stagger angle at blade outer periphery, ξb: stagger angle at blade boss), ξt = 55 to 70 °, ξb = 40 to 65 °, ξt
> Ξb. In contrast to the blade 1O of such a base, the blade of the axial blower according to the present invention has a boss radius Rb when the straight line 1baO′-O shown in FIG. 73 is rotated δαb in the rotation direction about the origin O. Figure 74 at point 1bb '
The point up to the point 1bb in the development view of is extended in the rotational direction with the same arc.

【0088】このように形成することにより、高圧損
時、図73の半径RcにおけるX−X断面である図75
において、圧力面9から負圧面8への流れの回り込みに
より発生する縦渦10により、流れは羽根面上に沿い、
かつ吸い込み流れ12がこの縦渦10に誘導されながら
図76のように外部へ送風される。これにより、従来の
軸流送風機における問題点として、図102に示したよ
うな、高圧損時における羽根前縁部1b付近の吸い込み
流れ12の剥離による羽根負圧面8上の流れ11の乱れ
を無くせ、低騒音化を図ることができる。また、従来の
軸流送風機では、台風などの強風により強制的にファン
が高回転するときの対処として、図98のように羽根前
縁部1bのボス部寄り付近とボス部2との接続部の羽根
の板厚を一部厚くして、羽根の付け根の強風による応力
集中を回避し、破損を防止していた。そのため、図98
のB−B断面を展開した展開図である図103に示すよ
うに、板厚の厚い羽根前縁部1bで吸い込み流れ12が
衝突し、負圧面上の吸い込み流れ11が乱れていた。本
発明において、図73のように羽根1とボス部の接続部
をR形状ぎみに羽根形状を形成したものであるため、応
力集中を回避でき、板厚を局部的に厚くする必要がなく
なる。
By forming in this manner, at the time of high pressure loss, the cross section taken along the line XX in the radius Rc of FIG. 73 is shown.
At, in the vertical vortex 10 generated by the wraparound of the flow from the pressure surface 9 to the suction surface 8, the flow is along the blade surface,
Moreover, the suction flow 12 is guided to the vertical vortex 10 and is blown to the outside as shown in FIG. Thus, as a problem in the conventional axial blower, it is possible to eliminate the turbulence of the flow 11 on the blade suction surface 8 due to the separation of the suction flow 12 near the blade leading edge portion 1b at the time of high pressure loss as shown in FIG. It is possible to reduce noise. Further, in the conventional axial blower, as a measure against the forced high rotation of the fan due to a strong wind such as a typhoon, as shown in FIG. 98, the connecting portion between the boss portion 2 near the boss portion of the blade front edge portion 1b is connected. Part of the blade of the blade was thickened to avoid stress concentration due to strong wind at the root of the blade and prevent damage. Therefore, FIG.
As shown in FIG. 103 which is a developed view of the BB cross section of No. 3, the suction flow 12 collided with the blade leading edge portion 1b having a thick plate thickness, and the suction flow 11 on the suction surface was disturbed. In the present invention, as shown in FIG. 73, since the connecting portion between the blade 1 and the boss portion is formed in a blade shape with a rounded shape, stress concentration can be avoided and it is not necessary to locally increase the plate thickness.

【0089】しかし、前記直線1baO’−Oを原点O
中心に回転方向させる時の羽根ボス部前進延長角δαb
および羽根前縁ボス部延長開始点1bs’での半径Rs
が大きすぎると図74に相当する図77のように吸い込
み流れ12が羽根前縁部1bbで衝突し、羽根面に乱れ
を発生させ騒音悪化し、小さすぎると効果がなくなり、
かつ強度不足となる。従って、この角度δαbおよび半
径Rsの最適範囲が存在する。図78は、羽根前縁ボス
部延長開始点1bsにおける半径Rs=一定の時の羽根
前縁ボス部前進延長角δαbの大きさによって、騒音特
性への影響を実験的に求めたものである。このとき比騒
音Ksは、動作点によって変化するため、比騒音Ksが
最小となる動作点での値を最小比騒音Ksminとして
グラフ化している。図に示すように、羽根前縁ボス部前
進延長角δαbが20〜50°の間であれば、ベースの
羽根である従来の軸流送風機に対し、最小比騒音Ksm
inの値は小さく、最高2.5[dB(A)]低騒音であ
る。
However, the straight line 1baO'-O is the origin O.
Blade boss advance extension angle δαb when rotating to the center
And the radius Rs at the blade leading edge boss extension starting point 1bs'
Is too large, as shown in FIG. 77 corresponding to FIG. 74, the suction flow 12 collides with the blade leading edge portion 1bb, causing turbulence on the blade surface and deteriorating noise.
And the strength is insufficient. Therefore, there is an optimum range of the angle δαb and the radius Rs. FIG. 78 is an experimental result of the influence on the noise characteristic depending on the size of the blade leading edge boss advance extension angle δαb when the radius Rs at the blade leading edge boss extension start point 1bs is constant. At this time, since the specific noise Ks changes depending on the operating point, the value at the operating point where the specific noise Ks becomes the minimum is plotted as the minimum specific noise Ksmin. As shown in the figure, when the blade leading edge boss advance extension angle δαb is between 20 and 50 °, the minimum specific noise Ksm is lower than that of the conventional axial flow fan that is the base blade.
The value of in is small, and the maximum noise is 2.5 [dB (A)].

【0090】図79は、羽根前縁ボス部前進延長角δα
b=一定の時の、図73における羽根前縁ボス部延長開
始点1bs’における半径Rsと羽根外周部半径Rtの
比率(=Rs/Rt)の大きさによって、騒音特性への
影響を実験的に求めたものである。このとき比騒音Ks
は、動作点によって変化するため、比騒音Ksが最小と
なる動作点での値を最小比騒音Ksminとしてグラフ
化している。図に示すように、羽根前縁ボス部延長開始
点1bs’における半径Rsが羽根外周部半径Rtの4
0〜70%の間にあれば、最小比騒音Ksminは低
く、ベースの羽根である従来の軸流送風機に対し、最高
2.5[dB(A)]低騒音である。図80は、羽根前縁ボ
ス部延長開始点1bsにおける半径Rsと羽根外周部半
径Rtの比率(=Rs/Rt)と羽根前縁ボス部前進延
長角δαbの騒音特性への影響を実験的に検討し、比騒
音Ksが最小になる動作点での値をグラフ化したもので
ある。図より、0.4≦Rs/Rt≦0.7かつ20°≦δα
b≦50°であれば、最小比騒音Ksminは十分小さ
く、最高2.5[dB(A)]低騒音である。図81は、羽
根前縁ボス部延長開始点1bsにおける半径Rsと羽根
外周部半径Rtの比率と羽根前縁ボス部前進延長角δα
bの羽根への最大応力σへの影響を実験的に検討したも
のである。図中Rb/Rtでの値を示す●はベースの羽
根である軸流送風機の羽根前縁部ボス部より部分を局所
的に板厚を厚くしなかった場合の最大応力である。図よ
り、0.4≦Rs/Rtかつ20°≦δαbであれば、
羽根の強度は十分である。従って、図80、81より0.
4≦Rs/Rt≦0.7かつ20°≦δαb≦50°であれ
ば、低騒音でかつ強度が十分な羽根を得られる。
FIG. 79 shows the advance extension angle δα of the blade leading edge boss portion.
When b = constant, the influence on the noise characteristics was experimentally determined by the size of the ratio (= Rs / Rt) of the radius Rs at the blade leading edge boss extension starting point 1bs ′ in FIG. 73 and the blade outer radius Rt. Is what I asked for. At this time, the specific noise Ks
Changes depending on the operating point, so the value at the operating point where the specific noise Ks is the minimum is plotted as the minimum specific noise Ksmin. As shown in the figure, the radius Rs at the blade leading edge boss extension starting point 1bs ′ is 4 of the blade outer peripheral radius Rt.
If it is in the range of 0 to 70%, the minimum specific noise Ksmin is low, which is a maximum of 2.5 [dB (A)] low noise as compared with the conventional axial flow fan that is the blade of the base. FIG. 80 shows experimentally the effect of the ratio (= Rs / Rt) of the radius Rs and the blade outer radius Rt at the blade leading edge boss extension start point 1bs and the effect of the blade leading edge boss advance extension angle δαb on the noise characteristics. This is a graph of the values at the operating point where the specific noise Ks was minimized after examination. From the figure, 0.4 ≦ Rs / Rt ≦ 0.7 and 20 ° ≦ δα
If b ≦ 50 °, the minimum specific noise Ksmin is sufficiently small and the maximum noise is 2.5 [dB (A)]. FIG. 81 shows the ratio of the radius Rs to the outer radius Rt of the blade at the blade leading edge boss extension start point 1bs and the blade leading edge boss advance extension angle δα.
This is an experimental study of the effect of b on the maximum stress σ on the blade. In the figure, the value in Rb / Rt indicates the maximum stress when the plate thickness is not locally thickened from the boss portion of the blade of the axial flow fan, which is the blade of the base. From the figure, if 0.4 ≦ Rs / Rt and 20 ° ≦ δαb,
The strength of the blade is sufficient. Therefore, from FIGS. 80 and 81, 0.
If 4 ≦ Rs / Rt ≦ 0.7 and 20 ° ≦ δαb ≦ 50 °, a blade with low noise and sufficient strength can be obtained.

【0091】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、およびボス部に対向す
る羽根外周部から周が構成される羽根とを有する軸流送
風機の羽根を任意半径Rの円筒面で切断し、その断面を
2次元平面に展開して得られる展開図において、その羽
根断面におけるそり線の形状を円弧形状とし、その円弧
を形成するための中心角をθ(θ:そり角)とした場
合、θの半径方向分布をθ=(θt−θb)×(R−R
b)/(Rt−Rb)+θb(θt:羽根外周部でのそ
り角、θb:羽根ボス部半径Rbにおけるそり角)で与
え、θt=25゜〜35゜、θb=30゜〜55゜、θt<
θbとし、上記展開図において、羽根の翼弦線と上記回
転軸と平行で上記羽根の前縁部を通る直線とのなす角度
をξ(ξ:食い違い角)とするとき、ξの半径方向分布
を、ξ=(ξt−ξb)×(R−Rb)/(Rt−R
b)+ξb(ξt:羽根外周部での食い違い角ξ、ξ
b:ボス部半径Rbにおける食い違い角)で与え、ξt
=55゜〜70゜、ξb=40゜〜65゜、ξt>ξbと
し、さらに、この図におけるLは翼弦長であり、図5に
おいて示した羽根間の円周方向距離(ピッチ)であるT
との比で定義される節弦比T/Lの値を、各半径点にお
いてT/L=1.1〜2.0とし、かつ上記回転軸と直
交する平面に軸流送風機を投影した投影図において、上
記羽根のボス部半径Rbの円筒面で切断したときの断面
における翼弦線中心点をPb’とし、上記回転軸を原点
Oとして、上記O点とPb’点とを結ぶ直線をX軸とし
た座標系で、上記羽根を任意半径Rの円筒面で切断した
時の翼弦線中心点をPR’として、直線PR’−Oと上
記X軸とのなす角度をδθ(δθ:回転方向前進角)と
した場合、δθの半径方向分布を δθ=δθt×(R−Rb)/(Rt−Rb) (Rt:羽根外周部半径、Rb:羽根ボス部半径、δθ
t:直線Pt’−OとX軸のなす角度)で与え、δθt
を25〜40°とし、まず羽根形状を形成し、この時の
羽根の付け根の羽根前縁部上の点1baO’と原点Oを
結んだ直線1baO’−Oを、原点Oを中心に回転方向
に20〜50°の間である角度δαb分回転させた時の
ボス部半径Rbの点1bb’と羽根外周部半径の40〜
70%の半径Rsをもつ羽根前縁部上の点1bs’の間
の形状を、前記羽根前縁部を基準として、前記羽根のボ
ス部半径Rbである羽根前縁部上の点1baO’から前
記角度δαb分回転方向に回転させたときのボス部半径
Rbの羽根前縁部上の点1bb’の間に存在するボス部
半径Rb〜半径Rsの間の半径Rcの点1bC’と原点
Oを結んだ直線1bC’−Oと直線1baO’−Oとの
なす角度を示すδαの半径方向分布を δα=(δαb/(Rb−RS)2)×(R−RS)2
(Rb≦R≦Rs) で与え、前記羽根と連続するように、羽根前縁部上の点
1bs’よりボス部寄り部分の羽根前縁部を回転方向に
延長し、羽根形状を形成したものであるので、高圧損
時、羽根前縁部のボス部寄り部分において、圧力面9か
ら負圧面8への流れの回り込みにより発生する縦渦によ
り、流れは羽根面上に沿い、かつ吸い込み流れがこの縦
渦に誘導されながら外部へ送風され、高圧損時における
羽根前縁部1b付近の吸い込み流れ12の剥離による羽
根負圧面8上の流れ11の乱れを無くせ、低騒音化を図
ることができ、かつ、台風などの強風により強制的にフ
ァンが高回転するときの対処として、羽根前縁部のボス
部寄り付近とボス部との接続部の羽根の板厚を一部厚く
して、羽根の付け根の強風による応力集中を回避し、破
損を防止することなく、羽根1とボス部の接続部をR形
状ぎみに羽根形状を形成したものであるため、応力集中
を回避でき、板厚を局部的に厚くする必要がなくなる。
In this axial blower, the boss portion with the blades attached and rotating, the blade front edge portion facing in the rotation direction, the blade trailing edge portion facing in the direction opposite to the rotation direction, and the blade outer periphery facing the boss portion. In a development view obtained by cutting a blade of an axial-flow blower having a blade whose periphery is formed by a section with a cylindrical surface having an arbitrary radius R and developing the cross section into a two-dimensional plane, When the shape is an arc shape and the central angle for forming the arc is θ (θ: warp angle), the radial distribution of θ is θ = (θt−θb) × (RR
b) / (Rt−Rb) + θb (θt: warp angle at blade outer periphery, θb: warp angle at blade boss radius Rb), θt = 25 ° to 35 °, θb = 30 ° to 55 °, θt <
Let θb be the angle between the chord line of the blade and the straight line that is parallel to the rotation axis and that passes through the leading edge of the blade in the above developed view and is ξ (ξ: stagger angle). Ξ = (ξt−ξb) × (R−Rb) / (Rt−R
b) + ξb (ξt: stagger angle ξ, ξ at the outer periphery of the blade
b: stagger angle at boss radius Rb), ξt
= 55 ° to 70 °, ξb = 40 ° to 65 °, ξt> ξb, and L in this figure is the chord length, which is the circumferential distance (pitch) between the blades shown in FIG. T
And the value of the chordal ratio T / L defined by the ratio of T and L is 1.1 to 2.0 at each radial point, and the axial blower is projected on a plane orthogonal to the rotation axis. In the figure, Pb 'is the center point of the chord line in the cross section when cut by a cylindrical surface having the boss radius Rb of the blade, the rotation axis is the origin O, and a straight line connecting the points O and Pb' is In the coordinate system with the X-axis, the angle between the straight line PR'-O and the X-axis is δθ (δθ: (Advancing angle in the rotation direction), the radial distribution of δθ is δθ = δθt × (R−Rb) / (Rt−Rb) (Rt: blade outer radius, Rb: blade boss radius, δθ
t: angle formed by the straight line Pt′−O and the X axis), and δθt
Is 25 to 40 °, a blade shape is first formed, and a straight line 1baO′-O connecting a point 1baO ′ on the blade leading edge portion of the blade root and the origin O at this time is rotated about the origin O. The point 1bb ′ of the boss radius Rb when rotated by an angle δαb between 20 and 50 ° and the blade outer circumference radius of 40˜.
From the point 1baO ′ on the blade leading edge which is the boss radius Rb of the blade with respect to the blade leading edge, the shape between points 1bs ′ on the blade leading edge having a radius Rs of 70% is used. A point 1bC 'of a radius Rc between a radius Rb and a radius Rs existing between points 1bb' on the blade leading edge portion of the boss radius Rb when rotated in the rotation direction by the angle δαb and an origin O. The radial distribution of δα indicating the angle formed by the straight line 1bC′−O and the straight line 1baO′−O that connect is δα = (δαb / (Rb−RS) 2) × (R−RS) 2
(Rb ≦ R ≦ Rs), and the blade shape is formed by extending the blade front edge portion closer to the boss from the point 1bs ′ on the blade front edge portion in the rotation direction so as to be continuous with the blade. Therefore, at the time of high pressure loss, the flow along the blade surface and the suction flow due to the vertical vortex generated by the wraparound of the flow from the pressure surface 9 to the suction surface 8 at the boss portion of the blade front edge portion. It is possible to eliminate the turbulence of the flow 11 on the blade suction surface 8 due to the separation of the suction flow 12 near the blade leading edge portion 1b at the time of high pressure loss, while being guided by this vertical vortex and to reduce noise. In addition, as a countermeasure when the fan is forced to rotate at high speed due to a strong wind such as a typhoon, part of the blade thickness near the boss near the blade front edge and the boss is thickened to Avoid stress concentration due to strong wind at the base of Without preventing, since they are the connection portion of the blade 1 and the boss portion forming the blade shape R shape Gimi, you can avoid stress concentration, it is not necessary to increase the plate thickness locally.

【0092】実施例11 以下、他の一実施例を図に基づいて説明する。図82は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す矢印、1bは
羽根前縁部、1dは羽根外周部、1Cは羽根後縁部を示
す。図83は、図82の平面図である。図中Lは翼弦長
であり、羽根間の円周方向距離(ピッチ)であるTとの
比で定義される節弦比T/Lの値を各半径点において、
T/L=1.1〜2.0としている。
Embodiment 11 Another embodiment will be described below with reference to the drawings. FIG. 82 is a perspective view showing an embodiment of the axial blower according to the present invention, which has, for example, a three-blade shape, and the operation will be mainly described for one blade 1, but the same applies to other blades. Is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion to which the blade is attached,
Reference numeral 3 denotes a rotation axis of the blade 1, 4 denotes an arrow indicating a rotation direction, 1b denotes a blade leading edge portion, 1d denotes a blade outer peripheral portion, and 1C denotes a blade trailing edge portion. 83 is a plan view of FIG. 82. In the figure, L is the chord length, and the value of the chordal chord ratio T / L defined by the ratio with T, which is the circumferential distance (pitch) between the blades, at each radius point,
T / L = 1.1 to 2.0.

【0093】図84は、回転軸3と直交する平面に羽根
1、この羽根1’のベースになる羽根1O’を投影した
投影図である。図において、図83と同一符号のものは
同一のものを示す。1’は投影図における羽根、1b’
は投影図における羽根前縁部、1c’は投影図における
羽根後縁部、1d’は投影図における羽根外周部であ
る。また、図中破線は、本発明による軸流送風機の羽根
1’を形成する際のベースになる羽根1O’で、1b
O’はベースになる羽根の羽根前縁部、1dO’はベー
スになる羽根の羽根外周部、1CO’はベースになる羽
根の羽根後縁部を示す。また回転軸3から任意半径Rの
円筒面でベースの羽根1O’を切断し、その断面を二次
元平面に展開して得られる展開図における円弧1bR
O’−PRO’−1cRO’は、羽根断面形状となる。
ここで、PRO’は弧1bRO’−1cRO’の中点で
あり、回転軸3と直交する平面に羽根1O’を投影した
投影図における翼弦線中心点となる。この投影図におけ
るPRO’の位置を明確化するために、ボス部半径Rb
の円筒面で羽根1O’を切断し、その断面を二次元平面
に展開して得られる展開図におけるボス部翼弦線中心点
PbO’とし、回転軸3の投影図における位置Oとを結
ぶ直線PbO’−OをX軸として、Oを原点とした座標
系を投影図に形成する。またPtO’は羽根外周部半径
Rtにおける羽根外周部1dO’での翼弦線中心点とす
る。上記座標系において、直線PRO’−OとX軸のな
す角度をδθ(δθ:回転方向前進角)とし、羽根外周
部での翼弦線中心点PtO’と原点Oを結んだ直線Pt
O’−OとX軸のなす角度をδθtとし、 δθ=δθt×(R−Rb)/(Rt−Rb)で与え、
δθt=25〜40° としている。本発明による軸流送風機は、図中破線で示
したベースの羽根1O’の羽根外周部半径Rtと羽根ボ
ス部半径Rbの間である任意半径Rsをもつ羽根前縁部
1bO’上の点1bs’(1bs’:羽根前縁ボス部延
長開始点)、羽根の付け根であるボス部半径Rbの羽根
前縁部1bO’上の点1baO’と原点Oを結んだ直線
1baO’−Oを、原点Oを中心に回転方向に角度δα
b(δαb:羽根前縁ボス部前進延長角)分回転させた
時の点1bb’(1bb’:羽根前縁ボス部延長終点)
とするとき、前記羽根前縁ボス部延長開始点における半
径Rsから羽根前縁ボス部延長終点1bb’における半
径Rbまでの羽根の翼弦長を回転方向に延長した形状で
ある。次の図で詳細に述べる。
FIG. 84 is a projection view in which the blade 1 and the blade 1O ′ which is the base of the blade 1 ′ are projected on the plane orthogonal to the rotation axis 3. In the figure, the same symbols as those in FIG. 83 denote the same elements. 1'is the blade in the projection, 1b '
Is a blade front edge portion in the projection view, 1c ′ is a blade trailing edge portion in the projection view, and 1d ′ is a blade outer peripheral portion in the projection view. In addition, the broken line in the figure is a blade 1O 'which is a base for forming the blade 1'of the axial blower according to the present invention, and 1b.
O'denotes the blade leading edge portion of the base blade, 1dO 'denotes the blade outer peripheral portion of the base blade, and 1CO' denotes the blade trailing edge portion of the base blade. Further, the blade 1O 'of the base is cut from the rotary shaft 3 with a cylindrical surface having an arbitrary radius R, and its cross section is developed into a two-dimensional plane.
O'-PRO'-1cRO 'has a blade cross-sectional shape.
Here, PRO 'is the midpoint of the arc 1bRO'-1cRO', and is the center point of the chord line in the projection drawing in which the blade 1O 'is projected on the plane orthogonal to the rotation axis 3. In order to clarify the position of PRO 'in this projection view, the boss radius Rb
The blade 1O ′ is cut along the cylindrical surface of the above, and its cross section is expanded to a two-dimensional plane to be the boss chord line center point PbO ′ in the developed view, and a straight line connecting the position O in the projected view of the rotation axis 3 A coordinate system with PbO′-O as the X axis and O as the origin is formed in the projection view. Further, PtO ′ is the center point of the chord line in the blade outer peripheral portion 1dO ′ at the blade outer peripheral portion radius Rt. In the above coordinate system, the angle between the straight line PRO'-O and the X axis is δθ (δθ: forward direction angle in the rotational direction), and the straight line Pt connecting the chord line center point PtO ′ at the blade outer periphery and the origin O.
Let δθt be the angle between O′-O and the X axis, and give by δθ = δθt × (R−Rb) / (Rt−Rb)
δθt = 25-40 °. The axial blower according to the present invention has a point 1bs on the blade leading edge 1bO 'having an arbitrary radius Rs between the blade outer radius Rt and the blade boss radius Rb of the blade 1O' of the base shown by the broken line in the figure. '(1bs': blade leading edge boss extension start point), a point 1baO 'on the blade leading edge 1bO' having a boss radius Rb which is the root of the blade, and a straight line 1baO'-O connecting the origin O are the origins. Angle δα in the direction of rotation around O
Point 1bb '(1bb': blade leading edge boss extension end point) when rotated by b (δαb: blade leading edge boss extension extension angle)
In this case, the blade chord length from the radius Rs at the blade leading edge boss extension start point to the radius Rb at the blade leading edge boss extension end point 1bb ′ is extended in the rotational direction. Details are given in the following figure.

【0094】図85は、図84における図中破線で示し
たベースの羽根1O’のボス部半径Rbでの翼弦線中心
点PbO’を相対的な原点として、羽根面を形成したと
き、べースの羽根1O’をボス部半径Rbの円筒面で切
断し、その断面を二次元平面に展開して得られる展開図
を示す。なお実線が本発明の羽根1を示す。図中、ベー
スの羽根のそり線5を円弧形状とし、その円弧を形成す
るための中心角であるそり角θ、円弧を形成する半径を
RROとする。このとき、そり角θの半径方向分布を θ=(θt−θb)×(R−Rb)/(Rt−Rb)+
θb (θt:羽根外周部でのそり角、θb:羽根ボス
部でのそり角) とし、θt=25〜35°、θb=30〜55°、θt
<θbとしている。また、羽根の取付位置は、その翼弦
線1baO−1COと、回転軸3と平行でベースの羽根
1Oの羽根前縁部1baOを通る直線6とのなす角度を
食い違い角ξとし、ξに半径方向の分布をもたせること
により決定する。すなわちξの半径方向分布を ξ=(ξt−ξb)×(R−Rb)/(Rt−Rb)+
ξb (ξt:羽根外周部での食い違い角、ξb:羽
根ボス部での食い違い角) とし、ξt=55〜70°、ξb=40〜65°、ξt
>ξbとしている。このようなベースの羽根1Oに対
し、本発明での軸流送風機の羽根1は、前記羽根1Oと
そり角θ、食い違い角ξが同一のまま、ボス部半径Rb
での翼弦を、図84で示した羽根前縁ボス部延長終点1
bb’まで回転方向に延長し、本図における前記羽根1
Oのボス部半径Rbにおける翼弦長LbOと点1bb〜
羽根後縁部1Cbまでの翼弦長Lb、この差を△Lb
(=Lb−LbO)とし、羽根ボス部延長開始点1bs
における半径Rsでの翼弦長LSとすると、ボス部半径
Rbから前記半径Rsまでの翼弦長Lの半径方向分布を L=△Lb/(Rs−Rb)2×(R−Rs)2+LS
(Rb≦R≦Rs) で与え、羽根形状を形成したものである。
In FIG. 85, when the blade surface is formed with the blade chord line center point PbO ′ at the boss radius Rb of the blade 10O ′ of the base shown by the broken line in FIG. 84 as the relative origin, A development view obtained by cutting the blade 1O ′ of the base with a cylindrical surface having a boss radius Rb and developing the cross section into a two-dimensional plane is shown. The solid line indicates the blade 1 of the present invention. In the figure, the warp line 5 of the blades of the base is formed into an arc shape, and the warp angle θ which is the central angle for forming the arc and the radius forming the arc are RRO. At this time, the radial distribution of the deflection angle θ is θ = (θt−θb) × (R−Rb) / (Rt−Rb) +
Let θb (θt: warp angle at blade outer periphery, θb: warp angle at blade boss portion), θt = 25 to 35 °, θb = 30 to 55 °, θt
<Θb. The blade mounting position is defined by the angle ξ between the chord line 1baO-1CO and the straight line 6 parallel to the rotating shaft 3 and passing through the blade front edge 1baO of the base blade 1O, and the radius ξ It is determined by giving the distribution of directions. That is, the radial distribution of ξ is ξ = (ξt−ξb) × (R−Rb) / (Rt−Rb) +
ξb (ξt: stagger angle at blade outer periphery, ξb: stagger angle at blade boss), ξt = 55 to 70 °, ξb = 40 to 65 °, ξt
> Ξb. In contrast to the blade 1O of such a base, the blade 1 of the axial-flow fan according to the present invention has the same boss radius Rb and the same deflection angle θ and stagger angle ξ as those of the blade 1O.
The chord in Fig. 84 is the end point 1 of the blade leading edge boss extension shown in Fig.
It extends to the rotation direction up to bb ',
Chord length LbO at boss radius Rb of O and point 1bb
The chord length Lb to the blade trailing edge 1Cb, this difference is ΔLb
(= Lb-LbO), and the blade boss extension start point 1bs
Is the chord length LS at the radius Rs at R, the radial distribution of the chord length L from the boss radius Rb to the radius Rs is L = ΔLb / (Rs-Rb) 2 × (R-Rs) 2 + LS
(Rb ≦ R ≦ Rs) to form a blade shape.

【0095】このように形成することにより、図85の
ようにベースの羽根1Oに比べ翼弦長が長くなり、羽根
面上での圧力上昇が稼げるとともに、高圧損時、図84
のY−Y断面である図86において、圧力面9から負圧
面8への流れの回り込みにより発生する安定した縦渦1
0により、流れは羽根面上に沿い、かつ吸い込み流れ1
2がこの縦渦10に誘導されながら図87のように外部
へ送風される。これにより、従来の軸流送風機における
問題点として、図102に示したような、高圧損時にお
ける羽根前縁部1b付近の吸い込み流れ12の剥離によ
る羽根負圧面8上の流れ11の乱れを無くせ、低騒音化
を図ることができる。また、従来の軸流送風機では、台
風などの強風により強制的にファンが高回転するときの
対処として、図98のように羽根前縁部1bのボス部寄
り付近とボス部2との接続部の羽根の板厚を一部厚くし
て、羽根の付け根の強風による応力集中を回避し、破損
を防止していた。そのため、図98のB−B断面を展開
した展開図である図103に示すように、板厚の厚い羽
根前縁部1bで吸い込み流れ12が衝突し、負圧面上の
吸い込み流れ11が乱れていた。本発明において、図8
4のように羽根1とボス部の接続部をR形状ぎみに羽根
形状を形成したものであるため、応力集中を回避でき、
板厚を局部的に厚くする必要がなくなる。
By forming in this way, as shown in FIG. 85, the chord length becomes longer than that of the base blade 1O, the pressure rise on the blade surface can be increased, and at the time of high pressure loss, FIG.
86 which is a YY cross section of FIG. 86, the stable vertical vortex 1 generated by the wraparound of the flow from the pressure surface 9 to the suction surface 8
By 0, the flow is along the vane surface, and the suction flow is 1
2 is guided to the vertical vortex 10 and is blown to the outside as shown in FIG. Thus, as a problem in the conventional axial blower, it is possible to eliminate the turbulence of the flow 11 on the blade suction surface 8 due to the separation of the suction flow 12 near the blade leading edge portion 1b at the time of high pressure loss as shown in FIG. It is possible to reduce noise. Further, in the conventional axial blower, as a measure against the forced high rotation of the fan due to a strong wind such as a typhoon, as shown in FIG. 98, the connecting portion between the boss portion 2 near the boss portion of the blade front edge portion 1b is connected. Part of the blade of the blade was thickened to avoid stress concentration due to strong wind at the root of the blade and prevent damage. Therefore, as shown in FIG. 103, which is a developed view of the BB cross section of FIG. 98, the suction flow 12 collides with the blade leading edge portion 1b having a large plate thickness, and the suction flow 11 on the suction surface is disturbed. It was In the present invention, FIG.
As shown in Fig. 4, since the connecting portion between the blade 1 and the boss portion is formed into a blade shape with a rounded shape, stress concentration can be avoided,
It is not necessary to locally increase the plate thickness.

【0096】しかし、前記直線1ba’−Oを原点O中
心に回転方向させる時の羽根ボス部前進延長角δαbつ
まり、ボス部半径Rbにおける翼弦長Lbが大きすぎる
と図85に相当する図88において、羽根後縁部1Cb
付近で、羽根負圧面8上の流れ11や縦渦10が羽根負
圧面8から剥離を起こしたり、図89に示す軸流送風機
全周をボス部半径Rbの円筒面で切断し、その断面を二
次元平面に展開して得られる全周展開図を示すように、
羽根1の負圧面8を剥離した負圧面上の流れ11と縦渦
10が次に旋回してくる羽根1Nの圧力面9Nの流れ1
3に乱れを与え、騒音悪化が起こり、また、羽根前縁ボ
ス部延長開始点1bs’での半径Rsが小さすぎると効
果がなくなり、かつ強度不足となる。従って、この角度
δαbおよび半径Rsの最適範囲が存在する。
However, when the blade boss advance extension angle δαb when the straight line 1ba′-O is rotated about the origin O, that is, when the chord length Lb at the boss radius Rb is too large, FIG. 88 corresponding to FIG. At the blade trailing edge 1Cb
In the vicinity, the flow 11 on the blade suction surface 8 and the vertical vortex 10 cause separation from the blade suction surface 8, or the entire circumference of the axial blower shown in FIG. As shown in the full-circle development diagram obtained by developing on a two-dimensional plane,
Flow 11 on the suction surface separated from suction surface 8 of blade 1 and flow 1 on pressure surface 9N of blade 1N where vertical vortex 10 swirls next
3 is disturbed, noise is deteriorated, and if the radius Rs at the blade leading edge boss extension start point 1bs' is too small, the effect is lost and the strength becomes insufficient. Therefore, there is an optimum range of the angle δαb and the radius Rs.

【0097】図90は、ベースになる従来の軸流送風機
と上記第11の発明の一実施例による軸流送風機との流
量係数φに対する圧力係数ψの関係および比騒音Ks
[dB(A)]を実験的に求めた特性図である。図中黒
丸、黒四角は従来の軸流送風機の特性、最小比騒音を、
×、□は第11の発明の一実施例における軸流送風機の
特性、最小比騒音を示す。この特性図からわかるよう
に、従来に比べ、動作領域が低風量側まで延びかつ全体
的に高静圧化が図れている。一方、比騒音Ksは最大で
3[dB(A)]の低減が図れ低騒音である。図91は、羽
根前縁ボス部延長開始点1bsにおける半径Rs=一定
の時の羽根前縁ボス部前進延長角δαbの大きさによっ
て、騒音特性への影響を実験的に求めたものである。こ
のとき比騒音Ksは、動作点によって変化するため、比
騒音Ksが最小となる動作点での値を最小比騒音Ksm
inとしてグラフ化している。図に示すように、羽根前
縁ボス部前進延長角δαbが20〜50°の間であれ
ば、ベースの羽根である従来の軸流送風機に対し、最小
比騒音Ksminの値は小さく、最高3.0[dB(A)]
低騒音である。
FIG. 90 shows the relationship between the flow coefficient φ and the pressure coefficient ψ and the specific noise Ks of the conventional axial fan as the base and the axial fan according to the embodiment of the eleventh invention.
It is the characteristic view which experimentally calculated | required [dB (A)]. The black circles and black squares in the figure indicate the characteristics and minimum specific noise of the conventional axial blower.
The symbols x and □ represent the characteristics and the minimum specific noise of the axial flow fan in the embodiment of the eleventh invention. As can be seen from this characteristic diagram, compared with the conventional case, the operating region extends to the low air volume side and the static pressure is increased as a whole. On the other hand, the specific noise Ks can be reduced by 3 [dB (A)] at the maximum, which is low noise. FIG. 91 is an experimental result of the influence on the noise characteristic depending on the size of the blade leading edge boss advance extension angle δαb when the radius Rs at the blade leading edge boss extension start point 1bs is constant. At this time, since the specific noise Ks changes depending on the operating point, the value at the operating point where the specific noise Ks is the minimum is the minimum specific noise Ksm.
Graphed as in. As shown in the figure, when the blade leading edge boss advance extension angle δαb is between 20 and 50 °, the value of the minimum specific noise Ksmin is small compared to the conventional axial flow fan that is the base blade, and the maximum value is 3 or less. 0.0 [dB (A)]
It has low noise.

【0098】図92は、羽根前縁ボス部前進延長角δα
b=一定の時の、図47における羽根前縁ボス部延長開
始点1bs’における半径Rsと羽根外周部半径Rtの
比率(=Rs/Rt)の大きさによって、騒音特性への
影響を実験的に求めたものである。このとき比騒音Ks
は、動作点によって変化するため、比騒音Ksが最小と
なる動作点での値を最小比騒音Ksminとしてグラフ
化している。図に示すように、羽根前縁ボス部延長開始
点1bs’における半径Rsが羽根外周部半径Rtの4
0〜60%の間にあれば、最小比騒音Ksminは低
く、ベースの羽根である従来の軸流送風機に対し、最高
3.0[dB(A)]低騒音である。図93は、羽根前縁ボ
ス部延長開始点1bsにおける半径Rsと羽根外周部半
径Rtの比率(=Rs/Rt)と羽根前縁ボス部前進延
長角δαbの騒音特性への影響を実験的に検討し、比騒
音Ksが最小になる動作点での値をグラフ化したもので
ある。
FIG. 92 shows the blade leading edge boss advance extension angle δα.
When b = constant, the influence on the noise characteristic was experimentally determined by the size of the ratio (= Rs / Rt) of the radius Rs at the blade leading edge boss extension start point 1bs ′ in FIG. 47 and the blade outer peripheral radius Rt. Is what I asked for. At this time, the specific noise Ks
Changes depending on the operating point, so the value at the operating point where the specific noise Ks is the minimum is plotted as the minimum specific noise Ksmin. As shown in the figure, the radius Rs at the blade leading edge boss extension starting point 1bs ′ is 4 of the blade outer peripheral radius Rt.
If it is in the range of 0 to 60%, the minimum specific noise Ksmin is low, and the maximum noise is 3.0 [dB (A)] lower than that of the conventional axial flow fan that is the blade of the base. FIG. 93 shows experimentally the effect of the ratio (= Rs / Rt) of the radius Rs and the blade outer radius Rt at the blade leading edge boss extension start point 1bs and the effect of the blade leading edge boss advance extension angle δαb on the noise characteristics. This is a graph in which the values at the operating point where the specific noise Ks is minimized are examined.

【0099】図より、0.4≦Rs/Rt≦0.6かつ20°
≦δαb≦50°であれば、最小比騒音Ksminは十
分小さく低騒音である。図94は、羽根前縁ボス部延長
開始点1bsにおける半径Rsと羽根外周部半径Rtの
比率と羽根前縁ボス部前進延長角δαbの羽根への最大
応力σへの影響を実験的に検討したものである。図中R
b/Rtでの値を示す●はベースの羽根である軸流送風
機の羽根前縁部ボス部より部分を局所的に板厚を厚くし
なかった場合の最大応力である。図より、0.4≦Rs
/Rtかつ20°≦δαbであれば、羽根の強度は十分
である。従って、図93、94より0.4≦Rs/Rt≦
0.6かつ20°≦δαb≦50°であれば、低騒音でか
つ強度が十分な羽根を得られる。
From the figure, 0.4 ≦ Rs / Rt ≦ 0.6 and 20 °
If ≦ δαb ≦ 50 °, the minimum specific noise Ksmin is sufficiently small and the noise is low. In FIG. 94, the effect of the ratio of the radius Rs at the blade leading edge boss extension starting point 1bs to the blade outer peripheral radius Rt and the influence of the blade leading edge boss forward extension angle δαb on the maximum stress σ on the blade was experimentally examined. It is a thing. R in the figure
The value indicated by b / Rt indicates the maximum stress when the plate thickness is not locally thickened from the blade front edge boss portion of the axial flow fan, which is the blade of the base. From the figure, 0.4 ≦ Rs
If / Rt and 20 ° ≦ δαb, the strength of the blade is sufficient. Therefore, from FIGS. 93 and 94, 0.4 ≦ Rs / Rt ≦
If 0.6 and 20 ° ≦ δαb ≦ 50 °, a blade with low noise and sufficient strength can be obtained.

【0100】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、およびボス部に対向す
る羽根外周部から周が構成される羽根とを有する軸流送
風機の羽根を任意半径Rの円筒面で切断し、その断面を
2次元平面に展開して得られる展開図において、その羽
根断面におけるそり線の形状を円弧形状とし、その円弧
を形成するための中心角をθ(θ:そり角)とした場
合、θの半径方向分布をθ=(θt−θb)×(R−R
b)/(Rt−Rb)+θb(θt:羽根外周部でのそ
り角、θb:羽根ボス部半径Rbにおけるそり角)で与
え、θt=25゜〜35゜、θb=30゜〜55゜、θt<
θbとし、上記展開図において、羽根の翼弦線と上記回
転軸と平行で上記羽根の前縁部を通る直線とのなす角度
をξ(ξ:食い違い角)とするとき、ξの半径方向分布
を、ξ=(ξt−ξb)×(R−Rb)/(Rt−R
b)+ξb(ξt:羽根外周部での食い違い角ξ、ξ
b:ボス部半径Rbにおける食い違い角)で与え、ξt
=55゜〜70゜、ξb=40゜〜65゜、ξt>ξbと
し、かつ上記回転軸と直交する平面に軸流送風機を投影
した投影図において、上記羽根のボス部半径Rbの円筒
面で切断したときの断面における翼弦線中心点をPb
O’とし、上記回転軸を原点Oとして、上記O点とPb
O’点とを結ぶ直線をX軸とした座標系で、上記羽根を
任意半径Rの円筒面で切断した時の翼弦線中心点をPR
O’として、直線PRO’−Oと上記X軸とのなす角度
をδθ(δθ:回転方向前進角)とした場合、δθの半
径方向分布を δθ=δθt×(R−Rb)/(Rt−Rb) (Rt:羽根外周部半径、Rb:羽根ボス部半径、δθ
t:直線PtO’−OとX軸のなす角度)で与え、δθ
tを25〜40°とし、さらに、翼弦長LO、羽根間の
円周方向距離(ピッチ)であるTとの比で定義される節
弦比T/LOの値を、各半径点においてT/LO=1.
1〜2.0とし、まず羽根形状1O’を形成し、前記投
影図において、羽根1O’のボス部半径Rbにおける羽
根前縁部上の点1baO’と原点Oを結んだ直線1ba
O’−Oを、原点Oを中心に回転方向に20〜50°の
間である角度δαb分回転させた時の点を羽根前縁ボス
部延長終点1bb’としたとき、羽根を任意半径Rの円
筒面で切断し、その断面を2次元平面に展開して得られ
る展開図において、前記羽根1Oとそり角θ、食い違い
角ξが同一のまま、ボス部半径Rbでの翼弦を、前記点
1bbまで延長し、このときの前記羽根1Oのボス部半
径Rbにおける翼弦長LbOと前記点1bb〜羽根後縁
部1Cbまでの翼弦長Lb、この差を△Lbとし、羽根
外周部半径の40〜60%の半径Rsでの羽根前縁部上
の点1bsでの翼弦長LSとすると、ボス部半径Rbか
ら前記羽根前縁部上の点1bsまでの翼弦長Lの半径方
向分布を L=△Lb/(Rs−Rb)2×(R−Rs)2+LS
(Rb≦R≦Rs) で与え、羽根形状を形成したものであるので、ベースの
羽根1Oに比べ翼弦長が長くなり、羽根面上での圧力上
昇が稼げるとともに、高圧損時、羽根前縁部のボス部寄
り部分において、圧力面9から負圧面8への流れの回り
込みにより発生する縦渦により、流れは羽根面上に沿
い、かつ吸い込み流れがこの縦渦に誘導されながら外部
へ送風され、高圧損時における羽根前縁部付近の吸い込
み流れの剥離による羽根負圧面上の流れの乱れを無く
せ、低騒音化を図ることができ、かつ、台風などの強風
により強制的にファンが高回転するときの対処として、
羽根前縁部のボス部寄り付近とボス部との接続部の羽根
の板厚を一部厚くして、羽根の付け根の強風による応力
集中を回避し、破損を防止することなく、羽根とボス部
の接続部をR形状ぎみに羽根形状を形成したものである
ため、応力集中を回避でき、板厚を局部的に厚くする必
要がなくなる。
In this axial blower, the boss portion with the blades attached and rotating, the blade front edge portion facing in the rotation direction, the blade trailing edge portion facing in the direction opposite to the rotation direction, and the blade outer periphery facing the boss portion. In a development view obtained by cutting a blade of an axial-flow blower having a blade whose periphery is formed by a section with a cylindrical surface having an arbitrary radius R and developing the cross section into a two-dimensional plane, When the shape is an arc shape and the central angle for forming the arc is θ (θ: warp angle), the radial distribution of θ is θ = (θt−θb) × (RR
b) / (Rt−Rb) + θb (θt: warp angle at blade outer periphery, θb: warp angle at blade boss radius Rb), θt = 25 ° to 35 °, θb = 30 ° to 55 °, θt <
Let θb be the angle between the chord line of the blade and the straight line that is parallel to the rotation axis and that passes through the leading edge of the blade in the above developed view and is ξ (ξ: stagger angle). Ξ = (ξt−ξb) × (R−Rb) / (Rt−R
b) + ξb (ξt: stagger angle ξ, ξ at the outer periphery of the blade
b: stagger angle at boss radius Rb), ξt
= 55 ° to 70 °, ξb = 40 ° to 65 °, ξt> ξb, and a projection view of the axial blower projected on a plane orthogonal to the rotation axis, a cylindrical surface having a boss radius Rb of the blade Let Pb be the center point of the chord line in the cross section when cut.
O ′, the rotation axis as the origin O, and the point O and Pb
In a coordinate system with the straight line connecting the O'point as the X axis, the center point of the chord line when the blade is cut along a cylindrical surface with an arbitrary radius R is PR
As O ′, when the angle between the straight line PRO′-O and the X-axis is δθ (δθ: forward angle of rotation), the radial distribution of δθ is δθ = δθt × (R−Rb) / (Rt− Rb) (Rt: blade outer radius, Rb: blade boss radius, δθ
t: angle formed by the straight line PtO'-O and the X-axis), and δθ
Further, t is set to 25 to 40 °, and the value of the chord chord ratio T / LO defined by the ratio of the blade chord length LO and the circumferential distance (pitch) between the blades T is T at each radius point. / LO = 1.
1 to 2.0, first, a blade shape 1O 'is formed, and in the above projection, a straight line 1ba connecting a point 1baO' on the blade leading edge portion at the boss radius Rb of the blade 1O 'and an origin O.
When the point when the O′-O is rotated about the origin O in the rotation direction by an angle δαb that is between 20 and 50 ° is taken as the blade leading edge boss extension end point 1bb ′, the blade has an arbitrary radius R In a developed view obtained by cutting the cross section into a two-dimensional plane by cutting it along the cylindrical surface of, the blade chord at the boss radius Rb is the same as that of the blade 10 and the warp angle θ and the stagger angle ξ are the same. The blade chord length LbO at the boss radius Rb of the blade 1O at this time and the chord length Lb from the point 1bb to the blade trailing edge 1Cb at this time, the difference being ΔLb, and the blade outer circumference radius And a chord length LS at a point 1bs on the blade leading edge at a radius Rs of 40 to 60% of the radial direction of the chord length L from the boss radius Rb to the point 1bs on the blade leading edge. Distribution is L = ΔLb / (Rs−Rb) 2 × (R−Rs) 2 + LS
(Rb ≦ R ≦ Rs), the blade shape is formed, so that the chord length is longer than that of the base blade 10 and the pressure rise on the blade surface is increased. At the edge of the edge portion near the boss portion, the flow is along the blade surface due to the vertical vortex generated by the wraparound of the flow from the pressure surface 9 to the negative pressure surface 8, and the suction flow is guided to this vertical vortex and is blown to the outside. As a result, the disturbance of the flow on the suction surface of the blade due to the separation of the suction flow near the blade front edge at the time of high pressure loss can be eliminated, and noise can be reduced, and the fan is forced to rise by strong wind such as typhoon. As a measure when rotating,
A part of the blade is thickened near the boss near the front edge of the blade and at the connection between the boss and the blade to avoid stress concentration due to strong wind at the root of the blade and prevent damage to the blade and boss. Since the connecting portion of each portion is formed into a blade shape with a radius of R, stress concentration can be avoided and it is not necessary to locally increase the plate thickness.

【0101】実施例12 図95は、上記の発明に係る軸流送風機を組み込んだ空
気調和機の室外機を示す斜視図である。図95は、上述
の発明に係る羽根1を有する軸流送風機20を組み込ん
だ空気調和機の室外機18を示す説明図である。又図9
6は、同様に本発明の軸流送風機20を含めた冷凍サイ
クルの説明図である。図96において、冷房時の冷媒の
流れを実線矢印で、暖房時の冷媒の流れを破線矢印で示
す。暖房時において圧縮機21から四方弁23を通った
冷媒は室内側熱交換器25にて凝縮され、フレア27、
延長パイプ28、フレアバルブ26を介し絞り29で圧
力が低下して室外側熱交換器24にて蒸発し、圧縮機へ
戻る。この室外機熱交換器24は外気環境の変化にさら
されており、露や霜がつきやすい。又周囲のホコリ等を
吸い込み汚れる機械が一段と多い。このような室外熱交
換器24に、露や霜が全面あるいは一部に付着したり、
ゴミ等が多少なりとついた場合、風路抵抗が過大とな
り、高圧力損失状態となる。しかも、蒸発器として使う
場合には高風量が必要となる。このような条件において
も、本発明形状の羽根を有する軸流送風機は特性的に広
い範囲での能力が発揮できるとともに低騒音を保つこと
ができる。さらに従来の装置に比し多い風量を得ること
ができるので、熱交換器による熱交換能力がふえ、効率
の良い空気調和機が実現できる。
Embodiment 12 FIG. 95 is a perspective view showing an outdoor unit of an air conditioner incorporating the axial blower according to the above invention. FIG. 95 is an explanatory diagram showing the outdoor unit 18 of the air conditioner in which the axial blower 20 having the blades 1 according to the above-described invention is incorporated. See also FIG.
6 is an explanatory view of a refrigeration cycle including the axial flow fan 20 of the present invention similarly. In FIG. 96, the flow of the refrigerant during cooling is indicated by the solid arrow, and the flow of the refrigerant during heating is indicated by the broken arrow. During heating, the refrigerant that has passed through the four-way valve 23 from the compressor 21 is condensed in the indoor heat exchanger 25, and flares 27,
The pressure is reduced at the throttle 29 via the extension pipe 28 and the flare valve 26, evaporated in the outdoor heat exchanger 24, and returned to the compressor. The outdoor unit heat exchanger 24 is exposed to changes in the outside air environment and is liable to form dew or frost. In addition, there are more machines that inhale dust and dirt around them. Dew or frost may adhere to the entire or part of the outdoor heat exchanger 24,
If some dust or the like is attached, the resistance of the air passage becomes excessive, resulting in a high pressure loss state. Moreover, when used as an evaporator, a high air volume is required. Even under such conditions, the axial blower having the blades of the present invention can exhibit a wide range of characteristics and can maintain low noise. Further, since it is possible to obtain a large air volume as compared with the conventional device, the heat exchange capacity of the heat exchanger is increased and an efficient air conditioner can be realized.

【0102】[0102]

【発明の効果】この発明に係る軸流送風機は、翼面で生
成する気体の圧力上昇を高くできるので、風路抵抗すな
わち圧力損失が大きい時でも使用できる。さらに抵抗の
小さい風路でも羽根表面渦によって風を外部から取り込
めるようになり、風量を多く出せる。したがって、ファ
ン性能として失速の少ない使用範囲が広い軸流送風機が
得られる。又、この発明に係る軸流送風機は、羽根形状
により安定して渦を制御でき、渦が風の流れを羽根面に
沿わせるので次に回転してくる羽根の圧力面側の流れの
乱れを防止でき騒音を低下させることができる。又、本
発明においては、性能が良く強度的にも信頼性の高い軸
流送風機が得られる。又、周囲の変化の影響が少ない空
気調和機が得られる。
The axial blower according to the present invention can increase the pressure rise of the gas generated on the blade surface, and therefore can be used even when the air passage resistance, that is, the pressure loss is large. Even in an air passage with low resistance, the wind can be taken in from the outside by the blade surface vortex, and a large amount of air can be output. Therefore, it is possible to obtain an axial blower that has a wide range of use with less stall as fan performance. Further, the axial blower according to the present invention can stably control the vortex by the shape of the blade, and since the vortex causes the flow of the wind to follow the blade surface, the turbulence of the flow on the pressure surface side of the next rotating blade is prevented. It can be prevented and noise can be reduced. Further, according to the present invention, an axial blower having good performance and high reliability can be obtained. Also, an air conditioner that is less affected by changes in the surroundings can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 発明に係る実施例1による軸流送風機の斜視
FIG. 1 is a perspective view of an axial blower according to a first embodiment of the invention.

【図2】 発明に係る実施例1による軸流送風機の正面
FIG. 2 is a front view of an axial blower according to a first embodiment of the invention.

【図3】 発明に係る実施例1による軸流送風機の回転
軸と直交する平面に羽根を投影したときの投影図
FIG. 3 is a projection diagram when the blades are projected on a plane orthogonal to the rotation axis of the axial blower according to the first embodiment of the invention.

【図4】 発明に係る実施例1による軸流送風機の図3
におけるY−Y断面図
FIG. 4 is a diagram of an axial-flow blower according to a first embodiment of the invention.
YY sectional view in

【図5】 発明に係る実施例1による軸流送風機の図3
におけるX−X断面図
FIG. 5 is a diagram of an axial-flow blower according to a first embodiment of the invention.
XX cross section in FIG.

【図6】 発明に係る実施例1による軸流送風機と従来
の軸流送風機の流量係数φと比騒音Ks、圧力係数ψの
関係を示すグラフ
FIG. 6 is a graph showing the relationship between the flow coefficient φ, the specific noise Ks, and the pressure coefficient ψ of the axial blower according to the first embodiment of the invention and the conventional axial blower.

【図7】 発明に係る実施例2による軸流送風機の斜視
FIG. 7 is a perspective view of an axial blower according to a second embodiment of the invention.

【図8】 発明に係る実施例2による軸流送風機の正面
FIG. 8 is a front view of an axial blower according to a second embodiment of the invention.

【図9】 発明に係る実施例2による軸流送風機の回転
軸と直交する平面に羽根を投影したときの投影図
FIG. 9 is a projection diagram when the blades are projected on a plane orthogonal to the rotation axis of the axial flow fan according to the second embodiment of the invention.

【図10】 発明に係る実施例2による軸流送風機の図
9におけるY−Y断面図
FIG. 10 is a sectional view taken along line YY in FIG. 9 of the axial flow fan according to the second embodiment of the invention.

【図11】 発明に係る実施例2による軸流送風機の三
角形平板7の取付方法を示す図
FIG. 11 is a diagram showing a method of mounting the triangular flat plate 7 of the axial blower according to the second embodiment of the invention.

【図12】 発明に係る実施例2による軸流送風機の図
9におけるX−X断面図
FIG. 12 is a sectional view taken along line XX in FIG. 9 of the axial-flow blower according to the second embodiment of the invention.

【図13】 発明に係る実施例2による軸流送風機の回
転角度β=一定での羽根外周部半径Rtに対する三角形
平板7の頂点である羽根前縁部上の点1bsにおける任
意半径Rsの比率Rs/Rtに対する最小比騒音のグラ
FIG. 13 is a ratio Rs of an arbitrary radius Rs at a point 1bs on the blade leading edge, which is the apex of the triangular flat plate 7, to a blade outer peripheral radius Rt when the rotation angle β of the axial blower according to the second embodiment of the invention is constant. Graph of minimum specific noise against / Rt

【図14】 発明に係る実施例2による軸流送風機の任
意半径Rs/Rt =一定における三角形平板7のボス
部半径Rbにおける頂点を決定するときの回転角度βに
対する最小比騒音のグラフ
FIG. 14 is a graph of the minimum specific noise with respect to the rotation angle β when determining the apex of the boss radius Rb of the triangular flat plate 7 when the arbitrary radius Rs / Rt of the axial flow fan according to the second embodiment of the invention is constant.

【図15】 発明に係る実施例2による軸流送風機の羽
根外周部半径Rtに対する三角形平板7の頂点である羽
根前縁部上の点1bsにおける任意半径Rsの比率Rs
/Rtと三角形平板7のボス部半径Rbにおける頂点を
決定するときの回転角度βに対する最小比騒音Ksmin
のグラフ
FIG. 15 is a ratio Rs of an arbitrary radius Rs at a point 1bs on the blade leading edge, which is the apex of the triangular flat plate 7, with respect to the blade outer peripheral radius Rt of the axial blower according to the second embodiment of the present invention.
/ Rt and the minimum specific noise Ksmin with respect to the rotation angle β when determining the apex at the boss radius Rb of the triangular flat plate 7.
Graph of

【図16】 発明に係る実施例3による軸流送風機の斜
視図
FIG. 16 is a perspective view of an axial blower according to a third embodiment of the invention.

【図17】 発明に係る実施例3による軸流送風機の正
面図
FIG. 17 is a front view of an axial blower according to a third embodiment of the invention.

【図18】 発明に係る実施例3による軸流送風機の回
転軸と直交する平面に羽根を投影したときの投影図
FIG. 18 is a projection diagram when the blades are projected on a plane orthogonal to the rotation axis of the axial flow fan according to the third embodiment of the invention.

【図19】 発明に係る実施例3による軸流送風機の図
18におけるX−X断面図
FIG. 19 is a sectional view taken along line XX in FIG. 18 of the axial-flow blower according to the third embodiment of the invention.

【図20】 発明に係る実施例3による軸流送風機の回
転角度β=一定での羽根外周部半径Rtに対する三角形
平板7の頂点である羽根前縁部上の点1bsにおける任
意半径Rsの比率Rs/Rtに対する最小比騒音のグラ
FIG. 20 is a ratio Rs of an arbitrary radius Rs at a point 1bs on the blade leading edge which is the apex of the triangular flat plate 7 to a blade outer peripheral radius Rt at a constant rotation angle β of the axial blower according to the third embodiment of the invention. Graph of minimum specific noise against / Rt

【図21】 発明に係る実施例3による軸流送風機の任
意半径Rs/Rt=一定における三角形平板7のボス部
半径Rbにおける頂点を決定するときの回転角度βに対
する最小比騒音のグラフ
FIG. 21 is a graph of the minimum specific noise with respect to the rotation angle β when determining the apex of the boss radius Rb of the triangular flat plate 7 when the arbitrary radius Rs / Rt of the axial flow fan according to the third embodiment of the present invention is constant.

【図22】 発明に係る実施例3による軸流送風機の羽
根外周部半径Rtに対する三角形平板7の頂点である羽
根前縁部上の点1bsにおける任意半径Rsの比率Rs
/Rtと三角形平板7のボス部半径Rbにおける頂点を
決定するときの回転角度βに対する最小比騒音のグラフ
FIG. 22 is a ratio Rs of an arbitrary radius Rs at a point 1bs on the blade leading edge which is the apex of the triangular flat plate 7 to the blade outer radius Rt of the axial flow fan according to the third embodiment of the invention.
/ Rt and graph of minimum specific noise against rotation angle β when determining apex at boss radius Rb of triangular flat plate 7

【図23】 発明に係る実施例4による軸流送風機の斜
視図
FIG. 23 is a perspective view of an axial flow fan according to a fourth embodiment of the invention.

【図24】 発明に係る実施例4による軸流送風機の正
面図
FIG. 24 is a front view of an axial blower according to a fourth embodiment of the invention.

【図25】 発明に係る実施例4による軸流送風機の図
24におけるA−A断面図
FIG. 25 is a cross-sectional view taken along the line AA in FIG. 24 of the axial-flow blower according to the fourth embodiment of the invention.

【図26】 発明に係る実施例4による軸流送風機と従
来の軸流送風機の周波数特性図
FIG. 26 is a frequency characteristic diagram of an axial flow fan according to a fourth embodiment of the invention and a conventional axial flow fan.

【図27】 発明に係る実施例5による軸流送風機の斜
視図
FIG. 27 is a perspective view of an axial blower according to a fifth embodiment of the invention.

【図28】 発明に係る実施例5による軸流送風機の正
面図
FIG. 28 is a front view of an axial flow fan according to a fifth embodiment of the invention.

【図29】 発明に係る実施例5による軸流送風機の回
転軸と直交する平面に羽根を投影したときの投影図
FIG. 29 is a projection diagram when the blades are projected on a plane orthogonal to the rotation axis of the axial flow fan according to the fifth embodiment of the invention.

【図30】 発明に係る実施例5による軸流送風機の図
29におけるX−X断面図
30 is a cross-sectional view taken along line XX in FIG. 29 of the axial blower according to the fifth embodiment of the invention.

【図31】 発明に係る実施例5による軸流送風機の負
圧面上の流れを示す斜視図
FIG. 31 is a perspective view showing a flow on a suction surface of an axial blower according to a fifth embodiment of the invention.

【図32】 発明に係る実施例4による軸流送風機と従
来の軸流送風機の流量係数φと比騒音Ks、圧力係数ψ
の関係を示すグラフ
FIG. 32 is a flow coefficient φ, a specific noise Ks, and a pressure coefficient ψ of the axial flow fan according to the fourth embodiment of the invention and the conventional axial flow fan.
Graph showing the relationship

【図33】 発明に係る実施例6による軸流送風機の斜
視図
FIG. 33 is a perspective view of an axial blower according to a sixth embodiment of the invention.

【図34】 発明に係る実施例6による軸流送風機の正
面図
FIG. 34 is a front view of an axial flow fan according to a sixth embodiment of the invention.

【図35】 発明に係る実施例6による軸流送風機の回
転軸と直交する平面に羽根を投影したときの投影図
FIG. 35 is a projection diagram when the blades are projected on a plane orthogonal to the rotation axis of the axial flow fan according to the sixth embodiment of the invention.

【図36】 発明に係る実施例6による軸流送風機の図
35におけるX−X断面図
FIG. 36 is a cross-sectional view taken along line XX in FIG. 35 of the axial-flow blower according to the sixth embodiment of the invention.

【図37】 発明に係る実施例6による軸流送風機の回
転角度β=一定での羽根外周部半径Rtに対する羽根前
縁部上の点1bsにおける任意半径Rsの比率Rs/R
tに対する最小比騒音のグラフ
FIG. 37 is a ratio Rs / R of the arbitrary radius Rs at the point 1bs on the blade leading edge portion to the blade outer peripheral radius Rt when the rotation angle β of the axial flow fan according to the sixth embodiment of the invention is constant.
Graph of minimum specific noise against t

【図38】 発明に係る実施例6による軸流送風機の任
意半径Rs=一定における回転角度βに対する最小比騒
音のグラフ
FIG. 38 is a graph of the minimum specific noise with respect to the rotation angle β when the arbitrary radius Rs of the axial blower according to the sixth embodiment of the present invention is constant.

【図39】 発明に係る実施例6による軸流送風機の羽
根外周部半径Rtに対する任意半径Rsの比率Rs/R
tと回転角度βに対する最小比騒音のグラフ
FIG. 39 is a ratio Rs / R of an arbitrary radius Rs to a blade outer radius Rt of an axial flow fan according to a sixth embodiment of the invention.
Graph of minimum specific noise for t and rotation angle β

【図40】 発明に係る実施例7による軸流送風機の斜
視図
FIG. 40 is a perspective view of an axial blower according to a seventh embodiment of the invention.

【図41】 発明に係る実施例7による軸流送風機の正
面図
FIG. 41 is a front view of an axial flow fan according to a seventh embodiment of the invention.

【図42】 発明に係る実施例7による軸流送風機の回
転軸と直交する平面に羽根を投影したときの投影図
FIG. 42 is a projection diagram when the blades are projected on a plane orthogonal to the rotation axis of the axial flow fan according to the seventh embodiment of the invention.

【図43】 発明に係る実施例7による軸流送風機の図
42におけるA−A断面図
43 is a cross-sectional view taken along the line AA in FIG. 42 of the axial blower according to the seventh embodiment of the present invention.

【図44】 発明に係る実施例7による軸流送風機の負
圧面上の流れを示す斜視図
FIG. 44 is a perspective view showing the flow on the suction surface of the axial blower according to the seventh embodiment of the invention.

【図45】 発明に係る実施例7による軸流送風機の羽
根外周部Rtに対する羽根前縁部ボス部付近とボス部と
の接続部分のコーナーRの半径RRに対する最小比騒音
のグラフ
FIG. 45 is a graph of the minimum specific noise with respect to the radius RR of the corner R of the connecting portion between the boss portion and the blade leading edge portion with respect to the blade outer peripheral portion Rt of the axial flow fan according to the seventh embodiment of the present invention.

【図46】 発明に係る実施例7による軸流送風機の羽
根外周部Rtに対する羽根前縁部とボス部との接続部分
のR形状の半径RRに対するこの部分にかかる最大応力
σのグラフ
FIG. 46 is a graph of the maximum stress σ applied to the outer peripheral portion Rt of the axial flow fan according to the seventh embodiment of the invention and the radius RR of the R shape of the connecting portion of the blade leading edge portion and the boss portion with respect to this portion.

【図47】 発明に係る実施例8による軸流送風機の斜
視図
FIG. 47 is a perspective view of an axial blower according to an eighth embodiment of the invention.

【図48】 発明に係る実施例8による軸流送風機の正
面図
FIG. 48 is a front view of an axial blower according to an eighth embodiment of the invention.

【図49】 発明に係る実施例8による軸流送風機の回
転軸と直交する平面に羽根を投影したときの投影図
FIG. 49 is a projection view when the blades are projected on a plane orthogonal to the rotation axis of the axial flow fan according to the eighth embodiment of the invention.

【図50】 発明に係る図49の羽根のボス部半径Rb
の円筒面で切断し、その断面を二次元平面に展開して得
られる展開図
50 is a boss radius Rb of the blade of FIG. 49 according to the invention;
Development view obtained by cutting at the cylindrical surface of and developing the cross section into a two-dimensional plane

【図51】 発明に係る図49におけるX−X断面にお
ける安定した縦渦および流れの様子を示した図
51 is a diagram showing a state of stable vertical vortices and flows in the XX cross section in FIG. 49 according to the invention.

【図52】 発明に係る実施例8による軸流送風機の負
圧面上の流れを示す斜視図
FIG. 52 is a perspective view showing the flow on the suction side of the axial blower according to Example 8 of the invention.

【図53】 発明に係る実施例8による軸流送風機の羽
根前縁ボス部前進延長角δαbが大きいときの羽根負圧
面上の流れを示した図
FIG. 53 is a diagram showing a flow on the blade suction surface when the blade leading edge boss advance extension angle δαb of the axial blower according to Example 8 of the invention is large.

【図54】 発明に係る実施例8による軸流送風機の羽
根前縁部上の羽根前縁ボス部延長開始点1bsにおける
半径Rs=一定時における羽根前縁ボス部前進延長角δ
αbに対する最小比騒音のグラフ
FIG. 54 is a radius Rs of the blade leading edge boss extension starting point 1bs on the blade leading edge of the axial blower according to the eighth embodiment of the invention;
Graph of minimum specific noise against αb

【図55】 発明に係る実施例8による軸流送風機の羽
根前縁ボス部前進延長角δαb=一定時における、羽根
外周部半径Rtに対する羽根前縁ボス部延長開始点1b
sにおける半径Rsとの比率Rs/Rtに対する最小比
騒音のグラフ
FIG. 55 is a diagram showing a blade leading edge boss extension starting point 1b with respect to the blade outer peripheral radius Rt when the blade leading edge boss advance extension angle δαb of the axial blower according to Example 8 of the invention is constant.
Graph of minimum specific noise against ratio Rs / Rt with radius Rs in s

【図56】 発明に係る実施例8による軸流送風機の羽
根前縁ボス部前進延長角δαbと羽根外周部半径Rtに
対する羽根前縁ボス部延長開始点1bsにおける半径R
sとの比率Rs/Rtに対する最小比騒音のグラフ
[FIG. 56] A radius R at a blade leading edge boss extension starting point 1bs with respect to a blade leading edge boss advance extension angle δαb and a blade outer peripheral radius Rt of an axial blower according to Example 8 of the invention.
Graph of minimum specific noise against ratio Rs / Rt with s

【図57】 発明に係る実施例8による軸流送風機の羽
根前縁ボス部前進延長角δαbと羽根外周部半径Rtに
対する羽根前縁ボス部延長開始点1bsにおける半径R
sとの比率Rs/Rtに対する羽根にかかる最大応力σ
のグラフ
[FIG. 57] A radius R at a blade leading edge boss extension starting point 1bs with respect to a blade leading edge boss advance extension angle δαb and a blade outer peripheral radius Rt of an axial flow fan according to an eighth embodiment of the invention.
The maximum stress σ on the blade with respect to the ratio Rs / Rt with s
Graph of

【図58】 発明に係る実施例9による軸流送風機の斜
視図
FIG. 58 is a perspective view of an axial blower according to a ninth embodiment of the invention.

【図59】 発明に係る実施例9による軸流送風機の正
面図
FIG. 59 is a front view of an axial blower according to a ninth embodiment of the invention.

【図60】 発明に係る実施例9による軸流送風機の回
転軸と直交する平面に羽根を投影したときの投影図
FIG. 60 is a projection view of the blades projected onto a plane orthogonal to the rotation axis of the axial flow fan according to the ninth embodiment of the invention.

【図61】 発明に係る図60の羽根のボス部半径Rb
の円筒面で切断し、その断面を二次元平面に展開して得
られる展開図
61 is a boss radius Rb of the blade of FIG. 60 according to the invention;
Development view obtained by cutting at the cylindrical surface of and developing the cross section into a two-dimensional plane

【図62】 発明に係る実施例9による軸流送風機の図
60におけるX−X断面における流れを示した図
FIG. 62 is a diagram showing a flow in the XX cross section of FIG. 60 of the axial blower according to the ninth embodiment of the invention.

【図63】 発明に係る実施例9による軸流送風機の負
圧面上の流れを示す斜視図
FIG. 63 is a perspective view showing the flow on the suction side of the axial blower according to Example 9 of the invention.

【図64】 発明に係る実施例9による軸流送風機の図
61に相当する図における羽根前縁ボス部前進延長角δ
αbが大きすぎたときの負圧面上の流れを示した図
64 is a diagram showing the axial extension fan according to the ninth embodiment of the invention, which corresponds to FIG. 61 and corresponds to FIG. 61.
Diagram showing flow on suction side when αb is too large

【図65】 発明に係る実施例9による軸流送風機の図
60における任意半径Rの円筒面で軸流送風機全周を切
断し、その断面を二次元平面に展開して得られる全周展
開図
FIG. 65 is an all-round development view obtained by cutting the entire circumference of the axial-flow blower with a cylindrical surface having an arbitrary radius R in FIG. 60 of the axial-flow blower according to Example 9 of the present invention, and developing the cross section into a two-dimensional plane.

【図66】 発明に係る実施例9による軸流送風機と実
施例9の軸流送風機の羽根のベースとなる羽根をもつ軸
流送風機の流量係数φと比騒音Ks、圧力係数ψの関係
を示した図
FIG. 66 shows the relationship between the flow coefficient φ, the specific noise Ks, and the pressure coefficient ψ of the axial blower according to the ninth embodiment of the invention and the axial blower having the blades that are the bases of the blades of the axial blower of the ninth embodiment. Figure

【図67】 発明に係る実施例9による軸流送風機の羽
根前縁部上の羽根前縁ボス部延長開始点1bsにおける
半径Rs=一定時における羽根前縁ボス部前進延長角δ
αbに対する最小比騒音のグラフ
FIG. 67 is a radius Rs of a blade leading edge boss extension starting point 1bs on a blade leading edge of an axial blower according to Example 9 according to the invention, where the blade leading edge boss advance extension angle δ at a constant time.
Graph of minimum specific noise against αb

【図68】 発明に係る実施例9による軸流送風機の羽
根前縁ボス部前進延長角δαb=一定時における、羽根
外周部半径Rtに対する羽根前縁ボス部延長開始点1b
sにおける半径Rsとの比率Rs/Rtに対する最小比
騒音のグラフ
FIG. 68 is a blade leading edge boss extension starting point 1b relative to the blade outer peripheral radius Rt when the blade leading edge boss advance extension angle δαb of the axial blower according to Example 9 of the invention is constant.
Graph of minimum specific noise against ratio Rs / Rt with radius Rs in s

【図69】 発明に係る実施例9による軸流送風機の羽
根前縁ボス部前進延長角δαbと羽根外周部半径Rtに
対する羽根前縁ボス部延長開始点1bsにおける半径R
sとの比率Rs/Rtに対する最小比騒音のグラフ
FIG. 69 is a radius R at a blade leading edge boss extension starting point 1bs relative to a blade leading edge boss advance extension angle δαb and a blade outer peripheral radius Rt of an axial blower according to Example 9 of the invention.
Graph of minimum specific noise against ratio Rs / Rt with s

【図70】 発明に係る実施例9による軸流送風機の羽
根前縁ボス部前進延長角δαbと羽根外周部半径Rtに
対する羽根前縁ボス部延長開始点1bsにおける半径R
sとの比率Rs/Rtに対する羽根にかかる最大応力σ
のグラフ
[FIG. 70] A radius R at a blade leading edge boss extension starting point 1bs relative to a blade leading edge boss advance extension angle δαb and a blade outer peripheral radius Rt of an axial-flow blower according to Embodiment 9 of the present invention.
The maximum stress σ on the blade with respect to the ratio Rs / Rt with s
Graph of

【図71】 発明に係る実施例10による軸流送風機の
斜視図
71 is a perspective view of an axial blower according to a tenth embodiment of the invention. FIG.

【図72】 発明に係る実施例10による軸流送風機の
正面図
72 is a front view of the axial blower according to the tenth embodiment of the present invention. FIG.

【図73】 発明に係る実施例10による軸流送風機の
回転軸と直交する平面に羽根を投影したときの投影図
FIG. 73 is a projection view of the blades projected on a plane orthogonal to the rotation axis of the axial flow fan according to the tenth embodiment of the invention.

【図74】 発明に係る実施例10による軸流送風機の
羽根のボス部半径Rbの円筒面で切断し、その断面を二
次元平面に展開して得られる展開図
FIG. 74 is a development view obtained by cutting the blade of the axial blower according to the tenth embodiment of the present invention with a cylindrical surface having a boss radius Rb and developing the cross section into a two-dimensional plane.

【図75】 発明に係る実施例10による軸流送風機の
図73のX−X断面における流れを示した図
FIG. 75 is a view showing a flow in the XX cross section of FIG. 73 of the axial blower according to the tenth embodiment of the invention.

【図76】 発明に係る実施例10による軸流送風機の
負圧面上の流れを示す斜視図
FIG. 76 is a perspective view showing the flow on the suction surface of the axial blower according to the tenth embodiment of the invention.

【図77】 発明に係る実施例10による軸流送風機の
羽根前縁ボス部前進延長角δαbが大きいときの羽根負
圧面上の流れを示した図
77 is a view showing a flow on the blade suction surface when the blade leading edge boss advance extension angle δαb of the axial blower according to Example 10 of the invention is large. FIG.

【図78】 発明に係る実施例10による軸流送風機の
羽根前縁部上の羽根前縁ボス部延長開始点1bsにおけ
る半径Rs=一定時における羽根前縁ボス部前進延長角
δαbに対する最小比騒音のグラフ
FIG. 78 is a minimum specific noise with respect to the blade leading edge boss advance extension angle δαb when the radius Rs at the blade leading edge boss extension start point 1bs on the blade leading edge of the axial flow fan according to the tenth embodiment of the invention is constant. Graph of

【図79】 発明に係る実施例10による軸流送風機の
羽根前縁ボス部前進延長角δαb=一定時における、羽
根外周部半径Rtに対する羽根前縁ボス部延長開始点1
bsにおける半径Rsとの比率Rs/Rtに対する最小
比騒音のグラフ
FIG. 79 is a diagram illustrating a blade leading edge boss extension starting point 1 with respect to a blade outer peripheral radius Rt when the blade leading edge boss advance extension angle δαb of the axial blower according to the tenth embodiment of the present invention is constant.
Graph of minimum specific noise against ratio Rs / Rt with radius Rs in bs

【図80】 発明に係る実施例10による軸流送風機の
羽根前縁ボス部前進延長角δαbと羽根外周部半径Rt
に対する羽根前縁ボス部延長開始点1bsにおける半径
Rsとの比率Rs/Rtに対する最小比騒音のグラフ
FIG. 80 is a diagram illustrating a blade front edge boss advance extension angle δαb and a blade outer peripheral radius Rt of an axial flow fan according to a tenth embodiment of the invention.
Of the minimum specific noise against the ratio Rs / Rt with the radius Rs at the blade leading edge boss extension starting point 1bs for

【図81】 発明に係る実施例10による軸流送風機の
羽根前縁ボス部前進延長角δαbと羽根外周部半径Rt
に対する羽根前縁ボス部延長開始点1bsにおける半径
Rsとの比率Rs/Rtに対する羽根にかかる最大応力
σのグラフ
81] A blade front edge boss advance extension angle δαb and a blade outer peripheral radius Rt of an axial flow fan according to a tenth embodiment of the present invention.
Of the maximum stress σ applied to the blade with respect to the ratio Rs / Rt with the radius Rs at the blade leading edge boss extension starting point 1bs

【図82】 発明に係る実施例11による軸流送風機の
斜視図
FIG. 82 is a perspective view of an axial blower according to an eleventh embodiment of the invention.

【図83】 発明に係る実施例11による軸流送風機の
正面図
FIG. 83 is a front view of an axial blower according to an eleventh embodiment of the invention.

【図84】 発明に係る実施例11による軸流送風機の
回転軸と直交する平面に羽根を投影したときの投影図
FIG. 84 is a projection view when the blades are projected on a plane orthogonal to the rotation axis of the axial flow fan according to the eleventh embodiment of the invention.

【図85】 発明に係る実施例11による軸流送風機の
羽根のボス部半径Rbの円筒面で切断し、その断面を二
次元平面に展開して得られる展開図
FIG. 85 is a development view obtained by cutting the blade of the axial-flow blower according to the eleventh embodiment of the invention with a cylindrical surface having a boss radius Rb and developing the cross section into a two-dimensional plane.

【図86】 発明に係る実施例11による軸流送風機の
図84におけるY−Y断面における流れを示した図
FIG. 86 is a view showing the flow in the YY cross section of FIG. 84 of the axial blower according to the eleventh embodiment of the invention.

【図87】 発明に係る実施例11による軸流送風機の
負圧面上の流れを示す斜視図
FIG. 87 is a perspective view showing the flow on the suction side of the axial blower according to Example 11 of the invention.

【図88】 発明に係る実施例11による軸流送風機の
図85に相当する図における羽根前縁ボス部前進延長角
δαbが大きすぎたときの負圧面上の流れを示した図
88 is a view showing the flow on the suction surface when the blade leading edge boss advance extension angle δαb in the diagram corresponding to FIG. 85 of the axial blower according to the eleventh embodiment of the invention is too large.

【図89】 発明に係る実施例11による軸流送風機の
図84における任意半径Rの円筒面で軸流送風機全周を
切断し、その断面を二次元平面に展開して得られる全周
展開図
89 is an all-round development view of the axial-flow blower according to the eleventh embodiment of the present invention obtained by cutting the entire circumference of the axial-flow blower with a cylindrical surface having an arbitrary radius R in FIG. 84 and developing the cross section into a two-dimensional plane.

【図90】 発明に係る実施例11による軸流送風機と
実施例11の軸流送風機の羽根のベースとなる羽根をも
つ軸流送風機の流量係数φと比騒音Ks、圧力係数ψの
関係を示した図
FIG. 90 shows the relationship between the flow coefficient φ, the specific noise Ks, and the pressure coefficient ψ of the axial blower according to the eleventh embodiment of the present invention and the axial blower having the blades that are the bases of the blades of the axial blower of the eleventh embodiment. Figure

【図91】 発明に係る実施例11による軸流送風機の
羽根前縁部上の羽根前縁ボス部延長開始点1bsにおけ
る半径Rs=一定時における羽根前縁ボス部前進延長角
δαbに対する最小比騒音のグラフ
FIG. 91 is a minimum specific noise with respect to a blade leading edge boss advance extension angle δαb when a radius Rs at a blade leading edge boss extension start point 1bs on a blade leading edge of an axial blower according to Example 11 according to the invention is constant. Graph of

【図92】 発明に係る実施例11による軸流送風機の
羽根前縁ボス部前進延長角δαb=一定時における、羽
根外周部半径Rtに対する羽根前縁ボス部延長開始点1
bsにおける半径Rsとの比率Rs/Rtに対する最小
比騒音のグラフ
FIG. 92 is a diagram showing a blade leading edge boss extension start point 1 with respect to a blade outer peripheral radius Rt when the blade leading edge boss advance extension angle δαb of the axial blower according to the eleventh embodiment of the invention is constant.
Graph of minimum specific noise against ratio Rs / Rt with radius Rs in bs

【図93】 発明に係る実施例11による軸流送風機の
羽根前縁ボス部前進延長角δαbと羽根外周部半径Rt
に対する羽根前縁ボス部延長開始点1bsにおける半径
Rsとの比率Rs/Rtに対する最小比騒音のグラフ
FIG. 93 is a diagram showing a blade front edge boss advance extension angle δαb and a blade outer peripheral radius Rt of an axial flow fan according to an eleventh embodiment of the invention;
Of the minimum specific noise against the ratio Rs / Rt with the radius Rs at the blade leading edge boss extension starting point 1bs for

【図94】 発明に係る実施例11による軸流送風機の
羽根前縁ボス部前進延長角δαbと羽根外周部半径Rt
に対する羽根前縁ボス部延長開始点1bsにおける半径
Rsとの比率Rs/Rtに対する羽根にかかる最大応力
σのグラフ
FIG. 94 is a diagram showing a blade leading edge boss advance extension angle δαb and a blade outer peripheral radius Rt of an axial flow fan according to an eleventh embodiment of the invention;
Of the maximum stress σ applied to the blade with respect to the ratio Rs / Rt with the radius Rs at the blade leading edge boss extension starting point 1bs

【図95】 発明に係る第1〜11による軸流送風機の
一つを組み込んだ空気調和機の室外機の斜視図
FIG. 95 is a perspective view of an outdoor unit of an air conditioner incorporating one of the axial blowers according to the first to eleventh aspects of the present invention.

【図96】 発明に係る冷凍サイクルの説明図FIG. 96 is an explanatory diagram of a refrigeration cycle according to the invention.

【図97】 従来の軸流送風機を示す斜視図FIG. 97 is a perspective view showing a conventional axial-flow blower.

【図98】 従来の軸流送風機の回転軸と直交する平面
に羽根を投影したときの投影図
FIG. 98 is a projection diagram when the blades are projected on a plane orthogonal to the rotation axis of the conventional axial flow fan.

【図99】 従来の軸流送風機の羽根の翼弦線中心点P
Wの半径方向分布および羽根の同位置での断面図
FIG. 99 is a center point P of a chord line of blades of a conventional axial-flow blower.
Radial distribution of W and sectional view at the same position of the blade

【図100】 従来の軸流送風機の羽根の任意半径Rの
円筒面で切断し、その断面を二次元平面に展開して得ら
れる展開図
FIG. 100 is a development view obtained by cutting a blade of a conventional axial-flow blower with a cylindrical surface having an arbitrary radius R and developing the cross section into a two-dimensional plane.

【図101】 従来の軸流送風機の正面図FIG. 101 is a front view of a conventional axial-flow blower.

【図102】 発明に係わる従来の軸流送風機の図98
におけるA−A断面における高圧損時の羽根負圧面上の
流れを示した図
102 is a view of a conventional axial-flow blower according to the invention, FIG.
Showing the flow on the blade suction surface at the time of high pressure loss in the AA cross section in FIG.

【図103】 従来の軸流送風機の図97におけるB−
B断面における羽根前縁部のボス部付近で羽根板厚が厚
い箇所における羽根前縁部および羽根負圧面上の流れを
示した図
103 is a B- in FIG. 97 of the conventional axial blower.
The figure which showed the flow on the blade front edge part and the blade suction surface in the part where the blade plate thickness is thick near the boss part of the blade front edge part in the B section.

【符号の説明】[Explanation of symbols]

1. 羽根 1O. ベースになる羽根 1’. 投影図における羽根 1O’. 投影図におけるベースの羽根 1a. 羽根先端部 1a’. 投影図における羽根先端部 1aO’. 投影図におけるベースになる羽根の羽根先
端部 1b. 羽根前縁部 1bO. ベースになる羽根の羽根前縁部 1baO .ベースになる羽根の羽根前縁部のボス部
半径における点 1b’. 投影図における羽根前縁部 1bO’. 投影図におけるベースになる羽根の羽根前
縁部 1baO’.ベースになる羽根の羽根前縁部のボス部半
径における点 1C. 羽根後縁部 1CO. ベースになる羽根の羽根後縁部 1cb. 羽根後縁部上のボス部半径における点 1C’. 投影図における羽根後縁部 1CO’. 投影図におけるベースになる羽根の羽根後
縁部 1cb’. 投影図における羽根後縁部上のボス部半径
における点 1d. 羽根外周部 1dO. ベースになる羽根の羽根外周部 1d’. 投影図における羽根外周部 1dO’. 投影図におけるベースになる羽根の羽根外
周部 2. ボス部 3. 回転軸 4. 回転方向 5. そり線 6. 回転軸平行線 7. 三角形平板を切削したもの 7’. 投影図における三角形平板 8. 羽根負圧面 8N. 次に旋回してくる羽根の羽根負圧面 9. 羽根圧力面 9N. 次に旋回してくる羽根の羽根圧力面 10. 羽根前縁部のボス部寄りの部分に発生する縦
渦 11. 羽根負圧面上の流れ 12. 羽根の吸い込み流れ 13. 羽根圧力面上の流れ 14. 三角形平板7の挿入方向 15. 三角形平板7の挿入冶具 16. 羽根外周部における渦 17. モータ 18. 空気調和機の本体 20. 軸流送風機 22. アキュムレータ 23. 四方弁 24. 室外熱交換器 25. 室内熱交換器 26. フレアバルブ 27. フレア 29. 絞り
1. Feather 1O. Base blade 1 '. Blade in projection view 1O'. Base blade in projection view 1a. Blade tip 1a '. Blade tip 1aO' in projection view Blade tip of base blade in projection 1b. Blade leading edge 1bO. Blade front edge of base blade 1baO. A point at the boss radius of the blade leading edge of the base blade 1b '. A blade leading edge 1bO' in the projected view. A blade leading edge 1baO 'of the base blade in the projected view. Point at the boss radius of the blade leading edge of the base blade 1C. Blade trailing edge 1CO. Blade trailing edge of base blade 1cb. Point 1C 'at the boss radius on the trailing edge of the blade. Blade trailing edge 1CO '. Blade trailing edge 1cb '. Point on boss radius on blade trailing edge in projection 1d. Blade outer peripheral portion 1 dO. Outer peripheral portion of base blade 1d '. Peripheral portion of blade in projection view 1dO '. The outer peripheral portion of the base blade in the projected view 1. Boss 3. Rotation axis 4. Direction of rotation 5. Sled line 6. Parallel axis of rotation 7. Triangular plate cut 7 '. Triangular flat plate in projection diagram 8. Blade suction surface 8N. Blade negative pressure surface of next rotating blade 9. Blade pressure surface 9N. Vane pressure surface of the next swirling blade 10. Longitudinal vortices generated in the portion of the blade leading edge near the boss 11. Flow on blade suction surface 12. Flow of suction of blades 13. Flow on blade pressure surface 14. Insertion direction of triangular flat plate 15. Insertion jig for triangular flat plate 16. Vortex in the outer peripheral portion of the blade 17. Motor 18. Main body of air conditioner 20. Axial blower 22. Accumulator 23. Four-way valve 24. Outdoor heat exchanger 25. Indoor heat exchanger 26. Flare valve 27. Flare 29. Aperture

───────────────────────────────────────────────────── フロントページの続き (72)発明者 廣中 康雄 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuo Hironaka 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Sanryo Electric Co., Ltd.

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 回転するボス部に取りつけられ、回転方
向に面する羽根前縁部、回転方向と反対方向に面する羽
根後縁部、及び上記ボス部に対向する羽根外周部により
周囲が構成される羽根と、 上記羽根前縁部の前記ボス部寄りに沿って一辺が、上記
羽根前縁部に隣接した上記ボス部の外周に沿って他辺が
配置されるとともに、少なくとも上記羽根前縁部または
上記ボス部のいずれか一方に取りつけられて上記羽根に
一体に形成される、厚みがほぼ羽根厚と同一の板状部材
と、を備えたことを特徴とする軸流送風機。
1. A periphery is constituted by a blade front edge portion which is attached to a rotating boss portion and faces the rotation direction, a blade trailing edge portion which faces the direction opposite to the rotation direction, and a blade outer peripheral portion which faces the boss portion. And one side along the boss portion of the blade leading edge portion and the other side along the outer circumference of the boss portion adjacent to the blade leading edge portion, and at least the blade leading edge. An axial-flow blower, comprising: a plate-shaped member having a thickness substantially equal to the blade thickness, the plate-shaped member being attached to one of the blade portion and the boss portion and integrally formed with the blade.
【請求項2】 回転の軸中心を原点Oとし、任意半径に
おける羽根前縁部上の点1bs’との半径O−1bs’
を回転方向に角度β回転させたときのボス部外周上との
交点を1bb’として、板状部材が上記1bs’と上記
1bb’とを通るようなほぼ三角形の形状としたことを
特徴とする請求項1記載の軸流送風機。
2. An origin O is the center of rotation, and a radius O-1bs 'with a point 1bs' on the blade leading edge at an arbitrary radius.
1 bb 'is the intersection with the outer circumference of the boss when the is rotated by an angle β in the rotation direction, and the plate-like member has a substantially triangular shape so as to pass through the above 1bs' and 1bb'. The axial blower according to claim 1.
【請求項3】 回転の軸中心を原点Oとし、任意半径に
おける羽根前縁部上の点1bs’との半径O−1bs’
を回転方向に角度β回転させたときのボス部外周上との
交点を1bb’として、板状部材の他辺が羽根前縁部と
この1bb’との間に配置される際、上記角度βを10
〜40度に選択したことを特徴とする請求項1記載の軸
流送風機。
3. An origin O is the axis of rotation, and a radius O-1bs 'with a point 1bs' on the blade leading edge portion at an arbitrary radius.
When the other side of the plate member is arranged between the blade front edge portion and this 1bb ′, the intersection point with the outer circumference of the boss portion when the blade is rotated by the angle β in the rotation direction is 1bb ′. 10
The axial blower according to claim 1, wherein the axial blower is selected to be -40 degrees.
【請求項4】 回転の軸中心を原点Oとし、任意半径に
おける羽根前縁部上の点1bs’とし、羽根外周部半径
をRtとして、板状部材の一辺が羽根前縁部の1bs’
とボス部との間に配置される際、半径O−1bs’を上
記羽根外周部半径Rtの40〜75%に選択したことを
特徴とする請求項1記載の軸流送風機。
4. An origin O is the axis of rotation, a point 1bs 'on the blade leading edge portion at an arbitrary radius, a blade outer peripheral radius is Rt, and one side of the plate member is 1bs' of the blade leading edge portion.
The axial blower according to claim 1, wherein a radius O-1bs' is selected to be 40% to 75% of the outer peripheral radius Rt of the blade when the blade is disposed between the blade and the boss.
【請求項5】 板状部材は、羽根前縁部に回転方向から
密着して取りつけられることを特徴とする請求項1記載
の軸流送風機。
5. The axial blower according to claim 1, wherein the plate-shaped member is attached to the front edge of the blade so as to be in close contact with the blade from the rotational direction.
【請求項6】 回転するボス部に取りつけられ、回転方
向に面する羽根前縁部、回転方向と反対方向に面する羽
根後縁部、及び上記ボス部に対向する羽根外周部により
周囲が構成される羽根と、 上記羽根前縁部の前記ボス部寄りに沿って一辺が、上記
羽根前縁部に隣接した上記ボス部の外周に沿って他辺が
配置されるとともに、少なくとも上記羽根前縁部または
上記ボス部のいずれか一方に取りつけられて上記羽根に
一体に形成される、厚みがほぼ羽根厚と同一の板状部材
であって、回転の軸中心を原点Oとし、任意半径におけ
る上記羽根前縁部上の点1bs’とし、前記1bs’と
原点Oとの半径O−1bs’を回転方向に角度β回転さ
せたときの上記ボス部外周上との交点を1bb’とし
て、上記1bs’と1bb’とを通るような板状部材
と、を備え、上記角度βを10〜40度に選択し、半径
O−1bs’を上記羽根外周部半径Rtの40〜75%
に選択したことを特徴とする軸流送風機。
6. A periphery is constituted by a blade front edge portion which is attached to a rotating boss portion and faces the rotation direction, a blade rear edge portion which faces the direction opposite to the rotation direction, and a blade outer peripheral portion which faces the boss portion. And one side along the boss portion of the blade leading edge portion and the other side along the outer circumference of the boss portion adjacent to the blade leading edge portion, and at least the blade leading edge. Is a plate-shaped member attached to either one of the boss and the boss and formed integrally with the blade, and having a thickness substantially equal to the blade thickness, wherein the axis O of rotation is the origin O, and the above is set at an arbitrary radius. The point 1bs' on the leading edge of the blade is defined as the point 1bs', and the intersection point with the outer circumference of the boss when the radius O-1bs' between the point 1bs' and the origin O is rotated by an angle β in the rotation direction is defined as 1bb '. A plate-like member that passes through'and 1bb ', The angle β is selected to be 10 to 40 degrees, and the radius O-1bs ′ is 40 to 75% of the blade outer peripheral radius Rt.
An axial blower characterized by being selected for.
【請求項7】 回転するボス部に取りつけられ、回転方
向に面する羽根前縁部、回転方向と反対方向に面する羽
根後縁部、及び上記ボス部に対向する羽根外周部により
周囲が構成される羽根と、 回転の軸中心を原点Oとし、任意半径における上記羽根
前縁部上の点1bs’との半径O−1bs’を回転方向
に角度β回転させたときの上記ボス部外周上との交点を
1bb’として、上記1bs’と上記1bb’とを通る
ような形状に上記羽根前縁部の上記ボス部寄り部分を回
転方向に延長させた羽根形状と、を備え、上記角度βを
10〜40度に選択したことを特徴とする軸流送風機。
7. A periphery is constituted by a blade front edge portion facing the rotation direction, attached to a rotating boss portion, a blade rear edge portion facing in the direction opposite to the rotation direction, and a blade outer peripheral portion facing the boss portion. On the outer circumference of the boss when the radius O-1bs 'between the blade to be rotated and the axis O of the rotation is the origin O and the point 1bs' on the blade leading edge at an arbitrary radius is rotated by the angle β in the rotation direction. And a blade shape in which the portion near the boss portion of the blade leading edge portion is extended in the rotational direction in a shape that passes through 1bs ′ and 1bb ′, and the angle β The axial-flow blower is characterized by selecting 10 to 40 degrees.
【請求項8】 半径O−1bs’を羽根外周部半径Rt
の40〜75%に選択したことを特徴とする請求項7記
載の軸流送風機。
8. The radius O-1bs' is defined as the blade outer peripheral radius Rt.
The axial flow fan according to claim 7, wherein the axial flow fan is selected from 40 to 75%.
【請求項9】 個個の羽根に対し角度βを変化させた複
数の羽根を有することを特徴とする請求項2または3ま
たは6または7または8項記載の軸流送風機。
9. The axial blower according to claim 2, wherein the blade has a plurality of blades whose angle β is changed with respect to each blade.
【請求項10】 個個の羽根に対し半径O−1bs’を
変化させた複数の羽根を有することを特徴とする請求項
2または3または4または6または7または8または9
項記載の軸流送風機。
10. A plurality of blades having a radius O-1bs' varied with respect to each blade, wherein the blade has a plurality of blades.
Axial blower according to item.
【請求項11】 羽根前縁部のボス部より部分を回転方
向延長させた羽根形状を、1bs’及び1bb’におけ
る接線を回転方向に対し、凹となるような曲線で結び上
記羽根前縁部とするように形成したことを特徴とする請
求項2または3または4または6または7または8項記
載の軸流送風機。
11. A blade shape obtained by extending a portion from a boss portion of a blade front edge portion in a rotational direction is connected to a tangent line at 1bs 'and 1bb' by a curved line which is concave with respect to the rotational direction, and the blade leading edge portion is formed. The axial blower according to claim 2, 3 or 4, 6 or 7 or 8, wherein the axial blower is formed as follows.
【請求項12】 羽根前縁部とボス部との接続部を羽根
外周部半径の15〜35%の大きさの半径とする回転方
向に対し凹となるような曲線で結び、羽根前縁部とする
ように羽根形状を形成したことを特徴とする請求項1な
いし11のうちのいずれか1項記載の軸流送風機。
12. A blade leading edge portion is formed by connecting a connecting portion between the blade leading edge portion and a boss portion with a curve that is concave with respect to a rotation direction having a radius of 15 to 35% of a radius of the blade outer peripheral portion. The axial flow fan according to any one of claims 1 to 11, wherein the blade shape is formed as follows.
【請求項13】 羽根を取り付けて回転するボス部と、
回転方向に面する羽根前縁部、回転方向と反対方向に面
する羽根後縁部、および上記ボス部に対向する羽根外周
部から周が構成される羽根と、回転の軸中心を原点Oと
し、原点Oと羽根前縁部上の任意の点1bs’とを結ぶ
直線1bs’−Oを原点Oを中心に回転方向に回転させ
たときの、直線1bs’− Oとボス部半径であるボス
部側面との交点1bb’と前記点1bs’における接線
を回転方向に対し、凹となるような任意曲線で結び羽根
前縁部とするように羽根形状を形成したことを特徴とす
る軸流送風機。
13. A boss part which is attached with blades and rotates,
A blade whose front edge is facing the rotation direction, a blade trailing edge which faces the direction opposite to the rotation direction, and a blade outer circumference which faces the boss, and a circumference of which is defined as an origin O. , A boss that is the radius of the boss and the straight line 1bs'-O when the straight line 1bs'-O connecting the origin O and the arbitrary point 1bs' on the blade leading edge is rotated in the rotation direction about the origin O. The axial flow fan is characterized in that the tangent line at the intersection point 1bb 'with the side surface of the part and the tangent point at the point 1bs' are connected to each other by an arbitrary curve that is concave with respect to the rotation direction to form a blade leading edge portion. .
【請求項14】 回転の軸中心を原点Oとし、羽根の付
け根の羽根前縁部上の点1baO ’と原点Oを結んだ
直線1baO ’−Oを、原点Oを中心に回転方向に2
0〜50°の間である角度δαb分回転させた時のボス
部半径Rbの点1bb’と羽根外周部半径の40〜70
%の半径Rsをもつ羽根前縁部上の点1bs’の間の形
状を、前記羽根前縁部を基準として、前記羽根のボス部
半径Rbである羽根前縁部上の点1ba’から前記角度
δαb分回転方向に回転させたときのボス部半径Rbの
羽根前縁部上の点1bb’の間に存在するボス部半径R
b〜半径Rsの間の半径Rcの点1bC’と原点Oを結
んだ直線1bC’−Oと直線1ba’−Oとのなす角度
を示すδαの半径方向分布を δα=(δαb/(Rb−RS)2)×(R−RS)2
(Rb≦R≦Rs) で与え、前記羽根と連続するように、羽根前縁部上の点
1bs’よりボス部寄り部分の羽根前縁部を回転方向に
延長し、羽根形状を形成したことを特徴とする請求項1
3記載の軸流送風機。
14. A straight line 1baO'-O connecting a point 1baO 'on the front edge of the blade at the base of the blade and the origin O is defined as an origin O with respect to the origin O as the center of rotation, and 2 in the direction of rotation about the origin O.
A point 1bb ′ of the boss radius Rb when rotated by an angle δαb between 0 and 50 ° and a blade outer peripheral radius of 40 to 70.
The shape between points 1bs ′ on the blade leading edge having a radius Rs of% is defined from the point 1ba ′ on the blade leading edge which is the boss radius Rb of the blade with the blade leading edge as a reference. The boss radius R existing between the points 1bb 'on the blade leading edge of the boss radius Rb when rotated in the rotation direction by the angle δαb.
The radial direction distribution of δα, which represents the angle between the straight line 1bC′-O connecting the point 1bC ′ of the radius Rc between the radius b and the radius Rs and the origin O, is δα = (δαb / (Rb- RS) 2) x (R-RS) 2
(Rb ≦ R ≦ Rs) and the blade shape is formed by extending the blade front edge portion near the boss portion in the rotation direction from the point 1bs ′ on the blade front edge portion so as to be continuous with the blade. Claim 1 characterized by the above-mentioned.
The axial blower described in 3.
【請求項15】 回転の軸中心を原点Oとし、ベースの
羽根1O’のボス部半径Rbにおける羽根前縁部上の点
1baO’と原点Oを結んだ直線1baO’−Oを、原
点Oを中心に回転方向に20〜50°の間である角度δ
αb分回転させた時の点を羽根前縁ボス部延長終点1b
b’としたとき、羽根を任意半径Rの円筒面で切断し、
その断面を2次元平面に展開して得られる展開図におい
て、前記羽根1Oとそり角θ、食い違い角ξが同一のま
ま、ボス部半径Rbでの翼弦を、前記点1bbまで延長
し、このときの前記羽根1Oのボス部半径Rbにおける
翼弦長LbOと前記点1bb〜羽根後縁部1Cbまでの
翼弦長Lb、この差を△Lbとし、羽根外周部半径の4
0〜60%の半径Rsでの羽根前縁部上の点1bsでの
翼弦長LSとすると、ボス部半径Rbから前記羽根前縁
部上の点1bsまでの翼弦長Lの半径方向分布を L=△Lb/(Rs−Rb)2×(R−Rs)2+LS
(Rb≦R≦Rs) で与え、羽根形状を形成したことを特徴とする請求項1
3記載の軸流送風機。
15. A straight line 1baO′-O that connects the origin O with a point 1baO ′ on the blade leading edge portion at the boss radius Rb of the blade 1O ′ of the base is defined as the origin O, and the origin O is defined as the origin O. An angle δ centered in the direction of rotation between 20 and 50 °
The point when rotated by αb is the end point 1b of the blade front edge boss extension.
b ′, the blade is cut by a cylindrical surface with an arbitrary radius R,
In a development view obtained by developing the cross section into a two-dimensional plane, the chord at the boss radius Rb is extended to the point 1bb while the blade 1O has the same warp angle θ and stagger angle ξ. At this time, the blade chord length LbO at the boss radius Rb of the blade 1O and the chord length Lb from the point 1bb to the blade trailing edge portion 1Cb, which is ΔLb, is 4 times the blade outer peripheral radius.
Radius distribution of the chord length L from the boss radius Rb to the point 1bs on the vane leading edge, where the chord length LS at the point 1bs on the vane leading edge is 0 to 60%. L = ΔLb / (Rs−Rb) 2 × (R−Rs) 2 + LS
The blade shape is formed by providing (Rb ≦ R ≦ Rs).
The axial blower described in 3.
【請求項16】 軸流送風機の羽根を任意半径Rの円筒
面で切断し、その断面を2次元平面に展開して得られる
展開図において、その羽根断面におけるそり線の形状を
円弧形状とし、その円弧を形成するための中心角をθ
(θ:そり角)とした場合、θの半径方向分布をθ=
(θt−θb)×(R−Rb)/(Rt−Rb)+θb
(θt:羽根外周部でのそり角、θb:羽根ボス部半径
Rbにおけるそり角)で与え、θt=25゜〜35゜、θ
b=30゜〜55゜、θt<θbとし、 上記展開図において、羽根の翼弦線と上記回転軸と平行
で上記羽根の前縁部を通る直線とのなす角度をξ(ξ:
食い違い角)とするとき、ξの半径方向分布を、ξ=
(ξt−ξb)×(R−Rb)/(Rt−Rb)+ξb
(ξt:羽根外周部での食い違い角ξ、ξb:ボス部半
径Rbにおける食い違い角)で与え、ξt=55゜〜7
0゜、ξb=40゜〜65゜、ξt>ξbとし、 さらに、翼弦長L、羽根間の円周方向距離(ピッチ)で
あるTとの比で定義される節弦比T/Lの値を、各半径
点においてT/L=1.1〜2.0とし、 かつ上記回転軸と直交する平面に軸流送風機を投影した
投影図において、上記羽根のボス部半径Rbの円筒面で
切断したときの断面における翼弦線中心点をPb’と
し、上記回転軸を原点Oとして、上記O点とPb’点と
を結ぶ直線をX軸とした座標系で、上記羽根を任意半径
Rの円筒面で切断した時の翼弦線中心点をPR’とし
て、直線PR’−Oと上記X軸とのなす角度をδθ(δ
θ:回転方向前進角)とした場合、δθの半径方向分布
を δθ=δθt×(R−Rb)/(Rt−Rb) (Rt:羽根外周部半径、Rb:羽根ボス部半径、δθ
t:直線Pt’−OとX軸のなす角度)で与え、δθt
を25〜40°とし、まず羽根形状を形成し、この時の
羽根の付け根の羽根前縁部上の点1ba’と原点Oを結
んだ直線1ba’−Oを、原点Oを中心に回転方向に2
0〜50°の間である角度δαb分回転させた時のボス
部半径Rbの点1bb’と羽根外周部半径の40〜70
%の半径Rsをもつ羽根前縁部上の点1bs’の間の形
状を、前記羽根前縁部を基準として、前記羽根のボス部
半径Rbである羽根前縁部上の点1ba’から前記角度
δαb分回転方向に回転させたときのボス部半径Rbの
羽根前縁部上の点1bb’の間に存在するボス部半径R
b〜半径Rsの間の半径Rcの点1bC’と原点Oを結
んだ直線1bC’−Oと直線1ba’−Oとのなす角度
を示すδαの半径方向分布を δα=(δαb/(Rb−RS)2)×(R−RS)2
(Rb≦R≦Rs) で与え、前記羽根と連続するように、羽根前縁部上の点
1bs’よりボス部寄り部分の羽根前縁部を回転方向に
延長し、羽根形状を形成したことを特徴とする請求項1
3記載の軸流送風機。
16. In a developed view obtained by cutting a blade of an axial blower with a cylindrical surface having an arbitrary radius R and developing the cross section into a two-dimensional plane, the shape of the warp line in the cross section of the blade is an arc shape. The central angle for forming the arc is θ
(Θ: warp angle), the radial distribution of θ is θ =
(Θt−θb) × (R−Rb) / (Rt−Rb) + θb
(Θt: warp angle at blade outer periphery, θb: warp angle at blade boss radius Rb), θt = 25 ° to 35 °, θ
b = 30 ° to 55 °, θt <θb, and in the above developed view, the angle between the chord line of the blade and the straight line parallel to the rotation axis and passing through the leading edge of the blade is ξ (ξ:
Stagger angle), the radial distribution of ξ is ξ =
(Ξt−ξb) × (R−Rb) / (Rt−Rb) + ξb
(Ξt: stagger angle ξ at blade outer periphery, ξb: stagger angle at boss radius Rb), ξt = 55 ° to 7
0 °, ξb = 40 ° to 65 °, ξt> ξb, and a chord ratio T / L defined by the ratio of the chord length L and the circumferential distance (pitch) T between the blades. The value is T / L = 1.1 to 2.0 at each radius point, and in a projection view in which the axial blower is projected on a plane orthogonal to the rotation axis, a cylindrical surface having a boss radius Rb of the blade is used. The blade chord line center point in the cross section when cut is Pb ′, the rotation axis is the origin O, and the straight line connecting the point O and Pb ′ is the X axis in a coordinate system, and the blades have an arbitrary radius R. Let PR ′ be the center point of the chord line when cut along the cylindrical surface of the above, and the angle between the straight line PR′−O and the X axis is δθ (δ
(θ: advance angle in rotation direction), the radial distribution of δθ is δθ = δθt × (R-Rb) / (Rt-Rb) (Rt: blade outer peripheral radius, Rb: blade boss radius, δθ
t: angle formed by the straight line Pt′−O and the X axis), and δθt
Is set to 25 to 40 °, a blade shape is first formed, and a straight line 1ba′-O connecting a point 1ba ′ on the blade leading edge portion of the blade root and an origin O at this time is rotated about the origin O. To 2
A point 1bb ′ of the boss radius Rb when rotated by an angle δαb between 0 and 50 ° and a blade outer peripheral radius of 40 to 70.
The shape between points 1bs ′ on the blade leading edge having a radius Rs of% is defined from the point 1ba ′ on the blade leading edge which is the boss radius Rb of the blade with the blade leading edge as a reference. The boss radius R existing between the points 1bb 'on the blade leading edge of the boss radius Rb when rotated in the rotation direction by the angle δαb.
The radial direction distribution of δα, which represents the angle between the straight line 1bC′-O connecting the point 1bC ′ of the radius Rc between the radius b and the radius Rs and the origin O, is δα = (δαb / (Rb- RS) 2) x (R-RS) 2
(Rb ≦ R ≦ Rs) and the blade shape is formed by extending the blade front edge portion near the boss portion in the rotation direction from the point 1bs ′ on the blade front edge portion so as to be continuous with the blade. Claim 1 characterized by the above-mentioned.
The axial blower described in 3.
【請求項17】 軸流送風機の羽根を任意半径Rの円筒
面で切断し、その断面を2次元平面に展開して得られる
展開図において、その羽根断面におけるそり線の形状を
円弧形状とし、その円弧を形成するための中心角をθ
(θ:そり角)とした場合、θの半径方向分布をθ=
(θt−θb)×(R−Rb)/(Rt−Rb)+θb
(θt:羽根外周部でのそり角、θb:羽根ボス部半径
Rbにおけるそり角)で与え、θt=25゜〜35゜、θ
b=30゜〜55゜、θt<θbとし、 上記展開図において、羽根の翼弦線と上記回転軸と平行
で上記羽根の前縁部を通る直線とのなす角度をξ(ξ:
食い違い角)とするとき、ξの半径方向分布を、ξ=
(ξt−ξb)×(R−Rb)/(Rt−Rb)+ξb
(ξt:羽根外周部での食い違い角ξ、ξb:ボス部半
径Rbにおける食い違い角)で与え、ξt=55゜〜7
0゜、ξb=40゜〜65゜、ξt>ξbとし、 かつ上記回転軸と直交する平面に軸流送風機を投影した
投影図において、上記羽根のボス部半径Rbの円筒面で
切断したときの断面における翼弦線中心点をPbO’と
し、上記回転軸を原点Oとして、上記O点とPbO’点
とを結ぶ直線をX軸とした座標系で、上記羽根を任意半
径Rの円筒面で切断した時の翼弦線中心点をPRO’と
して、直線PRO’−Oと上記X軸とのなす角度をδθ
(δθ:回転方向前進角)とした場合、δθの半径方向
分布を δθ=δθt×(R−Rb)/(Rt−Rb) (Rt:羽根外周部半径、Rb:羽根ボス部半径、δθ
t:直線PtO’−OとX軸のなす角度)で与え、δθ
tを25〜40°とし、 さらに、翼弦長LO、羽根間の円周方向距離(ピッチ)
であるTとの比で定義される節弦比T/LOの値を、各
半径点においてT/LO=1.1〜2.0とし、まず羽
根形状1O’を形成し、 前記投影図において、羽根1O’のボス部半径Rbにお
ける羽根前縁部上の点1baO’と原点Oを結んだ直線
1baO’−Oを、原点Oを中心に回転方向に20〜5
0°の間である角度δαb分回転させた時の点を羽根前
縁ボス部延長終点1bb’としたとき、羽根を任意半径
Rの円筒面で切断し、その断面を2次元平面に展開して
得られる展開図において、前記羽根1Oとそり角θ、食
い違い角ξが同一のまま、ボス部半径Rbでの翼弦を、
前記点1bbまで延長し、このときの前記羽根1Oのボ
ス部半径Rbにおける翼弦長LbOと前記点1bb〜羽
根後縁部1Cbまでの翼弦長Lb、この差を△Lbと
し、羽根外周部半径の40〜60%の半径Rsでの羽根
前縁部上の点1bsでの翼弦長LSとすると、ボス部半
径Rbから前記羽根前縁部上の点1bsまでの翼弦長L
の半径方向分布を L=△Lb/(Rs−Rb)2×(R−Rs)2+LS
(Rb≦R≦Rs) で与え、羽根形状を形成したことを特徴とする請求項1
3記載の軸流送風機。
17. A development view obtained by cutting a blade of an axial blower with a cylindrical surface having an arbitrary radius R and developing the cross section into a two-dimensional plane, wherein the shape of the warp line in the blade cross section is an arc shape, The central angle for forming the arc is θ
(Θ: warp angle), the radial distribution of θ is θ =
(Θt−θb) × (R−Rb) / (Rt−Rb) + θb
(Θt: warp angle at blade outer periphery, θb: warp angle at blade boss radius Rb), θt = 25 ° to 35 °, θ
b = 30 ° to 55 °, θt <θb, and in the above developed view, the angle between the chord line of the blade and the straight line parallel to the rotation axis and passing through the leading edge of the blade is ξ (ξ:
Stagger angle), the radial distribution of ξ is ξ =
(Ξt−ξb) × (R−Rb) / (Rt−Rb) + ξb
(Ξt: stagger angle ξ at blade outer periphery, ξb: stagger angle at boss radius Rb), ξt = 55 ° to 7
In a projection view in which 0 °, ξb = 40 ° to 65 °, ξt> ξb are set, and an axial blower is projected on a plane orthogonal to the rotation axis, the blade is cut by a cylindrical surface having a boss radius Rb. The center point of the chord line in the cross section is PbO ′, the rotation axis is the origin O, and the straight line connecting the point O and the point PbO ′ is the X axis, and the blade is a cylindrical surface with an arbitrary radius R. Let PRO 'be the center point of the chord line when cut, and the angle between the straight line PRO'-O and the X axis is δθ.
When (δθ: forward angle of rotation), the radial distribution of δθ is δθ = δθt × (R−Rb) / (Rt−Rb) (Rt: blade outer peripheral radius, Rb: blade boss radius, δθ
t: angle formed by the straight line PtO'-O and the X-axis), and δθ
t is 25 to 40 °, and the chord length LO is the circumferential distance (pitch) between the blades.
The value of the chordal ratio T / LO defined by the ratio with T is set to T / LO = 1.1 to 2.0 at each radius point, and first, the blade shape 1O ′ is formed. , A straight line 1baO′-O that connects the origin O with the point 1baO ′ on the blade leading edge portion at the boss radius Rb of the blade 1O ′ is 20 to 5 in the rotation direction about the origin O.
When the point when rotated by an angle δαb that is between 0 ° is the blade leading edge boss extension end point 1bb ′, the blade is cut with a cylindrical surface of an arbitrary radius R and its cross section is developed into a two-dimensional plane. In the developed view obtained as above, the chord at the boss radius Rb is the same as that of the blade 1O with the same deflection angle θ and stagger angle ξ.
The blade chord length LbO at the boss radius Rb of the blade 1O at this time and the chord length Lb from the point 1bb to the blade trailing edge 1Cb, which is ΔLb, is defined as ΔLb. Letting the chord length LS at the point 1bs on the blade leading edge at a radius Rs of 40 to 60% of the radius, the chord length L from the boss radius Rb to the point 1bs on the blade leading edge.
The radial distribution of L = ΔLb / (Rs−Rb) 2 × (R−Rs) 2 + LS
The blade shape is formed by providing (Rb ≦ R ≦ Rs).
The axial blower described in 3.
【請求項18】 請求項1ないし17のうちのいずれか
1項記載の軸流送風機を使用したことを特徴とする空気
調和機。
18. An air conditioner using the axial blower according to any one of claims 1 to 17.
JP22409395A 1995-08-31 1995-08-31 Axial blower, air conditioner Expired - Lifetime JP2932975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22409395A JP2932975B2 (en) 1995-08-31 1995-08-31 Axial blower, air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22409395A JP2932975B2 (en) 1995-08-31 1995-08-31 Axial blower, air conditioner

Publications (2)

Publication Number Publication Date
JPH0968199A true JPH0968199A (en) 1997-03-11
JP2932975B2 JP2932975B2 (en) 1999-08-09

Family

ID=16808442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22409395A Expired - Lifetime JP2932975B2 (en) 1995-08-31 1995-08-31 Axial blower, air conditioner

Country Status (1)

Country Link
JP (1) JP2932975B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113732A1 (en) * 2003-06-18 2004-12-29 Mitsubishi Denki Kabushiki Kaisha Blower
JP2007182901A (en) * 2003-06-18 2007-07-19 Mitsubishi Electric Corp Blower
WO2015049914A1 (en) * 2013-10-01 2015-04-09 シャープ株式会社 Propeller fan and blower
WO2015125306A1 (en) * 2014-02-24 2015-08-27 三菱電機株式会社 Axial flow fan
CN105927586A (en) * 2016-06-03 2016-09-07 华中科技大学 Modified open-type axial flow fan blade and modification method thereof
US9897108B2 (en) 2012-12-27 2018-02-20 Mitsubishi Electric Corporation Propeller fan, air blower, outdoor unit
CN108561335A (en) * 2018-05-22 2018-09-21 广东美的制冷设备有限公司 Axial-flow windwheel and household electrical appliance
CN108561334A (en) * 2018-05-22 2018-09-21 广东美的制冷设备有限公司 Axial-flow windwheel and household electrical appliance
CN108561333A (en) * 2018-05-22 2018-09-21 广东美的制冷设备有限公司 Axial-flow windwheel and household electrical appliance

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113732A1 (en) * 2003-06-18 2004-12-29 Mitsubishi Denki Kabushiki Kaisha Blower
JP2007182901A (en) * 2003-06-18 2007-07-19 Mitsubishi Electric Corp Blower
US7331758B2 (en) 2003-06-18 2008-02-19 Mitsubishi Denki Kabushiki Kaisha Blower
US9897108B2 (en) 2012-12-27 2018-02-20 Mitsubishi Electric Corporation Propeller fan, air blower, outdoor unit
CN105473853B (en) * 2013-10-01 2017-07-07 夏普株式会社 Propeller type fan and air-supply arrangement
CN105473853A (en) * 2013-10-01 2016-04-06 夏普株式会社 Propeller fan and blower
JP6072274B2 (en) * 2013-10-01 2017-02-01 シャープ株式会社 Propeller fan and blower
WO2015049914A1 (en) * 2013-10-01 2015-04-09 シャープ株式会社 Propeller fan and blower
JPWO2015125306A1 (en) * 2014-02-24 2017-03-30 三菱電機株式会社 Axial blower
WO2015125306A1 (en) * 2014-02-24 2015-08-27 三菱電機株式会社 Axial flow fan
US10208770B2 (en) 2014-02-24 2019-02-19 Mitsubishi Electric Corporation Axial flow fan
CN105927586A (en) * 2016-06-03 2016-09-07 华中科技大学 Modified open-type axial flow fan blade and modification method thereof
CN108561335A (en) * 2018-05-22 2018-09-21 广东美的制冷设备有限公司 Axial-flow windwheel and household electrical appliance
CN108561334A (en) * 2018-05-22 2018-09-21 广东美的制冷设备有限公司 Axial-flow windwheel and household electrical appliance
CN108561333A (en) * 2018-05-22 2018-09-21 广东美的制冷设备有限公司 Axial-flow windwheel and household electrical appliance

Also Published As

Publication number Publication date
JP2932975B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
EP2426362B1 (en) Turbo fan and air conditioner with turbo fan
EP2835538B1 (en) Axial flow fan and air-conditioning apparatus having the same
JP3203994B2 (en) Axial blower
EP1083391B1 (en) Axial flow fan for air conditioner
JP6415741B2 (en) Blower and air conditioner equipped with the same
EP1087146A2 (en) Impeller for fan, fan using the same, and air conditioner using the same
WO2003072948A1 (en) Fan
JPH0968199A (en) Axial blower and air conditioner
JP4689262B2 (en) Axial fan, outdoor unit of air conditioner
WO2018020708A1 (en) Propeller fan and fluid feeding device
GB2615910A (en) Turbofan and air conditioner
EP4008911A1 (en) Axial fan for outdoor unit of air conditioner
US6712584B2 (en) Fan blade
CN110914553B (en) Impeller, blower and air conditioner
JPH0777198A (en) Blade of axial flow fan
JPH01195991A (en) Transverse flow air blower
JP3803184B2 (en) Axial fan
JPH06173895A (en) Propeller fan
CN112096656A (en) Axial flow fan blade, axial flow fan and air conditioner
JP2956566B2 (en) Impeller for blower
JPH0579496A (en) Impeller of blower
JP3515437B2 (en) Cross flow fan and air conditioner using the same
CN216430052U (en) Axial flow impeller, axial flow fan and air conditioner
WO2021152775A1 (en) Centrifugal blower and air conditioner provided with same
CN213360556U (en) Axial flow fan blade, axial flow fan and air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 15

EXPY Cancellation because of completion of term