JPH0579496A - Impeller of blower - Google Patents

Impeller of blower

Info

Publication number
JPH0579496A
JPH0579496A JP23962591A JP23962591A JPH0579496A JP H0579496 A JPH0579496 A JP H0579496A JP 23962591 A JP23962591 A JP 23962591A JP 23962591 A JP23962591 A JP 23962591A JP H0579496 A JPH0579496 A JP H0579496A
Authority
JP
Japan
Prior art keywords
blade
radius
angle
impeller
chord line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23962591A
Other languages
Japanese (ja)
Other versions
JP2730344B2 (en
Inventor
Masahiro Nakayama
雅弘 中山
Yoshiaki Imamura
佳昭 今村
Ken Morinushi
憲 森主
Katsuhisa Otsuta
勝久 大蔦
Taro Sekimoto
太郎 関本
Yoshimoto Wada
喜幹 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23962591A priority Critical patent/JP2730344B2/en
Publication of JPH0579496A publication Critical patent/JPH0579496A/en
Application granted granted Critical
Publication of JP2730344B2 publication Critical patent/JP2730344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To suppress the rapid increase of the noise through prevention of reverse flow in the vicinity of a boss part and to increase a static pressure by devising the shape of each blade formed in a three-dimensional shape, in the axial flow impeller of a blower used for a ventilating fan or the like. CONSTITUTION:In a three-blade-shaped impeller, each impeller 1 is attached to a boss part 2 in a state to be formed in a three-dimensional shape. In which case, a chord line central point PR in a section available when a rotary shaft 3 is cut by a cylindrical surface with a radius R centering around a rotary axis 3 and a radius R0 being 35% of an impeller chip radius Rt are set as a virtual boss part 2. When a distance between the chord line central point R and a plane Sc passing a chord line central point P0 in a section when the rotary shaft is cut by a cylindrical surface with an impeller chip radius R0 and crossing the rotary shaft 3 at right angles is LS, the value of a forward inclination angle deltaz represented by a formula of deltaz= tan<-1> (Ls/(R-R0)) is set to a range of 12.5-32.5 deg.. Further, an inclination angle alpha of a boss part is set in a range from 15 to 35 deg. and an angle deltatheta of lead in the rotation direction of the tip part of the impeller in a range from 25 to 40 deg..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、換気扇やエアコン等
に用いられる軸流羽根車に係わり、特にその空力騒音を
極限まで低くすることを可能にした送風機の羽根車に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axial flow impeller used for a ventilation fan, an air conditioner and the like, and more particularly to an impeller of a blower capable of reducing the aerodynamic noise to the limit.

【0002】[0002]

【従来の技術】送風機は、空調機や換気扇等に幅広く使
われており、その羽根車から発生する騒音をできる限り
低くすることは、社会的にも非常に重要である。従来技
術の中で、低騒音化を図る手法としては、特公平2−2
000号公報に見られるように、羽根車の3次元形状を
決めるパラメータを明らかにし、形状を最適化すること
によるものであった。図14は、特公平2−2000号
公報に示された従来の送風機の羽根車を示す斜視図であ
る。図において1は羽根車の羽根、1aは羽根先端部、
1bは羽根前縁部、1cは羽根後縁部、1dは羽根外周
部、2は羽根を取り付けるボス部、3は回転軸、4は回
転方向である。また、図15は、回転軸3と直交する平
面に羽根車を投影したときの投影図で、1’は平面投影
図における羽根、1a’は平面投影図における羽根先端
部、1b’は平面投影図における羽根前縁部、1c’は
平面投影図における羽根後縁部、1d’は平面投影図に
おける羽根外周部である。また図16は、図15におけ
るボス部翼弦線中心点Pb’から外周部翼弦線中心点P
t’までの半径方向への軌跡Pb’−PR ’−Pt’に
ついて、任意の半径Rにおける翼弦線中心点PR を平面
OX面に半径Rで回転投影した翼弦線中心点PR の半径
方向分布、および羽根1の同一位置での断面を示してい
る。また図17は、翼弦線中心点PR を相対的な原点と
して羽根面を形成したとき、羽根1を半径Rの円筒面で
切断し、その断面を2次元平面に展開して得られる展開
図で、5はそり線、5aは羽根負圧面、5bは羽根圧力
面、6は回転軸平行線である。この羽根車において、羽
根1を構成する諸因子を明確にすることにより羽根1の
3次元的曲面形状を具体的に定義している。
Blowers are widely used in air conditioners, ventilation fans and the like, and it is very important socially to reduce the noise generated from the impeller as much as possible. Among the conventional techniques, Japanese Patent Publication No. 2-2
As disclosed in Japanese Patent Publication No. 000, this was done by clarifying the parameters that determine the three-dimensional shape of the impeller and optimizing the shape. FIG. 14 is a perspective view showing an impeller of a conventional blower disclosed in Japanese Patent Publication No. 2000-2000. In the figure, 1 is the blade of the impeller, 1a is the tip of the blade,
1b is a blade front edge portion, 1c is a blade trailing edge portion, 1d is a blade outer peripheral portion, 2 is a boss portion for attaching the blade, 3 is a rotation axis, and 4 is a rotation direction. Further, FIG. 15 is a projection view when the impeller is projected on a plane orthogonal to the rotation axis 3, 1'is a blade in the plan view, 1a 'is a blade tip portion in the plan view, and 1b' is a plane projection. The blade leading edge portion 1c ′ in the drawing is the blade trailing edge portion in the plan view, and 1d ′ is the blade outer peripheral portion in the plan view. Further, FIG. 16 shows that from the boss chord line center point Pb ′ in FIG.
For t -Synthesis of Pt 'trajectory PB'-P R in the radial direction to the '', chord line center point chord line center point P R rotates projected radius R in the plane OX surface at an arbitrary radius R P R Shows the radial distribution of and the cross section of the blade 1 at the same position. In FIG. 17, when the blade surface is formed with the blade chord line center point P R as a relative origin, the blade 1 is cut by a cylindrical surface having a radius R and the cross section is developed into a two-dimensional plane. In the figure, 5 is a warp line, 5a is a blade negative pressure surface, 5b is a blade pressure surface, and 6 is a rotation axis parallel line. In this impeller, the three-dimensional curved surface shape of the blade 1 is specifically defined by clarifying various factors constituting the blade 1.

【0003】図15における回転軸と直交する平面に羽
根車を投影したときの投影面において、上記羽根のボス
部を半径Rbの円筒面で切断したときの断面における翼
弦線中心点をRb’とし、上記回転軸を原点Oとして、
上記O点とRb’点とを結ぶ直線をX軸とした座標系
で、上記羽根を半径Rの円筒面で切断したときの翼弦線
中心点をPR ’として、直線Rb’−Oと上記X軸との
なす角をδθ(δθ:回転方向前進角)とした場合、δ
θの半径方向分布をδθ=δθt×(R−Rb)/(R
t−Rb)(Rt:羽根チップ半径、Rb:羽根ボス半
径、δθt:直線PR ’−OとX軸とのなす角度)で与
え、δθt=40°〜50°とし、かつ図16におい
て、回転軸を中心とする半径Rの円筒面で羽根車を切断
したときの断面における翼弦線中心点PR と、羽根のボ
ス部を半径Rbの円筒面で切断したときの断面における
翼弦線中心点Pbを通り、上記回転軸と直交する平面S
cとの距離をLsとしたとき、気流の吸込側を正方向と
した座標系において上記翼弦線中心点PR を上記Sc平
面に対して常に正方向に位置させ、δz=tan-1(L
s/(R−Rb))(δz:吸込方向前傾角)で表現で
きるδzの値をδz=12.5°〜32.5°とし、か
つ図17において、羽根を半径Rの円筒面で切断し、そ
の断面を2次元平面に展開して得られる展開図におい
て、その羽根断面におけるそり線の形状を円弧形状と
し、その円弧形状を形成するための中心角をθ(θ:そ
り角)とした場合、θの半径方向分布をθ=(θt−θ
0 )×(R−R0 )/(Rt−R0 )/θ0 (θt:羽
根チップでのそり角、θb:羽根ボス部でのそり角)で
与え、θt=20°〜30°、θb=27°〜37°、
θt<θbとし、また、羽根の取付位置はその翼弦線1
b−1cと、回転軸3と平行で羽根前縁部1bを通る直
線6とのなす角度をくいちがい角ξとした場合、ξの半
径方向分布を、ξ=(ξt−ξb)×(R−Rb)/
(Rt−R0 )+ξb(ξt:羽根チップでのくいちが
い角、ξb:羽根ボス部でのくいちがい角)で与え、ξ
t=62°〜72°、ξb=53°〜63°、ξt>ξ
bとし、さらに、この図17におけるLは翼弦長であ
り、図18に示した羽根間の円周方向距離Tを用いた節
弦比T/Lで羽根の大きさを限定しており、各半径点に
おいてT/L=1〜1.1としている。このような3次
元曲面形状の羽根車にすることにより、羽根面上の境界
層の発達が抑制されたり、放出渦の状態が変化するた
め、ある程度広い動作領域にわたって相当低騒音の送風
機の羽根車となっていた。
In the projection plane when the impeller is projected on the plane orthogonal to the rotation axis in FIG. 15, the blade chord line center point in the cross section when the boss portion of the blade is cut by the cylindrical surface of radius Rb is Rb '. And the rotation axis as the origin O,
The point O and Rb 'a straight line connecting the points in a coordinate system whose X-axis, a chord line center points when cutting the blade in the cylindrical surface of radius R P R' as a linear Rb'-O When the angle formed by the X axis is δθ (δθ: forward angle in the rotation direction), δ
The radial distribution of θ is δθ = δθt × (R−Rb) / (R
t-Rb) (Rt: blade tip radius, Rb: blade boss radius, δθt: angle formed by straight line P R ′ -O and the X axis), and δθt = 40 ° to 50 °, and in FIG. The chord line center point P R in the cross section when the impeller is cut along the cylindrical surface having the radius R centering on the rotation axis, and the chord line in the cross section when the boss portion of the blade is cut along the cylindrical surface with the radius Rb. A plane S passing through the center point Pb and orthogonal to the rotation axis
When the distance from c is Ls, the chord line center point P R is always positioned in the positive direction with respect to the Sc plane in a coordinate system in which the suction side of the air flow is in the positive direction, and δz = tan −1 ( L
s / (R-Rb)) (δz: suction direction forward tilt angle) has a value of δz of δz = 12.5 ° to 32.5 °, and in FIG. 17, the blade is cut along a cylindrical surface having a radius R. Then, in the development view obtained by developing the cross section into a two-dimensional plane, the shape of the warp line in the blade cross section is an arc shape, and the central angle for forming the arc shape is θ (θ: warp angle). In this case, the radial distribution of θ is θ = (θt−θ
0 ) × (R−R 0 ) / (Rt−R 0 ) / θ 0 (θt: deflection angle at blade tip, θb: deflection angle at blade boss portion), θt = 20 ° to 30 °, θb = 27 ° to 37 °,
θt <θb, and the blade mounting position is the chord line 1
If the angle formed by b-1c and the straight line 6 that is parallel to the rotation axis 3 and that passes through the blade leading edge portion 1b is the skew angle ξ, the radial distribution of ξ is ξ = (ξt−ξb) × (R− Rb) /
(Rt−R 0 ) + ξb (ξt: angle of the blade tip, ξb: angle of the blade boss)
t = 62 ° to 72 °, ξb = 53 ° to 63 °, ξt> ξ
b, and L in FIG. 17 is the chord length, and the blade size is limited by the chord chord ratio T / L using the circumferential distance T between the blades shown in FIG. T / L = 1 to 1.1 at each radius point. By using such an impeller having a three-dimensional curved surface, the development of the boundary layer on the impeller surface is suppressed and the state of the discharge vortex is changed. Therefore, the impeller of a blower having a considerably low noise over a wide operating region to some extent. It was.

【0004】[0004]

【発明が解決しようとする課題】従来の送風機の羽根車
は以上のように低騒音の特徴を有しているが、風量があ
る程度減少し風圧がかかった作動点付近では、図19に
示すようにボス2付近に吹き出し側から吸い込み側への
逆流11が生じてしまっており、騒音が急増する問題点
があった。またこのように半径方向の流れが強くなった
作動点では、回転方向に大きく前進させた従来の軸流羽
根車は、流れに沿った実質的な翼弦長が相当短くなり、
また実質的なそり角も小さくなるため、静圧をある程度
以上高めることが困難であるという問題点があった。
Although the impeller of the conventional blower has the characteristics of low noise as described above, as shown in FIG. 19, in the vicinity of the operating point where the air volume is reduced to some extent and wind pressure is applied. In addition, a backflow 11 from the blow-out side to the suction side has occurred near the boss 2, and there is a problem that noise increases sharply. At the operating point where the flow in the radial direction becomes stronger in this way, the conventional axial flow impeller greatly advanced in the rotational direction has a substantially shorter chord length along the flow,
Further, since the substantial warp angle becomes small, it is difficult to increase the static pressure above a certain level.

【0005】この発明は、上記のような問題点を解消す
るためになされたもので、ボス部付近での逆流をなくし
て騒音の急増を抑制するとともに、高静圧化も図った高
性能、低騒音の送風機の羽根車を得ることを目的とす
る。
The present invention has been made in order to solve the above-mentioned problems, and suppresses a sudden increase in noise by eliminating backflow in the vicinity of the boss portion, and achieves high static pressure and high performance. The purpose is to obtain a low-noise fan impeller.

【0006】[0006]

【課題を解決するための手段】この発明に係る請求項1
の送風機の羽根車は、回転軸を中心とする半径Rの円筒
面で羽根車を切断したときの断面における翼弦線中心点
R と、羽根チップ半径Rtの35%の半径R0 を仮想
的なボス部として設定して、この半径R0 の円筒面で切
断したときの断面における翼弦線中心点P0 を通り上記
回転軸と直交する平面Sc との距離をLs としたとき、
気流の吸込側を正方向とした座標系において上記翼弦線
中心点PR を上記Sc 平面に対して常に正方向に位置さ
せ、δz=tan-1(Ls/(R−R0 ))(δz:吸
込方向前傾角)で表現できるδzの値をδz=12.5
°〜32.5°とし、かつ、実際のボス部を吸込側ほど
小さい円の円錐台形とし、その回転軸方向傾斜角αの値
をα=15°〜35°とし、かつ、上記回転軸と直交す
る平面に羽根車を投影したときの投影面において、上記
羽根の仮想的ボス部を半径R0 の円筒面で切断したとき
の断面における翼弦線中心点をP0 ’とし、上記回転軸
を原点Oとして、上記O点とP0 ’点とを結ぶ直線をX
軸とした座標系で、上記羽根を半径Rの円筒面で切断し
たときの翼弦線中心点をPR ’として、直線PR ’−O
と上記X軸とのなす角をδθ(δθ:回転方向前進角)
とした場合、δθの半径方向分布を、δθ=δθt×
(R−R0 )/(Rt−R0 )で与え、δθt=25°
〜40°としたものである。
[Means for Solving the Problems] Claim 1 according to the present invention
The impeller of the blower of FIG. 3 has an imaginary blade chord line center point P R and a radius R 0 of 35% of the blade tip radius Rt in the cross section when the impeller is cut along a cylindrical surface having a radius R centering on the rotation axis. Is set as a typical boss portion, and the distance from the plane Sc passing through the chord line center point P 0 and orthogonal to the above-mentioned rotation axis in the cross section cut by the cylindrical surface having the radius R 0 is Ls,
In the coordinate system in which the suction side of the air flow is in the positive direction, the chord line center point P R is always positioned in the positive direction with respect to the Sc plane, and δz = tan −1 (Ls / (R−R 0 )) ( δz: The value of δz that can be expressed by the suction direction forward tilt angle is δz = 12.5
And 32.5 °, and the actual boss portion has a circular truncated cone shape that is smaller toward the suction side, and the value of the rotation axis direction inclination angle α is α = 15 ° to 35 °, and In the projection plane when the impeller is projected on a plane orthogonal to each other, the chord line center point in the cross section when the virtual boss portion of the blade is cut by the cylindrical surface of the radius R 0 is P 0 ′, and the rotation axis is With the origin O as the origin O, and a line connecting the above point O and the point P 0 'with X
In the coordinate system with the axis, a straight line P R ′ -O where P R ′ is the center point of the chord line when the blade is cut along a cylindrical surface with a radius R
The angle between the X axis and the above is δθ (δθ: forward angle of rotation)
, The radial distribution of δθ is δθ = δθt ×
Given by (R−R 0 ) / (Rt−R 0 ), δθt = 25 °
It is set to -40 °.

【0007】この発明に係る請求項2の送風機の羽根車
は、回転軸を中心とする半径Rの円筒面で羽根車を切断
したときの断面における翼弦線中心点PRと、羽根チッ
プ半径Rtの35%の半径R0 を仮想的なボス部として
設定して、この半径R0 の円筒面で切断したときの断面
における翼弦線中心点P0 を通り上記回転軸と直交する
平面Scとの距離をLsとしたとき、気流の吸込側を正
方向とした座標系において上記翼弦線中心点PR を上記
Sc 平面に対して常に正方向に位置させ、δz=tan
-1(Ls/(R−R0 ))(δz:吸込方向前傾角)で
表現できるδzの値をδz=12.5°〜32.5°と
し、かつ、実際のボス部を吸込側ほど小さい円の円錐台
形とし、その回転軸方向傾斜角αの値をα=15°〜3
5°とし、かつ、上記回転軸と直交する平面に羽根車を
投影したときの投影面において、上記羽根の仮想的ボス
部を半径R0 の円筒面で切断したときの断面における翼
弦線中心点をP0 ’とし、上記回転軸を原点Oとして、
上記O点とP0 点とを結ぶ直線をX軸とした座標系で、
上記羽根を半径Rの円筒面で切断したときの翼弦線中心
点をPR ’として、直線PR ’−Oと上記X軸とのなす
角をδθ(δθ:回転方向前進角)とした場合、δθの
半径方向分布をδθ=δθt×(R−R0 )/(Rt−
0 )で与え、δθt=25°〜40°とし、かつ、羽
根を半径Rの円筒面で切断し、その断面を2次元平面に
展開して得られる展開図において、その羽根断面におけ
るそり線の形状を円弧形状とし、その円弧を形成するた
めの中心角をθ(θ:そり角)とした場合、θの半径方
向分布を、θ=(θt−θ0 )×(R−R0 )/(Rt
−R0 )+θ0 (θt:羽根チップでのそり角、θ0
0=0.35Rtにおけるそり角)で与え、θt=2
5°〜35°、θ0=32°〜42°、θt<θ0
し、上記展開図において、羽根の翼弦線と、上記回転軸
と平行で上記羽根の前縁部を通る直線とのなす角度をξ
(ξ:くいちがい角)とするとき、ξの半径方向分布
を、ξ=(ξt−ξ0 )×(R−R0 )/(Rt−R
0 )+ξ0 (ξt:羽根チップでのくいちがい角、ξ
0 :R0 =0.35Rtにおけるくいちがい角)で与
え、ξt=58°〜68°、ξ0 =49°〜59°、ξ
t>ξ0 とし、上記展開図において、上記羽根の翼弦長
をL、羽根と羽根との同一半径点におけるピッチをTと
したとき、各半径点におけるTとLの比T/L(T/
L:節弦比)をT/L=1.3〜2.0としたものであ
る。
According to a second aspect of the present invention, the impeller of the blower has a blade chord line center point P R and a blade tip radius in a cross section when the impeller is cut along a cylindrical surface having a radius R centering on the rotation axis. set the radius R 0 35% of Rt as a virtual boss, a plane Sc perpendicular to chord line center point P 0 in the cross-section of a cutaway of a cylindrical surface of the radius R 0 and as the rotating shaft And the distance Ls is Ls, the chord line center point P R is always positioned in the positive direction with respect to the Sc plane in a coordinate system in which the suction side of the air flow is the positive direction, and δz = tan
-1 (Ls / (R-R 0 )) (δz: suction direction forward tilt angle), the value of δz is δz = 12.5 ° to 32.5 °, and the actual boss is closer to the suction side. A small circular truncated cone is used, and the value of the tilt angle α in the rotation axis direction is α = 15 ° to 3
On the projection plane when the impeller is projected on a plane that is 5 ° and is orthogonal to the rotation axis, the center of the chord line in the cross section when the virtual boss portion of the blade is cut by the cylindrical surface of radius R 0 Let the point be P 0 'and the rotation axis be the origin O,
In the coordinate system where the straight line connecting the O point and the P 0 point is the X axis,
When the blade is cut along a cylindrical surface having a radius R, the center point of the chord line is P R ′, and the angle between the straight line P R ′ -O and the X axis is δθ (δθ: forward direction angle of rotation). In this case, the radial distribution of δθ is δθ = δθt × (R−R 0 ) / (Rt−
R 0 ), δθt = 25 ° to 40 °, and the blade is cut along a cylindrical surface with a radius R, and its cross section is developed into a two-dimensional plane. Is a circular arc shape, and the central angle for forming the circular arc is θ (θ: warp angle), the radial distribution of θ is θ = (θt−θ 0 ) × (R−R 0 ). / (Rt
−R 0 ) + θ 0 (θt: Deflection angle at blade tip, θ 0 :
R 0 = 0.35 Rt) and θt = 2
5 ° to 35 °, θ 0 = 32 ° to 42 °, and θt <θ 0, and in the above developed view, the chord line of the blade and the straight line parallel to the rotation axis and passing through the leading edge portion of the blade. The angle ξ
(Ξ: angle of deviation), the radial distribution of ξ is ξ = (ξt−ξ 0 ) × (R−R 0 ) / (Rt−R
0 ) + ξ 0 (ξt: Angle of rake at blade tip, ξ
0 : R 0 = 0.35 Rt), ξt = 58 ° to 68 °, ξ 0 = 49 ° to 59 °, ξt
When t> ξ 0, and in the above developed view, the chord length of the blade is L and the pitch at the same radial point between the blades is T, the ratio T / L (T /
L: node ratio) T / L = 1.3 to 2.0.

【0008】[0008]

【作用】この発明における送風機の羽根車は、羽根形状
を決めるための骨子である翼素中心の3次元分布を明ら
かにしたものである。特に羽根翼素中心が気体の吸い込
み側に傾斜しているとともに、回転方向へ前進してお
り、しかもボス部に傾斜をつけており、それぞれの分布
が最適化されているため、高静圧と低騒音化を同時に達
成したものとなっている。
The impeller of the blower according to the present invention clarifies the three-dimensional distribution of the blade element center, which is the skeleton for determining the blade shape. Especially, the blade blade element center is inclined to the gas suction side, is advancing in the rotation direction, and the boss is inclined, and each distribution is optimized, so high static pressure and It has achieved low noise at the same time.

【0009】[0009]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図に基づいて説
明する。図1はこの発明における送風機の羽根車の一実
施例を示す斜視図で、例えば3枚羽根形状のものであ
り、動作の説明については、主に1枚の羽根1について
述べるが、他の羽根についても同様である。図におい
て、1は3次元形状を持つ羽根車の羽根、2は羽根を取
り付けるボス部、3は羽根1の回転軸、4は回転方向で
ある。この羽根1の特徴として、羽根面が空間的にねじ
れながら、しかも気体の吸い込み側に大きく前傾し、3
次元的曲面形状を形成しており、かつ2のボス部が回転
軸方向に傾斜角を持ち、吸い込み側ほど小さい円の円錐
台形となっていることにある。この羽根車において、羽
根1を構成する諸因子を明確にすることにより、羽根1
の3次元的曲面形状を具体的に定義することができるよ
うにしたものである。そこで、具体的にこの発明による
羽根車を構成する因子を示す。図2は回転軸3と直交す
る平面に、羽根1を投影したときの投影図で、1’は投
影面上の羽根、2はボス部、3は回転軸であり、回転軸
3から半径Rの円筒面で羽根1’を切断したときの投影
面における円弧1bR ’−PR ’−1cR ’は、羽根断
面形状となる。ここで、PR ’は弧1bR’−1cR
の中点であり、投影面における翼弦線中心点となる。投
影面におけるPR ’の位置を明確化するために、円錐台
形の実際のボス部とは別に、羽根チップ半径Rtの35
%の半径P0 の仮想的なボス部を設定して、羽根もこの
仮想的ボス部まで便宜上存在するように想定し、この仮
想的ボス部の半径R0 の円筒面で羽根車を切断したとき
の投影面におけるボス部翼弦線中心点P0 ’とし、回転
軸3の投影面における位置Oとを結ぶ直線P0 ’−Oを
X軸とし、Oを原点とした座標を投影面上に形成する。
Pt’は外周部1dでの翼弦線中心点、Pθ’は翼弦線
中心点PR ’における翼弦線中心点軌跡P0 ’−PR
−Pt’の接線と半径Rとのなす角度を示す。また、ダ
ッシュ(’)のついている符号は、投影面における各部
を示す。上記座標系において、直線PR ’−OとX軸と
のなす角をδθ(δθ:回転方向前進角)とし、距離を
Rとすれば、PR ’の位置は、(R,δθ)という極座
標系で表現できる。この発明では、直線Pt’−OとX
軸とのなす角をδθtとすると、δθ=δθt×(R−
0 )/(Rt−R0 )で与え、δθt=25°〜40
°としている。このようにして、翼弦線中心点Pbの位
置を回転軸3と直交する平面上で定義できたので、次に
軸方向位置を定義する。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of an impeller of a blower according to the present invention, which has, for example, a three-blade shape. Regarding the description of the operation, one blade 1 will be mainly described, but other blades will be described. Is also the same. In the figure, 1 is a blade of an impeller having a three-dimensional shape, 2 is a boss portion for mounting the blade, 3 is a rotation axis of the blade 1, and 4 is a rotation direction. The characteristic of the blade 1 is that the blade surface is twisted spatially, and moreover, the blade surface is greatly inclined forward toward the gas suction side.
It has a dimensional curved surface shape, the second boss portion has an inclination angle in the rotation axis direction, and has a circular truncated cone shape that is smaller on the suction side. In this impeller, by clarifying various factors constituting the blade 1, the blade 1
The three-dimensional curved surface shape can be concretely defined. Then, concretely, the factors constituting the impeller according to the present invention will be shown. FIG. 2 is a projection view when the blade 1 is projected on a plane orthogonal to the rotation axis 3, 1'is a blade on the projection surface, 2 is a boss portion, 3 is a rotation axis, and the radius R is from the rotation axis 3. 'arc 1b R in the projection plane obtained by cutting the' blade 1 in the cylindrical surface of the -P R '-1c R' is a blade cross-sectional shape. Here, P R 'is an arc 1b R ' -1c R '
Is the midpoint of the chord line on the projection plane. In order to clarify the position of P R 'on the projection plane, apart from the actual boss portion of the truncated cone shape, the blade tip radius Rt of 35
%, A virtual boss portion having a radius of P 0 is set, and it is assumed that the blades also exist up to this virtual boss portion for convenience, and the impeller is cut at the cylindrical surface of the virtual boss portion having a radius R 0 . When the boss chord line center point P 0 ′ on the projection plane at that time is set, and the straight line P 0 ′ −O connecting the rotation axis 3 to the position O on the projection plane is set as the X axis, and the coordinates with O as the origin are on the projection surface. To form.
Pt 'is the chord line center points in the outer peripheral portion 1d, Pθ' is the chord line center point P 'chord line center points in the trajectory P 0' R -P R '
The angle between the tangent line of -Pt 'and the radius R is shown. Further, the reference numeral with a dash (') indicates each part on the projection surface. In the above coordinate system, if the angle between the straight line P R '-O and the X axis is δθ (δθ: forward direction angle in the rotation direction) and the distance is R, the position of P R ′ is (R, δθ). It can be expressed in a polar coordinate system. In the present invention, the straight lines Pt'-O and X
If the angle formed by the axis is δθt, δθ = δθt × (R−
R 0 ) / (Rt−R 0 ), and δθt = 25 ° -40
It is supposed to be °. In this way, the position of the chord line center point Pb can be defined on the plane orthogonal to the rotation axis 3, so the axial position is defined next.

【0010】図3は、図2における仮想的ボス部翼弦線
中心点P0 ’から外周部翼弦線中心点Pt’までの半径
方向への軌跡P0 ’−PR ’−Pt’について、任意の
半径Rにおける翼弦線中心点PRを平面OX面に半径R
で回転投影した翼弦線中心点PR の半径方向分布、およ
び羽根1の同一位置での断面を示している。図におい
て、7は羽根車回転時の遠心力、7a、7bはそれぞれ
遠心力7の負圧面法線分力、接線方向分力、矢印Aは気
体の流入方向を示す。そこで、仮想的ボス部の外周部に
おける羽根1の翼弦線中心点P0 を通り、回転軸3と直
交する平面Scを考える。任意の半径Rにおける翼弦線
中心点をPR とするとき、平面Scと翼弦線中心点PR
との距離をLs、仮想的ボス部翼弦線中心点P0 とSc
平面のなす角度をδzとすると、δz=tan-1(Ls
/(R−R0 ))(δz:吸込方向前傾角)と表現で
き、このδzの値をδz=12.5°〜32.5°とし
ている。さらに、実際のボス部2が回転軸に対してαの
角度を持ち、吸込側ほど小さい円の円錐台形になってお
り、このαの値をα=15°〜35°としている。
FIG. 3 shows a radial locus P 0 '-P R ' -Pt 'from the virtual boss chord line center point P 0 ' to the outer peripheral chord line center point Pt 'in FIG. , A radius R of the chord line center point P R at an arbitrary radius R on the plane OX plane
2 shows the radial distribution of the chord line center point P R which is rotationally projected at, and the cross section of the blade 1 at the same position. In the figure, 7 indicates centrifugal force when the impeller is rotated, 7a and 7b indicate negative pressure surface normal component of the centrifugal force 7, tangential component, and arrow A indicates the gas inflow direction. Therefore, consider a plane Sc that passes through the chord line center point P 0 of the blade 1 in the outer peripheral portion of the virtual boss portion and is orthogonal to the rotation axis 3. When the chord line center point at an arbitrary radius R is P R , the plane Sc and the chord line center point P R
Is Ls, and the virtual boss part chord line center points P 0 and Sc
If the angle made by the plane is δz, δz = tan −1 (Ls
/ (R-R 0 )) (δz: suction direction forward tilt angle), and the value of δz is set to δz = 12.5 ° to 32.5 °. Further, the actual boss portion 2 has an angle of α with respect to the rotation axis, and has a circular truncated cone shape that is smaller on the suction side, and the value of α is set to α = 15 ° to 35 °.

【0011】図4は、翼弦線中心点PR を相対的な原点
として、羽根面を形成したとき、羽根1を半径Rの円筒
面で切断し、その断面を2次元平面に展開して得られる
展開図を示す。羽根のそり線5を円弧形状とし、その円
弧を形成するための中心角であるそり角をθ、円弧を形
成する半径をRRとする。この一実施例では、θの半径
方向分布を、θ=(θt−θ0 )×(R−R0 )/(R
t−R0 )+θ0 とし、この時θtは羽根チップでのそ
り角、すなわち羽根チップでのそり線の中心角、θ0
0 =0.35Rtにおけるそり角、すなわち羽根の仮
想的ボス部でのそり線の中心角で与え、θt=25°〜
35°、θ0 =32°〜42°、θt<θ0 としてい
る。また、羽根の取付位置はその翼弦線1b−1cと、
回転軸3と平行で羽根前縁部1bを通る直線6とのなす
角度をくいちがい角ξとし、ξに半径方向の分布をもた
せることにより決定する。すなわちξの半径方向分布を
ξ=(ξt−ξ0 )×(R−R0 )/(Rt−R0 )+
ξ0 とし、この時ξtは羽根チップでのくいちがい角、
ξ0 はR0 =0.35Rtの仮想的ボス部におけるくい
ちがい角で与え、ξt=58°〜68°、ξ0 =49°
〜59°、ξt>ξ0 としている。さらに、この図にお
けるLは翼弦長であり、図5において示した羽根間の円
周方向距離(ピッチ)であるTとの比で定義される節弦
比T/Lの値を、各半径点においてT/L=1.3〜
2.0としている。
In FIG. 4, when the blade surface is formed with the chord line center point PR as a relative origin, the blade 1 is cut by a cylindrical surface having a radius R and its cross section is developed into a two-dimensional plane. The developed view is shown. The blade warp line 5 has an arc shape, a warp angle that is a central angle for forming the arc is θ, and a radius forming the arc is RR. In this embodiment, the radial distribution of θ is θ = (θt−θ 0 ) × (R−R 0 ) / (R
t−R 0 ) + θ 0 , where θt is the deflection angle at the blade tip, that is, the central angle of the deflection line at the blade tip, and θ 0 is the deflection angle at R 0 = 0.35Rt, that is, the virtual boss of the blade. Given by the central angle of the warp line in the section, θt = 25 ° ~
35 °, θ 0 = 32 ° to 42 °, and θt <θ 0 . Also, the mounting position of the blade is the chord line 1b-1c,
The angle formed by a straight line 6 which is parallel to the rotation axis 3 and which passes through the blade leading edge portion 1b is determined as a stagger angle ξ, and ξ has a radial distribution. That is, the radial distribution of ξ is ξ = (ξt−ξ 0 ) × (R−R 0 ) / (Rt−R 0 ) +
ξ 0 , where ξt is the angle of the blade tip
ξ 0 is given as a stagger angle at the virtual boss portion of R 0 = 0.35Rt, ξt = 58 ° to 68 °, ξ 0 = 49 °
˜59 °, ξt> ξ 0 . Further, L in this figure is the chord length, and the value of the chord chord ratio T / L defined by the ratio with T which is the circumferential distance (pitch) between the blades shown in FIG. T / L = 1.3-
It is set to 2.0.

【0012】このように、6つのパラメータを独自の値
にすることにより、超低騒音で高静圧の羽根車が得られ
る。これらパラメータの値をすべて最適化した例を一実
施例として以下に示しさらに個々のパラメータの値を変
化させたときの騒音特性への影響を、実験的に検討した
結果について説明する。 R0 =0.35Rt α=25° δz=22.5°(半径方向で一定) δθ=30°×(R−R0 )/(Rt−R0 ) θ=−7.5°×(R−R0 )/(Rt−R0 )+37
° ξ=9°×(R−R0 )/(Rt−R0 )+54° T/L=1.6(半径方向で一定) 従来例の問題点として図19に示したボス部付近の逆流
11は、ボス部の形状を吸い込み側ほど小さい円の円錐
台形にすることによって改善され、騒音レベルを大幅に
低減できる。しかしボス部傾斜角αをあまり大きくし過
ぎると、吹き出し面積が減少することによる吹き出し動
圧(吹き出し速度のエネルギーを圧力に換算した値)損
失が増大するため、性能が低下する。従ってボス部傾斜
角αの最適範囲が存在する。αの騒音特性への影響を実
験的に検討した結果を図6に示す。ここで比較騒音レベ
ルKs(ホン)は、次式で定義される値である。 Ks=SPL−10Log10(Q×Ps2.5) SPL:騒音レベル(ホン) Q:流量 Ps:静圧 この式からわかるように、Ksは単位流量・静圧あたり
の騒音レベルを意味しており、同一の空力仕様(流量・
静圧)条件では、Ksが小さいほど低騒音の羽根車であ
るといえる。比騒音レベルKsは、作動点によっても変
化するため、図6ではKsが最小となる作動点での値を
グラフ化している。図6からわかるように、ボス部傾斜
角αが15°〜35°の間にあれば、最小比騒音レベル
Ksの値は十分小さく、非常に低騒音である。
As described above, by setting the six parameters to unique values, an extremely low noise and high static pressure impeller can be obtained. An example in which the values of these parameters are all optimized will be shown below as an example, and the effect on the noise characteristics when the value of each parameter is changed will be described as a result of experimental examination. R 0 = 0.35 Rt α = 25 ° δz = 22.5 ° (constant in the radial direction) δθ = 30 ° × (R−R 0 ) / (Rt−R 0 ) θ = −7.5 ° × (R -R 0) / (Rt-R 0) +37
° ξ = 9 ° × (R−R 0 ) / (Rt−R 0 ) + 54 ° T / L = 1.6 (constant in the radial direction) Backflow near the boss shown in FIG. 19 as a problem of the conventional example. No. 11 is improved by making the shape of the boss portion into a circular truncated cone shape that is smaller toward the suction side, and the noise level can be significantly reduced. However, if the boss inclination angle α is made too large, the blowout dynamic pressure (value in which the energy of the blowout speed is converted into pressure) loss increases due to the decrease in the blowout area, and the performance deteriorates. Therefore, there is an optimum range of the boss inclination angle α. Fig. 6 shows the result of an experimental examination of the effect of α on the noise characteristics. Here, the comparative noise level Ks (phone) is a value defined by the following equation. Ks = SPL-10Log 10 (Q × Ps 2.5 ) SPL: Noise level (phone) Q: Flow rate Ps: Static pressure As can be seen from this equation, Ks means the noise level per unit flow rate / static pressure, Same aerodynamic specifications (flow rate
Under the static pressure condition, it can be said that the smaller Ks is, the lower the noise of the impeller is. Since the specific noise level Ks also changes depending on the operating point, the value at the operating point where Ks is the minimum is graphed in FIG. As can be seen from FIG. 6, if the boss inclination angle α is between 15 ° and 35 °, the value of the minimum specific noise level Ks is sufficiently small and the noise is extremely low.

【0013】羽根1の吸込側への前傾による効果は、従
来例と基本的に同様であり、図3における遠心力7の負
圧面法線分力7aが境界層に対する圧縮力として働いて
境界層を薄くでき、発生騒音が低下する。図7からわか
るように、吸込方向前傾角δzの最適範囲は、従来例と
同様δz=12.5°〜32.5°であるが、この範囲
からはずれた場合の騒音悪化が、従来例より顕著である
傾向が見受けられる。回転方向前進角δθの最適範囲
は、従来例とは大きく異なった結果となった。ボス部傾
斜角αを設けて半径方向流れを強化した本発明の羽根車
では、δθを大きくとって回転方向に相当前進させた羽
根では、図8に示すように実際の流線8に沿った実質的
な翼弦長9が短くなり、高風圧化に適した形状から逆行
する傾向となって空力性能の低下が生じ、最小比騒音レ
ベルKsが上昇する結果となった。結局δθの最適範囲
は、図9から明らかなように、羽根チップでの前進角δ
θtに対してδθt=25°〜40°となった。以上の
形状変更により、従来例と比較して最小比騒音レベルK
s(ホン)が約3ホン低減できた。
The effect of the forward inclination of the blade 1 toward the suction side is basically the same as that of the conventional example, and the negative pressure surface normal component force 7a of the centrifugal force 7 in FIG. The layers can be made thinner and the noise generated is reduced. As can be seen from FIG. 7, the optimum range of the suction direction forward inclination angle δz is δz = 12.5 ° to 32.5 ° as in the conventional example, but the noise deterioration when deviating from this range is larger than that in the conventional example. A remarkable tendency can be seen. The optimum range of the rotation-direction forward angle δθ was significantly different from that of the conventional example. In the impeller of the present invention in which the radial direction flow is strengthened by providing the boss inclination angle α, the blade which is advanced considerably in the rotation direction with a large δθ follows the actual streamline 8 as shown in FIG. As a result, the substantial chord length 9 became shorter, the shape suitable for increasing the wind pressure tended to go backward, and the aerodynamic performance deteriorated, resulting in an increase in the minimum specific noise level Ks. After all, the optimum range of δθ is, as is clear from FIG. 9, the advancing angle δ at the blade tip.
δθt = 25 ° to 40 ° with respect to θt. Due to the above shape changes, the minimum specific noise level K compared to the conventional example
s (phone) was reduced by about 3 phones.

【0014】実施例2.続いて上記以外の羽根形状パラ
メータであるそり角θ、くいちがい角ξ、および節弦比
T/Lの影響について述べる。一般には、そり角θを大
きくするほど、またくいちがい角ξを小さくするほど空
力性能が向上するがある程度以上変えすぎると騒音も急
激に増大する。従来例より半径方向流れを強化した本発
明の羽根車では、実際の流線から考えた実質的なそり角
は小さく、くいちがい角は大きくなるため、最適範囲が
従来例とは変化することが予想された。これらを実験的
に検討した結果、図10、11に示すように θt=25°〜35° θ0 =32°〜42°および ξt=58°〜68° ξ0 =49°〜59° の最適範囲が明らかとなった。これらの値は従来例と比
べて、そり角θが5°増加、くいちがい角ξが4°減少
した値となっている。また節弦比T/Lの最適範囲も従
来例ではT/L=1.0〜1.1であったが、半径方向
流れの遠心力効果による静圧上昇も大きくなるため、翼
弦長Lをある程度短く(T/Lを大きく)しても空力性
能の低下はそれほどでもなく、翼弦長が短くなることに
よる騒音低減効果のほうが大きいため、最小比騒音レベ
ルKsが低下する。図11の実験結果より、節弦比T/
Lの最適範囲がT/L=1.3〜2.0となることが明
きらかとなった。以上の3種類の形状パラメータの変更
により、さらに2ホンの低騒音化を図ることができた。
Example 2. Subsequently, influences of the blade shape parameters other than the above, such as the warp angle θ, the stagger angle ξ, and the chord chord ratio T / L will be described. Generally, the larger the warp angle θ and the smaller the swivel angle ξ are, the more aerodynamic performance is improved. In the impeller of the present invention in which the radial flow is strengthened as compared with the conventional example, the substantial warp angle considered from the actual streamline is small, and the deviation angle is large, so the optimum range is expected to change from the conventional example. Was done. As a result of experimentally examining these, as shown in FIGS. 10 and 11, θt = 25 ° to 35 ° θ 0 = 32 ° to 42 ° and ξt = 58 ° to 68 ° ξ 0 = 49 ° to 59 ° The range became clear. These values are values in which the warp angle θ is increased by 5 ° and the swivel angle ξ is decreased by 4 ° as compared with the conventional example. Also, the optimum range of the chord chord ratio T / L was T / L = 1.0 to 1.1 in the conventional example, but since the static pressure increase due to the centrifugal force effect of the radial flow also becomes large, the blade chord length L Even if is shortened to a certain extent (T / L is increased), the aerodynamic performance is not significantly deteriorated, and the noise reduction effect due to the shortened chord length is greater, so the minimum specific noise level Ks is reduced. From the experimental result of FIG. 11, the chord ratio T /
It became clear that the optimum range of L is T / L = 1.3 to 2.0. By changing the above three types of shape parameters, it was possible to further reduce the noise of the two phones.

【0015】実施例3.なお上記実施例は羽根枚数が3
枚のものについて述べたが、必須パラメータを上記のよ
うに構成すれば、羽根枚数によらず同様の効果が期待で
きる。
Example 3. In the above embodiment, the number of blades is 3
Although the number of blades is described, if the essential parameters are configured as described above, the same effect can be expected regardless of the number of blades.

【0016】実施例4.またこの発明による羽根車をプ
ラスチック等の材料を用いた金型成形により製作する場
合、一体型による量産成型上、図13に示すようなボス
2に切り欠き10を入れることが行われるが、空力・騒
音特性への影響はない。
Example 4. Further, when the impeller according to the present invention is manufactured by die molding using a material such as plastic, the notch 10 is formed in the boss 2 as shown in FIG. -No impact on noise characteristics.

【0017】実施例5.強度面からこの発明を見ると、
最も問題となる羽根後縁のボス部近傍の半径がボス部傾
斜により大きくなっているため、従来例と比較して強度
が増加している。また実施例では、ボス部吸い込み側半
径RbをR0 (=0.35Rt)同一にした場合を示し
たが、さらなる強度確保のためRb>R0 にした場合で
も、相対的には同様の効果が期待できる。
Embodiment 5. Looking at this invention from the aspect of strength,
Since the radius near the boss portion at the trailing edge of the blade, which is the most problematic, is large due to the inclination of the boss portion, the strength is increased as compared with the conventional example. Further, in the embodiment, the case where the boss suction side radii Rb are the same as R 0 (= 0.35Rt) is shown, but even if Rb> R 0 is set to further secure the strength, a relatively similar effect is obtained. Can be expected.

【0018】[0018]

【発明の効果】この発明は次に記載する効果を奏する。
請求項1の送風機の羽根車は、回転軸を中心とする半径
Rの円筒面で羽根車を切断したときの断面における翼弦
線中心点PR と、羽根チップ半径Rtの35%の半径R
0 を仮想的なボス部として設定して、この半径R0 の円
筒面で切断したときの断面における翼弦線中心点P0
通り上記回転軸と直交する平面Scとの距離をLsとし
たとき、気流の吸込側を正方向とした座標系において上
記翼弦線中心点PR を上記Sc平面に対して常に正方向
に位置させ、δz=tan-1(Ls/(R−R0 ))
(δz:吸込方向前傾角)で表現できるδzの値をδz
=12.5°〜32.5°とし、かつ、実際のボス部を
吸込側ほど小さい円の円錐台形とし、その回転軸方向傾
斜角αの値をα=15°〜35°とし、かつ、上記回転
軸と直交する平面に羽根車を投影したときの投影面にお
いて、上記羽根の仮想的ボス部を半径R0の円筒面で切
断したときの断面における翼弦線中心点をP0 ’とし、
上記回転軸を原点Oとして、上記O点とP0 ’点とを結
ぶ直線をX軸とした座標系で、上記羽根を半径Rの円筒
面で切断したときの翼弦線中心点をPR ’として、直線
R ’−Oと上記X軸とのなす角をδθ(δθ:回転方
向前進角)とした場合、δθの半径方向分布を、δθ=
δθt×(R−R0 )/(Rt−R0 )で与え、δθt
=25°〜40°とし、羽根の翼弦線中心点PR の空間
分布を規定する必須パラメータである吸込方向への前傾
角δz、ボス傾斜角α、および回転方向への前進角δθ
を最適化して送風機の羽根車を構成したので、ボス部付
近での逆流をなくして騒音の急増を抑制するとともに、
広い有効動作領域にわたり大風量、かつ低騒音である
が、特に高静圧領域において、高性能で、かつ騒音を大
幅に低減できる送風機の羽根車が得られる効果がある。
The present invention has the following effects.
In the impeller of the blower according to claim 1, the blade chord line center point P R in the cross section when the impeller is cut along a cylindrical surface having a radius R centering on the rotation axis and a radius R of 35% of the blade tip radius Rt.
0 is set as a virtual boss portion, and a distance from a plane Sc passing through the blade chord line center point P 0 and orthogonal to the rotation axis in a cross section when cut by the cylindrical surface having the radius R 0 is defined as Ls. At this time, in the coordinate system in which the suction side of the air flow is in the positive direction, the chord line center point P R is always positioned in the positive direction with respect to the Sc plane, and δz = tan −1 (Ls / (R−R 0 ). )
The value of δz that can be expressed by (δz: forward tilt angle of the suction direction) is δz
= 12.5 ° to 32.5 °, and the actual boss portion has a circular truncated cone shape that is smaller toward the suction side, and the value of the rotation axis direction inclination angle α is α = 15 ° to 35 °, and In the projection plane when the impeller is projected on the plane orthogonal to the rotation axis, the blade chord line center point in the cross section when the virtual boss portion of the blade is cut by the cylindrical surface of radius R 0 is P 0 ′. ,
In the coordinate system with the rotation axis as the origin O and the straight line connecting the point O and the point P 0 ′ as the X axis, the center point of the chord line P R when the blade is cut by the cylindrical surface with the radius R is P R. If the angle between the straight line P R '-O and the X axis is δθ (δθ: forward angle in the rotation direction), the radial distribution of δθ is δθ =
δθt × (R−R 0 ) / (Rt−R 0 ), and δθt
= 25 ° to 40 °, the forward inclination angle δz in the suction direction, the boss inclination angle α, and the advance angle δθ in the rotation direction, which are essential parameters that define the spatial distribution of the blade chord line center point P R.
Since the impeller of the blower is configured by optimizing the above, the backflow in the vicinity of the boss part is eliminated to suppress the rapid increase of noise, and
Although it has a large air volume and low noise over a wide effective operation area, it has an effect of obtaining an impeller of a blower that has high performance and can significantly reduce noise particularly in a high static pressure area.

【0019】請求項2の送風機の羽根車は、回転軸を中
心とする半径Rの円筒面で羽根車を切断したときの断面
における翼弦線中心点PR と、羽根チップ半径Rtの3
5%の半径R0 を仮想的なボス部として設定して、この
半径R0 の円筒面で切断したときの断面における翼弦線
中心点P0 を通り上記回転軸と直交する平面Scとの距
離をLsとしたとき、気流の吸込側を正方向とした座標
系において上記翼弦線中心点PR を上記Sc平面に対し
て常に正方向に位置させ、δz=tan-1(Ls/(R
−R0 ))(δz:吸込方向前傾角)で表現できるδz
の値をδz=12.5°〜32.5°とし、かつ、実際
のボス部を吸込側ほど小さい円の円錐台形とし、その回
転軸方向傾斜角αの値をα=15°〜35°とし、か
つ、上記回転軸と直交する平面に羽根車を投影したとき
の投影面において、上記羽根の仮想的ボス部を半径R0
の円筒面で切断したときの断面における翼弦線中心点を
0 ’とし、上記回転軸を原点Oとして、上記O点とP
0 ’点とを結ぶ直線をX軸とした座標系で、上記羽根を
半径Rの円筒面で切断したときの翼弦線中心点をPR
として、直線PR ’−Oと上記X軸とのなす角をδθ
(δθ:回転方向前進角)とした場合、δθの半径方向
分布を、δθ=δθt×(R−R0 )/(Rt−R0
で与え、δθt=25°〜40°とし、かつ、羽根を半
径Rの円筒面で切断し、その断面を2次元平面に展開し
て得られる展開図において、その羽根断面におけるそり
線の形状を円弧形状とし、その円弧を形成するための中
心角をθ(θ:そり角)とした場合、θの半径方向分布
を、θ=(θt−θ0 )×(R−R0 )/(Rt−R
0 )+θ0 (θt:羽根チップでのそり角、θ0 :R0
=0.35Rtにおけるそり角)で与え、θt=25°
〜35°、θ0 =32°〜42°、θt<θ0 とし、上
記展開図において、羽根の翼弦線と、上記回転軸と平行
で上記羽根の前縁部を通る直線とのなす角度をξ(ξ:
くいちがい角)とするとき、ξの半径方向分布を、ξ=
(ξt−ξ0 )×(R−R0 )/(Rt−R0 )+ξ0
(ξt:羽根チップでのくいちがい角、ξ0 :R0
0.35Rtにおけるくいちがい角)で与え、ξt=5
8°〜68°、ξ0 =49°〜59°、ξt>ξ0
し、上記展開図において、上記羽根の翼弦長をL、羽根
と羽根との同一半径点におけるピッチをTとしたとき、
各半径点におけるTとLの比T/L(T/L:節弦比)
をT/L=1.3〜2.0とし、羽根の翼弦線中心点P
R の空間分布を規定する必須パラメータである吸込方向
への前傾角δz、ボス傾斜角α、回転方向への前進角δ
θ、そり角θ、くいちがい角ξ、および節弦比T/Lを
最適化して送風機の羽根車を構成したもので、ボス部付
近での逆流をなくして騒音の急増を抑制するとともに、
広い有効動作領域にわたり大風量、かつ低騒音である
が、特に高静圧領域において、高性能で、かつ騒音を大
幅に低減できる送風機の羽根車が得られる効果がある。
According to another aspect of the fan impeller of the present invention, the blade chord line center point P R and the impeller tip radius Rt are 3 in the cross section when the impeller is cut along a cylindrical surface having a radius R centering on the rotation axis.
A radius R 0 of 5% is set as a virtual boss portion, and a plane Sc passing through the chord line center point P 0 in the cross section when cut along a cylindrical surface having this radius R 0 and orthogonal to the rotation axis When the distance is Ls, the chord line center point P R is always positioned in the positive direction with respect to the Sc plane in a coordinate system in which the suction side of the air flow is in the positive direction, and δz = tan −1 (Ls / ( R
−R 0 )) (δz: suction direction forward tilt angle)
Is set to δz = 12.5 ° to 32.5 °, and the actual boss portion is formed into a circular truncated cone with a smaller circle on the suction side, and the value of the rotation axis direction inclination angle α is α = 15 ° to 35 °. And the virtual boss portion of the blade has a radius R 0 on the projection plane when the impeller is projected on a plane orthogonal to the rotation axis.
P 0 'is the center point of the chord line in the cross section when cut along the cylindrical surface of P, and the rotation axis is the origin O.
In the coordinate system with the straight line connecting the 0 'point as the X axis, the center point of the chord line when cutting the above blade with a cylindrical surface of radius R is P R '
Is the angle between the straight line P R '-O and the X axis is δθ.
(Δθ: forward angle of rotation), the radial distribution of δθ is δθ = δθt × (R−R 0 ) / (Rt−R 0 ).
And δθt = 25 ° to 40 °, and the blade is cut by a cylindrical surface having a radius R and the cross-section is developed into a two-dimensional plane. In the case of an arc shape and the central angle for forming the arc is θ (θ: warp angle), the radial distribution of θ is θ = (θt−θ 0 ) × (R−R 0 ) / (Rt -R
0 ) + θ 0 (θt: Deflection angle at blade tip, θ 0 : R 0
= Warp angle at 0.35 Rt), θt = 25 °
˜35 °, θ 0 = 32 ° to 42 °, θt <θ 0, and in the above developed view, the angle formed by the chord line of the blade and the straight line parallel to the rotation axis and passing through the leading edge portion of the blade. Ξ (ξ:
The angle distribution of ξ is ξ =
(Ξt−ξ 0 ) × (R−R 0 ) / (Rt−R 0 ) + ξ 0
(Ξt: wing angle at blade tip, ξ 0 : R 0 =
The angle of deviation at 0.35Rt), ξt = 5
When 8 ° to 68 °, ξ 0 = 49 ° to 59 °, ξt> ξ 0, and in the above developed view, the chord length of the blade is L, and the pitch at the same radius point of the blade is T. ,
Ratio of T and L at each radius point T / L (T / L: chord ratio)
Is T / L = 1.3 to 2.0, and the blade chord line center point P
The forward inclination angle δz in the suction direction, the boss inclination angle α, and the advance angle δ in the rotation direction, which are essential parameters that define the spatial distribution of R.
θ, warp angle θ, swivel angle ξ, and chord ratio T / L are optimized to constitute an impeller of a blower, which suppresses a backflow near the boss portion and suppresses a sudden increase in noise.
Although it has a large air volume and low noise over a wide effective operating region, it has an effect of obtaining an impeller of a blower which has high performance and can significantly reduce noise particularly in a high static pressure region.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による送風機の羽根車を示
す斜視図である。
FIG. 1 is a perspective view showing an impeller of a blower according to an embodiment of the present invention.

【図2】この発明の一実施例による送風機の羽根車の回
転軸と直行する平面に羽根を投影したときの投影図であ
る。
FIG. 2 is a projection diagram when the blades are projected on a plane orthogonal to the rotation axis of the impeller of the blower according to the embodiment of the present invention.

【図3】図2におけるボス部翼弦線中心点P0 ’から外
周部翼弦線中心点Pt’までの半径方向への軌跡P0
−PR ’−Pt’について、任意の半径Rにおける翼弦
線中心点PR を平面OX面に半径Rで回転投影した翼弦
線中心点PR の半径方向分布、及び羽根の同一位置での
断面を示す断面図である。
3 is a radial locus P 0 'from the boss chord line center point P 0 ' in FIG. 2 to the outer peripheral chord line center point Pt '.
For -P R '-Synthesis of Pt', radial distribution of chord line center point P R rotated projected radius R of chord line center point P R at an arbitrary radius R in the plane OX surface, and at the same position of the blade It is sectional drawing which shows the cross section of.

【図4】この発明の一実施例による送風機の羽根車にお
いて、翼弦線中心点PR を相対的な原点として、羽根面
を形成したとき、羽根を半径Rの円筒面で切断し、その
断面を2次元平面に展開して得られる展開図である。
FIG. 4 is a cross-sectional view of an impeller of a blower according to an embodiment of the present invention. When a blade surface is formed with a blade chord line center point P R as a relative origin, the blade is cut by a cylindrical surface having a radius R, and It is a development view obtained by developing a cross section into a two-dimensional plane.

【図5】この発明の一実施例による送風機の羽根車を示
す平面図である。
FIG. 5 is a plan view showing an impeller of a blower according to an embodiment of the present invention.

【図6】この発明の一実施例による送風機の羽根車にお
いて、ボス傾斜角αに対する最小比騒音レベルKs(ホ
ン)の変化を示すグラフである。
FIG. 6 is a graph showing changes in the minimum specific noise level Ks (phone) with respect to the boss inclination angle α in the impeller of the blower according to the embodiment of the present invention.

【図7】この発明の一実施例による送風機の羽根車にお
いて、羽根の吸込方向前傾角δzに対する最小比騒音レ
ベルKs(ホン)の変化を示すグラフである。
FIG. 7 is a graph showing changes in the minimum specific noise level Ks (phone) with respect to the suction direction forward tilt angle δz of the impeller of the blower according to the embodiment of the present invention.

【図8】羽根車平面上における実際の流線を示す図であ
る。
FIG. 8 is a diagram showing actual streamlines on a plane of an impeller.

【図9】この発明の一実施例による送風機の羽根車にお
いて、羽根チップでの前進角δθtに対する最小比騒音
レベルKs(ホン)の変化を示すグラフである。
FIG. 9 is a graph showing changes in the minimum specific noise level Ks (phone) with respect to the advancing angle δθt at the blade tip in the impeller of the blower according to the embodiment of the present invention.

【図10】この発明の一実施例による送風機の羽根車に
おいて、羽根チップでのそり角θtに対する最小比騒音
レベルKs(ホン)の変化を示すグラフである。
FIG. 10 is a graph showing changes in the minimum specific noise level Ks (phone) with respect to the deflection angle θt at the blade tip in the impeller of the blower according to the embodiment of the present invention.

【図11】この発明の一実施例による送風機の羽根車に
おいて、羽根チップでの食い違い角ξtに対する最小比
騒音レベルKs(ホン)の変化を示すグラフである。
FIG. 11 is a graph showing changes in the minimum specific noise level Ks (phone) with respect to the stagger angle ξt at the blade tips in the impeller of the blower according to the embodiment of the present invention.

【図12】この発明の一実施例による送風機の羽根車に
おいて、節弦比T/Lに対する最小比騒音レベルKs
(ホン)の変化を示すグラフである。
FIG. 12 is a diagram showing an impeller of a blower according to an embodiment of the present invention, in which a minimum specific noise level Ks with respect to a stringing ratio T / L
It is a graph which shows the change of (phone).

【図13】この発明の一実施例による送風機の羽根車に
おいて、切り欠きを入れたボスを示す斜視図である。
FIG. 13 is a perspective view showing a notched boss in the impeller of the blower according to the embodiment of the present invention.

【図14】従来の送風機の羽根車を示す斜視図である。FIG. 14 is a perspective view showing an impeller of a conventional blower.

【図15】従来の送風機の羽根車において、図2に相当
する図である。
FIG. 15 is a diagram corresponding to FIG. 2 in a conventional impeller of a blower.

【図16】従来の送風機の羽根車において、図3に相当
する図である。
FIG. 16 is a diagram corresponding to FIG. 3 in a conventional impeller of a blower.

【図17】従来の送風機の羽根車において、図4に相当
する図である。
FIG. 17 is a view corresponding to FIG. 4 in a conventional impeller of a blower.

【図18】従来の送風機の羽根車の平面図である。FIG. 18 is a plan view of a conventional impeller of a blower.

【図19】従来の送風機の羽根車において流れを示す側
断面図である。
FIG. 19 is a side sectional view showing a flow in an impeller of a conventional blower.

【符号の説明】[Explanation of symbols]

1 羽根 1’ 平面投影図における羽根 1a 羽根先端部 1a’ 平面投影図における羽根先端部 1b 羽根前縁部 1b’ 平面投影図における羽根前縁部 1c 羽根後縁部 1c’ 平面投影図における羽根後縁部 1d 羽根外周部 2 ボス部 3 回転軸 4 回転方向 5 そり線 5a 羽根負圧面 5b 羽根圧力面 6 回転軸平行線 7 遠心力 7a 遠心力の負圧面法線方向分力 7b 遠心力の負圧面接線方向分力 8 流線 9 翼弦長 10 ボスの切り欠き 11 ボス部逆流 1 Blade 1'Blade in Plan View 1a Blade Tip 1a 'Blade Tip in Plan View 1b Blade Leading Edge 1b' Blade Leading Edge 1c in Plan View 1c Blade Trailing Edge 1c 'Blade Rear in Plan View Edge portion 1d Blade outer peripheral portion 2 Boss portion 3 Rotation axis 4 Rotation direction 5 Sled line 5a Blade negative pressure surface 5b Blade pressure surface 6 Rotation axis parallel line 7 Centrifugal force 7a Centrifugal negative pressure surface normal direction component 7b Centrifugal force negative Pressure surface tangential component 8 Streamline 9 Chord length 10 Boss notch 11 Backflow of boss

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大蔦 勝久 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 (72)発明者 関本 太郎 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 (72)発明者 和田 喜幹 尼崎市塚口本町8丁目1番1号 三菱電機 エンジニアリング株式会社伊丹事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhisa Otatsu 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation Central Research Laboratory (72) Inventor Taro Sekimoto 8-1-1 Tsukaguchihonmachi, Amagasaki Mitsubishi Central Research Laboratory of Electric Co., Ltd. (72) Inventor Kimoto Wada 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Engineering Co., Ltd. Itami Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転軸を中心とする半径Rの円筒面で羽
根車を切断したときの断面における翼弦線中心点PR
と、羽根チップ半径Rtの35%の半径R0 を仮想的な
ボス部として設定して、この半径R0 の円筒面で切断し
たときの断面における翼弦線中心点P0 を通り上記回転
軸と直交する平面Sc との距離をLsとしたとき、気流
の吸込側を正方向とした座標系において上記翼弦線中心
点PR を上記Sc平面に対して常に正方向に位置させ、
δz=tan-1(Ls/(R−R0 ))(δz:吸込方
向前傾角)で表現できるδzの値をδz=12.5°〜
32.5°とし、 かつ、実際のボス部を吸込側ほど小さい円の円錐台形と
し、その回転軸方向傾斜角αの値をα=15°〜35°
とし、 かつ、上記回転軸と直交する平面に羽根車を投影したと
きの投影面において、上記羽根の仮想的ボス部を半径R
0 の円筒面で切断したときの断面における翼弦線中心点
をP0 ’とし、上記回転軸を原点Oとして、上記O点と
0 ’点とを結ぶ直線をX軸とした座標系で、上記羽根
を半径Rの円筒面で切断したときの翼弦線中心点をP
R ’として、直線PR ’−Oと上記X軸とのなす角をδ
θ(δθ:回転方向前進角)とした場合、δθの半径方
向分布を、δθ=δθt×(R−R0 )/(Rt−R
0 )で与え、δθt=25°〜40°としたことを特徴
とする送風機の羽根車。
1. A chord line center point P R in a cross section when the impeller is cut along a cylindrical surface having a radius R centering on the rotation axis.
And a radius R 0 of 35% of the blade tip radius Rt is set as an imaginary boss portion and passes through the chord line center point P 0 in the cross section when cut along the cylindrical surface of this radius R 0 When the distance to the orthogonal plane Sc is Ls, the chord line center point PR is always positioned in the positive direction with respect to the Sc plane in a coordinate system in which the suction side of the airflow is the positive direction.
The value of δz that can be expressed by δz = tan −1 (Ls / (R−R 0 )) (δz: forward tilt angle of the suction direction) is δz = 12.5 ° to
32.5 °, and the actual boss has a circular truncated cone shape with a smaller diameter on the suction side, and the value of inclination angle α of the rotation axis direction is α = 15 ° to 35 °
And the virtual boss portion of the blade has a radius R on the projection plane when the impeller is projected on a plane orthogonal to the rotation axis.
In a coordinate system in which the center point of the chord line in the cross section when cut by the cylindrical surface of 0 is P 0 ′, the rotation axis is the origin O, and the straight line connecting the point O and P 0 ′ is the X axis. , P is the center point of the chord line when the above blade is cut along a cylindrical surface of radius R
'As, linear P R' R the angle of -O and the X-axis δ
When θ (δθ: forward angle of rotation), the radial distribution of δθ is δθ = δθt × (R−R 0 ) / (Rt−R
0 ), and δθt = 25 ° to 40 °, an impeller of a blower.
【請求項2】 回転軸を中心とする半径Rの円筒面で羽
根車を切断したときの断面における翼弦線中心点PR
と、羽根チップ半径Rtの35%の半径R0 を仮想的な
ボス部として設定して、この半径R0 の円筒面で切断し
たときの断面における翼弦線中心点P0 を通り上記回転
軸と直交する平面Sc との距離をLsとしたとき、気流
の吸込側を正方向とした座標系において上記翼弦線中心
点PR を上記Sc 平面に対して常に正方向に位置させ、
δz=tan-1(Ls/(R−R0 ))(δz:吸込方
向前傾角)で表現できるδzの値をδz=12.5°〜
32.5°とし、 かつ、実際のボス部を吸込側ほど小さい円の円錐台形と
し、その回転軸方向傾斜角αの値をα=15°〜35°
とし、 かつ、上記回転軸と直交する平面に羽根車を投影したと
きの投影面において、上記羽根の仮想的ボス部を半径R
0 の円筒面で切断したときの断面における翼弦線中心点
をP0 ’とし、上記回転軸を原点Oとして、上記O点と
0 ’点とを結ぶ直線をX軸とした座標系で、上記羽根
を半径Rの円筒面で切断したときの翼弦線中心点をP
R ’として、直線PR ’−Oと上記X軸とのなす角をδ
θ(δθ:回転方向前進角)とした場合、δθの半径方
向分布を、δθ=δθt×(R−R0 )/(Rt−R
0 )で与え、δθt=25°〜40°とし、 かつ、羽根を半径Rの円筒面で切断し、その断面を2次
元平面に展開して得られる展開図において、その羽根断
面におけるそり線の形状を円弧形状とし、その円弧を形
成するための中心角をθ(θ:そり角)とした場合、θ
の半径方向分布を、θ=(θt−θ0 )×(R−R0
/(Rt−R0 )+θ0 (θt:羽根チップでのそり
角、θ0 :R0 =0.35Rtにおけるそり角)で与
え、θt=25°〜35°、θ0 =32°〜42°、θ
t<θ0 とし、 上記展開図において、羽根の翼弦線と、上記回転軸と平
行で上記羽根の前縁部を通る直線とのなす角度をξ
(ξ:くいちがい角)とするとき、ξの半径方向分布
を、ξ=(ξt−ξ0 )×(R−R0 )/(Rt−R
0 )+ξ0 (ξt:羽根チップでのくいちがい角、
ξ0:R0 =0.35Rtにおけるくいちがい角)で与
え、ξt=58°〜68°、ξ0 =49°〜59°、ξ
t>ξ0 とし、 上記展開図において、上記羽根の翼弦長をL、羽根と羽
根との同一半径点におけるピッチをTとしたとき、各半
径点におけるTとLの比T/L(T/L:節弦比)をT
/L=1.3〜2.0としたことを特徴とする送風機の
羽根車。
2. A chord line center point P R in a cross section when the impeller is cut along a cylindrical surface having a radius R centering on the rotation axis.
And a radius R 0, which is 35% of the blade tip radius Rt, is set as a virtual boss portion, and passes through the chord line center point P 0 in the cross section when cut by the cylindrical surface of this radius R 0 , and the above-mentioned rotation axis Let Ls be the distance to the plane Sc that is orthogonal to the plane Sc in the coordinate system with the suction side of the airflow in the positive direction, the chord line center point P R is always located in the positive direction with respect to the Sc plane,
The value of δz that can be expressed by δz = tan −1 (Ls / (R−R 0 )) (δz: forward tilt angle of the suction direction) is δz = 12.5 ° to
32.5 °, and the actual boss has a circular truncated cone shape with a smaller diameter on the suction side, and the value of inclination angle α of the rotation axis direction is α = 15 ° to 35 °
And the virtual boss portion of the blade has a radius R on the projection plane when the impeller is projected on a plane orthogonal to the rotation axis.
In a coordinate system in which the center point of the chord line in the cross section when cut by the cylindrical surface of 0 is P 0 ′, the rotation axis is the origin O, and the straight line connecting the point O and P 0 ′ is the X axis. , P is the center point of the chord line when the above blade is cut along a cylindrical surface of radius R
'As, linear P R' R the angle of -O and the X-axis δ
When θ (δθ: forward angle of rotation), the radial distribution of δθ is δθ = δθt × (R−R 0 ) / (Rt−R
0 ), δθt = 25 ° to 40 °, and the blade is cut by a cylindrical surface having a radius R, and its cross section is developed into a two-dimensional plane. If the shape is an arc and the central angle for forming the arc is θ (θ: warp angle), θ
The radial distribution of θ = (θt−θ 0 ) × (R−R 0 ).
/ (Rt−R 0 ) + θ 0 (θt: warp angle at blade tip, θ 0 : R 0 = warp angle at 0.35 Rt), θt = 25 ° to 35 °, θ 0 = 32 ° to 42 °, θ
In the above developed view, t <θ 0 , and the angle between the chord line of the blade and the straight line parallel to the rotation axis and passing through the leading edge of the blade is ξ
(Ξ: angle of deviation), the radial distribution of ξ is ξ = (ξt−ξ 0 ) × (R−R 0 ) / (Rt−R
0 ) + ξ 0 (ξt: wing angle at blade tip,
ξ 0 : R 0 = 0.35 Rt, and ξt = 58 ° to 68 °, ξ 0 = 49 ° to 59 °, ξ
When t> ξ 0, and in the above developed view, where the chord length of the blade is L and the pitch at the same radial point between blades is T, the ratio T / L (T (T / L: string ratio) to T
An impeller of a blower, characterized in that /L=1.3 to 2.0.
JP23962591A 1991-09-19 1991-09-19 Blower impeller Expired - Lifetime JP2730344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23962591A JP2730344B2 (en) 1991-09-19 1991-09-19 Blower impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23962591A JP2730344B2 (en) 1991-09-19 1991-09-19 Blower impeller

Publications (2)

Publication Number Publication Date
JPH0579496A true JPH0579496A (en) 1993-03-30
JP2730344B2 JP2730344B2 (en) 1998-03-25

Family

ID=17047508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23962591A Expired - Lifetime JP2730344B2 (en) 1991-09-19 1991-09-19 Blower impeller

Country Status (1)

Country Link
JP (1) JP2730344B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100377623B1 (en) * 2001-02-23 2003-03-26 엘지전자 주식회사 Fan assembly for condenser of refrigerator
KR100858395B1 (en) * 2006-06-26 2008-09-11 미쓰비시덴키 가부시키가이샤 Axial Fan
CN102213235A (en) * 2011-04-01 2011-10-12 海尔集团公司 Blade of air-condition axial fan and air-condition axial fan
JP2012107538A (en) * 2010-11-16 2012-06-07 Panasonic Corp Axial-flow fan or diagonal-flow fan, and air conditioner mounted outdoor unit with the same
WO2014162758A1 (en) * 2013-04-04 2014-10-09 三菱電機株式会社 Propeller fan, blower device, and outdoor equipment
CN109404312A (en) * 2018-10-30 2019-03-01 江苏贝莱德风机制造有限公司 A kind of aging furnace high-temperature resistant axial-flow fan

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100377623B1 (en) * 2001-02-23 2003-03-26 엘지전자 주식회사 Fan assembly for condenser of refrigerator
KR100858395B1 (en) * 2006-06-26 2008-09-11 미쓰비시덴키 가부시키가이샤 Axial Fan
JP2012107538A (en) * 2010-11-16 2012-06-07 Panasonic Corp Axial-flow fan or diagonal-flow fan, and air conditioner mounted outdoor unit with the same
CN102213235A (en) * 2011-04-01 2011-10-12 海尔集团公司 Blade of air-condition axial fan and air-condition axial fan
WO2014162758A1 (en) * 2013-04-04 2014-10-09 三菱電機株式会社 Propeller fan, blower device, and outdoor equipment
WO2014162552A1 (en) * 2013-04-04 2014-10-09 三菱電機株式会社 Propeller fan, blower device, and outdoor equipment
CN105102822A (en) * 2013-04-04 2015-11-25 三菱电机株式会社 Propeller fan, blower device, and outdoor equipment
US9970454B2 (en) 2013-04-04 2018-05-15 Mitsubishi Electric Corporation Propeller fan, blower device, and outdoor equipment
CN109404312A (en) * 2018-10-30 2019-03-01 江苏贝莱德风机制造有限公司 A kind of aging furnace high-temperature resistant axial-flow fan

Also Published As

Publication number Publication date
JP2730344B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
JP3203994B2 (en) Axial blower
JP5525429B2 (en) Counter-rotating axial fan
US7273354B2 (en) High efficiency axial fan
JP4035237B2 (en) Axial blower
CA2572925C (en) Axial fan blade having a convex leading edge
KR101251130B1 (en) Propeller fan
EP1455095B1 (en) Axial-flow fan
JP4680840B2 (en) Axial blower
JPH0579496A (en) Impeller of blower
KR101788431B1 (en) Impeller and axial blower in which same is used
JP2008232049A (en) Centrifugal impeller and centrifugal blower
JP2000110783A (en) Centrifugal fan
JPH08240197A (en) Axial-flow fan
JP2012026380A (en) Ceiling fan
JPH0874790A (en) Propeller fan
JP2006125229A (en) Sirocco fan
JP2008115790A (en) Rotating machine
JP2902577B2 (en) Propeller fan
JP4576304B2 (en) Propeller fan
JP2000009083A (en) Impeller
JP2003172297A (en) Multiblade fan
KR100487338B1 (en) axial flow fan
WO2019202641A1 (en) Propeller fan
JPH0226080B2 (en)
KR100504480B1 (en) axial flow fan

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 14