JP2932975B2 - Axial blower, air conditioner - Google Patents

Axial blower, air conditioner

Info

Publication number
JP2932975B2
JP2932975B2 JP22409395A JP22409395A JP2932975B2 JP 2932975 B2 JP2932975 B2 JP 2932975B2 JP 22409395 A JP22409395 A JP 22409395A JP 22409395 A JP22409395 A JP 22409395A JP 2932975 B2 JP2932975 B2 JP 2932975B2
Authority
JP
Japan
Prior art keywords
blade
radius
boss
point
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22409395A
Other languages
Japanese (ja)
Other versions
JPH0968199A (en
Inventor
尚史 池田
孝行 吉田
勝久 大蔦
康雄 廣中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22409395A priority Critical patent/JP2932975B2/en
Publication of JPH0968199A publication Critical patent/JPH0968199A/en
Application granted granted Critical
Publication of JP2932975B2 publication Critical patent/JP2932975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、家庭用、工業用な
どの空気調和装置等に広く用いられる軸流送風機に関し
て、特に空力騒音を極限まで低くすることを可能にした
軸流送風機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axial blower widely used in air conditioners for home use and industrial use, and more particularly to an axial blower capable of minimizing aerodynamic noise. is there.

【0002】[0002]

【従来の技術】送風機は、空調機や換気扇等に幅広く使
われており、その羽根車から発生する騒音をできる限り
低くすることは、社会的にも非常に重要である。従来技
術の中で、低騒音化を図る手法としては、特公平2−2
000号公報に見られるように、羽根車の3次元形状を
決めるパラメータを明らかにし、形状を最適化すること
によるものであった。図97は特公平2ー2000号公
報に示された従来の羽根車を示す斜視図である。図にお
いて1は羽根車の羽根、1aは羽根先端部、1bは羽根
前縁部、1cは羽根後縁部、1dは羽根外周部、2は羽
根を取り付けるボス部、3は回転軸、4は回転方向であ
る。
2. Description of the Related Art Blowers are widely used in air conditioners, ventilation fans and the like, and it is very important in society to reduce the noise generated by the impeller as much as possible. Among the conventional techniques, a method for reducing noise is disclosed in
As disclosed in Japanese Patent Application Publication No. 000, the parameters for determining the three-dimensional shape of the impeller are clarified and the shape is optimized. FIG. 97 is a perspective view showing a conventional impeller disclosed in Japanese Patent Publication No. 2-2000. In the figure, 1 is the blade of the impeller, 1a is the tip of the blade, 1b is the leading edge of the blade, 1c is the trailing edge of the blade, 1d is the outer peripheral portion of the blade, 2 is the boss for attaching the blade, 3 is the rotating shaft, and 4 is the rotating shaft. The direction of rotation.

【0003】また、図98は回転軸3と直交する平面に
羽根車を投影したときの投影図で、1’は平面投影図に
おける羽根、1a’は平面投影図における羽根先端部、
1b’は平面投影図における羽根前縁部、1c’は平面
投影図における羽根後縁部、1d’は平面投影図におけ
る羽根外周部である。また図100は図99におけるボ
ス部翼弦線中心点Pb’から外周部翼弦線中心点Pt’
までの半径方向への軌跡Pb’−PR’−Pt’につい
て、任意の半径Rにおける翼弦線中心点PRを平面OX
面に半径Rで回転投影した翼弦線中心点PRの半径方向
分布、および羽根1の同一位置での断面を示している。
また図100は、翼弦戦中心点PRを相対的な原点とし
て羽根面を形成したとき、羽根1を半径Rの円筒面で切
断し、その断面を2次元平面に展開して得られる展開図
で、5はそり線、5aは羽根負圧面、5bは羽根圧力
面、6は回転軸平行線である。
FIG. 98 is a projection view when the impeller is projected on a plane orthogonal to the rotation axis 3, wherein 1 ′ is a blade in the plane projection view, 1 a ′ is a tip of the blade in the plane projection view,
1b 'is a leading edge of the blade in the plan view, 1c' is a trailing edge of the blade in the plan view, and 1d 'is a blade outer periphery in the plan view. Further, FIG. 100 shows a case where the boss chord line center point Pb ′ in FIG.
Of the chord line center point PR at an arbitrary radius R with respect to the trajectory Pb'-PR'-Pt 'in the radial direction up to the plane OX.
The radial distribution of the chord line center point PR, which is rotationally projected on the surface with the radius R, and the cross section at the same position of the blade 1 are shown.
FIG. 100 is a developed view obtained by cutting the blade 1 with a cylindrical surface having a radius R when the blade surface is formed with the chord battle center point PR as a relative origin, and expanding the cross section into a two-dimensional plane. 5 is a sled line, 5a is a blade negative pressure surface, 5b is a blade pressure surface, and 6 is a rotation axis parallel line.

【0004】この羽根車において、羽根1を構成する諸
因子を明確にすることにより羽根1の3次元的曲面形状
を具体化に定義している。図98における回転軸と直交
する平面に羽根車を投影したときの投影面において、上
記羽根のボス部を半径Rbの円筒面で切断したときの断
面における翼弦線中心点をPb’とし、上記回転軸を原
点Oとして、上記O点とPb’点とを結ぶ直線をX軸と
した座標系で、上記羽根を半径Rの円筒面で切断したと
きの翼弦線中心点をPR’として、直線Pb’として、
直線Pb’−Oと上記X軸とのなす角度をδθ(δθ:
回転方向前進角)とした場合、δθの半径方向分布をδ
θ=δθt×(R−Rb)/(Rt−Rb)(Rt:羽
根チップ半径、Rb:羽根ボス部半径、δθt:直線P
R’−OとX軸とのなす角度)で与え、δθt=40゜
〜50゜とし、かつ図98において、回転軸を中心とす
る半径Rの円筒面で羽根車を切断したときの断面におけ
る翼弦線中心点PRと、羽根のボス部を半径Rbの円筒
面で切断したときの断面における翼弦線中心点Pbを通
り、上記回転軸と直交する平面SCとの距離をLsとし
たとき、気流の吸込側を正方向とした座標系において上
記翼弦線中心点PRを上記SC平面に対して常に正方向
に位置させ、δz=tan -1 (Ls/(R−Rb))
(δz:吸込方向前傾角)で表現できるδzの値をδz
=12.5゜〜32.5゜とし、
In this impeller, the three-dimensional curved surface shape of the blade 1 is concretely defined by clarifying various factors constituting the blade 1. On a projection plane when the impeller is projected on a plane orthogonal to the rotation axis in FIG. 98, a chord line center point in a cross section when the boss portion of the blade is cut by a cylindrical surface having a radius Rb is Pb ′, With the rotation axis as the origin O and a coordinate system with the straight line connecting the point O and the point Pb 'as the X axis, the chord line center point when the blade is cut by a cylindrical surface with a radius R as PR', As a straight line Pb ′,
The angle between the straight line Pb′-O and the X axis is δθ (δθ:
(Rotational advance angle), the radial distribution of δθ is δ
θ = δθt × (R−Rb) / (Rt−Rb) (Rt: radius of blade tip, Rb: radius of blade boss, δθt: straight line P
R'-O and the X axis), δθt = 40 ° to 50 °, and in FIG. 98, the cross section of the impeller cut along a cylindrical surface of radius R centered on the rotation axis. When the distance between the chord line center point PR and a plane SC passing through the chord line center point Pb in a cross section when the boss portion of the blade is cut by a cylindrical surface having a radius Rb and orthogonal to the rotation axis is Ls. In the coordinate system in which the airflow suction side is set to the positive direction, the chord line center point PR is always located in the positive direction with respect to the SC plane, and δz = tan −1 (Ls / (R−Rb))
Δz the value of δz that can be expressed by: (δz suction direction anteversion)
= 12.5 ゜ -32.5 ゜,

【0005】かつ図100において、羽根を半径Rの円
筒面で切断し、その断面を2次元平面に展開して得られ
る展開図において、その羽根断面におけるそり線の形状
を円弧形状とし、その円弧形状を形成するための中心角
をθ(θ:そり角)とした場合、θの半径方向分布をθ
=(θt−θb)×(R−Rb)/(Rt−Rb)+θ
b(θt:羽根チップでのそり角、θb:羽根ボス部で
のそり角)で与え、θt=20゜〜30゜、θb=27゜
〜37゜、θt<θbとし、また、羽根の取付位置はそ
の翼弦線1b−1cと、回転軸3と平行で羽根前縁部1
bを通る直線6とのなす角度を食い違い角ξとした場
合、ξの半径方向分布を、ξ=(ξt−ξb)×(R−
Rb)/(Rt−Rb)+ξb(ξt:羽根チップでの
食い違い角、ξb:羽根ボス部での食い違い角)で与
え、ξt=62゜〜72゜、ξb=53゜〜63゜、ξt>
ξbとし、さらに、この図100におけるLは翼弦長で
あり、図101に示した羽根間の円周方向距離Tを用い
た節弦比T/Lで羽根の大きさを限定しており、各半径
の点においてT/L=1〜1.1としている。このよう
な3次元曲面形状の羽根車にすることにより、羽根面上
の境界層の発達が抑制されたり、放出渦の状態が変化す
るため、ある程度広い動作領域にわたり、相当低騒音の
軸流送風機となっていた。
In FIG. 100, a blade is cut along a cylindrical surface having a radius R, and a cross-section thereof is developed into a two-dimensional plane. When the central angle for forming the shape is θ (θ: warp angle), the radial distribution of θ is θ
= (Θt−θb) × (R−Rb) / (Rt−Rb) + θ
b (θt: deflection angle at the blade tip, θb: deflection angle at the blade boss), θt = 20 ° to 30 °, θb = 27 ° to 37 °, θt <θb, and mounting of the blade The position is parallel to the chord line 1b-1c and the rotation axis 3 and the blade leading edge 1
If the angle formed by the straight line 6 passing through b and the stagger angle ξ is defined as ξ, the radial distribution of ξ is expressed as ξ = (ξt−ξb) × (R−
Rb) / (Rt−Rb) + ξb (ξt: stagger angle at the blade tip, ξb: stagger angle at the blade boss), {t = 62} to 72 ゜, {b = 53 to 63 ゜, ξt>
100, L is a chord length, and the size of the blade is limited by the chord ratio T / L using the circumferential distance T between the blades shown in FIG. T / L = 1 to 1.1 at each radius point. By making the impeller having such a three-dimensional curved surface shape, the development of the boundary layer on the blade surface is suppressed and the state of the discharge vortex is changed. Had become.

【0006】[0006]

【発明が解決しようとする課題】従来の軸流送風機は以
上のよう低騒音の特徴を有しているが、風量が多く、風
圧がさほどかからない動作点付近では、図102に示す
ように羽根前縁ボス部付近では吸い込む空気が羽根の負
圧面側へ衝突し、羽根負圧面上の流れに乱れを発生させ
圧力変動をもたらし、騒音増大するという問題があっ
た。また、吸込流れの圧損が大きいとき、すなわち吸込
口側にホコリ等が付着し、吸込みにくくなったときなど
には、羽根負圧面上では羽根前縁付近で流れの剥離現象
が生じ、大きな乱れを含んだ流れが羽根負圧面上を流れ
るため大きな圧力変動が生じ、騒音が増大するという問
題点があった。
Although the conventional axial blower has the characteristic of low noise as described above, the vicinity of the operating point where the air volume is large and the wind pressure is not so small as shown in FIG. In the vicinity of the edge boss portion, there is a problem that the sucked air collides against the negative pressure surface side of the blade, causing turbulence in the flow on the negative pressure surface of the blade, causing pressure fluctuation and increasing noise. Also, when the pressure loss of the suction flow is large, that is, when dust or the like adheres to the suction port side and suction becomes difficult, a flow separation phenomenon occurs near the leading edge of the blade on the blade negative pressure surface, causing a large turbulence. Since the included flow flows on the blade negative pressure surface, a large pressure fluctuation occurs, and there is a problem that noise increases.

【0007】さらに従来の軸流送風機の羽根は強度上、
羽根前縁ボス部付近の板厚を一部厚くすることにより応
力集中を逃がす傾向にあった。そのため、羽根前縁部が
局所的に厚くなることにより、流れがこの板厚の厚い羽
根前縁ボス部に衝突し、それにより生じた乱れが羽根面
上の流れに乱れを与え、圧力変動の増大を招き、騒音が
悪化する傾向にあった。本発明は、上記のような問題点
を解消するためになされたもので、羽根前縁ボス部での
吸込流れの衝突を防ぐとともに、高静圧化も図った高性
能、低騒音でかつ強度的にも十分な軸流送風機を得るこ
とを目的とする。さらに又、本発明は低騒音の空気調和
機を得ることを目的とする。
Further, the blades of the conventional axial blower are not
There was a tendency for stress concentration to escape by increasing the thickness of the plate near the boss of the leading edge of the blade. Therefore, when the leading edge of the blade is locally thickened, the flow collides with the thicker leading edge boss portion of the blade, and the resulting turbulence disturbs the flow on the blade surface, causing pressure fluctuation. The noise tended to increase, resulting in an increase in noise. The present invention has been made in order to solve the above-mentioned problems, and it is a high-performance, low-noise, and high-strength device that prevents a collision of a suction flow at a blade leading edge boss portion and also achieves a high static pressure. The objective is to obtain a sufficient axial flow fan. Still another object of the present invention is to obtain a low-noise air conditioner.

【0008】[0008]

【課題を解決するための手段】第1の発明に係る軸流送
風機は、回転するボス部に取りつけられ、回転方向に面
する羽根前縁部、回転方向と反対方向に面する羽根後縁
部、及び上記ボス部に対向する羽根外周部により周囲が
構成される羽根と、羽根前縁部の前記ボス部よりに沿っ
て一辺が、羽根前縁部に隣接したボス部の外周に沿って
他辺が配置されるとともに、少なくとも羽根前縁部また
はボス部のいずれか一方に取りつけられて羽根に一体に
形成される、厚みがほぼ羽根厚と同一の板状部材と、を
備えたものである。
According to a first aspect of the present invention, there is provided an axial flow blower mounted on a rotating boss portion, the leading edge of the blade facing in the rotating direction, and the trailing edge of the blade facing in the opposite direction to the rotating direction. And a blade having a periphery formed by a blade outer peripheral portion opposed to the boss portion, and one side along the boss portion of the blade front edge portion, and another along the outer periphery of the boss portion adjacent to the blade front edge portion. And a plate-like member having a thickness substantially equal to the thickness of the blade, the side being disposed, and being attached to at least one of the blade leading edge portion and the boss portion and integrally formed with the blade. .

【0009】又、第2の発明に係る軸流送風機は、回転
の軸中心を原点Oとし、任意半径における羽根前縁部上
の点1bs’との半径O−1bs’を回転方向に角度β
回転させたときのボス部外周上との交点を1bb’とし
て、板状部材が上記1bs’と上記1bb’とを通るよ
うなほぼ三角形の形状としたものである。又、第3の発
明に係る軸流送風機は、回転の軸中心を原点Oとし、任
意半径における羽根前縁部上の点1bs’との半径O−
1bs’を回転方向に角度β回転させたときのボス部外
周上との交点を1bb’として、板状部材が上記1b
s’と上記1bb’との間に配置される際、角度βを1
0〜40度に選択したものである。
In the axial flow blower according to the second aspect of the present invention, the center of rotation is defined as the origin O, and a radius O-1bs 'with respect to a point 1bs' on the leading edge of the blade at an arbitrary radius is angle β in the rotation direction.
The intersection point with the outer periphery of the boss portion when rotated is 1bb ', and the plate-like member has a substantially triangular shape passing through the 1bs' and 1bb'. In the axial blower according to the third aspect of the present invention, the center of rotation is defined as the origin O, and the radius O- of an arbitrary radius relative to the point 1bs' on the leading edge of the blade is obtained.
1bb 'is defined as 1bb', where the intersection with the outer periphery of the boss portion when 1bs 'is rotated by an angle β in the rotation direction is 1bb'.
When placed between s ′ and 1bb ′, the angle β is 1
It is selected from 0 to 40 degrees.

【0010】又、第4の発明に係る軸流送風機は、回転
の軸中心を原点Oとし、任意半径における羽根前縁部上
の点1bs’とし、羽根外周部半径をRtとして、板状
部材の一辺が羽根前縁部の1bs’とボス部との間に配
置される際、半径O−1bs’を羽根外周部半径Rtの
40〜75%に選択したものである。又、第5の発明に
係る軸流送風機は、板状部材は、羽根前縁部に回転方向
から密着して取りつけられるものである。
In the axial blower according to a fourth aspect of the present invention, the plate-like member may be formed such that the center of rotation is the origin O, the point 1bs' on the leading edge of the blade at an arbitrary radius, and the radius of the outer periphery of the blade is Rt. When one side is disposed between the boss portion and 1bs 'of the blade front edge, the radius O-1bs' is selected to be 40 to 75% of the blade outer radius Rt. Further, in the axial blower according to the fifth invention, the plate-shaped member is attached to the blade front edge portion in close contact with the blade in the rotational direction.

【0011】又、第6の発明に係る軸流送風機は、回転
するボス部に取りつけられ、回転方向に面する羽根前縁
部、回転方向と反対方向に面する羽根後縁部、及びボス
部に対向する羽根外周部により周囲が構成される羽根
と、羽根前縁部の前記ボス部寄りに沿って一辺が、羽根
前縁部に隣接したボス部の外周に沿って他辺が配置され
るとともに、少なくとも羽根前縁部またはボス部のいず
れか一方に取りつけられて羽根に一体に形成される、厚
みがほぼ羽根厚と同一の板状部材であって、回転の軸中
心を原点Oとし、任意半径における羽根前縁部上の点1
bs’とし、前記bs’と原点Oとの半径O−1bs’
を回転方向に角度β回転させたときのボス部外周上との
交点を1bb’として、1bs’と1bb’とを通るよ
うな板状部材と、を備え、角度βを10〜40度に選択
し、半径O−1bs’を羽根外周部半径Rtの40〜7
5%に選択したものである。
An axial flow blower according to a sixth aspect of the present invention is provided with a blade front edge facing the rotating direction, a blade trailing edge facing the rotating direction, and a boss mounted on the rotating boss. And a side along the outer periphery of the boss portion adjacent to the blade front edge portion, and one side along the boss portion of the blade front edge portion, and the other side disposed along the outer periphery of the boss portion adjacent to the blade front edge portion. Along with at least one of the blade leading edge portion and the boss portion and integrally formed with the blade, a plate-like member having a thickness substantially equal to the blade thickness, and an axis O of rotation as an origin O, Point 1 on leading edge of blade at arbitrary radius
bs', and a radius O-1bs' between the bs' and the origin O.
And a plate-like member passing through 1bs 'and 1bb' when the intersection with the outer periphery of the boss portion is rotated by an angle β in the rotation direction, and the angle β is selected from 10 to 40 degrees. And the radius O-1bs' is 40 to 7 of the blade outer radius Rt.
5% was selected.

【0012】又、第7の発明に係る軸流送風機は、回転
するボス部に取りつけられ、回転方向に面する羽根前縁
部、回転方向と反対方向に面する羽根後縁部、及びボス
部に対向する羽根外周部により周囲が構成される羽根
と、回転の軸中心を原点Oとし、任意半径における羽根
前縁部上の点1bs’との半径O−1bs’を回転方向
に角度β回転させたときのボス部外周上との交点を1b
b’として、1bs’と1bb’とを通るような形状に
羽根前縁部のボス部寄り部分を回転方向に延長させた羽
根形状と、を備え、角度βを10〜40度に選択したも
のである。又、第8の発明に係る軸流送風機は、半径O
−1bs’を羽根外周部半径Rtの40〜75%に選択
したものである。又、第9の発明に係る軸流送風機は、
個個の羽根に対し角度βを変化させた複数の羽根を有す
るものである。又、第10の発明に係る軸流送風機は、
個個の羽根に対し半径O−1bs’を変化させた複数の
羽根を有するものである。
An axial blower according to a seventh aspect of the present invention is provided with a blade front edge facing the rotating direction, a blade trailing edge facing the rotating direction, and a boss mounted on the rotating boss. And a radius O-1bs 'of an arbitrary radius and a point 1bs' on the leading edge of the blade at an arbitrary radius and an angle β rotation in the rotation direction. The point of intersection with the outer periphery of the boss at the time of
b ′, a blade shape in which a portion near the boss portion of the blade front edge is extended in the rotation direction in a shape passing through 1bs ′ and 1bb ′, and the angle β is selected from 10 to 40 degrees. It is. The axial blower according to the eighth invention has a radius O
-1bs' is selected as 40 to 75% of the blade outer radius Rt. The axial blower according to the ninth invention is
It has a plurality of blades whose angle β is changed with respect to the individual blades. Also, the axial blower according to the tenth aspect of the present invention,
Each of the blades has a plurality of blades whose radius O-1bs' is changed.

【0013】又、第11の発明に係る軸流送風機は、羽
根前縁部のボス部より部分を回転方向延長させた羽根形
状を、1bs’及び1bb’における接線を回転方向に
対し、凹となるような曲線で結び羽根前縁部とするよう
に形成したものである。又、第12の発明に係る軸流送
風機は、羽根前縁部とボス部との接続部を羽根外周部半
径の15〜35%の大きさの半径とする回転方向に対し
凹となるような曲線で結び、羽根前縁部とするように羽
根形状を形成したものである。
[0013] In the axial blower according to the eleventh aspect, the blade shape in which a portion of the blade front edge portion is extended from the boss portion in the rotation direction may be formed such that tangent lines at 1bs 'and 1bb' are concave with respect to the rotation direction. It is formed so as to be a knotted blade front edge portion with a curved line. In the axial blower according to the twelfth aspect, the connecting portion between the leading edge of the blade and the boss portion may be concave in the rotating direction in which the radius of the blade is 15 to 35% of the outer radius of the blade. The blade shape is formed so as to be connected by a curve and to be the leading edge of the blade.

【0014】又、第13の発明に係る軸流送風機は、羽
根を取り付けて回転するボス部と、回転方向に面する羽
根前縁部、回転方向と反対方向に面する羽根後縁部、お
よび上記ボス部に対向する羽根外周部から周が構成され
る羽根とを備え、上記羽根前縁部上の任意の点1bs’
と上記羽根前縁部の先端との間の接線より回転方向より
に位置するボス部側面の点1bb’と上記点1bs’と
を直線的に結ぶような羽根前縁形状とし、回転の軸中心
を原点Oとした場合の半径O−1bs’を羽根外周部半
径Rtの40〜75%にしたものである。
An axial flow blower according to a thirteenth aspect of the present invention is the axial flow blower, wherein the blade is mounted and rotated, the blade front edge facing in the rotation direction, the blade rear edge facing in the direction opposite to the rotation direction, and A blade having a circumference formed by a blade outer peripheral portion facing the boss portion, and an arbitrary point 1bs ′ on the blade front edge portion.
A leading edge of the blade is formed so as to linearly connect a point 1bb 'on the side surface of the boss located in the rotational direction from a tangent line between the point 1bb' and the point 1bs' with respect to the tip of the leading edge of the blade. Is the origin O, the radius O-1bs' is 40 to 75% of the blade outer radius Rt.

【0015】又、第14発明に係る軸流送風機は、回
転の軸中心を原点Oとし、羽根の付け根の羽根前縁部上
の点1baO ’と原点Oを結んだ直線1baO’−O
を、原点Oを中心に回転方向に20〜50°の間である
角度δαb分回転させた時のボス部半径Rbの点1b
b’と羽根外周部半径の40〜70%の半径Rsをもつ
羽根前縁部上の点1bs’の間の形状を、羽根前縁部を
基準として、羽根のボス部半径Rbである羽根前縁部上
の点1ba’から角度δαb分回転方向に回転させたと
きのボス部半径Rbの羽根前縁部上の点1bb’の間に
存在するボス部半径Rb〜半径Rsの間の半径Rcの点
1bc’と原点Oを結んだ直線1bc’−Oと直線1b
a’−Oとのなす角度を示すδαの半径方向分布を δα=(δαb/(Rb−Rs) 2 )×(R−Rs) 2 (Rb≦R≦Rs) で与え、羽根と連続するように、羽根前縁部上の点1b
s’よりボス部寄り部分の羽根前縁部を回転方向に延長
し、羽根形状を形成したものである。
[0015] Further, axial-flow fan according to a fourteenth aspect of the present invention, the axial center of the rotation as the origin O, connecting the origin O and 1BaO 'point on the front blades of the blade root edge straight 1BaO'-O
Is rotated by an angle δαb between 20 ° and 50 ° in the rotation direction about the origin O, the point 1b of the boss radius Rb
The shape between b ′ and the point 1bs ′ on the leading edge of the blade having a radius Rs of 40 to 70% of the radius of the outer peripheral portion of the blade is defined as the boss radius Rb of the blade with respect to the leading edge of the blade. The radius Rc between the boss portion radius Rb and the radius Rs existing between the point 1bb 'on the blade front edge and the boss portion radius Rb when rotated in the rotation direction by the angle δαb from the point 1ba' on the edge. Point of
A straight line 1bc'- O connecting 1bc ' and the origin O and a straight line 1b
δα = (δαb / (Rb−Rs) 2 ) × (R−Rs) 2 (Rb ≦ R ≦ Rs), and a point 1b on the leading edge of the blade so as to be continuous with the blade.
The blade front edge of the portion closer to the boss portion than s' is extended in the rotation direction to form a blade shape.

【0016】又、第15の発明に係る送風機は、回転の
軸中心を原点Oとし、ベースの羽根1O’のボス部半径
Rbにおける羽根前縁部上の点1baO’と原点Oを結
んだ直線1baO’−Oを、原点Oを中心に回転方向に
20〜50°の間である角度δαb分回転させた時の点
を羽根前縁ボス部延長終点1bb’としたとき、羽根を
任意半径Rの円筒面で切断し、その断面を2次元平面に
展開して得られる展開図において、羽根1Oとそり角
θ、食い違い角ξが同一のまま、ボス部半径Rbでの翼
弦を、点1bbまで延長し、このときの羽根1Oのボス
部半径Rbにおける翼弦長LbOと前記点1bb〜羽根
後縁部1cbまでの翼弦長Lb、この差を△Lbとし、
羽根外周部半径の40〜60%の半径Rsでの羽根前縁
部上の点1bsでの翼弦長Lsとすると、ボス部半径R
bから羽根前縁部上の点1bsまでの翼弦長Lの半径方
向分布を L=△Lb/(Rs−Rb) 2 ×(R−Rs) 2 +Ls (Rb≦R≦Rs) で与え、羽根形状を形成したものである。
In the blower according to the fifteenth aspect of the present invention, a straight line connecting the origin O with the origin O being the center of the rotation axis and the point 1baO 'on the leading edge of the blade at the boss radius Rb of the base blade 1O'. When the point at which 1baO′-O is rotated by an angle δαb between 20 ° and 50 ° in the rotation direction about the origin O is defined as a blade leading edge boss portion extension end point 1bb ′, the blade has an arbitrary radius R. In a developed view obtained by cutting the cylindrical surface of FIG. 1 and expanding the cross section into a two-dimensional plane, the chord at the boss radius Rb is changed to the point 1bb while the blade 10 and the warp angle θ and the stagger angle 同一 are the same. At this time, the chord length LbO at the boss radius Rb of the blade 1O and the chord length Lb from the point 1bb to the blade trailing edge 1cb, and the difference between them is ΔLb ,
Assuming the chord length Ls at the point 1bs on the leading edge of the blade at a radius Rs of 40 to 60% of the radius of the outer peripheral portion of the blade, the boss portion radius R
The radial distribution of the chord length L from b to the point 1 bs on the leading edge of the blade is given by L = △ Lb / (Rs−Rb) 2 × (R−Rs) 2 + Ls (Rb ≦ R ≦ Rs) A blade shape is formed.

【0017】又、第16の発明に係る軸流送風機は、軸
流送風機の羽根を任意半径Rの円筒面で切断し、その断
面を2次元平面に展開して得られる展開図において、そ
の羽根断面におけるそり線の形状を円弧形状とし、その
円弧を形成するための中心角をθ(θ:そり角)とした
場合、θの半径方向分布をθ=(θt−θb)×(R−
Rb)/(Rt−Rb)+θb(θt:羽根外周部での
そり角、θb:羽根ボス部半径Rbにおけるそり角)で
与え、θt=25゜〜35゜、θb=30゜〜55゜、θt
<θbとし、上記展開図において、羽根の翼弦線と上記
回転軸と平行で上記羽根の前縁部を通る直線とのなす角
度をξ(ξ:食い違い角)とするとき、ξの半径方向分
布を、ξ=(ξt−ξb)×(R−Rb)/(Rt−R
b)+ξb(ξt:羽根外周部での食い違い角ξ、ξ
b:ボス部半径Rbにおける食い違い角)で与え、ξt
=55゜〜70゜、ξb=40゜〜65゜、ξt>ξbと
し、さらに、翼弦長L、羽根間の円周方向距離(ピッ
チ)であるTとの比で定義される節弦比T/Lの値を、
各半径点においてT/L=1.1〜2.0とし、かつ上
記回転軸と直交する平面に軸流送風機を投影した投影図
において、上記羽根のボス部半径Rbの円筒面で切断し
たときの断面における翼弦線中心点をPb’とし、上記
回転軸を原点Oとして、上記O点とPb’点とを結ぶ直
線をX軸とした座標系で、上記羽根を任意半径Rの円筒
面で切断した時の翼弦線中心点をPR’として、直線P
R’−Oと上記X軸とのなす角度をδθ(δθ:回転方
向前進角)とした場合、δθの半径方向分布を δθ=δθt×(R−Rb)/(Rt−Rb) (Rt:羽根外周部半径、Rb:羽根ボス部半径、δθ
t:直線Pt’−OとX軸のなす角度)で与え、δθt
を25〜40°とし、まず羽根形状を形成し、この時の
羽根の付け根の羽根前縁部上の点1ba’と原点Oを結
んだ直線1ba’−Oを、原点Oを中心に回転方向に2
0〜50°の間である角度δαb分回転させた時のボス
部半径Rbの点1bb’と羽根外周部半径の40〜70
%の半径Rsをもつ羽根前縁部上の点1bs’の間の形
状を、前記羽根前縁部を基準として、前記羽根のボス部
半径Rbである羽根前縁部上の点1ba’から前記角度
δαb分回転方向に回転させたときのボス部半径Rbの
羽根前縁部上の点1bb’の間に存在するボス部半径R
b〜半径Rsの間の半径Rcの点1bc’と原点Oを結
んだ直線1bc’−Oと直線1ba’−Oとのなす角度
を示すδαの半径方向分布を δα=(δαb/(Rb−Rs) 2 )×(R−Rs) 2 (Rb≦R≦Rs) で与え、前記羽根と連続するように、羽根前縁部上の点
1bs’よりボス部寄り部分の羽根前縁部を回転方向に
延長し、羽根形状を形成したものである。
An axial blower according to a sixteenth aspect of the present invention is characterized in that a blade of the axial blower is cut by a cylindrical surface having an arbitrary radius R, and a cross-section thereof is developed into a two-dimensional plane. When the shape of the warp line in the cross section is an arc shape and the center angle for forming the arc is θ (θ: warp angle), the radial distribution of θ is θ = (θt−θb) × (R−
Rb) / (Rt−Rb) + θb (θt: slew angle at the outer periphery of the blade, θb: slew angle at the radius Rb of the blade boss portion), and θt = 25 ° to 35 °, θb = 30 ° to 55 °, θt
<Θb, and in the developed view, when an angle between a chord line of the blade and a straight line that is parallel to the rotation axis and passes through the leading edge of the blade is denoted by ξ (ξ: stagger angle), the radial direction of ξ The distribution is expressed as ξ = (ξt−ξb) × (R−Rb) / (Rt−R
b) + ξb (ξt: stagger angle at blade outer periphery 部, ξ
b: stagger angle at boss radius Rb), Δt
= 55 ゜ -70 ゜, ξb = 40 ゜ -65 ゜, ξt> ξb, and the chord ratio defined by the chord length L and the ratio of T to the circumferential distance (pitch) between the blades. The value of T / L is
T / L = 1.1 to 2.0 at each radial point, and in the projection of the axial blower projected on a plane perpendicular to the rotation axis, when cut at the cylindrical surface of the boss radius Rb of the blade. In the coordinate system in which the chord line center point in the cross section is Pb ′, the rotation axis is the origin O, and a straight line connecting the point O and the point Pb ′ is the X axis, the blade is a cylindrical surface having an arbitrary radius R. The center point of the chord line at the time of cutting is PR ', and the straight line P
When the angle between R′-O and the X axis is δθ (δθ: advancing angle in the rotation direction), the radial distribution of δθ is δθ = δθt × (R−Rb) / (Rt−Rb) (Rt: Blade outer radius, Rb: Blade boss radius, δθ
t: the angle between the straight line Pt'-O and the X axis), δθt
Is set to 25 to 40 °, a blade shape is first formed, and a straight line 1ba′-O connecting the point 1ba ′ on the blade front edge portion of the root of the blade at this time and the origin O is rotated around the origin O. To 2
The point 1bb ′ of the boss radius Rb when rotated by an angle δαb between 0 and 50 ° and the radius of the outer periphery of the blade 40 to 70
% From the point 1ba 'on the leading edge of the blade, which is the boss radius Rb of the blade, with respect to the leading edge of the blade, with respect to the leading edge of the blade. The boss radius R existing between points 1bb 'on the blade leading edge at the boss radius Rb when rotated in the rotation direction by the angle δαb
b~ the radial distribution of .delta..alpha showing points 1bc radius Rc an angle between -O and linear 1Ba'-O 'linearly 1bc connecting the origin O' of between radius Rs δα = (δαb / (Rb- Rs) 2 ) × (R-Rs) 2 (Rb ≦ R ≦ Rs), and a blade shape is formed by extending the blade front edge portion closer to the boss portion from the point 1bs ′ on the blade front edge portion in the rotation direction so as to be continuous with the blade. It is.

【0018】又、第17の発明に係る軸流送風機は、軸
流送風機の羽根を任意半径Rの円筒面で切断し、その断
面を2次元平面に展開して得られる展開図において、そ
の羽根断面におけるそり線の形状を円弧形状とし、その
円弧を形成するための中心角をθ(θ:そり角)とした
場合、θの半径方向分布をθ=(θt−θb)×(R−
Rb)/(Rt−Rb)+θb(θt:羽根外周部での
そり角、θb:羽根ボス部半径Rbにおけるそり角)で
与え、θt=25゜〜35゜、θb=30゜〜55゜、θt
<θbとし、上記展開図において、羽根の翼弦線と上記
回転軸と平行で上記羽根の前縁部を通る直線とのなす角
度をξ(ξ:食い違い角)とするとき、ξの半径方向分
布を、ξ=(ξt−ξb)×(R−Rb)/(Rt−R
b)+ξb(ξt:羽根外周部での食い違い角ξ、ξ
b:ボス部半径Rbにおける食い違い角)で与え、ξt
=55゜〜70゜、ξb=40゜〜65゜、ξt>ξbと
し、かつ上記回転軸と直交する平面に軸流送風機を投影
した投影図において、上記羽根のボス部半径Rbの円筒
面で切断したときの断面における翼弦線中心点をPb
O’とし、上記回転軸を原点Oとして、上記O点とPb
O’点とを結ぶ直線をX軸とした座標系で、上記羽根を
任意半径Rの円筒面で切断した時の翼弦線中心点をPR
O’として、直線PRO’−Oと上記X軸とのなす角度
をδθ(δθ:回転方向前進角)とした場合、δθの半
径方向分布を δθ=δθt×(R−Rb)/(Rt−Rb) (Rt:羽根外周部半径、Rb:羽根ボス部半径、δθ
t:直線PtO’−OとX軸のなす角度)で与え、δθ
tを25〜40°とし、さらに、翼弦長LO、羽根間の
円周方向距離(ピッチ)であるTとの比で定義される節
弦比T/LOの値を、各半径点においてT/LO=1.
1〜2.0とし、まず羽根形状1O’を形成し、前記投
影図において、羽根1O’のボス部半径Rbにおける羽
根前縁部上の点1baO’と原点Oを結んだ直線1ba
O’−Oを、原点Oを中心に回転方向に20〜50°の
間である角度δαb分回転させた時の点を羽根前縁ボス
部延長終点1bb’としたとき、羽根を任意半径Rの円
筒面で切断し、その断面を2次元平面に展開して得られ
る展開図において、前記羽根1Oとそり角θ、食い違い
角ξが同一のまま、ボス部半径Rbでの翼弦を、前記点
1bbまで延長し、このときの前記羽根1Oのボス部半
径Rbにおける翼弦長LbOと前記点1bb〜羽根後縁
1cbまでの翼弦長Lb、この差を△Lbとし、羽根
外周部半径の40〜60%の半径Rsでの羽根前縁部上
の点1bsでの翼弦長Lsとすると、ボス部半径Rbか
ら前記羽根前縁部上の点1bsまでの翼弦長Lの半径方
向分布を L=△Lb/(Rs−Rb) 2 ×(R−Rs) 2 +Ls (Rb≦R≦Rs) で与え、羽根形状を形成したものである。又、第18の
発明に係る空気調和機は上述の軸流送風機を使用したも
のである。
An axial blower according to a seventeenth aspect of the present invention is a development in which the blade of the axial blower is cut by a cylindrical surface having an arbitrary radius R, and the cross section is developed on a two-dimensional plane. Assuming that the shape of the warp line in the cross section is an arc shape and the central angle for forming the arc is θ (θ: warp angle), the radial distribution of θ is θ = (θt−θb) × (R−
Rb) / (Rt−Rb) + θb (θt: slew angle at the outer periphery of the blade, θb: slew angle at the radius Rb of the blade boss portion), and θt = 25 ° to 35 °, θb = 30 ° to 55 °, θt
<Θb, and in the developed view, when an angle between a chord line of the blade and a straight line that is parallel to the rotation axis and passes through the leading edge of the blade is denoted by ξ (ξ: stagger angle), the radial direction of ξ The distribution is expressed as ξ = (ξt−ξb) × (R−Rb) / (Rt−R
b) + ξb (ξt: stagger angle at blade outer periphery 部, ξ
b: stagger angle at boss radius Rb), Δt
= 55 ゜ -70 ゜, ξb = 40 ゜ -65 ゜, ξt> ξb, and the projection of the axial flow blower on a plane perpendicular to the rotation axis shows the cylindrical surface having the boss radius Rb of the blade. The chord line center point in the cross section when cut is Pb
O ′, the rotation axis is the origin O, and the point O and Pb
In a coordinate system in which the straight line connecting the point O ′ is the X axis, the chord line center point when the blade is cut by a cylindrical surface having an arbitrary radius R is PR
Assuming that the angle between the straight line PRO′-O and the X axis is δθ (δθ: advancing angle in the rotation direction) as O ′, the radial distribution of δθ is δθ = δθt × (R−Rb) / (Rt− Rb) (Rt: radius of outer periphery of blade, Rb: radius of blade boss, δθ
t: the angle between the straight line PtO'-O and the X axis), δθ
t is set to 25 to 40 °, and the value of the chord ratio T / LO defined by the chord length LO and the ratio of T to the circumferential distance (pitch) between the blades is defined as T / LO at each radial point. / LO = 1.
First, a blade shape 1O 'is formed, and a straight line 1ba connecting the origin O with the point 1baO' on the front edge of the blade at the boss radius Rb of the blade 1O 'in the projection view.
When the point when O′-O is rotated by an angle δαb between 20 and 50 ° around the origin O in the rotation direction is defined as a blade leading edge boss portion extension end point 1bb ′, the blade has an arbitrary radius R. In the developed view obtained by cutting the cylindrical surface of FIG. 1 and expanding the cross section into a two-dimensional plane, the chord at the boss radius Rb is set to the same value as the blade 10 and the warp angle θ and the stagger angle 同一. The blade chord length LbO at the boss radius Rb of the blade 1O at this time and the chord length Lb from the point 1bb to the blade trailing edge 1cb, and the difference between the chord length Lb and the blade outer periphery radius Assuming the chord length Ls at the point 1bs on the leading edge of the blade at a radius Rs of 40 to 60% of the radial direction of the chord length L from the boss radius Rb to the point 1bs on the leading edge of the blade distribution L = △ Lb / (Rs- Rb) 2 × (R-Rs) 2 + Ls (Rb ≦ R ≦ R Given by), it is obtained by forming a blade shape. An air conditioner according to an eighteenth aspect uses the above-described axial blower.

【0019】[0019]

【発明の実施の形態】実施例1 以下、一実施例を図に基づいて説明する。図1はこの発
明における軸流送風機の一実施例を示す斜視図である。
例えば3枚羽根形状のものであり、動作については、主
に1枚の羽根1について述べるが、他の羽根についても
同様である。図において、1は3次元形状を持つ軸流送
風機の羽根、2はこの羽根を取り付けるボス部、3は羽
根1の回転軸、4は回転方向を示す矢印、1bは羽根前
縁部、1dは羽根外周部、1cは羽根後縁部、7は羽根
前縁部1bのボス部よりに取り付けられる三角形平板で
ある。図2は図1の平面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 An embodiment will be described below with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of an axial blower according to the present invention.
For example, it has a three-blade shape, and its operation is mainly described for one blade 1, but the same applies to other blades. In the drawing, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion to which the blade is attached, 3 is a rotation axis of the blade 1, 4 is an arrow indicating a rotation direction, 1b is a blade front edge, and 1d is a blade front edge. An outer peripheral portion of the blade, 1c is a trailing edge portion of the blade, and 7 is a triangular flat plate attached to a boss portion of the leading edge portion 1b of the blade. FIG. 2 is a plan view of FIG.

【0020】図3は、回転軸3と直交する平面に羽根1
を投影した投影図である。図において、図1と同一符号
のものは同一のものを示す。1’は投影図における羽
根、1b’は投影図における羽根前縁部、1c’は投影
図における羽根後縁部、1d’は投影図における羽根外
周部である。図において、羽根厚とほぼ同一でかつほぼ
三角形した平板7’を、一辺7b’がほぼボス部2の円
周に沿い、他の一辺7c’は羽根前縁部1b’のボス部
よりに密着させ、回転方向から羽根に一体になるように
外挿し、羽根形状を形成している。図4は、図3の三角
形平板7’と羽根前縁部1b’付近を任意半径Rの円筒
面で切断したY−Y断面を、二次元平面に展開した拡大
図である。図において、1は軸流送風機の羽根、7は羽
根前縁部1bのボス部寄りに外挿される三角形平板、7
cはこの三角形平板7と羽根前縁部1bとの接着面、7
aは羽根前縁部1bと連続する三角形平板7の吸い込み
側端部を示す。
FIG. 3 shows the blade 1 on a plane orthogonal to the rotation axis 3.
FIG. In the drawing, the same reference numerals as those in FIG. 1 indicate the same components. 1 'is a blade in the projection, 1b' is a blade leading edge in the projection, 1c 'is a blade trailing edge in the projection, and 1d' is a blade outer periphery in the projection. In the figure, a flat plate 7 'having substantially the same thickness as the blade and having a substantially triangular shape is adhered to one side 7b' substantially along the circumference of the boss portion 2 and the other side 7c 'to the boss portion of the blade front edge portion 1b'. It is extrapolated so as to be integral with the blade from the rotation direction to form a blade shape. FIG. 4 is an enlarged view in which a YY cross section obtained by cutting the vicinity of the triangular flat plate 7 ′ and the blade front edge 1b ′ of FIG. In the figure, reference numeral 1 denotes a blade of an axial blower, 7 denotes a triangular flat plate extrapolated to a boss portion of a blade front edge 1b, 7
c is an adhesive surface between the triangular flat plate 7 and the blade leading edge 1b;
a shows the suction side end of the triangular flat plate 7 which is continuous with the blade front edge 1b.

【0021】このように形成することにより、高圧損
時、図3のX−X断面を示す図5のように三角形平板7
の羽根前縁部1bにつながる一辺7aで圧力面9から負
圧面8への流れの回り込みにより発生する安定した縦渦
10により、流れは羽根面上に沿い、かつ吸い込み流れ
12が、この縦渦10に誘導されながら外部へ送風され
る。これにより、従来の軸流送風機における問題点とし
て、図101に示したような、高圧損時における羽根前
縁部1b付近の吸い込み流れ12の剥離による羽根負圧
面8上の流れ11の乱れを無くせ、低騒音化を図ること
ができる。図6は、従来の軸流送風機と上記第1の発明
の一実施例による軸流送風機との流量係数φに対する圧
力係数ψの関係および比騒音Ks[dB(A)]を実験的
に求めた特性図である。
By forming as described above, at the time of high-voltage loss, the triangular flat plate 7 shown in FIG.
Of the flow from the pressure surface 9 to the suction surface 8 at one side 7a connected to the leading edge 1b of the blade, the flow is directed along the blade surface and the suction flow 12 The air is sent to the outside while being guided by 10. Thus, as a problem in the conventional axial blower, as shown in FIG. 101, it is possible to eliminate the disturbance of the flow 11 on the blade negative pressure surface 8 due to the separation of the suction flow 12 near the blade leading edge 1b at the time of high pressure loss. In addition, noise can be reduced. FIG. 6 shows the relationship between the flow coefficient φ and the pressure coefficient 流量 and the specific noise Ks [dB (A)] of the conventional axial flow fan and the axial flow fan according to the first embodiment of the present invention. It is a characteristic diagram.

【0022】ここで、流量係数φ、圧力係数ψ、比騒音
Ksについて説明する。流量係数φは、以下のように表
せ、無次元数である。φ=Q/(π 2 /4・D 3 ・(1−ν 2 )・N) Q:風量[m 3 /min] D:羽根外周部半径[m] ν:ボス比(ボス部半径/羽根外周部半径) N:回転数[r.p.m] また、圧力係数ψは、羽根外周速uに相当する動圧と圧
力上昇Pの比の無次元数である。ψ=7200Ps/(ρ(πDN) 2 Ps:静圧[Pa] D:羽根外周部半径[m] N:回転数[r.p.m]ρ:空気密度[Kg/m 3 一方、比騒音Ksは次式のように定義される。Ks=SPL−10Log(Q・Ps 2.5 SPL:騒音特性(SOUND PRESSURE LEVEL)[dB
(A)] Q :風量[m 3 /min] Ps:静圧[mmAq]
Here, the flow coefficient φ, the pressure coefficient ψ, and the specific noise Ks will be described. The flow coefficient φ is expressed as follows, and is a dimensionless number. φ = Q / (π 2/ 4 · D 3 · (1-ν 2) · N) Q: air volume [m 3 / min] D: the blade outer peripheral part radius [m] [nu: Boss ratio (boss radius / feather N: Number of rotations [rpm] The pressure coefficient ψ is a dimensionless number of the ratio between the dynamic pressure corresponding to the blade outer peripheral speed u and the pressure rise P. ψ = 7200 Ps / (ρ (πDN) 2 ) Ps: Static pressure [Pa] D: Blade outer radius [m] N: Rotational speed [rpm] ρ: Air density [Kg / m 3 ] On the other hand, specific noise Ks is It is defined as: Ks = SPL-10 Log (Q · Ps 2.5 ) SPL: Noise characteristic (SOUND PRESSURE LEVEL) [dB
(A)] Q: Air volume [m 3 / min] Ps: Static pressure [mmAq]

【0023】図中黒丸、黒四角は従来の軸流送風機の特
性、最小比騒音を、×、□はこの発明の一実施例におけ
る軸流送風機の特性、最小比騒音を示す。この特性図か
らわかるように、従来に比べ、羽根が失速していない動
作領域が低風量側まで延びかつ全体的に高静圧化が図れ
ている。一方、比騒音Ksは最大で1[dB(A)]の低減
が図れ低騒音である。
In the figure, black circles and black squares show the characteristics and the minimum specific noise of the conventional axial flow fan, and x and □ show the characteristics and the minimum specific noise of the axial flow fan in one embodiment of the present invention. As can be seen from this characteristic diagram, the operating region where the blades are not stalled extends to the low air volume side and higher static pressure is achieved as a whole as compared with the conventional art. On the other hand, the specific noise Ks can be reduced by 1 [dB (A)] at the maximum, and the noise is low.

【0024】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、およびボス部に対向す
る羽根外周部から周が構成される羽根とを有する軸流送
風機の回転軸と直交する平面に軸流送風機を投影した投
影図において、羽根前縁部に厚みが羽根厚とほぼ同一の
平板を一辺がほぼボス部円周に沿い、他の一辺は羽根前
縁部のボス部寄りに密着させるように、回転方向から外
挿するように羽根に一体に形成したものであるので、吸
い込み口にホコリが堆積した時などの高圧損時、三角形
平板の羽根前縁部につながる一辺で圧力面から負圧面へ
の流れの回り込みにより発生する縦渦により、流れは羽
根面上に沿い、かつ吸い込み流れが、この縦渦に誘導さ
れながら外部へ送風されることにより、高圧損時におけ
る羽根前縁部1b付近の吸い込み流れ12の剥離による
羽根負圧面8上の流れ11の乱れを無くせ、低騒音化を
図ることができる。
This axial flow blower has a boss mounted on a blade and rotating, a blade front edge facing the rotating direction, a blade rear edge facing the direction opposite to the rotating direction, and a blade outer periphery facing the boss. In the projected view of the axial blower projected on a plane orthogonal to the rotation axis of the axial blower having a blade composed of a periphery from a portion, a flat plate having a thickness substantially the same as the blade thickness on the blade front edge is substantially one side. Along the circumference of the boss, the other side is integrally formed with the blade so as to be extrapolated from the rotation direction so that the other side is close to the boss near the blade front edge, so dust accumulates at the suction port When a high pressure loss occurs, for example, when the flow wraps around from the pressure surface to the suction surface on one side connected to the leading edge of the triangular flat plate, the flow goes along the blade surface and the suction flow Sent outside by being guided by the vertical vortex By being, Nakuse flow disturbances 11 on the blade suction surface 8 due to separation of the suction flow 12 near the blade leading edge 1b at the time of the high pressure loss, it is possible to reduce noise.

【0025】実施例2 以下、他の一実施例を図に基づいて説明する。図7はこ
の発明における軸流送風機の一実施例を示す斜視図で、
例えば3枚羽根形状のものであり、動作については、主
に1枚の羽根1について述べるが、他の羽根についても
同様である。図において、1は3次元形状を持つ軸流送
風機の羽根、2はこの羽根を取り付けるボス部、3は羽
根1の回転軸、4は回転方向を示す矢印、1bは羽根前
縁部、1dは羽根外周部、1cは羽根後縁部、7は羽根
前縁部1bのボス部よりに取り付けられる三角形平板で
ある。また図8は図7の平面図である。
Embodiment 2 Hereinafter, another embodiment will be described with reference to the drawings. FIG. 7 is a perspective view showing an embodiment of the axial blower according to the present invention.
For example, it has a three-blade shape, and its operation is mainly described for one blade 1, but the same applies to other blades. In the drawing, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion to which the blade is attached, 3 is a rotation axis of the blade 1, 4 is an arrow indicating a rotation direction, 1b is a blade front edge, and 1d is a blade front edge. An outer peripheral portion of the blade, 1c is a trailing edge portion of the blade, and 7 is a triangular flat plate attached to a boss portion of the leading edge portion 1b of the blade. FIG. 8 is a plan view of FIG.

【0026】図9は、回転軸3と直交する平面に羽根1
を投影した投影図である。図において、図8と同一符号
のものは同一のものを示す。1’は投影図における羽
根、1b’は投影図における羽根前縁部、1c’は投影
図における羽根後縁部、1d’は投影図における羽根外
周部である。図において、回転軸を原点Oとし、上記O
点と羽根前縁部1b’上の任意の点1bs’とを結ぶ直
線をX軸とした座標系において、直線O−1bs’を原
点Oを中心に回転方向にβ回転させたときのボス部側面
との交点1bb’と前記点1bs’を通るように、羽根
厚とほぼ同一でかつほぼ三角形した平板7’を、一辺7
b’がほぼボス部2’の円周に沿うようにし、他の一辺
7c’は羽根前縁部1b’のボス部よりに密着させ、回
転方向から羽根に一体になるように外挿し、接着材によ
り接着または溶着することにより羽根形状を形成してい
る。
FIG. 9 shows the blade 1 on a plane orthogonal to the rotation axis 3.
FIG. In the drawing, the same reference numerals as those in FIG. 8 indicate the same components. 1 'is a blade in the projection, 1b' is a blade leading edge in the projection, 1c 'is a blade trailing edge in the projection, and 1d' is a blade outer periphery in the projection. In the figure, the rotation axis is defined as the origin O,
In a coordinate system using a straight line connecting a point and an arbitrary point 1bs' on the blade leading edge 1b 'as an X axis, a boss portion when the straight line O-1bs' is rotated β around the origin O in the rotation direction. A flat plate 7 'having substantially the same thickness as that of the blade and having a substantially triangular shape is passed through the intersection 1bb' with the side surface and the point 1bs'.
b 'is made substantially along the circumference of the boss portion 2', and the other side 7c 'is brought into close contact with the boss portion of the blade front edge portion 1b'. The blade shape is formed by bonding or welding with a material.

【0027】図10は、図9の三角形平板7’と羽根前
縁部1b’付近を任意半径Rの円筒面で切断したY−Y
断面を、二次元平面に展開した拡大図である。図におい
て、1’は軸流送風機の羽根、7’は羽根前縁部1bの
ボス部寄りに外挿される三角形平板、7c’はこの三角
形平板7’と羽根前縁部1b’との接着面、7a’は羽
根前縁部1b’と三角形平板吸い込み側端部を示す。図
11は、三角形平板7を羽根前縁部1bに取り付け方法
の一例を示したものである。14は三角形平板の挿入方
向、15は3次元可動な取付冶具、1は羽根、2はボス
部、3は回転軸を示す。三角形平板7の取付方法は、ま
ず冶具15を回転軸に挿入し、三角形平板7を取り付け
る羽根前縁部1bの高さ、角度に合わせた後、三角形平
板7の羽根前縁部1bに密着させる部分7c凹部とボス
部側面と密着させる部分7b 平面部に接着剤を塗り、
冶具15を挿入方向14のように移動させることにより
取り付ける。
FIG. 10 is a cross-sectional view taken along the line YY of FIG.
It is the enlarged view which expanded the cross section in the two-dimensional plane. In the figure, 1 'is a blade of the axial blower, 7' is a triangular flat plate extrapolated near the boss of the blade front edge 1b, and 7c 'is an adhesion surface between the triangular flat plate 7' and the blade front edge 1b '. , 7a 'indicate the blade leading edge 1b' and the triangular flat plate suction side end. FIG. 11 shows an example of a method of attaching the triangular flat plate 7 to the blade leading edge 1b. Reference numeral 14 denotes an insertion direction of the triangular plate, 15 denotes a three-dimensionally movable mounting jig, 1 denotes a blade, 2 denotes a boss, and 3 denotes a rotation axis. The mounting method of the triangular flat plate 7 is as follows. First, the jig 15 is inserted into the rotating shaft, and the height and angle of the blade front edge 1b to which the triangular flat plate 7 is mounted are adjusted, and then the triangular flat plate 7 is brought into close contact with the blade front edge 1b. The adhesive is applied to the flat portion of the portion 7b which is brought into close contact with the recess of the portion 7c and the side surface of the boss portion,
The jig 15 is attached by moving it in the insertion direction 14.

【0028】以上のように羽根形状を形成することによ
り、高圧損時、図9のX−X断面を示す図12のように
三角形平板7の羽根前縁部1bにつながる一辺7aで圧
力面9から負圧面8への流れの回り込みにより発生する
安定した縦渦10により、流れは羽根面上に沿い、かつ
吸い込み流れ12がこの縦渦10に誘導されながら外部
へ送風される。これにより、従来の軸流送風機における
問題点として、図102に示したような、高圧損時にお
ける羽根前縁部1b付近の吸い込み流れ12の剥離によ
る羽根負圧面8上の流れ11の乱れを無くせ、低騒音化
を図ることができる。また、既存の軸流送風機を容易に
改良できる。
By forming the blade shape as described above, at the time of high pressure loss, as shown in FIG. 12, which shows a cross section taken along line X--X in FIG. Due to the stable vertical vortex 10 generated by the flow of the flow from the flow to the suction surface 8, the flow follows the blade surface, and the suction flow 12 is blown to the outside while being guided by the vertical vortex 10. Thus, as a problem in the conventional axial blower, as shown in FIG. 102, it is possible to eliminate the disturbance of the flow 11 on the blade negative pressure surface 8 due to the separation of the suction flow 12 near the blade leading edge 1b at the time of high pressure loss. In addition, noise can be reduced. In addition, the existing axial blower can be easily improved.

【0029】ここで、前記三角形平板7の一頂点が通る
羽根前縁部1b上の点1bsおよび前記直線O−1bs
を原点O中心に回転させ、ボス部2の側面との交点1b
bを求める時の回転角度βが、大きすぎたり、小さすぎ
ると逆に羽根に乱れを与えてしまい、騒音悪化してしま
う。従って、この羽根前縁部1b上の点1bsの位置お
よび回転角度βの最適範囲が存在する。図13は回転角
度β=一定の時例えば、約20〜30度の時、羽根前縁
部1b上の点1bsの位置を羽根外周部半径Rtに対す
る点1bsでの半径Rsの比率によって、騒音特性への
影響を実験的に求めたものである。このとき比騒音Ks
は、動作点によって変化するため、比騒音Ksが最小と
なる動作点での値を最小比騒音Ksminとしてグラフ
化している。ここで、比騒音Ksは次式のように定義さ
れる。Ks=SPL−10Log(Q・Ps 2.5 SPL:騒音特性(SOUND PRESSURE LEVEL)[dB
(A)] Q :風量[m 3 /min] Ps:静圧[mmAq] 図に示すように、羽根前縁部1b上の点1bsの位置で
の半径Rsは、羽根外周部半径Rtの0.4〜0.75倍の値
の間にあるとき、最小比騒音Ksminの値は小さく低
騒音である。また、図中Rs/Rt=0(Y軸上)は平
板を取り付けていない従来の軸流送風機の値を示すが、
従来の値に比べ、最大1[dB(A)]低騒音になっている
ことが分かる。
Here, a point 1bs on the blade leading edge 1b through which one vertex of the triangular plate 7 passes and the straight line O-1bs
Is rotated about the origin O, and the intersection 1b with the side surface of the boss 2
If the rotation angle β for obtaining b is too large or too small, the blades will be disturbed conversely, and the noise will be deteriorated. Therefore, there is an optimum range of the position of the point 1bs on the blade leading edge 1b and the rotation angle β. FIG. 13 shows that when the rotation angle β is constant, for example, when the angle is about 20 to 30 degrees, the position of the point 1bs on the blade leading edge 1b is determined by the ratio of the radius Rs at the point 1bs to the radius Rt of the blade outer peripheral portion. The effect on the water was determined experimentally. At this time, the specific noise Ks
Varies with the operating point, and the value at the operating point where the specific noise Ks is minimized is graphed as the minimum specific noise Ksmin. Here, the specific noise Ks is defined as the following equation. Ks = SPL-10 Log (Q · Ps 2.5 ) SPL: Noise characteristic (SOUND PRESSURE LEVEL) [dB
(A)] Q: Air volume [m 3 / min] Ps: Static pressure [mmAq] As shown in the figure, the radius Rs at the point 1bs on the blade front edge 1b is 0.4 of the blade outer radius Rt. When the value is between 0.75 and 0.75 times, the value of the minimum specific noise Ksmin is small and the noise is low. Also, in the figure, Rs / Rt = 0 (on the Y axis) indicates the value of the conventional axial flow fan with no flat plate attached,
It can be seen that the noise is at most 1 [dB (A)] lower than the conventional value.

【0030】図14は点1bsの位置を示す比率Rs/
Rt=一定の時、例えば0.6〜0.7の時、の図9に
おける回転角度βによる騒音特性への影響を実験的に求
めたものである。このとき比騒音Ksは動作点によって
変化するため比騒音Ksが最小となる動作点での値を最
小比騒音Ksminとしてグラフ化している。図に示す
ように、羽根前縁部1b上の点1bsと原点Oを結んだ
直線O−1bsを原点O中心にファン回転方向へ回転させ
るときの回転角度βは、10°〜40°の間にあると
き、最小比騒音Ksminの値は小さく低騒音である。
また、図中約ー10°付近の値は、平板を取り付けてい
ない従来の軸流送風機の値を示すが、従来の値に比べ、
最大1[dB(A)]低騒音になっていることが分かる。
FIG. 14 shows a ratio Rs /
The effect of the rotation angle β in FIG. 9 on noise characteristics when Rt = constant, for example, when 0.6 to 0.7, is obtained experimentally. At this time, since the specific noise Ks changes depending on the operating point, the value at the operating point where the specific noise Ks is minimum is graphed as the minimum specific noise Ksmin. As shown in the figure, the rotation angle β when rotating in the fan rotation direction around a straight line O-1bs connecting the point 1bs on the blade leading edge 1b and the origin O around the origin O is between 10 ° and 40 °. , The value of the minimum specific noise Ksmin is small and the noise is low.
Also, the value of about -10 ° around the figure shows the value of the conventional axial blower without the flat plate attached, but compared to the conventional value.
It can be seen that the maximum noise is 1 [dB (A)].

【0031】図15は1bsの位置の半径Rsと羽根外
周部半径Rtとの比率Rs/Rtと前記回転角度βの騒
音特性への影響を実験的に検討し、比騒音Ksが最小に
なる動作点での値をグラフ化した結果を示す。図15よ
り、0.4≦Rs/Rt≦0.75かつ10°≦β≦40°で
あれば、最小比騒音Ksminは十分小さく、低騒音で
ある。
FIG. 15 shows the effect of the ratio Rs / Rt of the radius Rs at the position of 1 bs and the radius Rt of the outer peripheral portion of the blade and the effect of the rotation angle β on the noise characteristics. The results of graphing the values at points are shown. From FIG. 15, if 0.4 ≦ Rs / Rt ≦ 0.75 and 10 ° ≦ β ≦ 40 °, the minimum specific noise Ksmin is sufficiently small and the noise is low.

【0032】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、および上記ボス部に対
向する羽根外周部から周が構成される羽根とを有する軸
流送風機の回転軸と直交する平面に軸流送風機を投影し
た投影図において、羽根前縁部に厚みが羽根厚とほぼ同
一で、かつほぼ三角形をした平板を一辺がボス部円周に
沿い、かつ回転軸を原点Oとし上記O点と任意半径にお
ける羽根前縁部上の点1bs’とを結ぶ直線をX軸とし
た座標系において、直線O−1bs’を原点Oを中心に
回転方向に角度β分回転させたときの半径Rbのボス部
との交点を1bb’を頂点とし、上記角度βを10゜〜
40゜とし、他の一辺は羽根外周部半径Rtの40〜7
5%の羽根前縁部上の点1bs’を通るような形状に
し、羽根前縁部のボス部寄りに密着させ、回転方向から
外挿するように羽根に一体に形成したものであるので、
高圧損時、三角形平板7の羽根前縁部1bにつながる一
辺7aで圧力面から負圧面への流れの回り込みにより発
生する縦渦により、流れは羽根面上に沿い、かつ吸い込
み流れがこの縦渦に誘導されながら外部へ送風されるこ
とにより、高圧損時における羽根前縁部1b付近の吸い
込み流れ12の剥離による羽根負圧面8上の流れの11
の乱れを無くせ、低騒音化を図ることができる。
This axial flow blower has a boss mounted with blades and rotating, a leading edge of the blade facing the rotating direction, a trailing edge of the blade facing the direction opposite to the rotating direction, and a blade facing the boss. In a projected view of the axial blower projected on a plane orthogonal to the rotation axis of the axial blower having a blade whose circumference is formed from the outer peripheral portion, the thickness at the blade front edge is substantially the same as the blade thickness, and substantially triangular In a coordinate system in which one side is along the circumference of the boss portion and the rotation axis is the origin O, and the straight line connecting the point O and the point 1bs' on the leading edge of the blade at an arbitrary radius is the X axis, When O-1bs 'is rotated by an angle β in the rotation direction around the origin O, the intersection with the boss portion of radius Rb is 1bb' as a vertex, and the angle β is 10 ° ~
40 °, and the other side is 40 to 7 of the blade outer radius Rt.
5% of the blade front edge is formed so as to pass through the point 1bs' on the blade front edge, closely contacted with the boss portion of the blade front edge, and integrally formed with the blade so as to be extrapolated from the rotation direction.
At the time of high pressure loss, the vertical vortex generated by the flow of the flow from the pressure surface to the suction surface at one side 7a connected to the blade leading edge 1b of the triangular flat plate 7 causes the flow along the blade surface, and the suction flow Of the flow on the blade negative pressure surface 8 due to the separation of the suction flow 12 near the blade leading edge 1b at the time of a high pressure loss
Noise can be eliminated and noise can be reduced.

【0033】実施例3 以下、他の一実施例を図に基づいて説明する。図16は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す矢印、1bは
羽根前縁部、1dは羽根外周部、1cは羽根後縁部を示
す。
Embodiment 3 Hereinafter, another embodiment will be described with reference to the drawings. FIG. 16 is a perspective view showing one embodiment of the axial flow blower according to the present invention, which has, for example, a three-blade shape. The operation is mainly described for one blade 1, but the same applies to other blades. It is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion for attaching the blade,
Reference numeral 3 denotes a rotation axis of the blade 1, 4 denotes an arrow indicating a rotation direction, 1b denotes a blade front edge, 1d denotes a blade outer peripheral portion, and 1c denotes a blade rear edge.

【0034】また、図17は、図16の平面図である。
図18は、回転軸3と直交する平面に羽根1を投影した
投影図である。図において、図17と同一符号のものは
同一のものを示す。1’は投影図における羽根、1b’
は投影図における羽根前縁部、1c’は投影図における
羽根後縁部、1d’は投影図における羽根外周部であ
る。図において、回転軸を原点Oとし、上記O点と羽根
前縁部1b’上の任意の点1bs’とを結ぶ直線をX軸
とした座標系において、直線O−1bs’を原点Oを中
心に回転方向に角度β回転させたときのボス部側面との
交点1bb’と前記点1bs’を通る直線1bb’−1
bs’が羽根前縁部1b’となるように、羽根前縁部1
b’のボス部2寄りの部分を軸流送風機の回転方向に延
長したような羽根形状を形成している。
FIG. 17 is a plan view of FIG.
FIG. 18 is a projection view in which the blade 1 is projected on a plane orthogonal to the rotation axis 3. In the figure, the same reference numerals as those in FIG. 17 indicate the same components. 1 'is the blade in the projection, 1b'
Is the leading edge of the blade in the projection, 1c 'is the trailing edge of the blade in the projection, and 1d' is the outer periphery of the blade in the projection. In the figure, in a coordinate system in which a rotation axis is an origin O and a straight line connecting the point O and an arbitrary point 1bs' on the blade leading edge 1b 'is an X axis, a straight line O-1bs' is centered on the origin O. 1bb'-1 passing through the point of intersection 1bb 'with the side surface of the boss when rotated by an angle β in the rotation direction.
bs 'is the blade leading edge 1b' so that the blade leading edge 1
A blade shape is formed such that a portion of b ′ near the boss portion 2 is extended in the rotation direction of the axial blower.

【0035】このように形成することにより、高圧損
時、図18の羽根前縁部1b’の一部である1bs’−
1bb’のX−X断面である図19において、前記1b
s−1bbの圧力面9から負圧面8への流れの回り込み
により発生する安定した縦渦10により、流れは羽根面
上に沿い、かつ吸い込み流れ12がこの縦渦10に誘導
されながら外部へ送風される。これにより、従来の軸流
送風機における問題点として、図102に示したよう
な、高圧損時における羽根前縁部1b付近の吸い込み流
れ12の剥離による羽根負圧面8上の流れ11の乱れを
無くせ、低騒音化を図ることができる。
By forming as described above, at the time of high pressure loss, 1bs'- which is a part of the blade leading edge portion 1b 'of FIG.
In FIG. 19 which is an XX section of 1bb ′,
Due to the stable vertical vortex 10 generated by the flow of the flow from the pressure surface 9 to the suction surface 8 of s-1bb, the flow is on the blade surface, and the suction flow 12 is blown to the outside while being guided by the vertical vortex 10. Is done. Thus, as a problem in the conventional axial blower, as shown in FIG. 102, it is possible to eliminate the disturbance of the flow 11 on the blade negative pressure surface 8 due to the separation of the suction flow 12 near the blade leading edge 1b at the time of high pressure loss. In addition, noise can be reduced.

【0036】また、実施例2のように別部品を取り付け
ることにより羽根形状を形成するのと違い、羽根を一体
成形で製作することから、つなぎ目での凹部や接着剤に
よる凸部による流れの乱れの発生を防げ、低騒音化を図
ることができる。ここで、羽根前縁部1bのボス部2よ
りの部分1bs’−1bb’を回転方向に延長する際の
点1bsの位置および前記直線O−1bsを原点O中心
に回転させ、ボス部2の側面との交点1bbを決定する
時の回転角度βが、大きすぎたり、小さすぎると逆に羽
根に乱れを与えてしまい、騒音悪化してしまう。従っ
て、この羽根前縁部1b上の点1bsの位置および回転
角度βの最適範囲が存在する。図20は回転角度β=一
定の時の、羽根前縁部1b上の点1bsの位置を羽根外
周部半径Rtに対する点1bsでの半径Rsの比率によ
って、騒音特性への影響を実験的に求めたものである。
このとき比騒音Ksは、動作点によって変化するため、
比騒音Ksが最小となる動作点での値を最小比騒音Ks
minとしてグラフ化している。ここで、比騒音Ksは
次式のように定義される。Ks=SPL−10Log(Q・Ps 2.5 SPL:騒音特性(SOUND PRESSURE LEVEL)[dB
(A)] Q :風量[m 3 /min] Ps:静圧[mmAq]
Unlike the case where the blade shape is formed by attaching a separate part as in the second embodiment, the blade is manufactured by integral molding, so that the flow is disturbed by the concave portion at the joint or the convex portion due to the adhesive. Can be prevented and noise can be reduced. Here, the position of the point 1bs when extending the portion 1bs'-1bb 'of the blade front edge portion 1b from the boss portion 2 in the rotation direction and the straight line O-1bs are rotated about the origin O, and the boss portion 2 is rotated. If the rotation angle β when determining the intersection 1bb with the side surface is too large or too small, the blades will be disturbed conversely, and the noise will be deteriorated. Therefore, there is an optimum range of the position of the point 1bs on the blade leading edge 1b and the rotation angle β. FIG. 20 shows the position of the point 1bs on the leading edge 1b of the blade when the rotation angle β is constant and the effect on the noise characteristics is experimentally obtained by the ratio of the radius Rs at the point 1bs to the radius Rt of the outer peripheral portion of the blade. It is a thing.
At this time, since the specific noise Ks changes depending on the operating point,
The value at the operating point where the specific noise Ks is minimum is defined as the minimum specific noise Ks.
Graphed as min. Here, the specific noise Ks is defined as the following equation. Ks = SPL-10 Log (Q · Ps 2.5 ) SPL: Noise characteristic (SOUND PRESSURE LEVEL) [dB
(A)] Q: Air volume [m 3 / min] Ps: Static pressure [mmAq]

【0037】図に示すように、羽根前縁部1b上の点1
bsの位置での半径Rsは、羽根外周部半径Rtの0.4
〜0.75倍の値の間にあるとき、最小比騒音Ksminの
値は小さく低騒音である。また、図中Rs/Rt=0
(Y軸上)は平板を取り付けていない従来の軸流送風機
の値を示すが、従来の値に比べ、最大2[dB(A)]低騒
音になっていることが分かる。
As shown in the figure, the point 1 on the blade leading edge 1b
The radius Rs at the position of bs is 0.4 of the blade outer radius Rt.
When the value is between 0.75 and 0.75 times, the value of the minimum specific noise Ksmin is small and the noise is low. Also, Rs / Rt = 0 in FIG.
(On the Y-axis) shows the value of the conventional axial blower without a flat plate attached. It can be seen that the noise is up to 2 [dB (A)] lower than the conventional value.

【0038】図21は点1bsの位置を示す比率Rs/
Rt=一定の時の、図18における回転角度βによる騒
音特性への影響を実験的に求めたものである。このとき
比騒音Ksは動作点によって変化するため比騒音Ksが
最小となる動作点での値を最小比騒音Ksminとして
グラフ化している。図に示すように、羽根前縁部1b上
の点1bsと原点Oを結んだ直線O−1bsを原点O中
心にファン回転方向へ回転させるときの回転角度βは、1
0°〜40°の間にあるとき、最小比騒音Ksminの
値は小さく低騒音である。また、図中約ー10°付近の
値は、平板を取り付けていない従来の軸流送風機の値を
示すが、従来の値に比べ、最大2[dB(A)]低騒音にな
っていることが分かる。
FIG. 21 shows the ratio Rs / indicating the position of the point 1bs.
The effect of the rotation angle β in FIG. 18 on the noise characteristics when Rt = constant was determined experimentally. At this time, since the specific noise Ks changes depending on the operating point, the value at the operating point where the specific noise Ks is minimum is graphed as the minimum specific noise Ksmin. As shown in the figure, the rotation angle β when rotating in the fan rotation direction about a straight line O-1bs connecting the point 1bs on the blade leading edge 1b and the origin O is the center of the origin O.
When it is between 0 ° and 40 °, the value of the minimum specific noise Ksmin is small and the noise is low. The value around -10 ° in the figure indicates the value of the conventional axial blower without the flat plate attached, but the noise is up to 2 [dB (A)] lower than the conventional value. I understand.

【0039】図22は1bsの位置の半径Rsと羽根外
周部半径Rtとの比率Rs/Rtと前記回転角度βの騒
音特性への影響を実験的に検討し、比騒音Ksが最小に
なる動作点での値をグラフ化した結果を示す。図22よ
り、0.4≦Rs/Rt≦0.75かつ10°≦β≦40°で
あれば、最小比騒音Ksminは十分小さく、低騒音で
ある。
FIG. 22 experimentally examines the effects of the ratio Rs / Rt of the radius Rs at the position of 1 bs and the radius Rt of the outer peripheral portion of the blade and the rotation angle β on the noise characteristics. The results of graphing the values at points are shown. As shown in FIG. 22, when 0.4 ≦ Rs / Rt ≦ 0.75 and 10 ° ≦ β ≦ 40 °, the minimum specific noise Ksmin is sufficiently small and the noise is low.

【0040】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、およびボス部に対向す
る羽根外周部から周が構成される羽根とを有する軸流送
風機の回転軸と直交する平面に軸流送風機を投影した投
影図において、回転軸Oと羽根前縁部上の羽根外周部半
径の40〜75%の半径である点1bs’とを結ぶ直線
O−1bs’を原点Oを中心に回転方向に10〜40°
の間である角度分回転させ、この直線O−1bs’とボ
ス部半径であるボス部側面との交点1bb’と前記1b
s’を直線で結び、羽根前縁部のボス部寄りの部分を回
転方向に延長させた羽根形状を形成したものであるの
で、高圧損時、羽根前縁部1b’の一部であるX−X断
面において、圧力面9から負圧面8への流れの回り込み
により発生する縦渦により、流れは羽根面上に沿い、か
つ吸い込み流れがこの縦渦に誘導されながら外部へ送風
されることにより、高圧損時における羽根前縁部1b付
近の吸い込み流れ12の剥離による羽根負圧面8上の流
れ11の乱れを無くせ、低騒音化を図ることができる。
This axial flow blower has a boss mounted with a blade and rotating, a leading edge of the blade facing the rotating direction, a trailing edge of the blade facing the direction opposite to the rotating direction, and a blade outer periphery facing the boss. In the projection view of projecting the axial blower on a plane orthogonal to the rotation axis of the axial blower having a blade having a circumference constituted by a portion, the rotation axis O and the blade outer peripheral radius on the blade front edge portion are 40 to 75. A straight line O-1bs 'connecting the point 1bs' which is a radius of 10% in the rotational direction around the origin O is 10 to 40 [deg.].
And an intersection 1bb 'between the straight line O-1bs' and the boss part side surface, which is the boss part radius, and the above 1b
s 'is connected by a straight line to form a blade shape in which the portion of the blade front edge portion near the boss is extended in the rotation direction, so that X is a part of the blade front edge portion 1b' when high pressure loss occurs. In the -X cross section, the vertical vortex generated by the flow of the flow from the pressure surface 9 to the suction surface 8 causes the flow to flow along the blade surface, and the suction flow to the outside while being guided by the vertical vortex. In addition, the disturbance of the flow 11 on the blade negative pressure surface 8 due to the separation of the suction flow 12 near the blade leading edge 1b at the time of high pressure loss can be eliminated, and noise can be reduced.

【0041】実施例4 以下、他の一実施例を図に基づいて説明する。図23は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す矢印、1bは
羽根前縁部、1dは羽根外周部、1cは羽根後縁部であ
る。
Embodiment 4 Hereinafter, another embodiment will be described with reference to the drawings. FIG. 23 is a perspective view showing an embodiment of an axial blower according to the present invention, which has, for example, a three-blade shape. The operation is mainly described for one blade 1, but the same applies to other blades. It is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion for attaching the blade,
Reference numeral 3 denotes a rotation axis of the blade 1, 4 denotes an arrow indicating a rotation direction, 1b denotes a blade front edge, 1d denotes a blade outer peripheral portion, and 1c denotes a blade rear edge.

【0042】図24は、回転軸3と直交する平面に羽根
1を投影した投影図である。図において、図23と同一
符号のものは同一のものを示す。1I’は投影図におけ
る羽根、1bI’は投影図における羽根前縁部、1cI’
は投影図における羽根後縁部、1I’は投影図における
羽根外周部である。また、添字II、IIIは他の羽根の同
一のものを示す。図において、回転軸を原点Oとし、上
記O点と各羽根で異なる羽根外周部半径Rtの40〜7
5%の半径における羽根前縁部1b’上の点1bs’と
を結ぶ直線をX軸とした座標系において、直線O−1b
s’を原点Oを中心に回転方向に角度β回転させたとき
のボス部側面との交点1bb’と前記点1bs’を通る
直線1bb’−1bs’が羽根前縁部1b’となるよう
に、各羽根の羽根前縁部1b’のボス部2寄りの部分を
軸流送風機の回転方向に延長したような羽根形状を形成
している。このように形成することにより、高圧損時、
図24の羽根前縁部1b’の一部である1bs’−1b
b’のA−A断面である図25において、前記1bs−
1bbの圧力面9から負圧面8への流れの回り込みによ
り発生する安定した縦渦10により、流れは羽根面上に
沿い、かつ吸い込み流れ12がこの縦渦10に誘導され
ながら外部へ送風される。これにより、従来の軸流送風
機における問題点として、図101に示したような、高
圧損時における羽根前縁部1b付近の吸い込み流れ12
の剥離による羽根負圧面8上の流れ11の乱れを無く
せ、低騒音化を図ることができる。
FIG. 24 is a projection view in which the blade 1 is projected on a plane orthogonal to the rotation axis 3. In the figure, the same reference numerals as those in FIG. 1I 'is the blade in the projection, 1bI' is the leading edge of the blade in the projection, 1cI '
Denotes a trailing edge of the blade in the projection, and 1I ′ denotes an outer periphery of the blade in the projection. The subscripts II and III indicate the same ones of the other blades. In the figure, the rotation axis is the origin O, and the point O and the blade outer peripheral portion radius Rt that is different for each blade are 40 to 7.
In a coordinate system using a straight line connecting the point 1bs 'on the blade leading edge 1b' at a radius of 5% as the X axis, a straight line O-1b
A straight line 1bb'-1bs' passing through the point 1bs' and an intersection 1bb 'with the side surface of the boss when the s' is rotated by an angle β in the rotation direction about the origin O is the blade leading edge 1b'. The blade shape is such that the portion of the blade front edge 1b 'of each blade near the boss 2 is extended in the rotation direction of the axial blower. By forming in this way, at the time of high pressure loss,
1bs'-1b which is a part of the blade leading edge 1b 'of FIG.
In FIG. 25 which is an AA cross section of b ′, the 1bs-
Due to the stable vertical vortex 10 generated by the flow of 1bb from the pressure surface 9 to the suction surface 8, the flow flows along the blade surface and the suction flow 12 is blown to the outside while being guided by the vertical vortex 10. . Accordingly, as a problem in the conventional axial blower, as shown in FIG. 101, the suction flow 12 near the blade leading edge 1b at the time of high pressure loss
The turbulence of the flow 11 on the blade negative pressure surface 8 due to the separation of the blades can be eliminated, and the noise can be reduced.

【0043】また、各羽根の羽根前縁部1bI’、1bI
I’、1bIII’のボス部より部分が異なるため、図26
のように、従来図中実線で示した羽根枚数Zと回転数N
[r.p.m]により決まる回転音およびこの発生周波数
(NZ/60[Hz])の正数倍の音によるピーク音が破線
のようになくなり、特定周波数による音を低減できる。
これにより、製品で問題になる異常音を回避できる。
The leading edge 1bI ', 1bI of each blade
Since the portions are different from the boss portions of I ′ and 1bIII ′, FIG.
, The number of blades Z and the number of rotations N indicated by a solid line in the prior art.
The rotation sound determined by [rpm] and the peak sound due to a sound that is a positive multiple of this generation frequency (NZ / 60 [Hz]) disappear as shown by the broken line, and the sound due to the specific frequency can be reduced.
As a result, abnormal sounds that are problematic in products can be avoided.

【0044】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、およびボス部に対向す
る羽根外周部から周が構成される羽根とを有する軸流送
風機の回転軸と直交する平面に軸流送風機を投影した投
影図において、回転軸Oと羽根前縁部上の羽根外周部半
径の40〜75%の半径である点1bs’とを結ぶ直線
O−1bs’を原点Oを中心に回転方向に10〜40°
の間である角度分回転させ、この直線O−1bs’とボ
ス部半径であるボス部側面との交点1bb’を、範囲で
各羽根ごとに変えて羽根形状を形成したものであるの
で、高圧損時、羽根前縁部1b’の一部である1bs’
−1bb’の圧力面9から負圧面8への流れの回り込み
により発生する安定した縦渦10により、流れは羽根面
上に沿い、かつ吸い込み流れ12がこの縦渦10に誘導
されながら外部へ送風されことにより、高圧損時におけ
る羽根前縁部1b付近の吸い込み流れ12の剥離による
羽根負圧面8上の流れ11の乱れを無くせ、低騒音化を
図ることができる。また、各羽根の羽根前縁部のボス部
より部分が異なるため、従来の軸流送風機における羽根
枚数Zと回転数N[r.p.m]により決まる回転音および
この発生周波数(NZ/60[Hz])の正数倍の音による
ピーク音がなくなり、特定周波数による音を低減でき
る。これにより、製品で問題になる異常音を回避でき
る。
This axial flow blower has a boss mounted on the blade and rotating, a leading edge of the blade facing in the rotating direction, a trailing edge of the blade facing in the direction opposite to the rotating direction, and an outer periphery of the blade facing the boss. In the projection view of projecting the axial blower on a plane orthogonal to the rotation axis of the axial blower having a blade having a circumference constituted by a portion, the rotation axis O and the blade outer peripheral radius on the blade front edge portion are 40 to 75. A straight line O-1bs 'connecting the point 1bs' which is a radius of 10% to 40.degree.
Between the straight line O-1bs' and the boss portion side surface, which is the boss portion radius, is changed for each blade in the range, thereby forming a blade shape. At the time of damage, 1bs 'which is a part of the blade leading edge 1b'
Due to the stable vertical vortex 10 generated by the flow of -1bb 'from the pressure surface 9 to the suction surface 8, the flow flows along the blade surface, and the suction flow 12 is blown to the outside while being guided by the vertical vortex 10. By doing so, the disturbance of the flow 11 on the blade negative pressure surface 8 due to the separation of the suction flow 12 near the blade leading edge 1b at the time of high pressure loss can be eliminated, and noise can be reduced. In addition, since the portion of each blade is different from that of the boss at the blade front edge, the rotation noise determined by the number of blades Z and the rotation speed N [rpm] in the conventional axial flow blower and the frequency of generation thereof (NZ / 60 [Hz]) The peak sound due to a sound that is a positive multiple of is eliminated, and the sound due to the specific frequency can be reduced. As a result, abnormal sounds that are problematic in products can be avoided.

【0045】実施例5 以下、他の一実施例を図に基づいて説明する。図27は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す矢印、1bは
羽根前縁部、1dは羽根外周部、1cは羽根後縁部であ
る。図28は図27の正面図である。
Embodiment 5 Hereinafter, another embodiment will be described with reference to the drawings. FIG. 27 is a perspective view showing an embodiment of an axial blower according to the present invention, which has, for example, a three-blade shape. The operation is mainly described for one blade 1, but the same applies to other blades. It is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion for attaching the blade,
Reference numeral 3 denotes a rotation axis of the blade 1, 4 denotes an arrow indicating a rotation direction, 1b denotes a blade front edge, 1d denotes a blade outer peripheral portion, and 1c denotes a blade rear edge. FIG. 28 is a front view of FIG.

【0046】図29は、回転軸3と直交する平面に羽根
1を投影した投影図である。図において、図28と同一
符号のものは同一のものを示す。1’は投影図における
羽根、1b’は投影図における羽根前縁部、1c’は投
影図における羽根後縁部、1d’は投影図における羽根
外周部である。投影図において、回転軸Oと羽根前縁部
上の任意の点1bs’とを結ぶ直線O−1bs’を原点
Oを中心に回転方向に回転させたときの、直線O−1b
s’とボス部半径であるボス部側面との交点1bb’と
前記点1bs’における接線を回転方向に対し、凹とな
るような任意曲線で結び羽根前縁部とするように羽根形
状を形成している。
FIG. 29 is a projection view in which the blade 1 is projected on a plane orthogonal to the rotation axis 3. In the figure, the same components as those in FIG. 28 indicate the same components. 1 'is a blade in the projection, 1b' is a blade leading edge in the projection, 1c 'is a blade trailing edge in the projection, and 1d' is a blade outer periphery in the projection. In the projected view, a straight line O-1b 'is obtained by rotating a straight line O-1bs' connecting the rotation axis O and an arbitrary point 1bs' on the leading edge of the blade around the origin O in the rotation direction.
The blade shape is formed such that a tangent at an intersection 1bb 'between the s' and the boss portion side surface, which is the boss portion radius, and the point 1bs' is a knotted blade front edge with an arbitrary curve that becomes concave in the rotation direction. doing.

【0047】このように形成することにより、高圧損
時、図29のX−X断面を示す図30のように、羽根前
縁部1bのボス部寄りの部分の羽根の圧力面9から負圧
面8への流れの回り込みにより発生する安定した縦渦1
0により、流れは羽根面上に沿い、かつ吸い込み流れ1
2が、この縦渦10に誘導されながら図31のように外
部へ送風される。これにより、従来の軸流送風機におけ
る問題点として、図102に示したような、高圧損時に
おける羽根前縁部1b付近の吸い込み流れ12の剥離に
よる羽根負圧面8上の流れ11の乱れを無くせ、低騒音
化を図ることができる。図32は、従来の軸流送風機と
上記第5の発明の一実施例による軸流送風機との流量係
数φに対する圧力係数ψの関係および比騒音Ks[dB
(A)]を実験的に求めた特性図である。図中黒丸、黒四
角は従来の軸流送風機の特性、最小比騒音を、×、□は
この発明の一実施例における軸流送風機の特性、最小比
騒音を示す。この特性図からわかるように、従来に比
べ、動作領域が低風量側まで延びかつ全体的に高静圧化
が図れている。一方、比騒音Ksは最大で2.5[dB
(A)]の低減が図れ低騒音である。
By forming in this way, at the time of high-pressure loss, as shown in FIG. 30 showing a cross section taken along line XX of FIG. Stable longitudinal vortex 1 generated by the flow wrap around 8
0, the flow is on the blade surface and the suction flow 1
2 is blown to the outside as shown in FIG. Thus, as a problem in the conventional axial blower, as shown in FIG. 102, it is possible to eliminate the disturbance of the flow 11 on the blade negative pressure surface 8 due to the separation of the suction flow 12 near the blade leading edge 1b at the time of high pressure loss. In addition, noise can be reduced. FIG. 32 shows the relationship between the flow coefficient φ and the pressure coefficient ψ and the specific noise Ks [dB] between the conventional axial fan and the axial fan according to the fifth embodiment of the present invention.
(A)] is a characteristic diagram obtained experimentally. In the figure, black circles and black squares show the characteristics and minimum specific noise of the conventional axial fan, and x and □ show the characteristics and minimum specific noise of the axial fan in one embodiment of the present invention. As can be seen from this characteristic diagram, the operating region extends to the low air volume side and higher static pressure is achieved as a whole as compared with the related art. On the other hand, the specific noise Ks is 2.5 [dB] at the maximum.
(A)] and low noise.

【0048】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、およびボス部に対向す
る羽根外周部から周が構成される羽根とを有する軸流送
風機の回転軸と直交する平面に軸流送風機を投影した投
影図において、回転軸Oと羽根前縁部上の任意の点1b
s’とを結ぶ直線O−1bs’を原点Oを中心に回転方
向に回転させたときの、直線O−1bs’とボス部半径
であるボス部側面との交点1bb’と前記点1bs’に
おける接線を回転方向に対し、凹となるような任意曲線
で結び羽根前縁部とするように羽根形状を形成したもの
であるので、高圧損時、羽根前縁部のボス部寄りの部分
の羽根の圧力面9から負圧面8への流れの回り込みによ
り発生する縦渦により、流れは羽根面上に沿い、かつ吸
い込み流れが、この縦渦に誘導されながら外部へ送風さ
れることにより、高圧損時における羽根前縁部1b付近
の吸い込み流れの剥離による羽根負圧面上の流れの乱れ
を無くせ、低騒音化を図ることができる。
This axial flow blower has a boss portion to which a blade is attached and which rotates, a leading edge portion of the blade facing in the rotating direction, a trailing edge portion of the blade facing in the direction opposite to the rotating direction, and an outer periphery of the blade facing the boss portion. In the projection view of the axial blower projected on a plane orthogonal to the rotation axis of the axial blower having a blade having a circumference formed from a portion, the rotation axis O and an arbitrary point 1b on the blade front edge are shown.
When the straight line O-1bs' connecting the s' is rotated in the rotation direction around the origin O, the intersection 1bb 'between the straight line O-1bs' and the boss part side surface which is the boss part radius and the point 1bs' Since the blade shape is formed so that the tangent line becomes the knotted blade front edge with an arbitrary curve that becomes concave with respect to the rotation direction, the blade near the boss portion of the blade front edge at high pressure loss The vertical vortex generated by the flow of the flow from the pressure surface 9 to the suction surface 8 causes the flow to flow along the blade surface, and the suction flow is blown to the outside while being guided by the vertical vortex. The disturbance of the flow on the blade negative pressure surface due to the separation of the suction flow near the blade front edge 1b at the time can be eliminated, and the noise can be reduced.

【0049】実施例6 以下、他の一実施例を図に基づいて説明する。図33は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す矢印、1bは
羽根前縁部、1dは羽根外周部、1cは羽根後縁部であ
る。図34は図33の正面図である。
Embodiment 6 Hereinafter, another embodiment will be described with reference to the drawings. FIG. 33 is a perspective view showing one embodiment of the axial flow blower according to the present invention, which has, for example, a three-blade shape. The operation is mainly described for one blade 1, but the same applies to other blades. It is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion for attaching the blade,
Reference numeral 3 denotes a rotation axis of the blade 1, 4 denotes an arrow indicating a rotation direction, 1b denotes a blade front edge, 1d denotes a blade outer peripheral portion, and 1c denotes a blade rear edge. FIG. 34 is a front view of FIG.

【0050】図35は、回転軸3と直交する平面に羽根
1を投影した投影図である。図において、図34と同一
符号のものは同一のものを示す。1’は投影図における
羽根、1b’は投影図における羽根前縁部、1c’は投
影図における羽根後縁部、1d’は投影図における羽根
外周部である。図において、回転軸を原点Oとし、上記
O点と羽根前縁部1b’上の任意の点1bs’とを結ぶ
直線をX軸とした座標系において、直線O−1bs’を
原点Oを中心に回転方向にβ回転させたときのボス部側
面との交点1bb’と前記点1bs’における接線を回
転方向に対し、凹となるような任意曲線で結び羽根前縁
部1b’とするように結んだ羽根形状を形成している。
FIG. 35 is a projection view in which the blade 1 is projected on a plane orthogonal to the rotation axis 3. In the figure, the same reference numerals as those in FIG. 34 denote the same components. 1 'is a blade in the projection, 1b' is a blade leading edge in the projection, 1c 'is a blade trailing edge in the projection, and 1d' is a blade outer periphery in the projection. In the figure, in a coordinate system in which a rotation axis is an origin O and a straight line connecting the point O and an arbitrary point 1bs' on the blade leading edge 1b 'is an X axis, a straight line O-1bs' is centered on the origin O. The tangent at the point of intersection 1bb 'with the side surface of the boss when rotated β in the rotational direction and the tangent at the point 1bs' is formed as a knotting blade leading edge 1b' with an arbitrary curve that is concave with respect to the rotational direction. A tied blade shape is formed.

【0051】このように形成することにより、高圧損
時、図35の羽根前縁部1b’の一部である1bs’−
1bb’のX−X断面である図36における前記1bs
−1bbの圧力面9から負圧面8への流れの回り込みに
より発生する安定した縦渦10により、流れは羽根面上
に沿い、かつ吸い込み流れ12がこの縦渦10に誘導さ
れながら外部へ送風される。これにより、従来の軸流送
風機における問題点として、図102に示したような、
高圧損時における羽根前縁部1b付近の吸い込み流れ1
2の剥離による羽根負圧面8上の流れの乱れを無くせ、
低騒音化を図ることができる。
By forming as described above, at the time of high-pressure loss, 1bs'- which is a part of the blade leading edge portion 1b 'in FIG.
1bb ′ in FIG. 36, which is an XX cross section of 1bb ′.
Due to the stable vertical vortex 10 generated by the flow of the -1bb from the pressure surface 9 to the suction surface 8, the flow is blown to the outside while the suction flow 12 is guided by the vertical vortex 10 along the blade surface. You. Thereby, as a problem in the conventional axial blower, as shown in FIG.
Suction flow 1 near blade leading edge 1b at high pressure loss
2. Disturbing the flow on the blade negative pressure surface 8 due to the separation of
Noise can be reduced.

【0052】ここで、羽根前縁部1bのボス部2よりの
部分1bs’−1bb’を回転方向に延長する際の点1
bsの位置および前記直線O−1bsを原点O中心に回
転させ、ボス部2の側面との交点1bbを決定する時の
回転角度βが、大きすぎたり、小さすぎると逆に羽根に
乱れを与えてしまい、騒音悪化してしまう。従って、こ
の羽根前縁部1b上の点1bsの位置および回転角度β
の最適範囲が存在する。図37は回転角度β=一定の時
の、羽根前縁部1b上の点1bsの位置を羽根外周部半
径Rtに対する点1bsでの半径Rsの比率によって、
騒音特性への影響を実験的に求めたものである。このと
き比騒音Ksは、動作点によって変化するため、比騒音
Ksが最小となる動作点での値を最小比騒音Ksmin
としてグラフ化している。ここで、比騒音Ksは次式の
ように定義される。Ks=SPL−10Log(Q・Ps 2.5 SPL:騒音特性(SOUND PRESSURE LEVEL)[dB
(A)] Q :風量[m 3 /min]
Here, when extending the portion 1bs'-1bb 'of the blade front edge portion 1b from the boss portion 2 in the rotation direction, point 1
bs and the straight line O-1bs are rotated about the origin O, and if the rotation angle β when determining the intersection 1bb with the side surface of the boss portion 2 is too large or too small, the blade is disturbed conversely. It will make noise worse. Accordingly, the position of the point 1bs on the blade leading edge 1b and the rotation angle β
There is an optimal range of FIG. 37 shows the position of the point 1bs on the blade leading edge 1b when the rotation angle β = constant by the ratio of the radius Rs at the point 1bs to the blade outer radius Rt.
The effect on noise characteristics was determined experimentally. At this time, since the specific noise Ks changes depending on the operating point, the value at the operating point where the specific noise Ks is minimized is set to the minimum specific noise Ksmin.
As a graph. Here, the specific noise Ks is defined as the following equation. Ks = SPL-10 Log (Q · Ps 2.5 ) SPL: Noise characteristic (SOUND PRESSURE LEVEL) [dB
(A)] Q: Air volume [m 3 / min]

【0053】Ps:静圧[mmAq] 図に示すように、羽根前縁部1b上の点1bsの位置で
の半径Rsは、羽根外周部半径Rtの0.4〜0.75倍の値
の間にあるとき、最小比騒音Ksminの値は小さく低
騒音である。また、図中Rs/Rt=0(Y軸上)は従
来の軸流送風機の値を示す。この結果、従来の値に比
べ、最大2[dB(A)]低騒音になっていることが分か
る。図38は点1bsの位置を示す比率Rs/Rt=一
定の時の、図35における回転角度βによる騒音特性へ
の影響を実験的に求めたものである。このとき比騒音K
sは動作点によって変化するため比騒音Ksが最小とな
る動作点での値を最小比騒音Ksminとしてグラフ化
している。
Ps: Static pressure [mmAq] As shown in the figure, when the radius Rs at the point 1bs on the blade leading edge 1b is between 0.4 and 0.75 times the blade outer radius Rt. , The value of the minimum specific noise Ksmin is small and the noise is low. In the figure, Rs / Rt = 0 (on the Y axis) indicates the value of the conventional axial blower. As a result, it can be seen that the maximum noise is 2 [dB (A)] lower than the conventional value. FIG. 38 shows experimentally obtained effects of the rotation angle β in FIG. 35 on noise characteristics when the ratio Rs / Rt indicating the position of the point 1bs is constant. At this time, the specific noise K
Since s varies depending on the operating point, the value at the operating point where the specific noise Ks is minimized is graphed as the minimum specific noise Ksmin.

【0054】図に示すように、羽根前縁部1b上の点1
bsと原点Oを結んだ直線O−1bsを原点O中心にファ
ン回転方向へ回転させるときの回転角度βは、10°〜
40°の間にあるとき、最小比騒音Ksminの値は小
さく低騒音である。また、図中約ー10°付近の値は、
従来の軸流送風機の値を示すが、本発明による軸流送風
機は従来に比べ、最大2[dB(A)]低騒音になっている
ことが分かる。図39は羽根前縁部上の点1bsの位置
の半径Rsと羽根外周部半径Rtとの比率Rs/Rtと
前記回転角度βの騒音特性への影響を実験的に検討し、
比騒音Ksが最小になる動作点での値をグラフ化した結
果を示す。図39より、0.4≦Rs/Rt≦0.75かつ1
0°≦β≦40°であれば、最小比騒音Ksminは十
分小さく、低騒音である。
As shown in the figure, the point 1 on the blade leading edge 1b
The rotation angle β when rotating the straight line O-1bs connecting bs and the origin O in the fan rotation direction around the origin O is 10 ° to
When it is between 40 °, the value of the minimum specific noise Ksmin is small and the noise is low. The value around -10 ° in the figure is
The values of the conventional axial blower are shown. It can be seen that the axial blower according to the present invention has a maximum noise of 2 [dB (A)] lower than the conventional one. FIG. 39 experimentally examines the effect of the ratio Rs / Rt of the radius Rs at the position of the point 1bs on the leading edge of the blade to the radius Rt of the blade outer periphery and the rotation angle β on noise characteristics.
The result of having graphed the value at the operating point where the specific noise Ks is minimized is shown. From FIG. 39, 0.4 ≦ Rs / Rt ≦ 0.75 and 1
If 0 ° ≦ β ≦ 40 °, the minimum specific noise Ksmin is sufficiently small and the noise is low.

【0055】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、およびボス部に対向す
る羽根外周部から周が構成される羽根とを有する軸流送
風機の回転軸と直交する平面に軸流送風機を投影した投
影図において、回転軸Oと羽根前縁部上の羽根外周部半
径の40〜75%の半径である点1bs’とを結ぶ直線
O−1bs’を原点Oを中心に回転方向に10〜40°
の間である角度分回転させ、この直線O−1bs’とボ
ス部半径であるボス部側面との交点1bb’と前記1b
s’における接線を回転方向に対し、凹となるような任
意曲線で結び羽根前縁部とするように羽根形状を形成し
たものであるので、高圧損時、羽根前縁部のボス部付近
である1bs’−1bb’の圧力面9から負圧面8への
流れの回り込みにより発生する縦渦により、流れは羽根
面上に沿い、かつ吸い込み流れがこの縦渦に誘導されな
がら外部へ送風されることにより、高圧損時における羽
根前縁部1b付近の吸い込み流れの剥離による羽根負圧
面上の流れの乱れを無くせ、低騒音化を図ることができ
る。
This axial flow blower has a boss portion to which a blade is attached and which rotates, a leading edge portion of the blade facing in the rotating direction, a trailing edge portion of the blade facing in the opposite direction to the rotating direction, and an outer periphery of the blade facing the boss portion. In the projection view of projecting the axial blower on a plane orthogonal to the rotation axis of the axial blower having a blade having a circumference constituted by a portion, the rotation axis O and the blade outer peripheral radius on the blade front edge portion are 40 to 75. A straight line O-1bs 'connecting the point 1bs' which is a radius of 10% in the rotational direction around the origin O is 10 to 40 [deg.].
And an intersection 1bb 'between the straight line O-1bs' and the boss part side surface, which is the boss part radius, and the above 1b
Since the tangent at s' is formed in such a manner that the tangent line in the rotation direction is formed as a knotted blade front edge with an arbitrary curve that becomes concave, at the time of high pressure loss, near the boss portion of the blade front edge portion Due to the vertical vortex generated by the flow of the flow from the pressure surface 9 to the suction surface 8 of a certain 1bs'-1bb ', the flow is blown to the outside along the blade surface, and the suction flow is guided outside by the vertical vortex. Thereby, disturbance of the flow on the blade negative pressure surface due to separation of the suction flow near the blade leading edge 1b at the time of high pressure loss can be eliminated, and noise can be reduced.

【0056】実施例7 以下、他の一実施例を図に基づいて説明する。図40は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す矢印、1bは
羽根前縁部、1dは羽根外周部、1cは羽根後縁部を示
す。また、図41は図40の正面図を示す。図42は、
回転軸3と直交する平面に羽根1を投影した投影図であ
る。図において、図41と同一符号のものは同一のもの
を示す。1’は投影図における羽根、1b’は投影図に
おける羽根前縁部、1c’は投影図における羽根後縁
部、1d’は投影図における羽根外周部である。図にお
いて、羽根外周部半径Rtの15〜35%の大きさを半
径とするR曲線で羽根前縁部とボス部との接続部を結
び、羽根前縁部とするように羽根形状を形成している。
Embodiment 7 Hereinafter, another embodiment will be described with reference to the drawings. FIG. 40 is a perspective view showing an embodiment of the axial blower according to the present invention, which has a three-blade shape, for example, and its operation is mainly described for one blade 1, but the same applies to other blades. It is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion for attaching the blade,
Reference numeral 3 denotes a rotation axis of the blade 1, 4 denotes an arrow indicating a rotation direction, 1b denotes a blade front edge, 1d denotes a blade outer peripheral portion, and 1c denotes a blade rear edge. FIG. 41 is a front view of FIG. FIG.
FIG. 3 is a projection view in which a blade 1 is projected on a plane orthogonal to a rotation axis 3. In the figure, the same reference numerals as those in FIG. 41 denote the same components. 1 'is a blade in the projection, 1b' is a blade leading edge in the projection, 1c 'is a blade trailing edge in the projection, and 1d' is a blade outer periphery in the projection. In the figure, the connecting portion between the leading edge of the blade and the boss is connected by an R curve having a radius of 15 to 35% of the radius Rt of the outer peripheral portion of the blade, and the blade shape is formed so as to be the leading edge of the blade. ing.

【0057】このように形成することにより、高圧損
時、図42の羽根前縁部1b’のA−A断面である図4
3において、圧力面9から負圧面8への流れの回り込み
により発生する安定した縦渦10により、流れは羽根面
上に沿い、かつ吸い込み流れ12がこの縦渦10に誘導
されながら図44のように外部へ送風される。これによ
り、従来の軸流送風機における問題点として、図102
に示したような、高圧損時における羽根前縁部1b付近
の吸い込み流れ12の剥離による羽根負圧面8上の流れ
11の乱れを無くせ、低騒音化を図ることができる。
By forming in this way, at the time of high-pressure loss, FIG. 4 is a cross-sectional view taken along the line AA of the blade leading edge portion 1b 'in FIG.
In FIG. 3, the stable longitudinal vortex 10 generated by the flow of the flow from the pressure surface 9 to the suction surface 8 causes the flow along the blade surface, and the suction flow 12 is guided by the longitudinal vortex 10 as shown in FIG. To the outside. Thus, as a problem in the conventional axial blower, FIG.
As described above, the disturbance of the flow 11 on the blade negative pressure surface 8 due to the separation of the suction flow 12 near the blade leading edge 1b at the time of high pressure loss can be eliminated, and the noise can be reduced.

【0058】また、従来の軸流送風機では、台風などの
強風により強制的にファンが高回転するときの対処とし
て、図98のように羽根前縁部1bのボス部寄り付近と
ボス部2との接続部の羽根の板厚を一部厚くして、羽根
の付け根の強風による応力集中を回避し、破損を防止し
ていた。そのため、図98のB−B断面を展開した展開
図である図103に示すように、板厚の厚い羽根前縁部
1bで吸い込み流れ12が衝突し、負圧面上の吸い込み
流れ11が乱れていた。本発明において、羽根前縁部1
bのボス部寄り付近とボス部2との接続部は大きなR曲
線であるため、応力集中を回避でき、板厚を局部的に厚
くする必要がなくなる。しかし、羽根前縁部1bとボス
部2との接続部のR曲線の半径RRが小さすぎたり、大
きすぎたりすると逆に騒音悪化し、また強度不足にな
る。従って、このR曲線の半径RRの最適範囲が存在す
る。
In the conventional axial blower, as a countermeasure when the fan is forcibly rotated at a high speed due to a strong wind such as a typhoon, the vicinity of the boss portion of the blade front edge portion 1b and the boss portion 2 as shown in FIG. In this connection, the thickness of the blade at the connection portion was partially increased to avoid stress concentration due to strong wind at the root of the blade, thereby preventing breakage. Therefore, as shown in FIG. 103, which is a developed view of the cross section taken along the line BB in FIG. 98, the suction flow 12 collides with the blade leading edge 1b having a large thickness, and the suction flow 11 on the negative pressure surface is disturbed. Was. In the present invention, the blade leading edge 1
Since the connection portion between b near the boss portion and the connection portion with the boss portion 2 has a large R curve, stress concentration can be avoided, and it is not necessary to locally increase the plate thickness. However, if the radius RR of the R-curve at the connection between the blade front edge 1b and the boss 2 is too small or too large, noise deteriorates and strength is insufficient. Therefore, there is an optimum range of the radius RR of the R curve.

【0059】図45は、R曲線の半径RRの大きさに対
する羽根外周部半径Rtとの比率(=RR/Rt)によ
って、騒音特性への影響を実験的に求めたものである。
このとき比騒音Ksは、動作点によって変化するため、
比騒音Ksが最小となる動作点での値を最小比騒音Ks
minとしてグラフ化している。図45より、R曲線の
半径RRが、羽根外周部半径Rtの10〜35%の間の
大きさであれば、最小比騒音Ksminは小さく従来に
比べ、1[dB(A)]低騒音である。また図46は、R曲
線の半径RRの大きさに対する羽根外周部半径Rtとの
比率(=RR/Rt)によって、羽根前縁部ボス部寄り
の最大応力σの値を実験的に求めたものである。図46
より、R曲線の半径RRが羽根外周部半径Rtの15%
以上であれば、十分強度があることがわかる。よって、
図45、図46よりR曲線の半径RRが、羽根外周部半
径Rtの15〜35%の間にあれば、低騒音で、かつ強
度が十分である。
FIG. 45 shows the effect on the noise characteristics experimentally determined by the ratio (= RR / Rt) of the radius Rt of the radius of the R curve to the radius Rt of the outer periphery of the blade.
At this time, since the specific noise Ks changes depending on the operating point,
The value at the operating point where the specific noise Ks is minimum is defined as the minimum specific noise Ks.
Graphed as min. From FIG. 45, if the radius RR of the R curve is between 10% and 35% of the blade outer peripheral radius Rt, the minimum specific noise Ksmin is small and 1 [dB (A)] lower noise than the conventional one. is there. Further, FIG. 46 is a graph in which the value of the maximum stress σ near the boss portion of the blade front edge is experimentally obtained by the ratio (= RR / Rt) of the radius of the radius RR of the R curve to the radius Rt of the blade outer peripheral portion. It is. FIG.
Thus, the radius RR of the R curve is 15% of the blade outer peripheral radius Rt.
If it is above, it turns out that there is enough strength. Therefore,
45 and 46, if the radius RR of the R curve is between 15% and 35% of the blade outer peripheral radius Rt, low noise and sufficient strength are obtained.

【0060】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、およびボス部に対向す
る羽根外周部から周が構成される羽根とを有する軸流送
風機の回転軸と直交する平面に軸流送風機を投影した投
影図において、羽根前縁部とボス部の接続部分を、羽根
外周部半径の15〜35%の大きさを半径とするR曲線
で結び、羽根前縁部とするように羽根形状を形成したも
のであるので、高圧損時、羽根前縁部1b’のボス部寄
り部分において、圧力面9から負圧面8への流れの回り
込みにより発生する縦渦により、流れは羽根面上に沿
い、かつ吸い込み流れがこの縦渦に誘導されながら外部
へ送風され、高圧損時における羽根前縁部1b付近の吸
い込み流れの剥離による羽根負圧面8上の流れの乱れを
無くせ、低騒音化を図ることができ、かつ台風などの強
風により強制的にファンが高回転するときの対処とし
て、羽根前縁部1bのボス部寄り付近とボス部2との接
続部の羽根の板厚を一部厚くして、羽根の付け根の強風
による応力集中を回避し、破損を防止することなく、羽
根前縁部1bのボス部寄り付近ととボス部との接続部は
大きなR曲線であるため、応力集中を回避でき、板厚を
局部的に厚くする必要がなくなる。
This axial flow blower has a boss mounted on a blade and rotating, a blade leading edge facing in the rotating direction, a blade trailing edge facing in the direction opposite to the rotating direction, and a blade outer periphery facing the boss. In the projected view of the axial blower projected on a plane orthogonal to the rotation axis of the axial blower having a blade having a circumference formed from the portion, the connecting portion between the blade front edge and the boss portion is set at 15% of the blade outer peripheral radius. Since the blade shape is formed so as to be a leading edge of the blade by being connected by an R curve having a radius of about 35%, at the time of high pressure loss, in the portion of the blade leading edge 1b 'near the boss, The vertical vortex generated by the flow of the flow from the pressure surface 9 to the suction surface 8 causes the flow to flow along the blade surface, and the suction flow is blown to the outside while being guided by the vertical vortex. Due to separation of the suction flow near the part 1b The turbulence of the flow on the blade negative pressure surface 8 can be eliminated, the noise can be reduced, and when the fan is forcibly rotated at a high speed by a strong wind such as a typhoon, the boss portion of the blade front edge 1b is shifted toward the boss. The thickness of the blade at the connection between the vicinity and the boss 2 is partially increased to avoid stress concentration due to strong wind at the root of the blade, and to prevent damage to the blade front edge 1b near the boss. Since the connection between the and the boss has a large R curve, stress concentration can be avoided, and it is not necessary to locally increase the plate thickness.

【0061】実施例8 以下、他の一実施例を図に基づいて説明する。図47は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す矢印、1bは
羽根前縁部、1dは羽根外周部、1cは羽根後縁部を示
す。また、図48は図47の正面図を示す。
Embodiment 8 Hereinafter, another embodiment will be described with reference to the drawings. FIG. 47 is a perspective view showing an embodiment of an axial blower according to the present invention, which has, for example, a three-blade shape. The operation is mainly described for one blade 1, but the same applies to other blades. It is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion for attaching the blade,
Reference numeral 3 denotes a rotation axis of the blade 1, 4 denotes an arrow indicating a rotation direction, 1b denotes a blade front edge, 1d denotes a blade outer peripheral portion, and 1c denotes a blade rear edge. FIG. 48 is a front view of FIG.

【0062】図49は、回転軸3と直交する平面に羽根
1を投影した投影図である。図において、図48と同一
符号のものは同一のものを示す。1’は投影図における
羽根、1b’は投影図における羽根前縁部、1c’は投
影図における羽根後縁部、1d’は投影図における羽根
外周部である。図において、図中破線で示したベースの
羽根1O’の羽根外周部半径Rtと羽根ボス部半径Rb
の間である任意半径Rsをもつ羽根前縁部1bO’上の
点1bs’(1bs’:羽根前縁ボス部延長開始点)、
羽根の付け根であるボス部半径Rbの羽根前縁部1b
O’上の点1baO’と原点Oを結んだ直線1baO’
−Oを、原点Oを中心に回転方向に角度δαb(δα
b:羽根前縁ボス部前進延長角)分回転させた時の点1
bb’(1bb’:羽根前縁ボス部延長終点)とする
時、前記直線1baO’−Oを、0°〜前記羽根前縁ボ
ス部前進延長角δαbの間の任意角度δα分回転させ、
羽根外周部方向に延長したときの半径Rbと半径Rsの
間の任意半径Rcにおける点1bc’とすると、この時
の任意回転角度δαの半径方向分布を δα=(δαb/(Rb−Rs) 2 )×(R−Rs) 2 (Rb≦R≦Rs) で与え、前記羽根と連続するように、ベースの羽根1
O’の羽根前縁部1bO’を基準にして、半径Rsの羽
根前縁ボス部延長開始点1bs’から前記点1bc’を
通り、ボス部半径Rbの羽根前縁ボス部延長終点1b
b’の間の羽根前縁部1bO’を回転方向に前進延長さ
せ、羽根形状を形成したものである。
FIG. 49 is a projection view in which the blade 1 is projected on a plane orthogonal to the rotation axis 3. In the figure, the same components as those in FIG. 48 indicate the same components. 1 'is a blade in the projection, 1b' is a blade leading edge in the projection, 1c 'is a blade trailing edge in the projection, and 1d' is a blade outer periphery in the projection. In the figure, the blade outer radius Rt and the blade boss radius Rb of the base blade 1O 'indicated by broken lines in the figure are shown.
A point 1bs'(1bs': blade front edge boss extension start point) on the blade front edge 1bO 'having an arbitrary radius Rs between
Blade leading edge 1b with boss radius Rb, which is the root of the blade
A straight line 1baO 'connecting the point 1baO' on O 'and the origin O
−O to the angle δαb (δα
b: Point 1 when rotated by the blade leading edge boss forward extension angle)
When bb ′ (1bb ′: blade leading edge boss extension end point), the straight line 1baO′-O is rotated by an arbitrary angle δα between 0 ° and the blade leading edge boss portion advance extension angle δαb,
Assuming that a point 1bc 'at an arbitrary radius Rc between the radius Rb and the radius Rs when extending in the blade outer peripheral direction, the radial distribution of the arbitrary rotation angle δα at this time is δα = (δαb / (Rb−Rs) 2 ) × (R−Rs) 2 (Rb ≦ R ≦ Rs), and the base blade 1 is continuous with the blade.
With reference to the blade front edge portion 1bO 'of O', the blade front edge boss portion extension end point 1b of the radius Rs passes through the point 1bc 'from the blade front edge boss portion extension start point 1bs' and the boss portion radius Rb.
The blade front edge portion 1bO 'between b' is advanced in the rotation direction to form a blade shape.

【0063】図50は、図49における図中破線で示し
たベースの羽根1O’のボス部半径Rbでの翼弦線中心
点PbO’を相対的な原点として、羽根面を形成したと
き、べースの羽根1O’をボス部半径Rbの円筒面で切
断し、その断面を二次元平面に展開して得られる展開図
を示す。なお実線が本発明の羽根1を示す。図中、ベー
スの羽根のそり線5を円弧形状とし、その円弧を形成す
るための中心角であるそり角θ、円弧を形成する半径を
RRとする。このようにベースの羽根1Oに対し、本発
明での軸流送風機の羽根は、図49で示した直線1ba
O’−Oを原点O中心に回転方向にδαb回転させた時
のボス部半径Rbにおける点1bb’の図50の展開図
における点1bbまでを、同一円弧で回転方向に延長さ
せたものである。
FIG. 50 shows a case where the blade surface is formed with the chord line center point PbO ′ at the boss radius Rb of the base blade 1O ′ indicated by the broken line in FIG. 49 as a relative origin. FIG. 3 is a development view obtained by cutting the blade 1O ′ of the base with a cylindrical surface having a boss radius Rb and developing the cross section into a two-dimensional plane. The solid line indicates the blade 1 of the present invention. In the figure, the sled line 5 of the base blade is formed in an arc shape, the sled angle θ which is the central angle for forming the arc, and the radius of the arc formed are RR. As described above, the blade of the axial blower according to the present invention is different from the base blade 10 in the straight line 1ba shown in FIG.
The point 1bb 'at the boss radius Rb when the O'-O is rotated by δαb in the rotation direction about the origin O is extended to the point 1bb in the developed view of FIG. 50 by the same arc in the rotation direction. .

【0064】このように形成することにより、高圧損
時、図49の半径RcにおけるX−X断面である図51
において、圧力面9から負圧面8への流れの回り込みに
より発生する安定した縦渦10により、流れは羽根面上
に沿い、かつ吸い込み流れ12がこの縦渦10に誘導さ
れながら図52のように外部へ送風される。これによ
り、従来の軸流送風機における問題点として、図102
に示したような、高圧損時における羽根前縁部1b付近
の吸い込み流れ12の剥離による羽根負圧面8上の流れ
11の乱れを無くせ、低騒音化を図ることができる。ま
た、従来の軸流送風機では、台風などの強風により強制
的にファンが高回転するときの対処として、図98のよ
うに羽根前縁部1bのボス部寄り付近とボス部2との接
続部の羽根の板厚を一部厚くして、羽根の付け根の強風
による応力集中を回避し、破損を防止していた。そのた
め、図98のB−B断面を展開した展開図である図10
3に示すように、板厚の厚い羽根前縁部1bで吸い込み
流れ12が衝突し、負圧面上の吸い込み流れ11が乱れ
ていた。本発明において、図37のように羽根1とボス
部の接続部をR形状ぎみに羽根形状を形成したものであ
るため、応力集中を回避でき、板厚を局部的に厚くする
必要がなくなる。
By forming in this manner, at the time of high-pressure loss, FIG.
In FIG. 52, a stable vertical vortex 10 generated by the flow of the flow from the pressure surface 9 to the suction surface 8 causes the flow to flow along the blade surface, and the suction flow 12 is guided by the vertical vortex 10 as shown in FIG. It is sent to the outside. Thus, as a problem in the conventional axial blower, FIG.
As described above, the disturbance of the flow 11 on the blade negative pressure surface 8 due to the separation of the suction flow 12 near the blade leading edge 1b at the time of high pressure loss can be eliminated, and the noise can be reduced. Further, in the conventional axial blower, as a countermeasure when the fan is forcibly rotated at a high speed due to a strong wind such as a typhoon, as shown in FIG. The thickness of the blades was partially increased to avoid stress concentration due to strong wind at the roots of the blades, thereby preventing breakage. Therefore, FIG. 10 is a developed view in which the BB section of FIG. 98 is developed.
As shown in FIG. 3, the suction flow 12 collided with the blade leading edge 1b having a large thickness, and the suction flow 11 on the negative pressure surface was disturbed. In the present invention, since the connection between the blade 1 and the boss portion is formed in the shape of a blade in the form of an R shape as shown in FIG. 37, stress concentration can be avoided, and it is not necessary to locally increase the plate thickness.

【0065】しかし、前記直線1ba’−Oを原点O中
心に回転方向させる時の羽根ボス部前進延長角δαbお
よび羽根前縁ボス部延長開始点1bs’での半径Rsが
大きすぎると図50に相当する図53のように吸い込み
流れ12が羽根前縁部1bbで衝突し、羽根面に乱れを
発生させ騒音悪化し、小さすぎると効果がなくなり、か
つ強度不足となる。従って、この角度δαbおよび半径
Rsの最適範囲が存在する。図54は、羽根前縁ボス部
延長開始点1bsにおける半径Rs=一定の時の羽根前
縁ボス部前進延長角δαbの大きさによって、騒音特性
への影響を実験的に求めたものである。このとき比騒音
Ksは、動作点によって変化するため、比騒音Ksが最
小となる動作点での値を最小比騒音Ksminとしてグ
ラフ化している。図に示すように、羽根前縁ボス部前進
延長角δαbが20〜50°の間であれば、ベースの羽
根である従来の軸流送風機に対し、最小比騒音Ksmi
nの値は小さく、最高2.5[dB(A)]低騒音である。
However, if the blade boss forward extension angle δαb and the radius Rs at the blade front edge boss extension start point 1bs ′ when the straight line 1ba′-O is rotated around the origin O are too large, FIG. As shown in FIG. 53, the suction flow 12 collides at the leading edge 1bb of the blade, causing turbulence on the blade surface and deteriorating noise. If it is too small, the effect is lost and the strength is insufficient. Therefore, there is an optimum range of the angle δαb and the radius Rs. FIG. 54 shows experimentally the influence on the noise characteristics obtained by the magnitude of the blade front edge boss forward extension angle δαb when the radius Rs is constant at the blade front edge boss extension start point 1bs. At this time, since the specific noise Ks changes depending on the operating point, the value at the operating point where the specific noise Ks is minimized is graphed as the minimum specific noise Ksmin. As shown in the figure, when the blade front edge boss portion advance extension angle δαb is between 20 ° and 50 °, the minimum specific noise Ksmi is smaller than that of the conventional axial flow fan which is the base blade.
The value of n is small, and the noise is 2.5 [dB (A)] at maximum.

【0066】図55は、羽根前縁ボス部前進延長角δα
b=一定の時の、図49における羽根前縁ボス部延長開
始点1bs’における半径Rsと羽根外周部半径Rtの
比率(=Rs/Rt)の大きさによって、騒音特性への
影響を実験的に求めたものである。このとき比騒音Ks
は、動作点によって変化するため、比騒音Ksが最小と
なる動作点での値を最小比騒音Ksminとしてグラフ
化している。図に示すように、羽根前縁ボス部延長開始
点1bs’における半径Rsが羽根外周部半径Rtの4
0〜70%の間にあれば、最小比騒音Ksminは低
く、ベースの羽根である従来の軸流送風機に対し、最高
2.5[dB(A)]低騒音である。図56は、羽根前縁ボ
ス部延長開始点1bsにおける半径Rsと羽根外周部半
径Rtの比率(=Rs/Rt)と羽根前縁ボス部前進延
長角δαbの騒音特性への影響を実験的に検討し、比騒
音Ksが最小になる動作点での値をグラフ化したもので
ある。図より、0.4≦Rs/Rt≦0.7かつ20°≦δα
b≦50°であれば、最小比騒音Ksminは十分小さ
く、最高2.5[dB(A)]低騒音である。
FIG. 55 shows a blade leading edge boss forward extension angle δα.
When b = constant, the effect on the noise characteristics is experimentally determined by the magnitude of the ratio (= Rs / Rt) between the radius Rs at the blade leading edge boss portion extension start point 1bs' in FIG. 49 and the blade outer radius Rt. It is what we asked for. At this time, the specific noise Ks
Varies with the operating point, and the value at the operating point where the specific noise Ks is minimized is graphed as the minimum specific noise Ksmin. As shown in the figure, the radius Rs at the blade leading edge boss portion extension start point 1bs' is 4 times the blade outer peripheral radius Rt.
If it is between 0 and 70%, the minimum specific noise Ksmin is low, and the maximum noise is 2.5 [dB (A)] lower than that of the conventional axial fan which is the base blade. FIG. 56 shows experimentally the effect of the ratio (= Rs / Rt) of the radius Rs to the blade outer periphery radius Rt at the blade leading edge boss extension start point 1bs (= Rs / Rt) and the effect of the blade leading edge boss forward extension angle δαb on the noise characteristics. This is a graph obtained by examining the values at the operating point where the specific noise Ks is minimized. From the figure, 0.4 ≦ Rs / Rt ≦ 0.7 and 20 ° ≦ δα
If b ≦ 50 °, the minimum specific noise Ksmin is sufficiently small and the maximum noise is 2.5 [dB (A)] low.

【0067】図57は、羽根前縁ボス部延長開始点1b
sにおける半径Rsと羽根外周部半径Rtの比率と羽根
前縁ボス部前進延長角δαbの羽根への最大応力σへの
影響を実験的に検討したものである。図中Rb/Rtで
の値を示す黒丸はベースの羽根である軸流送風機の羽根
前縁部ボス部より部分を局所的に板厚を厚くしなかった
場合の最大応力である。図より、0.4≦Rs/Rtか
つ20°≦δαbであれば、羽根の強度は十分である。
従って、図56、57より0.4≦Rs/Rt≦0.7かつ2
0°≦δαb≦50°であれば、低騒音でかつ強度が十
分な羽根を得られる。
FIG. 57 shows a blade leading edge boss portion extension start point 1b.
The effect of the ratio of the radius Rs to the radius Rt of the blade outer periphery at s and the maximum stress σ on the blade of the blade front edge boss portion extension elongation angle δαb is experimentally examined. The black circles showing the values of Rb / Rt in the figure are the maximum stresses when the plate thickness is not locally increased at the portion from the boss portion at the leading edge of the blade of the axial flow blower as the base blade. As shown in the figure, if 0.4 ≦ Rs / Rt and 20 ° ≦ δαb, the blade strength is sufficient.
Therefore, from FIGS. 56 and 57, 0.4 ≦ Rs / Rt ≦ 0.7 and 2
If 0 ° ≦ δαb ≦ 50 °, a blade with low noise and sufficient strength can be obtained.

【0068】この発明に係る軸流送風機は、羽根を取り
付けて回転するボス部と、回転方向に面する羽根前縁
部、回転方向と反対方向に面する羽根後縁部、および上
記ボス部に対向する羽根外周部から周が構成される羽根
とを有する軸流送風機の回転軸と直交する平面に軸流送
風機を投影した投影図において、回転軸を原点Oとし、
羽根の付け根の羽根前縁部上の点1baO ’と原点O
を結んだ直線1baO ’−Oを、原点Oを中心に回転
方向に20〜50°の間である角度δαb分回転させた
時のボス部半径Rbの点1bb’と羽根外周部半径の4
0〜70%の半径Rsをもつ羽根前縁部上の点1bs’
の間の形状を、前記羽根前縁部を基準として、前記羽根
のボス部半径Rbである羽根前縁部上の点1ba’から
前記角度δαb分回転方向に回転させたときのボス部半
径Rbの羽根前縁部上の点1bb’の間に存在するボス
部半径Rb〜半径Rsの間の半径Rcの点1bc’と原
点Oを結んだ直線1bc’−Oと直線1ba’−Oとの
なす角度を示すδαの半径方向分布を δα=(δαb/(Rb−Rs) 2 )×(R−Rs) 2 (Rb≦R≦Rs) で与え、前記羽根と連続するように、羽根前縁部上の点
1bs’よりボス部寄り部分の羽根前縁部を回転方向に
延長し、羽根形状を形成したものである。
An axial flow blower according to the present invention is characterized in that a boss portion to which a blade is attached and rotated, a blade front edge portion facing in the rotation direction, a blade rear edge portion facing in a direction opposite to the rotation direction, and the boss portion. In a projection view of projecting the axial flow fan on a plane orthogonal to the rotation axis of the axial flow fan having a blade whose circumference is formed from the opposing blade outer peripheral portion, the rotation axis is the origin O,
Point 1baO 'on the leading edge of the blade at the root of the blade and origin O
The point 1bb 'of the boss portion radius Rb when the straight line 1baO'-O connecting the points is rotated by an angle δαb between 20 and 50 ° around the origin O and the radius 4
Point 1bs' on blade leading edge with radius Rs of 0-70%
The boss portion radius Rb when the shape of the boss portion is rotated from the point 1ba ′ on the blade front edge which is the boss portion radius Rb of the blade by the angle δαb with respect to the blade front edge portion as a reference. the linear 1bc '-O and linear 1Ba'-O connecting the origin O and' 1bc point radius Rc between the boss portion radially Rb~ radius Rs that exists between 'the blade leading 1bb point on the edge The radial distribution of δα indicating the angle formed is represented by δα = (δαb / (Rb−Rs) 2 ) × (R−Rs) 2 (Rb ≦ R ≦ Rs), and a blade shape is formed by extending the blade front edge portion closer to the boss portion from the point 1bs ′ on the blade front edge portion in the rotation direction so as to be continuous with the blade. It is.

【0069】この発明に係る軸流送風機は、羽根を取り
付けて回転するボス部と、回転方向に面する羽根前縁
部、回転方向と反対方向に面する羽根後縁部、および上
記ボス部に対向する羽根外周部から周が構成される羽根
とを有する軸流送風機の回転軸と直交する平面に軸流送
風機を投影した投影図において、回転軸を原点Oとし、
羽根の付け根の羽根前縁部上の点1baO ’と原点O
を結んだ直線1baO ’−Oを、原点Oを中心に回転
方向に20〜50°の間である角度δαb分回転させた
時のボス部半径Rbの点1bb’と羽根外周部半径の4
0〜70%の半径Rsをもつ羽根前縁部上の点1bs’
の間の形状を、前記羽根前縁部を基準として、前記羽根
のボス部半径Rbである羽根前縁部上の点1baO ’
から前記角度δαb分回転方向に回転させたときのボス
部半径Rbの羽根前縁部上の点1bb’の間に存在する
ボス部半径Rb〜半径Rsの間の半径Rcの点1bc’
と原点Oを結んだ直線1bc’−Oと直線1baO ’
−Oとのなす角度を示すδαの半径方向分布を δα=(δαb/(Rb−Rs) 2 )×(R−Rs) 2 (Rb≦R≦Rs) で与え、前記羽根と連続するように、羽根前縁部上の点
1bs’よりボス部寄り部分の羽根前縁部を回転方向に
延長し、羽根形状を形成したものであるので、高圧損
時、羽根前縁部のボス部寄り部分において、圧力面9か
ら負圧面8への流れの回り込みにより発生する縦渦によ
り、流れは羽根面上に沿い、かつ吸い込み流れがこの縦
渦に誘導されながら外部へ送風され、高圧損時における
羽根前縁部1b付近の吸い込み流れ12の剥離による羽
根負圧面8上の流れ11の乱れを無くせ、低騒音化を図
ることができ、かつ、台風などの強風により強制的にフ
ァンが高回転するときの対処として、羽根前縁部のボス
部寄り付近とボス部との接続部の羽根の板厚を一部厚く
して、羽根の付け根の強風による応力集中を回避し、破
損を防止することなく、羽根1とボス部の接続部をR形
状ぎみに羽根形状を形成したものであるため、応力集中
を回避でき、板厚を局部的に厚くする必要がなくなる。
The axial flow blower according to the present invention is characterized in that a boss portion to which a blade is attached and rotated, a blade front edge portion facing in the rotation direction, a blade rear edge portion facing in the opposite direction to the rotation direction, and the boss portion are provided. In a projection view of projecting the axial flow fan on a plane orthogonal to the rotation axis of the axial flow fan having a blade whose circumference is formed from the opposing blade outer peripheral portion, the rotation axis is the origin O,
Point 1baO 'on the leading edge of the blade at the root of the blade and origin O
The point 1bb 'of the boss portion radius Rb when the straight line 1baO'-O connecting the points is rotated by an angle δαb between 20 and 50 ° around the origin O and the radius 4
Point 1bs' on blade leading edge with radius Rs of 0-70%
Is defined as a point 1baO ′ on the blade front edge which is the boss radius Rb of the blade with respect to the blade front edge.
And the point 1bc ' of the radius Rc between the boss radius Rb and the radius Rs existing between the point 1bb' on the blade leading edge with the boss radius Rb when rotated in the rotation direction by the angle δαb.
1bc'- O and 1baO '
Δα = (δαb / (Rb−Rs) 2 ) × (R−Rs) 2 (Rb ≦ R ≦ Rs), and the blade front edge of the portion closer to the boss portion is extended in the rotation direction from point 1bs ′ on the blade front edge so as to be continuous with the blade, thereby forming a blade shape. Therefore, at the time of high pressure loss, in the portion near the boss portion of the leading edge of the blade, the vertical vortex generated by the flow of the flow from the pressure surface 9 to the suction surface 8 causes the flow along the blade surface and the suction flow. The air is blown to the outside while being guided by the vertical vortex, and the disturbance of the flow 11 on the blade negative pressure surface 8 due to the separation of the suction flow 12 near the blade leading edge 1b at the time of high pressure loss can be eliminated, and noise can be reduced. As a countermeasure when the fan is forcibly rotated at a high speed due to a strong wind such as a typhoon, the thickness of the blade near the boss at the leading edge of the blade and at the connection with the boss is partially increased, Avoid stress concentration due to strong wind at the base of Without preventing, since they are the connection portion of the blade 1 and the boss portion forming the blade shape R shape Gimi, you can avoid stress concentration, it is not necessary to increase the plate thickness locally.

【0070】この発明に係る軸流送風機は、羽根を取り
付けて回転するボス部と、回転方向に面する羽根前縁
部、回転方向と反対方向に面する羽根後縁部、および上
記ボス部に対向する羽根外周部から周が構成される羽根
とを有する軸流送風機の回転軸と直交する平面に軸流送
風機を投影した投影図において、羽根の付け根の羽根前
縁部上の点1ba’と原点Oを結んだ直線1ba’−O
を、原点Oを中心に回転方向に20〜50°の間である
角度δαb分回転させた時のボス部半径Rbの点1b
b’と羽根外周部半径の40〜70%の半径Rsをもつ
羽根前縁部上の点1bs’の間の形状を、前記羽根前縁
部を基準として、前記羽根のボス部半径Rbである羽根
前縁部上の点1ba’から前記角度δαb分回転方向に
回転させたときのボス部半径Rbの羽根前縁部上の点1
bb’の間に存在するボス部半径Rb〜半径Rsの間の
半径Rcの点1bc’と原点Oを結んだ直線1bc’
Oと直線1ba’−Oとのなす角度を示すδαの半径方
向分布を δα=(δαb/(Rb−Rs) 2 )×(R−Rs) 2 (Rb≦R≦Rs) で与え、前記羽根と連続するように、羽根前縁部上の点
1bs’よりボス部寄り部分の羽根前縁部を回転方向に
延長し、羽根形状を形成したものであるので、高圧損
時、羽根前縁部のボス部寄り部分において、圧力面9か
ら負圧面8への流れの回り込みにより発生する縦渦によ
り、流れは羽根面上に沿い、かつ吸い込み流れがこの縦
渦に誘導されながら外部へ送風され、高圧損時における
羽根前縁部1b付近の吸い込み流れ12の剥離による羽
根負圧面8上の流れ11の乱れを無くせ、低騒音化を図
ることができ、かつ、台風などの強風により強制的にフ
ァンが高回転するときの対処として、羽根前縁部のボス
部寄り付近とボス部との接続部の羽根の板厚を一部厚く
して、羽根の付け根の強風による応力集中を回避し、破
損を防止することなく、羽根1とボス部の接続部をR形
状ぎみに羽根形状を形成したものであるため、応力集中
を回避でき、板厚を局部的に厚くする必要がなくなる。
The axial-flow blower according to the present invention is characterized in that a boss portion to which the blades are attached and rotated, a blade front edge portion facing in the rotation direction, a blade rear edge portion facing in the opposite direction to the rotation direction, and the boss portion. In a projected view of the axial blower projected on a plane orthogonal to the rotation axis of the axial blower having a blade whose periphery is formed from opposing blade outer peripheral portions, a point 1ba ′ on the blade front edge of the root of the blade is shown. Straight line 1ba'-O connecting the origin O
Is rotated by an angle δαb between 20 ° and 50 ° in the rotation direction about the origin O, the point 1b of the boss radius Rb
The shape between b ′ and a point 1bs ′ on the leading edge of the blade having a radius Rs of 40 to 70% of the radius of the outer peripheral portion of the blade is the boss radius Rb of the blade with respect to the leading edge of the blade. Point 1 on the blade front edge of boss radius Rb when rotated in the rotation direction by the angle δαb from point 1ba ′ on the blade front edge
straight 1bc connecting the origin O and 'point 1bc radius Rc between the boss portion radially Rb~ radius Rs that exists between the' bb '-
Δα = (δαb / (Rb−Rs) 2 ) × (R−Rs) 2 represents the radial distribution of δα indicating the angle between O and the straight line 1ba′-O. (Rb ≦ R ≦ Rs), and the blade front edge of the portion closer to the boss portion is extended in the rotation direction from point 1bs ′ on the blade front edge so as to be continuous with the blade, thereby forming a blade shape. Therefore, at the time of high pressure loss, in the portion near the boss portion of the leading edge of the blade, the vertical vortex generated by the flow of the flow from the pressure surface 9 to the suction surface 8 causes the flow along the blade surface and the suction flow. The air is blown to the outside while being guided by the vertical vortex, and the disturbance of the flow 11 on the blade negative pressure surface 8 due to the separation of the suction flow 12 near the blade leading edge 1b at the time of high pressure loss can be eliminated, and noise can be reduced. As a countermeasure when the fan is forcibly rotated at a high speed due to a strong wind such as a typhoon, the thickness of the blade near the boss at the leading edge of the blade and at the connection with the boss is partially increased, Avoid stress concentration due to strong wind at the base of Without preventing, since they are the connection portion of the blade 1 and the boss portion forming the blade shape R shape Gimi, you can avoid stress concentration, it is not necessary to increase the plate thickness locally.

【0071】実施例9 以下、他の一実施例を図に基づいて説明する。図58は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す
Embodiment 9 Hereinafter, another embodiment will be described with reference to the drawings. FIG. 58 is a perspective view showing one embodiment of an axial blower according to the present invention, which has, for example, a three-blade shape. The operation is mainly described for one blade 1, but the same applies to other blades. It is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion for attaching the blade,
3 indicates the rotation axis of the blade 1 and 4 indicates the rotation direction.

【0072】また、図59は図58の正面図を示す。こ
の図におけるLは翼弦長であり、羽根間の円周方向距離
(ピッチ)Tを示す。また、Lsは、羽根外周部半径R
tの40〜60%の半径Rsである羽根前縁部1b上の
点1bsを通る翼弦の長さを示す。図60は、回転軸3
と直交する平面に羽根1を投影した投影図である。図に
おいて、図59と同一符号のものは同一のものを示す。
1’は投影図における羽根、1b’は投影図における羽
根前縁部、1c’は投影図における羽根後縁部、1d’
は投影図における羽根外周部である。図中破線で示した
ベースの羽根1O’の羽根外周部半径Rtと羽根ボス部
半径Rbの間である任意半径Rsをもつ羽根前縁部1b
O’上の点1bs’(1bs’:羽根前縁ボス部延長開
始点)、羽根の付け根であるボス部半径Rbの羽根前縁
部1bO’上の点1baO’と原点Oを結んだ直線1b
aO’−Oを、原点Oを中心に回転方向に角度δαb
(δαb:羽根前縁ボス部前進延長角)分回転させた時
の点1bb’(1bb’:羽根前縁ボス部延長終点)と
するとき、前記羽根前縁ボス部延長開始点における半径
Rsから羽根前縁ボス部延長終点1bb’における半径
Rbまでの羽根の翼弦長を回転方向に延長した形状であ
る。また、半径Rs〜ボス部半径Rbの間の任意半径R
である上記延長後の羽根前縁部1b’上の点を1bR’
とする。
FIG. 59 is a front view of FIG. In this figure, L is a chord length and indicates a circumferential distance (pitch) T between the blades. Ls is the blade outer radius R
The chord length passing through a point 1bs on the blade leading edge 1b with a radius Rs of 40 to 60% of t is shown. FIG.
FIG. 4 is a projection view of the blade 1 projected on a plane orthogonal to FIG. In the figure, the same components as those in FIG. 59 indicate the same components.
1 'is the blade in the projection, 1b' is the leading edge of the blade in the projection, 1c 'is the trailing edge of the blade in the projection, 1d'
Is the outer periphery of the blade in the projection view. A blade leading edge 1b having an arbitrary radius Rs between the blade outer radius Rt and the blade boss radius Rb of the base blade 1O 'indicated by a broken line in the figure.
Point 1bs' on O '(1bs': blade front edge boss extension start point), straight line 1b connecting origin 1 O with point 1baO' on blade front edge 1bO 'with boss radius Rb, which is the root of the blade
aO′−O is converted to an angle δαb
(Δαb: blade front edge boss forward extension angle) When rotated by the point 1bb ′ (1bb ′: blade front edge boss extension end point), from the radius Rs at the blade front edge boss extension start point The blade chord length is extended in the rotation direction up to the radius Rb at the blade leading edge boss portion extension end point 1bb '. Also, an arbitrary radius R between the radius Rs and the boss radius Rb.
The point on the blade leading edge 1b 'after the extension is 1bR'
And

【0073】図61は、図60における図中破線で示し
たベースの羽根1O’のボス部半径Rbでの弧1ba
O’−1cb’の中点である翼弦線中心点PbO’を相
対的な原点として、羽根面を形成したとき、べースの羽
根1O’をボス部半径Rbの円筒面で切断し、その断面
を二次元平面に展開して得られる展開図を示す。なお実
線が本発明の羽根1を示す。図中、ベースの羽根のそり
線5を円弧形状とし、その円弧を形成するための中心角
であるそり角θ、円弧を形成する半径をRROとする。
図中ベースの羽根1Oに対し、羽根1は、前記羽根1O
とそり角θ、食い違い角ξが同一のまま、ボス部半径R
bでの翼弦を、図60で示した羽根前縁ボス部延長終点
1bb’まで回転方向に延長し、本図における前記羽根
1Oのボス部半径Rbにおける翼弦長LbOと点1bb
〜羽根後縁部1cbまでの翼弦長Lb、この差を△Lb
(=Lb−LbO)とし、羽根ボス部延長開始点1bs
における半径Rsでの翼弦長Lsとすると、ボス部半径
Rbから前記半径Rsまでの翼弦長Lの半径方向分布を L=△Lb/(Rs−Rb) 2 ×(R−Rs) 2 +Ls (Rb≦R≦Rs) で与え、羽根形状を形成したものである。
FIG. 61 shows an arc 1ba at the boss radius Rb of the base blade 1O 'shown by the broken line in FIG.
When the blade surface is formed with the chord line center point PbO ', which is the middle point of O'-1cb', as a relative origin, the base blade 1O 'is cut by a cylindrical surface having a boss radius Rb, A development view obtained by developing the cross section into a two-dimensional plane is shown. The solid line indicates the blade 1 of the present invention. In the figure, the sled line 5 of the base blade is formed in an arc shape, the sled angle θ which is a central angle for forming the arc, and the radius forming the arc is RRO.
In the figure, the blade 1 is different from the base blade 10 in the drawing.
Boss radius R with the same sled angle θ and stagger angle ξ
b, the chord length LbO at the boss radius Rb of the blade 10 and the chord length LbO and the point 1bb are extended to the blade front edge boss portion extension end point 1bb 'shown in FIG.
-Chord length Lb up to the trailing edge 1cb of the blade,
(= Lb−LbO), and the blade boss portion extension start point 1bs
Is the chord length Ls at the radius Rs, the radial distribution of the chord length L from the boss radius Rb to the radius Rs is L = △ Lb / (Rs−Rb) 2 × (R−Rs) 2 + Ls (Rb ≦ R ≦ Rs) to form a blade shape.

【0074】このように形成することにより、図61の
ようにベースの羽根1Oに比べ翼弦長が長くなり、羽根
面上での圧力上昇が稼げるとともに、高圧損時、図60
のX−X断面である図62において、圧力面9から負圧
面8への流れの回り込みにより発生する安定した縦渦1
0により、流れは羽根面上に沿い、かつ吸い込み流れ1
2がこの縦渦10に誘導されながら図63のように外部
へ送風される。これにより、従来の軸流送風機における
問題点として、図101に示したような、高圧損時にお
ける羽根前縁部1b付近の吸い込み流れ12の剥離によ
る羽根負圧面8上の流れ11の乱れを無くせ、低騒音化
を図ることができる。
By forming in this manner, the chord length becomes longer than that of the base blade 10 as shown in FIG. 61, and a pressure increase on the blade surface can be obtained.
62, which is a cross section taken along line XX of FIG.
0, the flow is on the blade surface and the suction flow 1
While being guided by the vertical vortex 10, the air 2 is blown to the outside as shown in FIG. Thus, as a problem in the conventional axial blower, as shown in FIG. 101, it is possible to eliminate the disturbance of the flow 11 on the blade negative pressure surface 8 due to the separation of the suction flow 12 near the blade leading edge 1b at the time of high pressure loss. In addition, noise can be reduced.

【0075】また、従来の軸流送風機では、台風などの
強風により強制的にファンが高回転するときの対処とし
て、図97のように羽根前縁部1bのボス部寄り付近と
ボス部2との接続部の羽根の板厚を一部厚くして、羽根
の付け根の強風による応力集中を回避し、破損を防止し
ていた。そのため、図97のB−B断面を展開した展開
図である図102に示すように、板厚の厚い羽根前縁部
1bで吸い込み流れ12が衝突し、負圧面上の吸い込み
流れ11が乱れていた。本発明において、図60のよう
に羽根1とボス部の接続部をR形状ぎみに羽根形状を形
成したものであるため、応力集中を回避でき、板厚を局
部的に厚くする必要がなくなる。
In the conventional axial flow blower, as a countermeasure when the fan is forcibly rotated at a high speed due to a strong wind such as a typhoon, the vicinity of the boss portion of the blade front edge 1b and the boss portion 2 as shown in FIG. In this connection, the thickness of the blade at the connection portion was partially increased to avoid stress concentration due to strong wind at the root of the blade, thereby preventing breakage. Therefore, as shown in FIG. 102, which is a developed view of the cross section taken along the line BB of FIG. 97, the suction flow 12 collides at the blade leading edge 1b having a large thickness, and the suction flow 11 on the negative pressure surface is disturbed. Was. In the present invention, since the connecting portion between the blade 1 and the boss portion is formed in the shape of a blade in the shape of an R as shown in FIG. 60, stress concentration can be avoided, and it is not necessary to locally increase the plate thickness.

【0076】しかし、前記直線1baO’−Oを原点O
中心に回転方向させる時の羽根ボス部前進延長角δαb
つまり、ボス部半径Rbにおける翼弦長Lbが大きすぎ
ると図61に相当する図64図において、羽根後縁部
cb付近で、羽根負圧面8上の流れ11や縦渦10が羽
根負圧面8から剥離を起こしたり、図65に示す軸流送
風機全周をボス部半径Rbの円筒面で切断し、その断面
を二次元平面に展開して得られる全周展開図に示すよう
に、羽根1の負圧面8を剥離した負圧面上の流れ11と
縦渦10が次に旋回してくる羽根1Nの圧力面9Nの流
れ13に乱れを与え、騒音悪化が起こり、また、羽根前
縁ボス部延長開始点1bs’での半径Rsが小さすぎる
と効果がなくなり、かつ強度不足となる。
However, the straight line 1ba O'- O is
Blade boss forward extension angle δαb when rotating to center
That is, if the chord length Lb at the boss radius Rb is too large, the blade trailing edge 1 in FIG. 64 corresponding to FIG.
In the vicinity of cb , the flow 11 and the vertical vortex 10 on the blade suction surface 8 cause separation from the blade suction surface 8, or the entire circumference of the axial flow blower shown in FIG. Is developed into a two-dimensional plane, the flow 11 on the suction surface where the suction surface 8 of the blade 1 is peeled off and the pressure surface of the blade 1N where the vertical vortex 10 next turns are shown. The 9N flow 13 is disturbed and noise is deteriorated. If the radius Rs at the blade leading edge boss portion extension start point 1bs' is too small, the effect is lost and the strength is insufficient.

【0077】従って、この角度δαbおよび半径Rsの
最適範囲が存在する。図66は、ベースになる従来の軸
流送風機と上記第9の発明の一実施例による軸流送風機
との流量係数φに対する圧力係数ψの関係および比騒音
Ks[dB(A)]を実験的に求めた特性図である。図中
黒丸、黒四角は従来の軸流送風機の特性、最小比騒音
を、×、□は第9の発明の一実施例における軸流送風機
の特性、最小比騒音を示す。この特性図からわかるよう
に、従来に比べ、動作領域が低風量側まで延びかつ全体
的に高静圧化が図れている。一方、比騒音Ksは最大で
3[dB(A)]の低減が図れ低騒音である。
Therefore, there is an optimum range of the angle δαb and the radius Rs. FIG. 66 shows the relationship between the flow coefficient φ and the pressure coefficient ψ and the specific noise Ks [dB (A)] of the conventional axial blower as the base and the axial blower according to the ninth embodiment of the present invention. FIG. In the figure, black circles and black squares show the characteristics and the minimum specific noise of the conventional axial flow fan, and x and □ show the characteristics and the minimum specific noise of the axial flow fan in one embodiment of the ninth invention. As can be seen from this characteristic diagram, the operating region extends to the low air volume side and higher static pressure is achieved as a whole as compared with the related art. On the other hand, the specific noise Ks can be reduced by a maximum of 3 [dB (A)] and is low noise.

【0078】図67は、羽根前縁ボス部延長開始点1b
sにおける半径Rs=一定の時の羽根前縁ボス部前進延
長角δαbの大きさによって、騒音特性への影響を実験
的に求めたものである。このとき比騒音Ksは、動作点
によって変化するため、比騒音Ksが最小となる動作点
での値を最小比騒音Ksminとしてグラフ化してい
る。図に示すように、羽根前縁ボス部前進延長角δαb
が20〜50°の間であれば、ベースの羽根である従来
の軸流送風機に対し、最小比騒音Ksminの値は小さ
く、最高3.0[dB(A)]低騒音である。
FIG. 67 shows a blade leading edge boss portion extension starting point 1b.
The influence on the noise characteristics was experimentally obtained by the magnitude of the blade front edge boss portion advance extension angle δαb when the radius Rs at s = constant. At this time, since the specific noise Ks changes depending on the operating point, the value at the operating point where the specific noise Ks is minimized is graphed as the minimum specific noise Ksmin. As shown in the figure, the blade leading edge boss portion advance extension angle δαb
Is between 20 ° and 50 °, the value of the minimum specific noise Ksmin is smaller than that of the conventional axial blower as the base blade, and the maximum noise is 3.0 [dB (A)].

【0079】図68は、羽根前縁ボス部前進延長角δα
b=一定の時の、図60における羽根前縁ボス部延長開
始点1bs’における半径Rsと羽根外周部半径Rtの
比率(=Rs/Rt)の大きさによって、騒音特性への
影響を実験的に求めたものである。このとき比騒音Ks
は、動作点によって変化するため、比騒音Ksが最小と
なる動作点での値を最小比騒音Ksminとしてグラフ
化している。図に示すように、羽根前縁ボス部延長開始
点1bs’における半径Rsが羽根外周部半径Rtの4
0〜60%の間にあれば、最小比騒音Ksminは低
く、ベースの羽根である従来の軸流送風機に対し、最高
3.0[dB(A)]低騒音である。図69は、羽根前縁ボ
ス部延長開始点1bsにおける半径Rsと羽根外周部半
径Rtの比率(=Rs/Rt)と羽根前縁ボス部前進延
長角δαbの騒音特性への影響を実験的に検討し、比騒
音Ksが最小になる動作点での値をグラフ化したもので
ある。
FIG. 68 shows a blade leading edge boss forward extension angle δα.
When b = constant, the effect on noise characteristics is experimentally determined by the magnitude of the ratio (= Rs / Rt) of the radius Rs at the blade leading edge boss portion extension start point 1bs' in FIG. 60 to the blade outer radius Rt. It is what we asked for. At this time, the specific noise Ks
Varies with the operating point, and the value at the operating point where the specific noise Ks is minimized is graphed as the minimum specific noise Ksmin. As shown in the figure, the radius Rs at the blade leading edge boss portion extension start point 1bs' is 4 times the blade outer peripheral radius Rt.
If it is between 0 and 60%, the minimum specific noise Ksmin is low, and the maximum noise is 3.0 [dB (A)] lower than that of the conventional axial blower which is the blade of the base. FIG. 69 shows experimentally the effect of the ratio (= Rs / Rt) of the radius Rs to the blade outer peripheral radius Rt at the blade leading edge boss extension start point 1bs (= Rs / Rt) and the effect of the blade leading edge boss forward extension angle δαb on the noise characteristics. This is a graph obtained by examining the values at the operating point where the specific noise Ks is minimized.

【0080】図より、0.4≦Rs/Rt≦0.6かつ20°
≦δαb≦50°であれば、最小比騒音Ksminは十
分小さく低騒音である。図70は、羽根前縁ボス部延長
開始点1bsにおける半径Rsと羽根外周部半径Rtの
比率と羽根前縁ボス部前進延長角δαbの羽根への最大
応力σへの影響を実験的に検討したものである。図中R
b/Rtでの値を示す黒丸はベースの羽根である軸流送
風機の羽根前縁部ボス部より部分を局所的に板厚を厚く
しなかった場合の最大応力である。図より、0.4≦R
s/Rtかつ20°≦δαbであれば、羽根の強度は十
分である。従って、図69、70より0.4≦Rs/Rt
≦0.6かつ20°≦δαb≦50°であれば、低騒音で
かつ強度が十分な羽根を得られる。
As shown in the figure, 0.4 ≦ Rs / Rt ≦ 0.6 and 20 °
If ≦ δαb ≦ 50 °, the minimum specific noise Ksmin is sufficiently small and low noise. FIG. 70 experimentally examined the influence of the ratio of the radius Rs to the blade outer peripheral radius Rt at the blade leading edge boss extension start point 1bs and the effect of the blade leading edge boss forward extension angle δαb on the maximum stress σ on the blade. Things. R in the figure
The black circle indicating the value of b / Rt is the maximum stress when the plate thickness is not locally increased from the boss portion at the blade front edge portion of the axial flow blower as the base blade. From the figure, 0.4 ≦ R
If s / Rt and 20 ° ≦ δαb, the blade strength is sufficient. Therefore, from FIGS. 69 and 70, 0.4 ≦ Rs / Rt
If ≦ 0.6 and 20 ° ≦ δαb ≦ 50 °, a blade with low noise and sufficient strength can be obtained.

【0081】この発明に係る軸流送風機は、羽根を取り
付けて回転するボス部と、回転方向に面する羽根前縁
部、回転方向と反対方向に面する羽根後縁部、および上
記ボス部に対向する羽根外周部から周が構成される羽根
とを有する軸流送風機の回転軸と直交する平面に軸流送
風機を投影した投影図において、回転軸を原点Oとし、
ベースの羽根1O’のボス部半径Rbにおける羽根前縁
部上の点1baO’と原点Oを結んだ直線1baO’−
Oを、原点Oを中心に回転方向に20〜50°の間であ
る角度δαb分回転させた時の点を羽根前縁ボス部延長
終点1bb’としたとき、羽根を任意半径Rの円筒面で
切断し、その断面を2次元平面に展開して得られる展開
図において、前記羽根1Oとそり角θ、食い違い角ξが
同一のまま、ボス部半径Rbでの翼弦を、前記点1bb
まで延長し、このときの前記羽根1Oのボス部半径Rb
における翼弦長LbOと前記点1bb〜羽根後縁部1C
bまでの翼弦長Lb、この差を△Lbとし、羽根外周部
半径の40〜60%の半径Rsでの羽根前縁部上の点1
bsでの翼弦長Lsとすると、ボス部半径Rbから前記
羽根前縁部上の点1bsまでの翼弦長Lの半径方向分布
L=△Lb/(Rs−Rb) 2 ×(R−Rs) 2 +Ls (Rb≦R≦Rs) で与え、羽根形状を形成したものである。
The axial blower according to the present invention is characterized in that a boss portion to which the blades are attached and rotated, a blade front edge portion facing in the rotation direction, a blade rear edge portion facing in the direction opposite to the rotation direction, and the boss portion are provided. In a projection view of projecting the axial flow fan on a plane orthogonal to the rotation axis of the axial flow fan having a blade whose circumference is formed from the opposing blade outer peripheral portion, the rotation axis is the origin O,
A straight line 1baO'- connecting the point 1baO 'on the leading edge of the blade at the boss radius Rb of the blade 1O' of the base to the origin O.
When the point O is rotated by an angle δαb between 20 and 50 ° in the direction of rotation about the origin O as the center, the blade front edge boss portion extension end point 1bb ′ is defined, and the blade is a cylindrical surface having an arbitrary radius R. In a developed view obtained by expanding the cross section into a two-dimensional plane, the chord at the boss radius Rb is changed to the point 1bb while the blade 1O has the same warp angle θ and stagger angle ξ.
And the boss radius Rb of the blade 10 at this time.
Chord length LbO and point 1bb to blade trailing edge 1C
a point 1 on the leading edge of the blade at a radius Rs of 40 to 60% of the outer peripheral radius of the blade.
Assuming that the chord length Ls at bs, the radial distribution of the chord length L from the boss radius Rb to the point 1bs on the blade leading edge is L = △ Lb / (Rs−Rb) 2 × (R− Rs) 2 + Ls (Rb ≦ R ≦ Rs) to form a blade shape.

【0082】第9の発明に係る軸流送風機は、羽根を取
り付けて回転するボス部と、回転方向に面する羽根前縁
部、回転方向と反対方向に面する羽根後縁部、および上
記ボス部に対向する羽根外周部から周が構成される羽根
とを有する軸流送風機の回転軸と直交する平面に軸流送
風機を投影した投影図において、回転軸を原点Oとし、
ベースの羽根1O’のボス部半径Rbにおける羽根前縁
部上の点1baO’と原点Oを結んだ直線1baO’−
Oを、原点Oを中心に回転方向に20〜50°の間であ
る角度δαb分回転させた時の点を羽根前縁ボス部延長
終点1bb’としたとき、羽根を任意半径Rの円筒面で
切断し、その断面を2次元平面に展開して得られる展開
図において、前記羽根1Oとそり角θ、食い違い角ξが
同一のまま、ボス部半径Rbでの翼弦を、前記点1bb
まで延長し、このときの前記羽根1Oのボス部半径Rb
における翼弦長LbOと前記点1bb〜羽根後縁部1c
までの翼弦長Lb、この差を△Lbとし、羽根外周部
半径の40〜60%の半径Rsでの羽根前縁部上の点1
bsでの翼弦長Lsとすると、ボス部半径Rbから前記
羽根前縁部上の点1bsまでの翼弦長Lの半径方向分布
L=△Lb/(Rs−Rb) 2 ×(R−Rs) 2 +Ls (Rb≦R≦Rs) で与え、羽根形状を形成したものであるので、ベースの
羽根1Oに比べ翼弦長が長くなり、羽根面上での圧力上
昇が稼げるとともに、高圧損時、羽根前縁部のボス部寄
り部分において、圧力面9から負圧面8への流れの回り
込みにより発生する縦渦により、流れは羽根面上に沿
い、かつ吸い込み流れがこの縦渦に誘導されながら外部
へ送風され、高圧損時における羽根前縁部付近の吸い込
み流れの剥離による羽根負圧面上の流れの乱れを無く
せ、低騒音化を図ることができ、かつ、台風などの強風
により強制的にファンが高回転するときの対処として、
羽根前縁部のボス部寄り付近とボス部との接続部の羽根
の板厚を一部厚くして、羽根の付け根の強風による応力
集中を回避し、破損を防止することなく、羽根とボス部
の接続部をR形状ぎみに羽根形状を形成したものである
ため、応力集中を回避でき、板厚を局部的に厚くする必
要がなくなる。
An axial flow blower according to a ninth aspect of the present invention provides a boss portion to which the blades are attached and rotated, a blade front edge portion facing the rotation direction, a blade rear edge portion facing the rotation direction, and the boss. In the projection view of the axial flow blower projected on a plane orthogonal to the rotation axis of the axial flow blower having a blade configured from the outer periphery of the blade facing the portion, the rotation axis is the origin O,
A straight line 1baO'- connecting the point 1baO 'on the leading edge of the blade at the boss radius Rb of the blade 1O' of the base to the origin O.
When the point O is rotated by an angle δαb between 20 and 50 ° in the direction of rotation about the origin O as the center, the blade front edge boss portion extension end point 1bb ′ is defined, and the blade is a cylindrical surface having an arbitrary radius R. In a developed view obtained by expanding the cross section into a two-dimensional plane, the chord at the boss radius Rb is changed to the point 1bb while the blade 1O has the same warp angle θ and stagger angle ξ.
And the boss radius Rb of the blade 10 at this time.
Chord length LbO and point 1bb to blade trailing edge 1c
a point 1 on the leading edge of the blade at a radius Rs of 40 to 60% of the outer peripheral radius of the blade, where chord length Lb up to b is ΔLb.
Assuming that the chord length Ls at bs, the radial distribution of the chord length L from the boss radius Rb to the point 1bs on the blade leading edge is L = △ Lb / (Rs−Rb) 2 × (R− Rs) 2 + Ls (Rb ≦ R ≦ Rs), and the blade shape is formed. Therefore, the chord length is longer than that of the base blade 10 and the pressure rise on the blade surface is increased, and the high pressure loss is obtained. At the time, at a portion of the blade leading edge near the boss, a vertical vortex generated by the flow of the flow from the pressure surface 9 to the suction surface 8 causes the flow to flow along the blade surface, and the suction flow is guided by the vertical vortex. The turbulent air is blown to the outside, and the turbulence of the flow on the blade negative pressure surface due to the separation of the suction flow near the leading edge of the blade at high pressure loss can be eliminated, noise can be reduced, and forced by strong wind such as typhoon When the fan rotates at high speed,
The thickness of the blade near the boss near the blade front edge and at the connection with the boss is partially increased to avoid stress concentration due to strong wind at the root of the blade and prevent damage to the blade and boss. Since the connecting portions of the portions are formed in the shape of a wing in the form of an R shape, stress concentration can be avoided, and it is not necessary to locally increase the plate thickness.

【0083】この発明に係る軸流送風機は、羽根を取り
付けて回転するボス部と、回転方向に面する羽根前縁
部、回転方向と反対方向に面する羽根後縁部、および上
記ボス部に対向する羽根外周部から周が構成される羽根
とを有する軸流送風機の回転軸と直交する平面に軸流送
風機を投影した投影図において、ベースの羽根1O’の
ボス部半径Rbにおける羽根前縁部上の点1baO’と
原点Oを結んだ直線1baO’−Oを、原点Oを中心に
回転方向に20〜50°の間である角度δαb分回転さ
せた時の点を羽根前縁ボス部延長終点1bb’としたと
き、羽根を任意半径Rの円筒面で切断し、その断面を2
次元平面に展開して得られる展開図において、前記羽根
1Oとそり角θ、食い違い角ξが同一のまま、ボス部半
径Rbでの翼弦を、前記点1bbまで延長し、このとき
の前記羽根1Oのボス部半径Rbにおける翼弦長LbO
と前記点1bb〜羽根後縁部1cbまでの翼弦長Lb、
この差を△Lbとし、羽根外周部半径の40〜60%の
半径Rsでの羽根前縁部上の点1bsでの翼弦長Ls
すると、ボス部半径Rbから前記羽根前縁部上の点1b
sまでの翼弦長Lの半径方向分布を L=△Lb/(Rs−Rb) 2 ×(R−Rs) 2 +Ls (Rb≦R≦Rs) で与え、羽根形状を形成したものであるので、ベースの
羽根1Oに比べ翼弦長が長くなり、羽根面上での圧力上
昇が稼げるとともに、高圧損時、羽根前縁部のボス部寄
り部分において、圧力面9から負圧面8への流れの回り
込みにより発生する縦渦により、流れは羽根面上に沿
い、かつ吸い込み流れがこの縦渦に誘導されながら外部
へ送風され、高圧損時における羽根前縁部付近の吸い込
み流れの剥離による羽根負圧面上の流れの乱れを無く
せ、低騒音化を図ることができ、かつ、台風などの強風
により強制的にファンが高回転するときの対処として、
羽根前縁部のボス部寄り付近とボス部との接続部の羽根
の板厚を一部厚くして、羽根の付け根の強風による応力
集中を回避し、破損を防止することなく、羽根とボス部
の接続部をR形状ぎみに羽根形状を形成したものである
ため、応力集中を回避でき、板厚を局部的に厚くする必
要がなくなる。
The axial-flow blower according to the present invention is characterized in that a boss mounted with a blade and rotating, a blade leading edge facing in the rotating direction, a blade trailing edge facing in the direction opposite to the rotating direction, and the boss. In a projected view of the axial blower projected on a plane orthogonal to the rotation axis of the axial blower having a blade having a circumference formed from the outer periphery of the facing blade, the blade front edge at the boss radius Rb of the base blade 1O 'is shown. The point at which the straight line 1baO'-O connecting the point 1baO 'on the part and the origin O is rotated about the origin O by an angle δαb between 20 and 50 ° in the rotation direction is defined as the blade leading edge boss. When the extension end point is 1bb ', the blade is cut by a cylindrical surface having an arbitrary radius R, and its cross section is 2
In a developed view obtained by developing the blade into a three-dimensional plane, the chord at the boss radius Rb is extended to the point 1bb while the blade 1O has the same warp angle θ and stagger angle 、, and the blade Chord length LbO at boss radius Rb of 10
And the chord length Lb from the point 1bb to the blade trailing edge 1cb ,
Assuming that this difference is ΔLb and the chord length Ls at a point 1bs on the leading edge of the blade at a radius Rs of 40 to 60% of the radius of the outer peripheral portion of the blade, the boss radius Rb indicates Point 1b
The radial distribution of the chord length L up to s is given by L = △ Lb / (Rs−Rb) 2 × (R−Rs) 2 + Ls (Rb ≦ R ≦ Rs), and the blade shape is formed. The chord length is longer than that of the base blade 10 to increase the pressure on the blade surface, and at the time of high pressure loss, the flow from the pressure surface 9 to the suction surface 8 at a portion of the blade front edge near the boss. Due to the vertical vortex generated by the swirl, the flow is along the blade surface and the suction flow is blown to the outside while being guided by this vertical vortex, and the blade flow due to the separation of the suction flow near the leading edge of the blade at high pressure loss The turbulence of the flow on the pressure surface can be eliminated, noise can be reduced, and as a countermeasure when the fan is forcibly rotated at high speed due to strong wind such as typhoon,
The thickness of the blade near the boss near the blade front edge and at the connection with the boss is partially increased to avoid stress concentration due to strong wind at the root of the blade and prevent damage to the blade and boss. Since the connecting portions of the portions are formed in the shape of a wing in the form of an R shape, stress concentration can be avoided, and it is not necessary to locally increase the plate thickness.

【0084】実施例10 以下、他の一実施例を図に基づいて説明する。図71は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す矢印、1bは
羽根前縁部、1dは羽根外周部、1cは羽根後縁部を示
す。図72は、図71における正面図である。図中Lは
翼弦長であり、羽根間の円周方向距離(ピッチ)である
Tとの比で定義される節弦比T/Lの値を各半径点にお
いて、T/L=1.1〜2.0としている。図73は、
回転軸3と直交する平面に羽根1を投影した投影図であ
る。図において、図72と同一符号のものは同一のもの
を示す。1’は投影図における羽根、1b’は投影図に
おける羽根前縁部、1c’は投影図における羽根後縁
部、1d’は投影図における羽根外周部である。また、
図中破線は、本発明による軸流送風機の羽根1’を形成
する際のベースになる羽根1O’で、1bO’はベース
になる羽根の羽根前縁部、1dO’はベースになる羽根
の羽根外周部、1cO’はベースになる羽根の羽根後縁
部を示す。
Embodiment 10 Hereinafter, another embodiment will be described with reference to the drawings. FIG. 71 is a perspective view showing an embodiment of the axial flow blower according to the present invention, which has, for example, a three-blade shape. The operation is mainly described for one blade 1, but the same applies to other blades. It is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion for attaching the blade,
Reference numeral 3 denotes a rotation axis of the blade 1, 4 denotes an arrow indicating a rotation direction, 1b denotes a blade front edge, 1d denotes a blade outer peripheral portion, and 1c denotes a blade rear edge. FIG. 72 is a front view of FIG. 71. In the figure, L is a chord length, and the value of the chord ratio T / L defined by the ratio to T, which is the circumferential distance (pitch) between the blades, is T / L = 1. 1 to 2.0. FIG. 73
FIG. 3 is a projection view in which a blade 1 is projected on a plane orthogonal to a rotation axis 3. In the figure, the same reference numerals as those in FIG. 72 denote the same components. 1 'is a blade in the projection, 1b' is a blade leading edge in the projection, 1c 'is a blade trailing edge in the projection, and 1d' is a blade outer periphery in the projection. Also,
The broken line in the figure indicates the blade 1O 'serving as a base when forming the blade 1' of the axial blower according to the present invention, wherein 1bO 'is the blade front edge of the base blade and 1dO' is the blade of the base blade. The outer peripheral portion, 1cO ′ , indicates the trailing edge of the base blade.

【0085】また回転軸3から任意半径Rの円筒面でベ
ースの羽根1O’を切断し、その断面を二次元平面に展
開して得られる展開図における円弧1bRO’−PR
O’−1cRO’は、羽根断面形状となる。ここで、P
RO’は弧1bRO’−1cRO’の中点であり、回転
軸3と直交する平面に羽根1O’を投影した投影図にお
ける翼弦線中心点となる。この投影図におけるPRO’
の位置を明確化するために、ボス部半径Rbの円筒面で
羽根1O’を切断し、その断面を二次元平面に展開して
得られる展開図におけるボス部翼弦線中心点PbO’と
し、回転軸3の投影図における位置Oとを結ぶ直線Pb
O’−OをX軸として、Oを原点とした座標系を投影図
に形成する。またPtO’は羽根外周部半径Rtにおけ
る羽根外周部1dO’での翼弦線中心点とする。上記座
標系において、直線PRO’−OとX軸のなす角度をδ
θ(δθ:回転方向前進角)とし、羽根外周部での翼弦
線中心点PtO’と原点Oを結んだ直線PtO’−Oと
X軸のなす角度をδθtとし、 δθ=δθt×(R−Rb)/(Rt−Rb)で与え、
δθt=25〜40°としている。
Further, an arc 1bRO'-PR in a developed view obtained by cutting the base blade 1O 'with a cylindrical surface having an arbitrary radius R from the rotation shaft 3 and developing the cross section into a two-dimensional plane.
O'-1cRO 'has a blade cross-sectional shape. Where P
RO 'is the midpoint of the arc 1bRO'-1cRO', and is the center point of the chord line in the projection of the blade 1O 'on a plane orthogonal to the rotation axis 3. PRO 'in this projection
In order to clarify the position, the blade 1O ′ is cut by a cylindrical surface having a boss radius Rb, and the boss chord line center point PbO ′ in a developed view obtained by expanding the cross section into a two-dimensional plane, A straight line Pb connecting the position O in the projected view of the rotation axis 3
A coordinate system having O'-O as the X axis and O as the origin is formed in the projection view. PtO 'is a chord center point of the blade outer peripheral portion 1dO' at the blade outer peripheral portion radius Rt. In the above coordinate system, the angle between the straight line PRO′-O and the X axis is δ
θ (δθ: advancing angle in the rotation direction), the angle between the X-axis and a straight line PtO′-O connecting the chord center point PtO ′ and the origin O at the outer periphery of the blade is δθt, and δθ = δθt × (R -Rb) / (Rt-Rb),
δθt = 25 to 40 °.

【0086】本発明による軸流送風機は、この前記図中
は破線で示したベースの羽根1O’の羽根外周部半径R
tと羽根ボス部半径Rbの間である任意半径Rsをもつ
羽根前縁部1bO’上の点1bs’(1bs’:羽根前
縁ボス部延長開始点)、羽根の付け根であるボス部半径
Rbの羽根前縁部1bO’上の点1baO’と原点Oを
結んだ直線1baO’−Oを、原点Oを中心に回転方向
に角度δαb(δαb:羽根前縁ボス部前進延長角)分
回転させた時の点1bb’(1bb’:羽根前縁ボス部
延長終点)とする時、前記直線1baO’−Oを、0°
〜前記羽根前縁ボス部前進延長角δαbの間の任意角度
δα分回転させ、羽根外周部方向に延長したときの半径
Rbと半径Rsの間の任意半径Rcにおける点1bc’
とすると、この時の任意回転角度δαの半径方向分布を δα=(δαb/(Rb−Rs) 2 )×(R−Rs) 2 (Rb≦R≦Rs) で与え、前記羽根と連続するように、ベースの羽根1
O’の羽根前縁部1bO’を基準にして、半径Rsの羽
根前縁ボス部延長開始点1bs’から前記点1bc’を
通り、ボス部半径Rbの羽根前縁ボス部延長終点1b
b’の間の羽根前縁部1bO’を回転方向に前進延長さ
せ、羽根形状を形成したものである。
The axial flow blower according to the present invention has a blade outer radius R of a base blade 1O 'indicated by a broken line in the figure.
Point 1bs'(1bs': blade front edge boss portion extension start point) on blade front edge portion 1bO 'having arbitrary radius Rs between t and blade boss portion radius Rb, boss portion radius Rb which is the root of the blade A straight line 1baO'-O connecting the point 1baO 'on the blade leading edge 1bO' and the origin O is rotated about the origin O by the angle δαb (δαb: blade leading edge boss forward extension angle) in the rotation direction. When the point 1bb '(1bb': blade front edge boss portion extension end point) at the time of
A point 1bc 'at an arbitrary radius Rc between the radius Rb and the radius Rs when the blade is rotated by an arbitrary angle δα between the blade leading edge boss portion advance extension angle δαb and extended toward the blade outer peripheral portion.
Then, the radial distribution of the arbitrary rotation angle δα at this time is represented by δα = (δαb / (Rb−Rs) 2 ) × (R−Rs) 2 (Rb ≦ R ≦ Rs), and the base blade 1 is continuous with the blade.
With reference to the blade front edge portion 1bO 'of O', the blade front edge boss portion extension end point 1b of the radius Rs passes through the point 1bc 'from the blade front edge boss portion extension start point 1bs' and the boss portion radius Rb.
The blade front edge portion 1bO 'between b' is advanced in the rotation direction to form a blade shape.

【0087】図74は、図73における図中破線で示し
たベースの羽根1O’のボス部半径Rbでの翼弦線中心
点PbO’を相対的な原点として、羽根面を形成したと
き、べースの羽根1O’をボス部半径Rbの円筒面で切
断し、その断面を二次元平面に展開して得られる展開図
を示す。なお実線が本発明の羽根1を示す。図中、ベー
スの羽根のそり線5を円弧形状とし、その円弧を形成す
るための中心角であるそり角θ、円弧を形成する半径を
RRとする。このとき、そり角θの半径方向分布をθ=
(θt−θb)×(R−Rb)/(Rt−Rb)+θb
(θt:羽根外周部でのそり角、θb:羽根ボス部で
のそり角)とし、θt=25〜35°、θb=30〜5
5°、θt<θbとしている。また、羽根の取付位置
は、その翼弦線1baO−1cOと、回転軸3と平行で
ベースの羽根1Oの羽根前縁部1baOを通る直線6と
のなす角度を食い違い角ξとし、ξに半径方向の分布を
もたせることにより決定する。すなわちξの半径方向分
布をξ=(ξt−ξb)×(R−Rb)/(Rt−R
b)+ξb (ξt:羽根外周部での食い違い角、ξ
b:羽根ボス部での食い違い角)とし、ξt=55〜7
0°、ξb=40〜65°、ξt>ξbとしている。こ
のようなベースの羽根1Oに対し、本発明での軸流送風
機の羽根は、図73で示した直線1baO’−Oを原点
O中心に回転方向にδαb回転させた時のボス部半径R
bにおける点1bb’の図74の展開図における点1b
bまでを、同一円弧で回転方向に延長させたものであ
る。
FIG. 74 shows a case where the blade surface is formed with the chord line center point PbO ′ at the boss radius Rb of the base blade 1O ′ indicated by the broken line in FIG. 73 as a relative origin. FIG. 3 is a development view obtained by cutting the blade 1O ′ of the base with a cylindrical surface having a boss radius Rb and developing the cross section into a two-dimensional plane. The solid line indicates the blade 1 of the present invention. In the figure, the sled line 5 of the base blade is formed in an arc shape, the sled angle θ which is the central angle for forming the arc, and the radius of the arc formed are RR. At this time, the radial distribution of the warp angle θ is represented by θ =
(Θt−θb) × (R−Rb) / (Rt−Rb) + θb
(Θt: deflection angle at the blade outer peripheral portion, θb: deflection angle at the blade boss portion), θt = 25 to 35 °, θb = 30 to 5
5 ° and θt <θb. In addition, the mounting position of the blade is defined as an angle between a chord line 1baO- 1cO and a straight line 6 that is parallel to the rotation axis 3 and passes through the blade front edge 1baO of the base blade 1O. It is determined by giving a distribution of directions. That is, the radial distribution of ξ is given by ξ = (ξt−ξb) × (R−Rb) / (Rt−R
b) + ξb (ξt: stagger angle at blade outer periphery, ξ
b: stagger angle at the blade boss) and Δt = 55-7
0 °, ξb = 40 to 65 °, and ξt> ξb. In contrast to the base blade 1O, the blade of the axial blower according to the present invention has a boss radius R when the straight line 1baO'-O shown in FIG.
b in the development of FIG. 74 at point 1bb '
b is extended in the rotation direction by the same arc.

【0088】このように形成することにより、高圧損
時、図73の半径RcにおけるX−X断面である図75
において、圧力面9から負圧面8への流れの回り込みに
より発生する縦渦10により、流れは羽根面上に沿い、
かつ吸い込み流れ12がこの縦渦10に誘導されながら
図76のように外部へ送風される。これにより、従来の
軸流送風機における問題点として、図102に示したよ
うな、高圧損時における羽根前縁部1b付近の吸い込み
流れ12の剥離による羽根負圧面8上の流れ11の乱れ
を無くせ、低騒音化を図ることができる。また、従来の
軸流送風機では、台風などの強風により強制的にファン
が高回転するときの対処として、図98のように羽根前
縁部1bのボス部寄り付近とボス部2との接続部の羽根
の板厚を一部厚くして、羽根の付け根の強風による応力
集中を回避し、破損を防止していた。そのため、図98
のB−B断面を展開した展開図である図103に示すよ
うに、板厚の厚い羽根前縁部1bで吸い込み流れ12が
衝突し、負圧面上の吸い込み流れ11が乱れていた。本
発明において、図73のように羽根1とボス部の接続部
をR形状ぎみに羽根形状を形成したものであるため、応
力集中を回避でき、板厚を局部的に厚くする必要がなく
なる。
By forming in this manner, at the time of high-pressure loss, FIG.
In, due to the longitudinal vortex 10 generated by the flow of the flow from the pressure surface 9 to the suction surface 8, the flow follows the blade surface,
The suction flow 12 is blown to the outside as shown in FIG. 76 while being guided by the vertical vortex 10. Thus, as a problem in the conventional axial blower, as shown in FIG. 102, it is possible to eliminate the disturbance of the flow 11 on the blade negative pressure surface 8 due to the separation of the suction flow 12 near the blade leading edge 1b at the time of high pressure loss. In addition, noise can be reduced. Further, in the conventional axial blower, as a countermeasure when the fan is forcibly rotated at a high speed due to a strong wind such as a typhoon, as shown in FIG. The thickness of the blades was partially increased to avoid stress concentration due to strong wind at the roots of the blades, thereby preventing breakage. Therefore, FIG. 98
As shown in FIG. 103 which is a developed view of the cross section taken along the line BB of FIG. 103, the suction flow 12 collides with the blade leading edge 1b having a large thickness, and the suction flow 11 on the negative pressure surface was disturbed. In the present invention, since the connecting portion between the blade 1 and the boss portion is formed in a blade shape with a rounded shape as shown in FIG. 73, stress concentration can be avoided and it is not necessary to locally increase the plate thickness.

【0089】しかし、前記直線1baO’−Oを原点O
中心に回転方向させる時の羽根ボス部前進延長角δαb
および羽根前縁ボス部延長開始点1bs’での半径Rs
が大きすぎると図74に相当する図77のように吸い込
み流れ12が羽根前縁部1bbで衝突し、羽根面に乱れ
を発生させ騒音悪化し、小さすぎると効果がなくなり、
かつ強度不足となる。従って、この角度δαbおよび半
径Rsの最適範囲が存在する。図78は、羽根前縁ボス
部延長開始点1bsにおける半径Rs=一定の時の羽根
前縁ボス部前進延長角δαbの大きさによって、騒音特
性への影響を実験的に求めたものである。このとき比騒
音Ksは、動作点によって変化するため、比騒音Ksが
最小となる動作点での値を最小比騒音Ksminとして
グラフ化している。図に示すように、羽根前縁ボス部前
進延長角δαbが20〜50°の間であれば、ベースの
羽根である従来の軸流送風機に対し、最小比騒音Ksm
inの値は小さく、最高2.5[dB(A)]低騒音であ
る。
However, the straight line 1baO'-O is set at the origin O
Blade boss forward extension angle δαb when rotating to center
And radius Rs at the blade leading edge boss extension start point 1bs'
Is too large, the suction flow 12 collides at the leading edge 1bb of the blade as shown in FIG. 77 corresponding to FIG. 74, causing disturbance on the blade surface and deteriorating the noise.
And the strength is insufficient. Therefore, there is an optimum range of the angle δαb and the radius Rs. FIG. 78 shows experimentally the influence on the noise characteristics obtained by the magnitude of the blade front edge boss forward extension angle δαb when the radius Rs is constant at the blade front edge boss extension start point 1bs. At this time, since the specific noise Ks changes depending on the operating point, the value at the operating point where the specific noise Ks is minimized is graphed as the minimum specific noise Ksmin. As shown in the figure, when the blade leading edge boss portion advance extension angle δαb is between 20 ° and 50 °, the minimum specific noise Ksm is smaller than that of the conventional axial flow fan which is the base blade.
The value of in is small, and the noise is 2.5 [dB (A)] at maximum.

【0090】図79は、羽根前縁ボス部前進延長角δα
b=一定の時の、図73における羽根前縁ボス部延長開
始点1bs’における半径Rsと羽根外周部半径Rtの
比率(=Rs/Rt)の大きさによって、騒音特性への
影響を実験的に求めたものである。このとき比騒音Ks
は、動作点によって変化するため、比騒音Ksが最小と
なる動作点での値を最小比騒音Ksminとしてグラフ
化している。図に示すように、羽根前縁ボス部延長開始
点1bs’における半径Rsが羽根外周部半径Rtの4
0〜70%の間にあれば、最小比騒音Ksminは低
く、ベースの羽根である従来の軸流送風機に対し、最高
2.5[dB(A)]低騒音である。図80は、羽根前縁ボ
ス部延長開始点1bsにおける半径Rsと羽根外周部半
径Rtの比率(=Rs/Rt)と羽根前縁ボス部前進延
長角δαbの騒音特性への影響を実験的に検討し、比騒
音Ksが最小になる動作点での値をグラフ化したもので
ある。図より、0.4≦Rs/Rt≦0.7かつ20°≦δα
b≦50°であれば、最小比騒音Ksminは十分小さ
く、最高2.5[dB(A)]低騒音である。図81は、羽
根前縁ボス部延長開始点1bsにおける半径Rsと羽根
外周部半径Rtの比率と羽根前縁ボス部前進延長角δα
bの羽根への最大応力σへの影響を実験的に検討したも
のである。図中Rb/Rtでの値を示す黒丸はベースの
羽根である軸流送風機の羽根前縁部ボス部より部分を局
所的に板厚を厚くしなかった場合の最大応力である。図
より、0.4≦Rs/Rtかつ20°≦δαbであれ
ば、羽根の強度は十分である。従って、図80、81よ
り0.4≦Rs/Rt≦0.7かつ20°≦δαb≦50°で
あれば、低騒音でかつ強度が十分な羽根を得られる。
FIG. 79 shows the blade leading edge boss forward extension angle δα.
When b = constant, the effect on noise characteristics is experimentally determined by the ratio (= Rs / Rt) of the radius Rs at the blade leading edge boss portion extension start point 1bs' in FIG. 73 to the blade outer radius Rt. It is what we asked for. At this time, the specific noise Ks
Varies with the operating point, and the value at the operating point where the specific noise Ks is minimized is graphed as the minimum specific noise Ksmin. As shown in the figure, the radius Rs at the blade leading edge boss portion extension start point 1bs' is 4 times the blade outer peripheral radius Rt.
If it is between 0 and 70%, the minimum specific noise Ksmin is low, and the maximum noise is 2.5 [dB (A)] lower than that of the conventional axial fan which is the base blade. FIG. 80 shows experimentally the effect of the ratio (= Rs / Rt) of the radius Rs to the blade outer periphery radius Rt at the blade leading edge boss extension start point 1bs (= Rs / Rt) and the effect of the blade leading edge boss forward extension angle δαb on the noise characteristics. This is a graph obtained by examining the values at the operating point where the specific noise Ks becomes minimum. From the figure, 0.4 ≦ Rs / Rt ≦ 0.7 and 20 ° ≦ δα
If b ≦ 50 °, the minimum specific noise Ksmin is sufficiently small and the maximum noise is 2.5 [dB (A)] low. FIG. 81 shows the ratio of the radius Rs to the blade outer peripheral radius Rt at the blade leading edge boss extension start point 1bs and the blade leading edge boss forward extension angle δα.
The effect of b on the maximum stress σ on the blade is experimentally examined. The black circles showing the values of Rb / Rt in the figure are the maximum stresses when the plate thickness is not locally increased at the portion from the boss portion at the leading edge of the blade of the axial flow blower as the base blade. As shown in the figure, if 0.4 ≦ Rs / Rt and 20 ° ≦ δαb, the blade strength is sufficient. Therefore, from FIGS. 80 and 81, if 0.4 ≦ Rs / Rt ≦ 0.7 and 20 ° ≦ δαb ≦ 50 °, a blade with low noise and sufficient strength can be obtained.

【0091】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、およびボス部に対向す
る羽根外周部から周が構成される羽根とを有する軸流送
風機の羽根を任意半径Rの円筒面で切断し、その断面を
2次元平面に展開して得られる展開図において、その羽
根断面におけるそり線の形状を円弧形状とし、その円弧
を形成するための中心角をθ(θ:そり角)とした場
合、θの半径方向分布をθ=(θt−θb)×(R−R
b)/(Rt−Rb)+θb(θt:羽根外周部でのそ
り角、θb:羽根ボス部半径Rbにおけるそり角)で与
え、θt=25゜〜35゜、θb=30゜〜55゜、θt<
θbとし、上記展開図において、羽根の翼弦線と上記回
転軸と平行で上記羽根の前縁部を通る直線とのなす角度
をξ(ξ:食い違い角)とするとき、ξの半径方向分布
を、ξ=(ξt−ξb)×(R−Rb)/(Rt−R
b)+ξb(ξt:羽根外周部での食い違い角ξ、ξ
b:ボス部半径Rbにおける食い違い角)で与え、ξt
=55゜〜70゜、ξb=40゜〜65゜、ξt>ξbと
し、さらに、この図におけるLは翼弦長であり、図5に
おいて示した羽根間の円周方向距離(ピッチ)であるT
との比で定義される節弦比T/Lの値を、各半径点にお
いてT/L=1.1〜2.0とし、かつ上記回転軸と直
交する平面に軸流送風機を投影した投影図において、上
記羽根のボス部半径Rbの円筒面で切断したときの断面
における翼弦線中心点をPb’とし、上記回転軸を原点
Oとして、上記O点とPb’点とを結ぶ直線をX軸とし
た座標系で、上記羽根を任意半径Rの円筒面で切断した
時の翼弦線中心点をPR’として、直線PR’−Oと上
記X軸とのなす角度をδθ(δθ:回転方向前進角)と
した場合、δθの半径方向分布を δθ=δθt×(R−Rb)/(Rt−Rb) (Rt:羽根外周部半径、Rb:羽根ボス部半径、δθ
t:直線Pt’−OとX軸のなす角度)で与え、δθt
を25〜40°とし、まず羽根形状を形成し、この時の
羽根の付け根の羽根前縁部上の点1baO’と原点Oを
結んだ直線1baO’−Oを、原点Oを中心に回転方向
に20〜50°の間である角度δαb分回転させた時の
ボス部半径Rbの点1bb’と羽根外周部半径の40〜
70%の半径Rsをもつ羽根前縁部上の点1bs’の間
の形状を、前記羽根前縁部を基準として、前記羽根のボ
ス部半径Rbである羽根前縁部上の点1baO’から前
記角度δαb分回転方向に回転させたときのボス部半径
Rbの羽根前縁部上の点1bb’の間に存在するボス部
半径Rb〜半径Rsの間の半径Rcの点1bc’と原点
Oを結んだ直線1bc’−Oと直線1baO’−Oとの
なす角度を示すδαの半径方向分布を δα=(δαb/(Rb−Rs) 2 )×(R−Rs) 2 (Rb≦R≦Rs) で与え、前記羽根と連続するように、羽根前縁部上の点
1bs’よりボス部寄り部分の羽根前縁部を回転方向に
延長し、羽根形状を形成したものであるので、高圧損
時、羽根前縁部のボス部寄り部分において、圧力面9か
ら負圧面8への流れの回り込みにより発生する縦渦によ
り、流れは羽根面上に沿い、かつ吸い込み流れがこの縦
渦に誘導されながら外部へ送風され、高圧損時における
羽根前縁部1b付近の吸い込み流れ12の剥離による羽
根負圧面8上の流れ11の乱れを無くせ、低騒音化を図
ることができ、かつ、台風などの強風により強制的にフ
ァンが高回転するときの対処として、羽根前縁部のボス
部寄り付近とボス部との接続部の羽根の板厚を一部厚く
して、羽根の付け根の強風による応力集中を回避し、破
損を防止することなく、羽根1とボス部の接続部をR形
状ぎみに羽根形状を形成したものであるため、応力集中
を回避でき、板厚を局部的に厚くする必要がなくなる。
This axial-flow blower has a boss portion to which the blades are attached and rotated, a blade front edge portion facing the rotation direction, a blade rear edge portion facing the rotation direction and a blade outer periphery facing the boss portion. In the developed view obtained by cutting the blade of the axial flow blower having the blade having the circumference from the part with a cylindrical surface having an arbitrary radius R, and developing the cross section into a two-dimensional plane, When the shape is an arc shape and the center angle for forming the arc is θ (θ: warp angle), the radial distribution of θ is θ = (θt−θb) × (R−R
b) / (Rt−Rb) + θb (θt: sled angle at the outer periphery of the blade, θb: sled angle at the radius Rb of the blade boss portion), and θt = 25 ° to 35 °, θb = 30 ° to 55 °, θt <
θb, and in the above developed view, when an angle between a chord line of the blade and a straight line parallel to the rotation axis and passing through the leading edge of the blade is denoted by ξ (ξ: stagger angle), the radial distribution of ξ Ξ = (ξt−ξb) × (R−Rb) / (Rt−R
b) + ξb (ξt: stagger angle at blade outer periphery 部, ξ
b: stagger angle at boss radius Rb), Δt
= 55 ° to 70 °, ξb = 40 ° to 65 °, and ξt> ξb, and L in this figure is the chord length and the circumferential distance (pitch) between the blades shown in FIG. T
The value of the chord ratio T / L defined by the ratio is defined as T / L = 1.1 to 2.0 at each radial point, and the axial flow fan is projected on a plane orthogonal to the rotation axis. In the figure, a chord line center point in a cross section when cut by a cylindrical surface having a boss portion radius Rb of the blade is Pb ′, and a line connecting the O point and the Pb ′ point is the origin of the rotation axis. In a coordinate system with the X axis, the chord line center point when the blade is cut by a cylindrical surface having an arbitrary radius R is PR ′, and the angle between the straight line PR′-O and the X axis is δθ (δθ: When the rotation angle advance angle is set, the radial distribution of δθ is δθ = δθt × (R−Rb) / (Rt−Rb) (Rt: radius of blade outer peripheral portion, Rb: radius of blade boss portion, δθ
t: the angle between the straight line Pt'-O and the X axis), δθt
Is set to 25 to 40 °, a blade shape is first formed, and a straight line 1baO′-O connecting the point 1baO ′ on the blade front edge of the root of the blade at this time to the origin O is rotated around the origin O. The point 1bb 'of the boss radius Rb when rotated by an angle δαb between 20 and 50 ° and the blade outer radius of
The shape between the points 1bs 'on the leading edge of the blade having a radius Rs of 70% is defined from the point 1baO' on the leading edge of the blade, which is the boss radius Rb of the blade with respect to the leading edge of the blade. The point 1bc ' of the radius Rc between the boss radius Rb and the radius Rs existing between the points 1bb' on the blade leading edge of the boss radius Rb when rotated in the rotation direction by the angle δαb and the origin O the radial distribution of .delta..alpha indicating the angle between the straight line 1bc '-O and linear 1baO'-O which connects the δα = (δαb / (Rb- Rs) 2) × (R-Rs) 2 (Rb ≦ R ≦ Rs), and the blade front edge of the portion closer to the boss portion is extended in the rotation direction from point 1bs ′ on the blade front edge so as to be continuous with the blade, thereby forming a blade shape. Therefore, at the time of high pressure loss, in the portion near the boss portion of the leading edge of the blade, the vertical vortex generated by the flow of the flow from the pressure surface 9 to the suction surface 8 causes the flow along the blade surface and the suction flow. The air is blown to the outside while being guided by the vertical vortex, and the disturbance of the flow 11 on the blade negative pressure surface 8 due to the separation of the suction flow 12 near the blade leading edge 1b at the time of high pressure loss can be eliminated, and noise can be reduced. As a countermeasure when the fan is forcibly rotated at a high speed due to a strong wind such as a typhoon, the thickness of the blade near the boss at the leading edge of the blade and at the connection with the boss is partially increased, Avoid stress concentration due to strong wind at the base of Without preventing, since they are the connection portion of the blade 1 and the boss portion forming the blade shape R shape Gimi, you can avoid stress concentration, it is not necessary to increase the plate thickness locally.

【0092】実施例11 以下、他の一実施例を図に基づいて説明する。図82は
この発明における軸流送風機の一実施例を示す斜視図
で、例えば3枚羽根形状のものであり、動作について
は、主に1枚の羽根1について述べるが、他の羽根につ
いても同様である。図において、1は3次元形状を持つ
軸流送風機の羽根、2はこの羽根を取り付けるボス部、
3は羽根1の回転軸、4は回転方向を示す矢印、1bは
羽根前縁部、1dは羽根外周部、1cは羽根後縁部を示
す。図83は、図82の平面図である。図中Lは翼弦長
であり、羽根間の円周方向距離(ピッチ)であるTとの
比で定義される節弦比T/Lの値を各半径点において、
T/L=1.1〜2.0としている。
Embodiment 11 Hereinafter, another embodiment will be described with reference to the drawings. FIG. 82 is a perspective view showing an embodiment of the axial flow blower according to the present invention, which has, for example, a three-bladed shape. It is. In the figure, 1 is a blade of an axial blower having a three-dimensional shape, 2 is a boss portion for attaching the blade,
Reference numeral 3 denotes a rotation axis of the blade 1, 4 denotes an arrow indicating a rotation direction, 1b denotes a blade front edge, 1d denotes a blade outer peripheral portion, and 1c denotes a blade rear edge. FIG. 83 is a plan view of FIG. In the figure, L is a chord length, and a value of a chord ratio T / L defined by a ratio with T which is a circumferential distance (pitch) between the blades at each radial point is given by:
T / L = 1.1 to 2.0.

【0093】図84は、回転軸3と直交する平面に羽根
1、この羽根1’のベースになる羽根1O’を投影した
投影図である。図において、図83と同一符号のものは
同一のものを示す。1’は投影図における羽根、1b’
は投影図における羽根前縁部、1c’は投影図における
羽根後縁部、1d’は投影図における羽根外周部であ
る。また、図中破線は、本発明による軸流送風機の羽根
1’を形成する際のベースになる羽根1O’で、1b
O’はベースになる羽根の羽根前縁部、1dO’はベー
スになる羽根の羽根外周部、1cO’はベースになる羽
根の羽根後縁部を示す。また回転軸3から任意半径Rの
円筒面でベースの羽根1O’を切断し、その断面を二次
元平面に展開して得られる展開図における円弧1bR
O’−PRO’−1cRO’は、羽根断面形状となる。
ここで、PRO’は弧1bRO’−1cRO’の中点で
あり、回転軸3と直交する平面に羽根1O’を投影した
投影図における翼弦線中心点となる。この投影図におけ
るPRO’の位置を明確化するために、ボス部半径Rb
の円筒面で羽根1O’を切断し、その断面を二次元平面
に展開して得られる展開図におけるボス部翼弦線中心点
PbO’とし、回転軸3の投影図における位置Oとを結
ぶ直線PbO’−OをX軸として、Oを原点とした座標
系を投影図に形成する。またPtO’は羽根外周部半径
Rtにおける羽根外周部1dO’での翼弦線中心点とす
る。上記座標系において、直線PRO’−OとX軸のな
す角度をδθ(δθ:回転方向前進角)とし、羽根外周
部での翼弦線中心点PtO’と原点Oを結んだ直線Pt
O’−OとX軸のなす角度をδθtとし、δθ=δθt
×(R−Rb)/(Rt−Rb)で与え、δθt=25
〜40°としている。本発明による軸流送風機は、図中
破線で示したベースの羽根1O’の羽根外周部半径Rt
と羽根ボス部半径Rbの間である任意半径Rsをもつ羽
根前縁部1bO’上の点1bs’(1bs’:羽根前縁
ボス部延長開始点)、羽根の付け根であるボス部半径R
bの羽根前縁部1bO’上の点1baO’と原点Oを結
んだ直線1baO’−Oを、原点Oを中心に回転方向に
角度δαb(δαb:羽根前縁ボス部前進延長角)分回
転させた時の点1bb’(1bb’:羽根前縁ボス部延
長終点)とするとき、前記羽根前縁ボス部延長開始点に
おける半径Rsから羽根前縁ボス部延長終点1bb’に
おける半径Rbまでの羽根の翼弦長を回転方向に延長し
た形状である。次の図で詳細に述べる。
FIG. 84 is a projection view in which the blade 1 and the blade 1O ′ serving as the base of the blade 1 ′ are projected on a plane orthogonal to the rotation axis 3. In the figure, the same reference numerals as those in FIG. 83 denote the same components. 1 'is the blade in the projection, 1b'
Is the leading edge of the blade in the projection, 1c 'is the trailing edge of the blade in the projection, and 1d' is the outer periphery of the blade in the projection. The broken line in the figure is a blade 1O 'serving as a base when forming the blade 1' of the axial blower according to the present invention, and 1b.
O 'denotes the leading edge of the base blade, 1dO' denotes the outer peripheral portion of the base blade, and 1cO ' denotes the trailing edge of the base blade. Further, the base blade 1O ′ is cut from the rotating shaft 3 with a cylindrical surface having an arbitrary radius R, and the cross-section thereof is expanded into a two-dimensional plane to obtain an arc 1bR in a developed view.
O'-PRO'-1cRO 'has a blade cross-sectional shape.
Here, PRO 'is the midpoint of the arc 1bRO'-1cRO', and is the center point of the chord line in the projection of the blade 1O 'projected on a plane orthogonal to the rotation axis 3. In order to clarify the position of PRO ′ in this projection, the boss radius Rb
A straight line connecting the boss chord line center point PbO 'in a developed view obtained by cutting the blade 1O' on the cylindrical surface of the above and developing the cross section into a two-dimensional plane, and the position O in the projected view of the rotation axis 3 A coordinate system with PbO'-O as the X axis and O as the origin is formed in the projection view. PtO 'is a chord center point of the blade outer peripheral portion 1dO' at the blade outer peripheral portion radius Rt. In the above coordinate system, an angle formed between the straight line PRO′-O and the X axis is δθ (δθ: advancing angle in the rotation direction), and a straight line Pt connecting the chord line center point PtO ′ and the origin O at the outer periphery of the blade.
The angle between O′-O and the X axis is δθt, and δθ = δθt
× (R−Rb) / (Rt−Rb), δθt = 25
4040 °. The axial-flow blower according to the present invention has a blade outer peripheral radius Rt of the base blade 1O 'indicated by a broken line in the figure.
1b '(1bs': blade front edge boss extension start point) on the blade front edge 1bO' having an arbitrary radius Rs between the boss portion radius Rb and the boss portion radius R which is the root of the blade
b, a straight line 1baO'-O connecting the point 1baO 'on the blade leading edge 1bO' and the origin O is rotated by an angle δαb (δαb: blade leading edge boss forward extension angle) in the rotation direction about the origin O. When the point 1bb ′ (1bb ′: blade leading edge boss portion extension end point) at this time is set, the distance from the radius Rs at the blade leading edge boss portion extension start point to the radius Rb at the blade leading edge boss portion extension end point 1bb ′ is set. The shape is such that the chord length of the blade is extended in the rotation direction. This is described in detail in the following figure.

【0094】図85は、図84における図中破線で示し
たベースの羽根1O’のボス部半径Rbでの翼弦線中心
点PbO’を相対的な原点として、羽根面を形成したと
き、べースの羽根1O’をボス部半径Rbの円筒面で切
断し、その断面を二次元平面に展開して得られる展開図
を示す。なお実線が本発明の羽根1を示す。図中、ベー
スの羽根のそり線5を円弧形状とし、その円弧を形成す
るための中心角であるそり角θ、円弧を形成する半径を
RROとする。このとき、そり角θの半径方向分布をθ
=(θt−θb)×(R−Rb)/(Rt−Rb)+θ
b (θt:羽根外周部でのそり角、θb:羽根ボス部
でのそり角)とし、θt=25〜35°、θb=30〜
55°、θt<θbとしている。また、羽根の取付位置
は、その翼弦線1baO−1cOと、回転軸3と平行で
ベースの羽根1Oの羽根前縁部1baOを通る直線6と
のなす角度を食い違い角ξとし、ξに半径方向の分布を
もたせることにより決定する。すなわちξの半径方向分
布をξ=(ξt−ξb)×(R−Rb)/(Rt−R
b)+ξb (ξt:羽根外周部での食い違い角、ξ
b:羽根ボス部での食い違い角)とし、ξt=55〜7
0°、ξb=40〜65°、ξt>ξbとしている。こ
のようなベースの羽根1Oに対し、本発明での軸流送風
機の羽根1は、前記羽根1Oとそり角θ、食い違い角ξ
が同一のまま、ボス部半径Rbでの翼弦を、図84で示
した羽根前縁ボス部延長終点1bb’まで回転方向に延
長し、本図における前記羽根1Oのボス部半径Rbにお
ける翼弦長LbOと点1bb〜羽根後縁部1cbまでの
翼弦長Lb、この差を△Lb(=Lb−LbO)とし、
羽根ボス部延長開始点1bsにおける半径Rsでの翼弦
Lsとすると、ボス部半径Rbから前記半径Rsまで
の翼弦長Lの半径方向分布を L=△Lb/(Rs−Rb) 2 ×(R−Rs) 2 +Ls (Rb≦R≦Rs) で与え、羽根形状を形成したものである。
FIG. 85 shows the case where the blade surface is formed with the chord line center point PbO ′ at the boss radius Rb of the base blade 1O ′ indicated by the broken line in FIG. 84 as a relative origin. FIG. 3 is a development view obtained by cutting the blade 1O ′ of the base with a cylindrical surface having a boss radius Rb and developing the cross section into a two-dimensional plane. The solid line indicates the blade 1 of the present invention. In the figure, the sled line 5 of the base blade is formed in an arc shape, the sled angle θ which is a central angle for forming the arc, and the radius forming the arc is RRO. At this time, the radial distribution of the warp angle θ is θ
= (Θt−θb) × (R−Rb) / (Rt−Rb) + θ
b (θt: slew angle at the outer periphery of the blade, θb: slew angle at the blade boss), θt = 25 to 35 °, θb = 30 to
55 ° and θt <θb. In addition, the mounting position of the blade is defined as an angle between a chord line 1baO- 1cO and a straight line 6 that is parallel to the rotation axis 3 and passes through the blade front edge 1baO of the base blade 1O. It is determined by giving a distribution of directions. That is, the radial distribution of ξ is given by ξ = (ξt−ξb) × (R−Rb) / (Rt−R
b) + ξb (ξt: stagger angle at blade outer periphery, ξ
b: stagger angle at the blade boss) and Δt = 55-7
0 °, ξb = 40 to 65 °, and ξt> ξb. In contrast to such a base blade 10, the blade 1 of the axial blower according to the present invention has a sled angle θ and a stagger angle と with the blade 10.
While the chord at the boss radius Rb is extended in the rotational direction to the blade leading edge boss extension extension end point 1bb ′ shown in FIG. 84, and the chord at the boss radius Rb of the blade 1O in this drawing is obtained. The length LbO and the chord length Lb from the point 1bb to the blade trailing edge 1cb , and this difference is defined as △ Lb (= Lb−LbO),
Assuming the chord length Ls at the radius Rs at the blade boss portion extension start point 1bs, the radial distribution of the chord length L from the boss portion radius Rb to the radius Rs is L = △ Lb / (Rs−Rb) 2 × (R−Rs) 2 + Ls (Rb ≦ R ≦ Rs) to form a blade shape.

【0095】このように形成することにより、図85の
ようにベースの羽根1Oに比べ翼弦長が長くなり、羽根
面上での圧力上昇が稼げるとともに、高圧損時、図84
のY−Y断面である図86において、圧力面9から負圧
面8への流れの回り込みにより発生する安定した縦渦1
0により、流れは羽根面上に沿い、かつ吸い込み流れ1
2がこの縦渦10に誘導されながら図87のように外部
へ送風される。これにより、従来の軸流送風機における
問題点として、図102に示したような、高圧損時にお
ける羽根前縁部1b付近の吸い込み流れ12の剥離によ
る羽根負圧面8上の流れ11の乱れを無くせ、低騒音化
を図ることができる。また、従来の軸流送風機では、台
風などの強風により強制的にファンが高回転するときの
対処として、図98のように羽根前縁部1bのボス部寄
り付近とボス部2との接続部の羽根の板厚を一部厚くし
て、羽根の付け根の強風による応力集中を回避し、破損
を防止していた。そのため、図98のB−B断面を展開
した展開図である図103に示すように、板厚の厚い羽
根前縁部1bで吸い込み流れ12が衝突し、負圧面上の
吸い込み流れ11が乱れていた。本発明において、図8
4のように羽根1とボス部の接続部をR形状ぎみに羽根
形状を形成したものであるため、応力集中を回避でき、
板厚を局部的に厚くする必要がなくなる。
By forming as described above, the chord length is longer than that of the base blade 10 as shown in FIG. 85, and a pressure increase on the blade surface can be obtained.
86, which is a YY cross section of FIG. 86, a stable longitudinal vortex 1 generated by the flow
0, the flow is on the blade surface and the suction flow 1
87 is blown to the outside as shown in FIG. Thus, as a problem in the conventional axial blower, as shown in FIG. 102, it is possible to eliminate the disturbance of the flow 11 on the blade negative pressure surface 8 due to the separation of the suction flow 12 near the blade leading edge 1b at the time of high pressure loss. In addition, noise can be reduced. Further, in the conventional axial blower, as a countermeasure when the fan is forcibly rotated at a high speed due to a strong wind such as a typhoon, as shown in FIG. The thickness of the blades was partially increased to avoid stress concentration due to strong wind at the roots of the blades, thereby preventing breakage. Therefore, as shown in FIG. 103, which is a developed view of the cross section taken along the line BB in FIG. 98, the suction flow 12 collides with the blade leading edge 1b having a large thickness, and the suction flow 11 on the negative pressure surface is disturbed. Was. In the present invention, FIG.
As shown in FIG. 4, since the connection between the blade 1 and the boss portion is formed in the shape of a blade with an R shape, stress concentration can be avoided,
There is no need to locally increase the plate thickness.

【0096】しかし、前記直線1ba’−Oを原点O中
心に回転方向させる時の羽根ボス部前進延長角δαbつ
まり、ボス部半径Rbにおける翼弦長Lbが大きすぎる
と図85に相当する図88において、羽根後縁部1cb
付近で、羽根負圧面8上の流れ11や縦渦10が羽根負
圧面8から剥離を起こしたり、図89に示す軸流送風機
全周をボス部半径Rbの円筒面で切断し、その断面を二
次元平面に展開して得られる全周展開図を示すように、
羽根1の負圧面8を剥離した負圧面上の流れ11と縦渦
10が次に旋回してくる羽根1Nの圧力面9Nの流れ1
3に乱れを与え、騒音悪化が起こり、また、羽根前縁ボ
ス部延長開始点1bs’での半径Rsが小さすぎると効
果がなくなり、かつ強度不足となる。従って、この角度
δαbおよび半径Rsの最適範囲が存在する。
However, when the straight line 1ba'-O is rotated about the origin O in the rotational direction, the blade boss portion advance extension angle δαb, that is, if the chord length Lb at the boss portion radius Rb is too large, FIG. At the blade trailing edge 1cb
In the vicinity, the flow 11 and the longitudinal vortex 10 on the blade negative pressure surface 8 cause separation from the blade negative pressure surface 8, or the entire circumference of the axial flow blower shown in FIG. As shown in the expanded view obtained by expanding to a two-dimensional plane,
The flow 11 on the suction surface where the suction surface 8 of the blade 1 is separated and the flow 1 on the pressure surface 9N of the blade 1N in which the vertical vortex 10 turns next.
3 is disturbed, noise is deteriorated, and if the radius Rs at the blade leading edge boss portion extension start point 1bs' is too small, the effect is lost and the strength is insufficient. Therefore, there is an optimum range of the angle δαb and the radius Rs.

【0097】図90は、ベースになる従来の軸流送風機
と上記第11の発明の一実施例による軸流送風機との流
量係数φに対する圧力係数ψの関係および比騒音Ks
[dB(A)]を実験的に求めた特性図である。図中黒
丸、黒四角は従来の軸流送風機の特性、最小比騒音を、
×、□は第11の発明の一実施例における軸流送風機の
特性、最小比騒音を示す。この特性図からわかるよう
に、従来に比べ、動作領域が低風量側まで延びかつ全体
的に高静圧化が図れている。一方、比騒音Ksは最大で
3[dB(A)]の低減が図れ低騒音である。図91は、羽
根前縁ボス部延長開始点1bsにおける半径Rs=一定
の時の羽根前縁ボス部前進延長角δαbの大きさによっ
て、騒音特性への影響を実験的に求めたものである。こ
のとき比騒音Ksは、動作点によって変化するため、比
騒音Ksが最小となる動作点での値を最小比騒音Ksm
inとしてグラフ化している。図に示すように、羽根前
縁ボス部前進延長角δαbが20〜50°の間であれ
ば、ベースの羽根である従来の軸流送風機に対し、最小
比騒音Ksminの値は小さく、最高3.0[dB(A)]
低騒音である。
FIG. 90 is a graph showing the relationship between the flow coefficient φ and the pressure coefficient ψ and the specific noise Ks between the conventional axial fan and the axial fan according to the eleventh embodiment of the present invention.
FIG. 9 is a characteristic diagram obtained by experimentally obtaining [dB (A)]. The black circles and black squares in the figure indicate the characteristics and minimum specific noise of the conventional axial blower.
X and □ show the characteristics and the minimum specific noise of the axial blower in one embodiment of the eleventh invention. As can be seen from this characteristic diagram, the operating region extends to the low air volume side and higher static pressure is achieved as a whole as compared with the related art. On the other hand, the specific noise Ks can be reduced by a maximum of 3 [dB (A)] and is low noise. FIG. 91 shows the effect on the noise characteristics experimentally determined by the magnitude of the blade front edge boss forward extension angle δαb when the radius Rs is constant at the blade front edge boss extension start point 1bs. At this time, since the specific noise Ks changes depending on the operating point, the value at the operating point at which the specific noise Ks is minimized is set to the minimum specific noise Ksm.
Graphed as in. As shown in the figure, when the blade leading edge boss portion advance extension angle δαb is between 20 ° and 50 °, the value of the minimum specific noise Ksmin is smaller than that of the conventional axial flow 0.0 [dB (A)]
Low noise.

【0098】図92は、羽根前縁ボス部前進延長角δα
b=一定の時の、図47における羽根前縁ボス部延長開
始点1bs’における半径Rsと羽根外周部半径Rtの
比率(=Rs/Rt)の大きさによって、騒音特性への
影響を実験的に求めたものである。このとき比騒音Ks
は、動作点によって変化するため、比騒音Ksが最小と
なる動作点での値を最小比騒音Ksminとしてグラフ
化している。図に示すように、羽根前縁ボス部延長開始
点1bs’における半径Rsが羽根外周部半径Rtの4
0〜60%の間にあれば、最小比騒音Ksminは低
く、ベースの羽根である従来の軸流送風機に対し、最高
3.0[dB(A)]低騒音である。図93は、羽根前縁ボ
ス部延長開始点1bsにおける半径Rsと羽根外周部半
径Rtの比率(=Rs/Rt)と羽根前縁ボス部前進延
長角δαbの騒音特性への影響を実験的に検討し、比騒
音Ksが最小になる動作点での値をグラフ化したもので
ある。
FIG. 92 shows a blade leading edge boss portion advance extension angle δα.
When b = constant, the influence on the noise characteristics is experimentally determined by the magnitude of the ratio (= Rs / Rt) of the radius Rs at the blade leading edge boss portion extension start point 1bs ′ in FIG. 47 and the blade outer radius Rt. It is what we asked for. At this time, the specific noise Ks
Varies with the operating point, and the value at the operating point where the specific noise Ks is minimized is graphed as the minimum specific noise Ksmin. As shown in the figure, the radius Rs at the blade leading edge boss portion extension start point 1bs' is 4 times the blade outer peripheral radius Rt.
If it is between 0 and 60%, the minimum specific noise Ksmin is low, and the maximum noise is 3.0 [dB (A)] lower than that of the conventional axial blower which is the blade of the base. FIG. 93 shows experimentally the effect of the ratio (= Rs / Rt) of the radius Rs to the blade outer periphery radius Rt at the blade leading edge boss extension start point 1bs (= Rs / Rt) and the effect of the blade leading edge boss forward extension angle δαb on the noise characteristics. This is a graph obtained by examining the values at the operating point where the specific noise Ks is minimized.

【0099】図より、0.4≦Rs/Rt≦0.6かつ20°
≦δαb≦50°であれば、最小比騒音Ksminは十
分小さく低騒音である。図94は、羽根前縁ボス部延長
開始点1bsにおける半径Rsと羽根外周部半径Rtの
比率と羽根前縁ボス部前進延長角δαbの羽根への最大
応力σへの影響を実験的に検討したものである。図中R
b/Rtでの値を示す黒丸はベースの羽根である軸流送
風機の羽根前縁部ボス部より部分を局所的に板厚を厚く
しなかった場合の最大応力である。図より、0.4≦R
s/Rtかつ20°≦δαbであれば、羽根の強度は十
分である。従って、図93、94より0.4≦Rs/Rt
≦0.6かつ20°≦δαb≦50°であれば、低騒音で
かつ強度が十分な羽根を得られる。
As shown in the figure, 0.4 ≦ Rs / Rt ≦ 0.6 and 20 °
If ≦ δαb ≦ 50 °, the minimum specific noise Ksmin is sufficiently small and low noise. FIG. 94 experimentally examined the influence of the ratio of the radius Rs to the blade outer peripheral radius Rt at the blade leading edge boss extension start point 1bs and the effect of the blade leading edge boss forward extension angle δαb on the maximum stress σ on the blade. Things. R in the figure
The black circle indicating the value of b / Rt is the maximum stress when the plate thickness is not locally increased from the boss portion at the blade front edge portion of the axial flow blower as the base blade. From the figure, 0.4 ≦ R
If s / Rt and 20 ° ≦ δαb, the blade strength is sufficient. Therefore, from FIGS. 93 and 94, 0.4 ≦ Rs / Rt
If ≦ 0.6 and 20 ° ≦ δαb ≦ 50 °, a blade with low noise and sufficient strength can be obtained.

【0100】この軸流送風機は、羽根を取り付けて回転
するボス部と、回転方向に面する羽根前縁部、回転方向
と反対方向に面する羽根後縁部、およびボス部に対向す
る羽根外周部から周が構成される羽根とを有する軸流送
風機の羽根を任意半径Rの円筒面で切断し、その断面を
2次元平面に展開して得られる展開図において、その羽
根断面におけるそり線の形状を円弧形状とし、その円弧
を形成するための中心角をθ(θ:そり角)とした場
合、θの半径方向分布をθ=(θt−θb)×(R−R
b)/(Rt−Rb)+θb(θt:羽根外周部でのそ
り角、θb:羽根ボス部半径Rbにおけるそり角)で与
え、θt=25゜〜35゜、θb=30゜〜55゜、θt<
θbとし、上記展開図において、羽根の翼弦線と上記回
転軸と平行で上記羽根の前縁部を通る直線とのなす角度
をξ(ξ:食い違い角)とするとき、ξの半径方向分布
を、ξ=(ξt−ξb)×(R−Rb)/(Rt−R
b)+ξb(ξt:羽根外周部での食い違い角ξ、ξ
b:ボス部半径Rbにおける食い違い角)で与え、ξt
=55゜〜70゜、ξb=40゜〜65゜、ξt>ξbと
し、かつ上記回転軸と直交する平面に軸流送風機を投影
した投影図において、上記羽根のボス部半径Rbの円筒
面で切断したときの断面における翼弦線中心点をPb
O’とし、上記回転軸を原点Oとして、上記O点とPb
O’点とを結ぶ直線をX軸とした座標系で、上記羽根を
任意半径Rの円筒面で切断した時の翼弦線中心点をPR
O’として、直線PRO’−Oと上記X軸とのなす角度
をδθ(δθ:回転方向前進角)とした場合、δθの半
径方向分布を δθ=δθt×(R−Rb)/(Rt−Rb) (Rt:羽根外周部半径、Rb:羽根ボス部半径、δθ
t:直線PtO’−OとX軸のなす角度)で与え、δθ
tを25〜40°とし、さらに、翼弦長LO、羽根間の
円周方向距離(ピッチ)であるTとの比で定義される節
弦比T/LOの値を、各半径点においてT/LO=1.
1〜2.0とし、まず羽根形状1O’を形成し、前記投
影図において、羽根1O’のボス部半径Rbにおける羽
根前縁部上の点1baO’と原点Oを結んだ直線1ba
O’−Oを、原点Oを中心に回転方向に20〜50°の
間である角度δαb分回転させた時の点を羽根前縁ボス
部延長終点1bb’としたとき、羽根を任意半径Rの円
筒面で切断し、その断面を2次元平面に展開して得られ
る展開図において、前記羽根1Oとそり角θ、食い違い
角ξが同一のまま、ボス部半径Rbでの翼弦を、前記点
1bbまで延長し、このときの前記羽根1Oのボス部半
径Rbにおける翼弦長LbOと前記点1bb〜羽根後縁
1cbまでの翼弦長Lb、この差を△Lbとし、羽根
外周部半径の40〜60%の半径Rsでの羽根前縁部上
の点1bsでの翼弦長Lsとすると、ボス部半径Rbか
ら前記羽根前縁部上の点1bsまでの翼弦長Lの半径方
向分布を L=△Lb/(Rs−Rb) 2 ×(R−Rs) 2 +Ls (Rb≦R≦Rs) で与え、羽根形状を形成したものであるので、ベースの
羽根1Oに比べ翼弦長が長くなり、羽根面上での圧力上
昇が稼げるとともに、高圧損時、羽根前縁部のボス部寄
り部分において、圧力面9から負圧面8への流れの回り
込みにより発生する縦渦により、流れは羽根面上に沿
い、かつ吸い込み流れがこの縦渦に誘導されながら外部
へ送風され、高圧損時における羽根前縁部付近の吸い込
み流れの剥離による羽根負圧面上の流れの乱れを無く
せ、低騒音化を図ることができ、かつ、台風などの強風
により強制的にファンが高回転するときの対処として、
羽根前縁部のボス部寄り付近とボス部との接続部の羽根
の板厚を一部厚くして、羽根の付け根の強風による応力
集中を回避し、破損を防止することなく、羽根とボス部
の接続部をR形状ぎみに羽根形状を形成したものである
ため、応力集中を回避でき、板厚を局部的に厚くする必
要がなくなる。
This axial flow blower has a boss portion to which a blade is attached and rotated, a leading edge of the blade facing the rotating direction, a trailing edge portion of the blade facing the direction opposite to the rotating direction, and a blade outer periphery facing the boss portion. In the developed view obtained by cutting a blade of an axial blower having a blade having a circumference formed from a part with a cylindrical surface having an arbitrary radius R, and developing a cross section of the blade into a two-dimensional plane, When the shape is an arc shape and the center angle for forming the arc is θ (θ: warp angle), the radial distribution of θ is θ = (θt−θb) × (R−R
b) / (Rt−Rb) + θb (θt: sled angle at the outer periphery of the blade, θb: sled angle at the radius Rb of the blade boss portion), and θt = 25 ° to 35 °, θb = 30 ° to 55 °, θt <
θb, and in the above developed view, when an angle between a chord line of the blade and a straight line parallel to the rotation axis and passing through the leading edge of the blade is denoted by ξ (ξ: stagger angle), the radial distribution of ξ Ξ = (ξt−ξb) × (R−Rb) / (Rt−R
b) + ξb (ξt: stagger angle at blade outer periphery 部, ξ
b: stagger angle at boss radius Rb), Δt
= 55 ゜ -70 ゜, ξb = 40 ゜ -65 ゜, ξt> ξb, and the projection of the axial flow blower on a plane perpendicular to the rotation axis shows the cylindrical surface having the boss radius Rb of the blade. The chord line center point in the cross section when cut is Pb
O ′, the rotation axis is the origin O, and the point O and Pb
In a coordinate system in which the straight line connecting the point O ′ is the X axis, the chord line center point when the blade is cut by a cylindrical surface having an arbitrary radius R is PR
Assuming that the angle between the straight line PRO′-O and the X axis is δθ (δθ: advancing angle in the rotation direction) as O ′, the radial distribution of δθ is δθ = δθt × (R−Rb) / (Rt− Rb) (Rt: radius of outer periphery of blade, Rb: radius of blade boss, δθ
t: the angle between the straight line PtO'-O and the X axis), δθ
t is set to 25 to 40 °, and the value of the chord ratio T / LO defined by the chord length LO and the ratio of T to the circumferential distance (pitch) between the blades is defined as T / LO at each radial point. / LO = 1.
First, a blade shape 1O 'is formed, and a straight line 1ba connecting the origin O with the point 1baO' on the front edge of the blade at the boss radius Rb of the blade 1O 'in the projection view.
When the point when O′-O is rotated by an angle δαb between 20 and 50 ° around the origin O in the rotation direction is defined as a blade leading edge boss portion extension end point 1bb ′, the blade has an arbitrary radius R. In the developed view obtained by cutting the cylindrical surface of FIG. 1 and expanding the cross section into a two-dimensional plane, the chord at the boss radius Rb is set to the same value as the blade 10 and the warp angle θ and the stagger angle 同一. The blade chord length LbO at the boss radius Rb of the blade 1O at this time and the chord length Lb from the point 1bb to the blade trailing edge 1cb, and the difference between the chord length Lb and the blade outer periphery radius Assuming the chord length Ls at the point 1bs on the leading edge of the blade at a radius Rs of 40 to 60% of the radial direction of the chord length L from the boss radius Rb to the point 1bs on the leading edge of the blade distribution L = △ Lb / (Rs- Rb) 2 × (R-Rs) 2 + Ls (Rb ≦ R ≦ R ), The blade shape is formed, so that the chord length is longer than that of the base blade 1O, a pressure increase on the blade surface is obtained, and at the time of high pressure loss, the blade front edge is closer to the boss portion. In the portion, the vertical vortex generated by the flow of the flow from the pressure surface 9 to the suction surface 8 causes the flow to flow along the blade surface, and the suction flow is blown to the outside while being guided by the vertical vortex. Disturbance of the flow on the negative pressure surface due to separation of the suction flow near the leading edge of the blade can be eliminated, noise can be reduced, and as a countermeasure when the fan is forced to rotate at high speed due to strong wind such as typhoon ,
The thickness of the blade near the boss near the blade front edge and at the connection with the boss is partially increased to avoid stress concentration due to strong wind at the root of the blade and prevent damage to the blade and boss. Since the connecting portions of the portions are formed in the shape of a wing in the form of an R shape, stress concentration can be avoided, and it is not necessary to locally increase the plate thickness.

【0101】実施例12 図95は、第1〜11の発明に係る軸流送風機を組み込
んだ空気調和機の室外機を示す斜視図である。図95
は、上述の発明に係る羽根1を有する軸流送風機20を
組み込んだ空気調和機の室外機18を示す説明図であ
る。又図96は、同様に本発明の軸流送風機20を含め
た冷凍サイクルの説明図である。図96において、冷房
時の冷媒の流れを実線矢印で、暖房時の冷媒の流れを破
線矢印で示す。暖房時において圧縮機21から四方弁2
3を通った冷媒は室内側熱交換器25にて凝縮され、フ
レア27、延長パイプ28、フレアバルブ26を介し絞
り29で圧力が低下して室外側熱交換器24にて蒸発
し、圧縮機へ戻る。この室外機熱交換器24は外気環境
の変化にさらされており、露や霜がつきやすい。又周囲
のホコリ等を吸い込み汚れる機械が一段と多い。このよ
うな室外熱交換器24に、露や霜が全面あるいは一部に
付着したり、ゴミ等が多少なりとついた場合、風路抵抗
が過大となり、高圧力損失状態となる。しかも、蒸発器
として使う場合には高風量が必要となる。このような条
件においても、本発明形状の羽根を有する軸流送風機は
特性的に広い範囲での能力が発揮できるとともに低騒音
を保つことができる。さらに従来の装置に比し多い風量
を得ることができるので、熱交換器による熱交換能力が
ふえ、効率の良い空気調和機が実現できる。
Embodiment 12 FIG. 95 is a perspective view showing an outdoor unit of an air conditioner incorporating the axial blower according to the first to eleventh inventions. FIG. 95
FIG. 3 is an explanatory view showing an outdoor unit 18 of an air conditioner incorporating an axial blower 20 having the blade 1 according to the above-described invention. FIG. 96 is an explanatory view of a refrigeration cycle including the axial blower 20 of the present invention. In FIG. 96, the flow of the refrigerant during cooling is indicated by solid arrows, and the flow of the refrigerant during heating is indicated by broken arrows. Four-way valve 2 from compressor 21 during heating
The refrigerant passing through 3 is condensed in the indoor heat exchanger 25, the pressure is reduced by the throttle 29 through the flare 27, the extension pipe 28, and the flare valve 26, and the refrigerant evaporates in the outdoor heat exchanger 24. Return to The outdoor unit heat exchanger 24 is exposed to changes in the outside air environment, and is liable to be exposed to dew and frost. In addition, there are many more machines that suck in dust and dirt around them. If dew or frost adheres to the entire surface or a part of the outdoor heat exchanger 24, or dust or the like is slightly attached to the outdoor heat exchanger 24, the air path resistance becomes excessive and a high pressure loss state occurs. Moreover, when used as an evaporator, a high air volume is required. Even under such conditions, the axial blower having the blades of the present invention can exhibit performance in a wide range characteristically and can maintain low noise. Furthermore, since a larger air volume can be obtained as compared with the conventional apparatus, the heat exchange capacity of the heat exchanger is increased, and an efficient air conditioner can be realized.

【0102】[0102]

【発明の効果】この発明に係る軸流送風機は、翼面で生
成する気体の圧力上昇を高くできるので、風路抵抗すな
わち圧力損失が大きい時でも使用できる。さらに抵抗の
小さい風路でも羽根表面渦によって風を外部から取り込
めるようになり、風量を多く出せる。したがって、ファ
ン性能として失速の少ない使用範囲が広い軸流送風機が
得られる。又、この発明に係る軸流送風機は、羽根形状
により安定して渦を制御でき、渦が風の流れを羽根面に
沿わせるので次に回転してくる羽根の圧力面側の流れの
乱れを防止でき騒音を低下させることができる。又、本
発明においては、性能が良く強度的にも信頼性の高い軸
流送風機が得られる。又、周囲の変化の影響が少ない空
気調和機が得られる。
The axial blower according to the present invention can increase the pressure rise of the gas generated on the blade surface, and can be used even when the air path resistance, that is, the pressure loss is large. Further, even in an air path having a small resistance, the wind can be taken in from the outside by the vortex on the blade surface, so that a large air volume can be obtained. Therefore, an axial blower having a wide fan range with a small stall as a fan performance can be obtained. Further, the axial flow blower according to the present invention can control the vortex stably by the blade shape, and the vortex causes the flow of the wind to follow the blade surface, so that the turbulence of the flow on the pressure surface side of the next rotating blade is reduced. Noise can be reduced. Further, in the present invention, an axial blower having high performance and high strength and high reliability can be obtained. Also, an air conditioner that is less affected by changes in the surroundings can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 発明に係わる実施例1による軸流送風機の斜
視図
FIG. 1 is a perspective view of an axial blower according to Embodiment 1 of the present invention.

【図2】 発明に係わる実施例1による軸流送風機の正
面図
FIG. 2 is a front view of the axial blower according to the first embodiment of the present invention.

【図3】 発明に係わる実施例1による軸流送風機の回
転軸と直交する平面に羽根を投影したときの投影図
FIG. 3 is a projection view when the blades are projected on a plane orthogonal to the rotation axis of the axial blower according to the first embodiment of the present invention.

【図4】 発明に係わる実施例1による軸流送風機の図
3におけるY−Y断面図
FIG. 4 is a sectional view taken along line YY in FIG. 3 of the axial blower according to Embodiment 1 of the present invention;

【図5】 発明に係わる実施例1による軸流送風機の図
3におけるX−X断面図
5 is a cross-sectional view of the axial blower according to the first embodiment of the present invention, taken along the line XX in FIG. 3;

【図6】 発明に係わる実施例1による軸流送風機と従
来の軸流送風機の流量係数φと比騒音Ks、圧力係数ψ
の関係を示すグラフ
FIG. 6 shows the flow coefficient φ, the specific noise Ks, and the pressure coefficient の of the axial blower according to the first embodiment of the present invention and the conventional axial blower.
Graph showing the relationship

【図7】 発明に係わる実施例2による軸流送風機の斜
視図
FIG. 7 is a perspective view of an axial blower according to Embodiment 2 of the present invention.

【図8】 発明に係わる実施例2による軸流送風機の正
面図
FIG. 8 is a front view of an axial blower according to Embodiment 2 of the present invention.

【図9】 発明に係わる実施例2による軸流送風機の回
転軸と直交する平面に羽根を投影したときの投影図
FIG. 9 is a projection view when the blades are projected on a plane orthogonal to the rotation axis of the axial blower according to the second embodiment of the present invention.

【図10】 発明に係わる実施例2による軸流送風機の
図9におけるY−Y断面図
10 is a sectional view of the axial blower according to a second embodiment of the present invention, taken along the line YY in FIG. 9;

【図11】 発明に係わる実施例2による軸流送風機の
三角形平板7の取付方法を示す図
FIG. 11 is a view showing a method of mounting the triangular flat plate 7 of the axial blower according to the second embodiment of the present invention.

【図12】 発明に係わる実施例2による軸流送風機の
図9におけるX−X断面図
FIG. 12 is a cross-sectional view of the axial blower according to the second embodiment of the present invention, taken along line XX in FIG. 9;

【図13】 発明に係わる実施例2による軸流送風機の
回転角度β=一定での羽根外周部半径Rtに対する三角
形平板7の頂点である羽根前縁部上の点1bsにおける
任意半径Rsの比率Rs/Rtに対する最小比騒音のグ
ラフ
FIG. 13 is a ratio Rs of an arbitrary radius Rs at a point 1bs on the leading edge of the triangular flat plate 7 to the blade outer radius Rt when the rotation angle β of the axial blower according to the second embodiment of the present invention is constant. Graph of minimum specific noise against / Rt

【図14】 発明に係わる実施例2による軸流送風機の
任意半径Rs/Rt=一定における三角形平板7のボス
部半径Rbにおける頂点を決定するときの回転角度βに
対する最小比騒音のグラフ
FIG. 14 is a graph of the minimum specific noise with respect to the rotation angle β when determining the apex of the boss radius Rb of the triangular flat plate 7 at an arbitrary radius Rs / Rt = constant of the axial blower according to the second embodiment of the present invention.

【図15】 発明に係わる実施例2による軸流送風機の
羽根外周部半径Rtに対する三角形平板7の頂点である
羽根前縁部上の点1bsにおける任意半径Rsの比率R
s/Rtと三角形平板7のボス部半径Rbにおける頂点
を決定するときの回転角度βに対する最小比騒音Ksmi
nのグラフ
FIG. 15 shows a ratio R of an arbitrary radius Rs at a point 1bs on the leading edge of the blade, which is the vertex of the triangular plate 7, to the blade outer radius Rt of the axial flow fan according to the second embodiment of the present invention.
s / Rt and the minimum specific noise Ksmi with respect to the rotation angle β when determining the vertex at the boss radius Rb of the triangular plate 7
graph of n

【図16】 発明に係わる実施例3による軸流送風機の
斜視図
FIG. 16 is a perspective view of an axial blower according to a third embodiment of the present invention.

【図17】 発明に係わる実施例3による軸流送風機の
正面図
FIG. 17 is a front view of an axial blower according to a third embodiment of the present invention.

【図18】 発明に係わる実施例3による軸流送風機の
回転軸と直交する平面に羽根を投影したときの投影図
FIG. 18 is a projection view when the blades are projected on a plane orthogonal to the rotation axis of the axial blower according to the third embodiment of the present invention.

【図19】 発明に係わる実施例3による軸流送風機の
図18におけるX−X断面図
FIG. 19 is a sectional view taken along line XX of FIG. 18 of the axial blower according to Embodiment 3 of the present invention.

【図20】 発明に係わる実施例3による軸流送風機の
回転角度β=一定での羽根外周部半径Rtに対する三角
形平板7の頂点である羽根前縁部上の点1bsにおける
任意半径Rsの比率Rs/Rtに対する最小比騒音のグ
ラフ
FIG. 20 shows a ratio Rs of an arbitrary radius Rs at a point 1bs on the leading edge of the triangular flat plate 7 to a blade outer radius Rt at a constant rotation angle β of the axial flow fan according to the third embodiment of the present invention. Graph of minimum specific noise against / Rt

【図21】 発明に係わる実施例3による軸流送風機の
任意半径Rs/Rt=一定における三角形平板7のボス
部半径Rbにおける頂点を決定するときの回転角度βに
対する最小比騒音のグラフ
FIG. 21 is a graph of the minimum specific noise with respect to the rotation angle β when determining the apex of the boss radius Rb of the triangular flat plate 7 at an arbitrary radius Rs / Rt = constant of the axial blower according to the third embodiment of the present invention.

【図22】 発明に係わる実施例3による軸流送風機の
羽根外周部半径Rtに対する三角形平板7の頂点である
羽根前縁部上の点1bsにおける任意半径Rsの比率R
s/Rtと三角形平板7のボス部半径Rbにおける頂点
を決定するときの回転角度βに対する最小比騒音のグラ
FIG. 22 is a ratio R of an arbitrary radius Rs at a point 1bs on the leading edge of the blade, which is the vertex of the triangular plate 7, to the blade outer radius Rt of the axial flow fan according to the third embodiment of the present invention.
Graph of minimum specific noise with respect to rotation angle β when determining s / Rt and vertex at boss radius Rb of triangular plate 7

【図23】 発明に係わる実施例4による軸流送風機の
斜視図
FIG. 23 is a perspective view of an axial blower according to Embodiment 4 of the present invention.

【図24】 発明に係わる実施例4による軸流送風機の
正面図
FIG. 24 is a front view of an axial blower according to a fourth embodiment of the present invention.

【図25】 発明に係わる実施例4による軸流送風機の
図24におけるA−A断面図
FIG. 25 is a sectional view taken along line AA in FIG. 24 of the axial blower according to Embodiment 4 of the present invention;

【図26】 発明に係わる実施例4による軸流送風機と
従来の軸流送風機の周波数特性図
FIG. 26 is a diagram showing frequency characteristics of the axial blower according to the fourth embodiment of the present invention and a conventional axial blower.

【図27】 発明に係わる実施例5による軸流送風機の
斜視図
FIG. 27 is a perspective view of an axial blower according to Embodiment 5 of the present invention.

【図28】 発明に係わる実施例5による軸流送風機の
正面図
FIG. 28 is a front view of an axial blower according to Embodiment 5 of the present invention.

【図29】 発明に係わる実施例5による軸流送風機の
回転軸と直交する平面に羽根を投影したときの投影図
FIG. 29 is a projection view when the blades are projected on a plane orthogonal to the rotation axis of the axial blower according to the fifth embodiment of the present invention.

【図30】 発明に係わる実施例5による軸流送風機の
図29におけるX−X断面図
30 is a sectional view taken along line XX in FIG. 29 of the axial blower according to Embodiment 5 of the present invention.

【図31】 発明に係わる実施例5による軸流送風機の
負圧面上の流れを示す斜視図
FIG. 31 is a perspective view showing a flow on a negative pressure surface of an axial blower according to a fifth embodiment of the present invention.

【図32】 発明に係わる実施例4による軸流送風機と
従来の軸流送風機の流量係数φと比騒音Ks、圧力係数
ψの関係を示すグラフ
FIG. 32 is a graph showing a relationship between a flow coefficient φ, a specific noise Ks, and a pressure coefficient の of an axial blower according to a fourth embodiment of the present invention and a conventional axial blower.

【図33】 発明に係わる実施例6による軸流送風機の
斜視図
FIG. 33 is a perspective view of an axial blower according to Embodiment 6 of the present invention.

【図34】 発明に係わる実施例6による軸流送風機の
正面図
FIG. 34 is a front view of an axial blower according to Embodiment 6 of the present invention.

【図35】 発明に係わる実施例6による軸流送風機の
回転軸と直交する平面に羽根を投影したときの投影図
FIG. 35 is a projection view when the blade is projected on a plane orthogonal to the rotation axis of the axial blower according to the sixth embodiment of the present invention.

【図36】 発明に係わる実施例6による軸流送風機の
図35におけるX−X断面図
FIG. 36 is a sectional view taken along line XX of FIG. 35 of the axial blower according to Embodiment 6 of the present invention;

【図37】 発明に係わる実施例6による軸流送風機の
回転角度β=一定での羽根外周部半径Rtに対する羽根
前縁部上の点1bsにおける任意半径Rsの比率Rs/
Rtに対する最小比騒音のグラフ
FIG. 37 shows the ratio Rs / of the arbitrary radius Rs at point 1bs on the leading edge of the blade to the radius Rt of the blade outer periphery at a fixed rotation angle β of the axial flow blower according to the sixth embodiment of the present invention.
Graph of minimum specific noise against Rt

【図38】 発明に係わる実施例6による軸流送風機の
任意半径Rs=一定における回転角度βに対する最小比
騒音のグラフ
FIG. 38 is a graph of the minimum specific noise with respect to the rotation angle β at an arbitrary radius Rs = constant of the axial flow fan according to the sixth embodiment of the present invention.

【図39】 発明に係わる実施例6による軸流送風機の
羽根外周部半径Rtに対する任意半径Rsの比率Rs/
Rtと回転角度βに対する最小比騒音のグラフ
FIG. 39 is a diagram illustrating a ratio Rs / of an arbitrary radius Rs to a blade outer radius Rt of an axial blower according to a sixth embodiment of the present invention.
Graph of minimum specific noise with respect to Rt and rotation angle β

【図40】 発明に係わる実施例7による軸流送風機の
斜視図
FIG. 40 is a perspective view of an axial blower according to a seventh embodiment of the present invention.

【図41】 発明に係わる実施例7による軸流送風機の
正面図
FIG. 41 is a front view of an axial blower according to a seventh embodiment of the present invention.

【図42】 発明に係わる実施例7による軸流送風機の
回転軸と直交する平面に羽根を投影したときの投影図
FIG. 42 is a projection view when the blade is projected on a plane orthogonal to the rotation axis of the axial blower according to the seventh embodiment of the present invention.

【図43】 発明に係わる実施例7による軸流送風機の
図42におけるA−A断面図
FIG. 43 is a sectional view taken along line AA in FIG. 42 of the axial blower according to Embodiment 7 of the present invention;

【図44】 発明に係わる実施例7による軸流送風機の
負圧面上の流れを示す斜視図
FIG. 44 is a perspective view showing the flow on the negative pressure surface of the axial blower according to the seventh embodiment of the present invention.

【図45】 発明に係わる実施例7による軸流送風機の
羽根外周部Rtに対する羽根前縁部ボス部付近とボス部
との接続部分のコーナーRの半径RRに対する最小比騒
音のグラフ
FIG. 45 is a graph of the minimum specific noise with respect to the radius RR of the corner R of the connection portion between the boss portion near the blade front edge and the boss portion with respect to the blade outer peripheral portion Rt of the axial blower according to the seventh embodiment of the present invention.

【図46】 発明に係わる実施例7による軸流送風機の
羽根外周部Rtに対する羽根前縁部とボス部との接続部
分のR形状の半径RRに対するこの部分にかかる最大応
力σのグラフ
FIG. 46 is a graph of the maximum stress σ applied to the axial flow fan according to the seventh embodiment of the present invention, with respect to the radius RR of the R-shaped portion of the connection between the blade front edge and the boss with respect to the blade outer peripheral portion Rt of the axial blower.

【図47】 発明に係わる実施例8による軸流送風機の
斜視図
FIG. 47 is a perspective view of an axial blower according to an eighth embodiment of the present invention.

【図48】 発明に係わる実施例8による軸流送風機の
正面図
FIG. 48 is a front view of an axial blower according to an eighth embodiment of the present invention.

【図49】 発明に係わる実施例8による軸流送風機の
回転軸と直交する平面に羽根を投影したときの投影図
FIG. 49 is a projection view when the blade is projected on a plane orthogonal to the rotation axis of the axial blower according to the eighth embodiment of the present invention.

【図50】 発明に係わる図49の羽根のボス部半径R
bの円筒面で切断し、その断面を二次元平面に展開して
得られる展開図
50 shows the boss radius R of the blade of FIG. 49 according to the invention.
(b) A developed view obtained by cutting the cylindrical surface and expanding the cross section into a two-dimensional plane

【図51】 発明に係わる図49におけるX−X断面に
おける安定した縦渦および流れの様子を示した図
FIG. 51 is a view showing a state of a stable longitudinal vortex and flow in the XX section in FIG. 49 according to the present invention;

【図52】 発明に係わる実施例8による軸流送風機の
負圧面上の流れを示す斜視図
FIG. 52 is a perspective view showing the flow on the negative pressure surface of the axial blower according to the eighth embodiment of the present invention.

【図53】 発明に係わる実施例8による軸流送風機の
羽根前縁ボス部前進延長角δαbが大きいときの羽根負
圧面上の流れを示した図
FIG. 53 is a diagram showing the flow on the blade negative pressure surface when the blade front edge boss portion advance extension angle δαb of the axial flow blower according to the eighth embodiment of the present invention is large.

【図54】 発明に係わる実施例8による軸流送風機の
羽根前縁部上の羽根前縁ボス部延長開始点1bsにおけ
る半径Rs=一定時における羽根前縁ボス部前進延長角
δαbに対する最小比騒音のグラフ
54. Minimum specific noise with respect to the blade front edge boss forward extension angle δαb at a constant radius Rs at the blade front edge boss extension start point 1bs on the blade front edge of the blade of the axial blower according to Embodiment 8 of the present invention. Graph of

【図55】 発明に係わる実施例8による軸流送風機の
羽根前縁ボス部前進延長角δαb=一定時における、羽
根外周部半径Rtに対する羽根前縁ボス部延長開始点1
bsにおける半径Rsとの比率Rs/Rtに対する最小
比騒音のグラフ
FIG. 55: Extension start point 1 of blade leading edge boss relative to blade outer peripheral radius Rt when blade leading edge boss forward extension angle δαb = constant at axial flow blower according to embodiment 8 of the present invention
graph of the minimum specific noise with respect to the ratio Rs / Rt to the radius Rs in bs

【図56】 発明に係わる実施例8による軸流送風機の
羽根前縁ボス部前進延長角δαbと羽根外周部半径Rt
に対する羽根前縁ボス部延長開始点1bsにおける半径
Rsとの比率Rs/Rtに対する最小比騒音のグラフ
FIG. 56: A blade leading edge boss portion advance extension angle δαb and a blade outer peripheral radius Rt of the axial flow fan according to the eighth embodiment of the present invention.
Of minimum specific noise to ratio Rs / Rt with radius Rs at blade leading edge boss extension start point 1bs

【図57】 発明に係わる実施例8による軸流送風機の
羽根前縁ボス部前進延長角δαbと羽根外周部半径Rt
に対する羽根前縁ボス部延長開始点1bsにおける半径
Rsとの比率Rs/Rtに対する羽根にかかる最大応力
σのグラフ
FIG. 57: A blade leading edge boss portion advance extension angle δαb and a blade outer peripheral radius Rt of an axial flow blower according to an eighth embodiment of the present invention.
Of the maximum stress σ applied to the blade against the ratio Rs / Rt to the radius Rs at the blade leading edge boss portion extension start point 1bs with respect to

【図58】 発明に係わる実施例9による軸流送風機の
斜視図
FIG. 58 is a perspective view of an axial blower according to a ninth embodiment of the present invention.

【図59】 発明に係わる実施例9による軸流送風機の
正面図
FIG. 59 is a front view of an axial blower according to a ninth embodiment of the present invention.

【図60】 発明に係わる実施例9による軸流送風機の
回転軸と直交する平面に羽根を投影したときの投影図
FIG. 60 is a projection view when the blade is projected on a plane orthogonal to the rotation axis of the axial blower according to the ninth embodiment of the present invention.

【図61】 発明に係わる図60の羽根のボス部半径R
bの円筒面で切断し、その断面を二次元平面に展開して
得られる展開図
61 shows the boss radius R of the blade of FIG. 60 according to the invention.
(b) A developed view obtained by cutting the cylindrical surface and expanding the cross section into a two-dimensional plane

【図62】 発明に係わる実施例9による軸流送風機の
図60におけるX−X断面における流れを示した図
FIG. 62 is a view showing the flow in the XX section in FIG. 60 of the axial blower according to the ninth embodiment of the present invention;

【図63】 発明に係わる実施例9による軸流送風機の
負圧面上の流れを示す斜視図
FIG. 63 is a perspective view showing a flow on a negative pressure surface of an axial blower according to a ninth embodiment of the present invention.

【図64】 発明に係わる実施例9による軸流送風機の
図61に相当する図における羽根前縁ボス部前進延長角
δαbが大きすぎたときの負圧面上の流れを示した図
FIG. 64 is a view showing the flow on the negative pressure surface when the blade leading edge boss portion advance extension angle δαb in the view corresponding to FIG. 61 of the axial flow blower according to the ninth embodiment of the invention is too large.

【図65】 発明に係わる実施例9による軸流送風機の
図60における任意半径Rの円筒面で軸流送風機全周を
切断し、その断面を二次元平面に展開して得られる全周
展開図
FIG. 65 is an all-round development diagram obtained by cutting the entire circumference of the axial-flow blower with a cylindrical surface having an arbitrary radius R in FIG. 60 of the axial-flow blower according to the ninth embodiment of the invention, and developing the cross section into a two-dimensional plane;

【図66】 発明に係わる実施例9による軸流送風機と
実施例9の軸流送風機の羽根のベースとなる羽根をもつ
軸流送風機の流量係数φと比騒音Ks、圧力係数ψの関
係を示した図
FIG. 66 shows the relationship between the flow coefficient φ, the specific noise Ks, and the pressure coefficient の of the axial blower according to the ninth embodiment of the present invention and the axial blower having the blade serving as the base of the blade of the axial flow fan of the ninth embodiment. Figure

【図67】 発明に係わる実施例9による軸流送風機の
羽根前縁部上の羽根前縁ボス部延長開始点1bsにおけ
る半径Rs=一定時における羽根前縁ボス部前進延長角
δαbに対する最小比騒音のグラフ
FIG. 67: Minimum specific noise with respect to a blade leading edge boss forward extension angle δαb at a constant radius Rs at a blade leading edge boss extending start point 1bs on the blade leading edge of the axial flow blower according to the ninth embodiment of the present invention. Graph of

【図68】 発明に係わる実施例9による軸流送風機の
羽根前縁ボス部前進延長角δαb=一定時における、羽
根外周部半径Rtに対する羽根前縁ボス部延長開始点1
bsにおける半径Rsとの比率Rs/Rtに対する最小
比騒音のグラフ
FIG. 68: Extension start point 1 of the blade front edge boss portion with respect to the blade outer peripheral portion radius Rt when the blade front edge boss portion advance extension angle δαb = constant at the axial flow blower according to the ninth embodiment of the present invention.
graph of the minimum specific noise with respect to the ratio Rs / Rt to the radius Rs in bs

【図69】 発明に係わる実施例9による軸流送風機の
羽根前縁ボス部前進延長角δαbと羽根外周部半径Rt
に対する羽根前縁ボス部延長開始点1bsにおける半径
Rsとの比率Rs/Rtに対する最小比騒音のグラフ
FIG. 69 is a blade leading edge boss advancing extension angle δαb and a blade outer peripheral radius Rt of an axial blower according to a ninth embodiment of the present invention.
Of minimum specific noise to ratio Rs / Rt with radius Rs at blade leading edge boss extension start point 1bs

【図70】 発明に係わる実施例9による軸流送風機の
羽根前縁ボス部前進延長角δαbと羽根外周部半径Rt
に対する羽根前縁ボス部延長開始点1bsにおける半径
Rsとの比率Rs/Rtに対する羽根にかかる最大応力
σのグラフ
FIG. 70: A blade leading edge boss forward extension angle δαb and a blade outer peripheral radius Rt of an axial blower according to a ninth embodiment of the present invention.
Of the maximum stress σ applied to the blade against the ratio Rs / Rt to the radius Rs at the blade leading edge boss portion extension start point 1bs with respect to

【図71】 発明に係わる実施例10による軸流送風機
の斜視図
FIG. 71 is a perspective view of an axial blower according to a tenth embodiment of the present invention.

【図72】 発明に係わる実施例10による軸流送風機
の正面図
FIG. 72 is a front view of an axial blower according to a tenth embodiment of the present invention.

【図73】 発明に係わる実施例10による軸流送風機
の回転軸と直交する平面に羽根を投影したときの投影図
FIG. 73 is a projection view when the blade is projected on a plane orthogonal to the rotation axis of the axial blower according to the tenth embodiment of the present invention.

【図74】 発明に係わる実施例10による軸流送風機
の羽根のボス部半径Rbの円筒面で切断し、その断面を
二次元平面に展開して得られる展開図
74 is an exploded view obtained by cutting the blade of the axial flow blower according to the tenth embodiment of the present invention with a cylindrical surface having a boss radius Rb, and developing the cross section into a two-dimensional plane. FIG.

【図75】 発明に係わる実施例10による軸流送風機
の図73のX−X断面における流れを示した図
FIG. 75 is a view showing a flow in an XX section of FIG. 73 of the axial blower according to the tenth embodiment of the present invention;

【図76】 発明に係わる実施例10による軸流送風機
の負圧面上の流れを示す斜視図
FIG. 76 is a perspective view showing the flow on the negative pressure surface of the axial blower according to the tenth embodiment of the present invention.

【図77】 発明に係わる実施例10による軸流送風機
の羽根前縁ボス部前進延長角δαbが大きいときの羽根
負圧面上の流れを示した図
FIG. 77 is a diagram showing the flow on the blade negative pressure surface when the blade front edge boss portion advance extension angle δαb of the axial flow blower according to the tenth embodiment of the present invention is large.

【図78】 発明に係わる実施例10による軸流送風機
の羽根前縁部上の羽根前縁ボス部延長開始点1bsにお
ける半径Rs=一定時における羽根前縁ボス部前進延長
角δαbに対する最小比騒音のグラフ
FIG. 78: Minimum specific noise with respect to a blade leading edge boss forward extension angle δαb at a constant radius Rs at a blade leading edge boss extending start point 1bs on the blade leading edge of the axial flow fan according to Embodiment 10 of the present invention. Graph of

【図79】 発明に係わる実施例10による軸流送風機
の羽根前縁ボス部前進延長角δαb=一定時における、
羽根外周部半径Rtに対する羽根前縁ボス部延長開始点
1bsにおける半径Rsとの比率Rs/Rtに対する最
小比騒音のグラフ
FIG. 79: When the blade front edge boss portion advance extension angle δαb = constant when the axial flow blower according to the tenth embodiment of the present invention is constant.
Graph of the minimum specific noise with respect to the ratio Rs / Rt of the blade outer edge radius Rt to the ratio of the radius Rs at the blade leading edge boss portion extension start point 1bs to the radius Rt.

【図80】 発明に係わる実施例10による軸流送風機
の羽根前縁ボス部前進延長角δαbと羽根外周部半径R
tに対する羽根前縁ボス部延長開始点1bsにおける半
径Rsとの比率Rs/Rtに対する最小比騒音のグラフ
FIG. 80: A blade leading edge boss advancing extension angle δαb and a blade outer peripheral radius R of an axial blower according to embodiment 10 of the present invention.
The graph of the minimum specific noise with respect to the ratio Rs / Rt to the radius Rs at the blade leading edge boss portion extension start point 1bs with respect to t

【図81】 発明に係わる実施例10による軸流送風機
の羽根前縁ボス部前進延長角δαbと羽根外周部半径R
tに対する羽根前縁ボス部延長開始点1bsにおける半
径Rsとの比率Rs/Rtに対する羽根にかかる最大応
力σのグラフ
FIG. 81: A blade leading edge boss portion advance extension angle δαb and a blade outer peripheral radius R of an axial flow blower according to embodiment 10 of the present invention.
Graph of the maximum stress σ applied to the blade against the ratio Rs / Rt to the radius Rs at the blade leading edge boss portion extension start point 1bs with respect to t

【図82】 発明に係わる実施例11による軸流送風機
の斜視図
FIG. 82 is a perspective view of an axial blower according to Embodiment 11 of the present invention;

【図83】 発明に係わる実施例11による軸流送風機
の正面図
FIG. 83 is a front view of an axial blower according to Embodiment 11 of the present invention;

【図84】 発明に係わる実施例11による軸流送風機
の回転軸と直交する平面に羽根を投影したときの投影図
FIG. 84 is a projection view when the blade is projected on a plane orthogonal to the rotation axis of the axial blower according to Embodiment 11 of the present invention.

【図85】 発明に係わる実施例11による軸流送風機
の羽根のボス部半径Rbの円筒面で切断し、その断面を
二次元平面に展開して得られる展開図
FIG. 85 is an exploded view obtained by cutting a blade having a radius Rb of a boss portion of a blade of an axial blower according to an eleventh embodiment of the present invention and developing the cross section into a two-dimensional plane;

【図86】 発明に係わる実施例11による軸流送風機
の図84におけるY−Y断面における流れを示した図
86 is a view showing the flow in the Y-Y section in FIG. 84 of the axial blower according to Embodiment 11 of the present invention.

【図87】 発明に係わる実施例11による軸流送風機
の負圧面上の流れを示す斜視図
FIG. 87 is a perspective view showing the flow on the negative pressure surface of the axial blower according to Embodiment 11 of the present invention.

【図88】 発明に係わる実施例11による軸流送風機
の図85に相当する図における羽根前縁ボス部前進延長
角δαbが大きすぎたときの負圧面上の流れを示した図
FIG. 88 shows the flow on the suction surface when the blade front edge boss portion advance extension angle δαb in the view corresponding to FIG. 85 of the axial flow blower according to Embodiment 11 of the present invention is too large.

【図89】 発明に係わる実施例11による軸流送風機
の図84における任意半径Rの円筒面で軸流送風機全周
を切断し、その断面を二次元平面に展開して得られる全
周展開図
89 is an all-round developed view obtained by cutting the entire circumference of the axial blower with a cylindrical surface having an arbitrary radius R in FIG. 84 of the axial blower according to Embodiment 11 of the present invention, and developing the cross section into a two-dimensional plane.

【図90】 発明に係わる実施例11による軸流送風機
と実施例11の軸流送風機の羽根のベースとなる羽根を
もつ軸流送風機の流量係数φと比騒音Ks、圧力係数ψ
の関係を示した図
FIG. 90 shows the flow coefficient φ, the specific noise Ks, and the pressure coefficient の of the axial flow fan according to the eleventh embodiment and the axial flow fan having the blades serving as the bases of the blades of the axial flow fan of the eleventh embodiment.
Diagram showing the relationship

【図91】 発明に係わる実施例11による軸流送風機
の羽根前縁部上の羽根前縁ボス部延長開始点1bsにお
ける半径Rs=一定時における羽根前縁ボス部前進延長
角δαbに対する最小比騒音のグラフ
FIG. 91 is a minimum specific noise with respect to a blade leading edge boss forward extension angle δαb at a constant radius Rs at a blade leading edge boss extending start point 1bs on the blade leading edge of the axial flow blower according to Embodiment 11 of the present invention; Graph of

【図92】 発明に係わる実施例11による軸流送風機
の羽根前縁ボス部前進延長角δαb=一定時における、
羽根外周部半径Rtに対する羽根前縁ボス部延長開始点
1bsにおける半径Rsとの比率Rs/Rtに対する最
小比騒音のグラフ
FIG. 92: When the blade front edge boss forward extension angle δαb of the axial flow blower according to the eleventh embodiment of the present invention is constant,
Graph of the minimum specific noise with respect to the ratio Rs / Rt of the blade outer edge radius Rt to the ratio of the radius Rs at the blade leading edge boss portion extension start point 1bs to the radius Rt.

【図93】 発明に係わる実施例11による軸流送風機
の羽根前縁ボス部前進延長角δαbと羽根外周部半径R
tに対する羽根前縁ボス部延長開始点1bsにおける半
径Rsとの比率Rs/Rtに対する最小比騒音のグラフ
93. A blade leading edge boss portion advance extension angle δαb and a blade outer peripheral radius R of an axial flow fan according to Embodiment 11 of the present invention.
The graph of the minimum specific noise with respect to the ratio Rs / Rt to the radius Rs at the blade leading edge boss portion extension start point 1bs with respect to t

【図94】 発明に係わる実施例11による軸流送風機
の羽根前縁ボス部前進延長角δαbと羽根外周部半径R
tに対する羽根前縁ボス部延長開始点1bsにおける半
径Rsとの比率Rs/Rtに対する羽根にかかる最大応
力σのグラフ
94. A blade leading edge boss forward extension angle δαb and a blade outer peripheral radius R of an axial flow blower according to an eleventh embodiment of the present invention.
Graph of the maximum stress σ applied to the blade against the ratio Rs / Rt to the radius Rs at the blade leading edge boss portion extension start point 1bs with respect to t

【図95】 発明に係わる第1〜11による軸流送風機
の一つを組み込んだ空気調和機の室外機の斜視図
FIG. 95 is a perspective view of an outdoor unit of an air conditioner incorporating one of the axial blowers according to the first to eleventh aspects of the present invention.

【図96】 発明に係わる冷凍サイクルの説明図FIG. 96 is an explanatory view of a refrigeration cycle according to the present invention.

【図97】 従来の軸流送風機を示す斜視図FIG. 97 is a perspective view showing a conventional axial blower.

【図98】 従来の軸流送風機の回転軸と直交する平面
に羽根を投影したときの投影図
FIG. 98 is a projection view when the blade is projected on a plane orthogonal to the rotation axis of the conventional axial flow blower.

【図99】 従来の軸流送風機の羽根の翼弦線中心点P
Wの半径方向分布および羽根の同位置での断面図
FIG. 99: Chord line center point P of the blade of the conventional axial flow fan
W distribution in the radial direction and sectional view of the blade at the same position

【図100】 従来の軸流送風機の羽根の任意半径Rの
円筒面で切断し、その断面を二次元平面に展開して得ら
れる展開図
FIG. 100 is an exploded view obtained by cutting a blade of a conventional axial flow blower on a cylindrical surface having an arbitrary radius R and developing the cross section on a two-dimensional plane.

【図101】 従来の軸流送風機の正面図FIG. 101 is a front view of a conventional axial blower.

【図102】 発明に係わる従来の軸流送風機の図98
におけるA−A断面における高圧損時の羽根負圧面上の
流れを示した図
FIG. 102 of a conventional axial blower according to the present invention.
Showing the flow on the blade negative pressure surface at the time of high pressure loss in the AA section in FIG.

【図103】 従来の軸流送風機の図97におけるB−
B断面における羽根前縁部のボス部付近で羽根板厚が厚
い箇所における羽根前縁部および羽根負圧面上の流れを
示した図
Fig. 103 of a conventional axial blower in Fig. 97;
The figure which showed the flow on the blade front-edge part and the blade negative pressure surface in the place where a blade plate thickness is thick near the boss | hub part of the blade front-edge part in B cross section.

【符号の説明】[Explanation of symbols]

1. 羽根 1O. ベースになる羽根 1’. 投影図における羽根 1O’. 投影図におけるベースの羽根 1a. 羽根先端部 1a’. 投影図における羽根先端部 1aO’. 投影図におけるベースになる羽根の羽根先
端部 1b. 羽根前縁部 1bO. ベースになる羽根の羽根前縁部 1baO .ベースになる羽根の羽根前縁部のボス部
半径における点 1b’. 投影図における羽根前縁部 1bO’. 投影図におけるベースになる羽根の羽根前
縁部 1baO’.ベースになる羽根の羽根前縁部のボス部半
径における点1c. 羽根後縁部1cO. ベースになる羽根の羽根後縁部 1cb. 羽根後縁部上のボス部半径における点1c’. 投影図における羽根後縁部1cO’. 投影図におけるベースになる羽根の羽根後
縁部 1cb’. 投影図における羽根後縁部上のボス部半径
における点 1d. 羽根外周部 1dO. ベースになる羽根の羽根外周部 1d’. 投影図における羽根外周部 1dO’. 投影図におけるベースになる羽根の羽根外
周部 2. ボス部 3. 回転軸 4. 回転方向 5. そり線 6. 回転軸平行線 7. 三角形平板を切削したもの 7’. 投影図における三角形平板 8. 羽根負圧面 8N. 次に旋回してくる羽根の羽根負圧面 9. 羽根圧力面 9N. 次に旋回してくる羽根の羽根圧力面 10. 羽根前縁部のボス部寄りの部分に発生する縦
渦 11. 羽根負圧面上の流れ 12. 羽根の吸い込み流れ 13. 羽根圧力面上の流れ 14. 三角形平板7の挿入方向 15. 三角形平板7の挿入冶具 16. 羽根外周部における渦 17. モータ 18. 空気調和機の本体 20. 軸流送風機 22. アキュムレータ 23. 四方弁 24. 室外熱交換器 25. 室内熱交換器 26. フレアバルブ 27. フレア 29. 絞り
1. Feather 10O. Base blade 1 '. Blade in projection 10O'. Base blade in projection 1a. Blade tip 1a '. Blade tip in projection 1aO'. Blade tip of base in projection 1b. Blade leading edge 1bO. Blade leading edge of base blade 1baO. Point 1b 'in the boss radius of the blade front edge of the base blade 1b'. Blade front edge 1bO 'in the projection view. Blade front edge 1baO'. Of the base blade in the projection view. Point 1c in the radius of the boss at the leading edge of the blade of the base blade . 1c. Blade trailing edge 1cO. Blade trailing edge of base blade 1cb. Point 1c 'at the boss radius on the trailing edge of the blade . The trailing edge 1cO ′. Blade trailing edge of base blade in projection view 1cb '. Point at boss radius on blade trailing edge in projection 1d. Blade outer periphery 1dO. 1d '. Blade outer periphery 1dO ′. 1. Blade outer periphery of blade serving as a base in projection view Boss part 3. Rotation axis 4. 4. Rotation direction Sled line 6. 6. Rotation axis parallel line Triangular plate cut 7 '. 7. Triangular plate in projection view Blade negative pressure surface 8N. 8. Blade suction surface of next swirling blade Blade pressure surface 9N. 9. Blade pressure surface of the next swirling blade 10. Vertical vortex generated near the boss at the blade front edge 11. Flow on blade suction surface 12. Suction flow of blade 13. Flow over blade pressure surface 14. Insertion direction of triangular plate 7 11. Insertion jig for triangular plate 7 Vortex at outer periphery of blade 17. Motor 18. Main body of air conditioner 20. Axial blower 22. Accumulator 23. Four-way valve 24. Outdoor heat exchanger 25. Indoor heat exchanger 26. Flare valve 27. Flare 29. Aperture

───────────────────────────────────────────────────── フロントページの続き (72)発明者 廣中 康雄 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (56)参考文献 特開 平5−280493(JP,A) 特開 平6−159290(JP,A) 特表 昭62−500040(JP,A) (58)調査した分野(Int.Cl.6,DB名) F04C 29/18 - 29/38 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuo Hironaka 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Inside Mitsubishi Electric Corporation (56) References JP-A-5-280493 (JP, A) JP-A Heisei 6-159290 (JP, A) JP-T-62-500040 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F04C 29/18-29/38

Claims (18)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回転するボス部に取りつけられ、回転方
向に面する羽根前縁部、回転方向と反対方向に面する羽
根後縁部、及び上記ボス部に対向する羽根外周部により
周囲が構成される羽根と、 上記羽根前縁部の前記ボス部寄りに沿って一辺が、上記
羽根前縁部に隣接した上記ボス部の外周に沿って他辺が
配置されるとともに、少なくとも上記羽根前縁部または
上記ボス部のいずれか一方に取りつけられて上記羽根に
一体に形成される、厚みがほぼ羽根厚と同一の板状部材
と、を備えたことを特徴とする軸流送風機。
1. A blade is attached to a rotating boss, and has a blade leading edge facing in the rotating direction, a blade trailing edge facing in a direction opposite to the rotating direction, and a blade outer periphery facing the boss, and has a periphery. And one side is arranged along the outer periphery of the boss adjacent to the blade front edge, and at least the blade front edge is arranged along the outer periphery of the boss adjacent to the blade front edge. An axial flow blower, comprising: a plate-like member having a thickness substantially equal to the thickness of the blade, which is attached to one of the portion and the boss portion and integrally formed with the blade.
【請求項2】 回転の軸中心を原点Oとし、任意半径に
おける羽根前縁部上の点1bs’との半径O−1bs’
を回転方向に角度β回転させたときのボス部外周上との
交点を1bb’として、板状部材が上記1bs’と上記
1bb’とを通るようなほぼ三角形の形状としたことを
特徴とする請求項1記載の軸流送風機。
2. A center O of rotation is defined as an origin O, and a radius O-1bs 'with respect to a point 1bs' on the leading edge of the blade at an arbitrary radius.
The point of intersection with the outer periphery of the boss when the is rotated by an angle β in the rotation direction is 1bb ', and the plate-like member has a substantially triangular shape passing through the 1bs' and 1bb'. The axial blower according to claim 1.
【請求項3】 回転の軸中心を原点Oとし、任意半径に
おける羽根前縁部上の点1bs’との半径O−1bs’
を回転方向に角度β回転させたときのボス部外周上との
交点を1bb’として、板状部材の他辺が羽根前縁部と
この1bb’との間に配置される際、上記角度βを10
〜40度に選択したことを特徴とする請求項1記載の軸
流送風機。
3. A center O of the rotation is defined as an origin O, and a radius O-1bs 'with respect to a point 1bs' on the leading edge of the blade at an arbitrary radius.
When the point of intersection with the outer periphery of the boss when the is rotated by an angle β in the rotation direction is 1bb ′, the other side of the plate member is disposed between the leading edge of the blade and this 1bb ′, the angle β 10
2. The axial flow blower according to claim 1, wherein the angle is selected to be from 40 to 40 degrees.
【請求項4】 回転の軸中心を原点Oとし、任意半径に
おける羽根前縁部上の点1bs’とし、羽根外周部半径
をRtとして、板状部材の一辺が羽根前縁部の1bs’
とボス部との間に配置される際、半径O−1bs’を上
記羽根外周部半径Rtの40〜75%に選択したことを
特徴とする請求項1記載の軸流送風機。
4. An axis O of rotation is defined as an origin O, a point 1bs 'on the leading edge of the blade at an arbitrary radius, a radius of the outer peripheral portion of the blade is Rt, and one side of the plate member is 1bs' of the leading edge of the blade.
2. The axial blower according to claim 1, wherein a radius O-1bs' is selected to be 40 to 75% of the blade outer peripheral radius Rt when disposed between the blade and the boss.
【請求項5】 板状部材は、羽根前縁部に回転方向から
密着して取りつけられることを特徴とする請求項1記載
の軸流送風機。
5. The axial blower according to claim 1, wherein the plate-like member is attached to the leading edge of the blade in close contact with the blade in a rotational direction.
【請求項6】 回転するボス部に取りつけられ、回転方
向に面する羽根前縁部、回転方向と反対方向に面する羽
根後縁部、及び上記ボス部に対向する羽根外周部により
周囲が構成される羽根と、上記羽根前縁部の前記ボス部
寄りに沿って一辺が、上記羽根前縁部に隣接した上記ボ
ス部の外周に沿って他辺が配置されるとともに、少なく
とも上記羽根前縁部または上記ボス部のいずれか一方に
取りつけられて上記羽根に一体に形成される、厚みがほ
ぼ羽根厚と同一の板状部材であって、回転の軸中心を原
点Oとし、任意半径における上記羽根前縁部上の点1b
s’とし、前記1bs’と原点Oとの半径O−1bs’
を回転方向に角度β回転させたときの上記ボス部外周上
との交点を1bb’として、上記1bs’と1bb’と
を通るような板状部材と、を備え、上記角度βを10〜
40度に選択し、半径O−1bs’を上記羽根外周部半
径Rtの40〜75%に選択したことを特徴とする軸流
送風機。
6. A blade is attached to a rotating boss and has a blade leading edge facing in the rotating direction, a blade trailing edge facing in a direction opposite to the rotating direction, and a blade outer periphery facing the boss. And one side is arranged along the outer periphery of the boss portion adjacent to the blade front edge portion, and at least the blade front edge is arranged along the outer periphery of the boss portion adjacent to the blade front edge portion. A plate member having a thickness substantially equal to the thickness of the blade attached to one of the portion and the boss portion and integrally formed with the blade. Point 1b on the leading edge of the blade
s', and a radius O-1bs' between the 1bs' and the origin O
A plate-like member passing through the above 1bs' and 1bb ', with the intersection point with the outer periphery of the boss portion when the is rotated by an angle β in the rotation direction, as 1bb'.
An axial blower, wherein the fan is selected at 40 degrees and the radius O-1bs' is selected to be 40 to 75% of the blade outer radius Rt.
【請求項7】 回転するボス部に取りつけられ、回転方
向に面する羽根前縁部、回転方向と反対方向に面する羽
根後縁部、及び上記ボス部に対向する羽根外周部により
周囲が構成される羽根と、 回転の軸中心を原点Oとし、任意半径における上記羽根
前縁部上の点1bs’との半径O−1bs’を回転方向
に角度β回転させたときの上記ボス部外周上との交点を
1bb’として、上記1bs’と上記1bb’とを通る
ような形状に上記羽根前縁部の上記ボス部寄り部分を回
転方向に延長させた羽根形状と、を備え、上記角度βを
10〜40度に選択したことを特徴とする軸流送風機。
7. A blade is attached to a rotating boss and has a periphery formed by a blade leading edge facing in the rotating direction, a blade trailing edge facing in a direction opposite to the rotating direction, and a blade outer peripheral portion facing the boss. The center of rotation is defined as the origin O, and the radius O-1bs 'of an arbitrary radius with respect to the point 1bs' on the leading edge of the blade is rotated by an angle β in the rotation direction. And a blade shape in which a portion of the leading edge of the blade near the boss is extended in the rotation direction so as to pass through 1bs ′ and 1bb ′, and the angle β The axial flow blower, wherein is selected from 10 to 40 degrees.
【請求項8】 半径O−1bs’を羽根外周部半径Rt
の40〜75%に選択したことを特徴とする請求項7記
載の軸流送風機。
8. The radius O-1bs' is defined as the blade outer radius Rt.
The axial flow blower according to claim 7, wherein 40% to 75% of the value is selected.
【請求項9】 個個の羽根に対し角度βを変化させた複
数の羽根を有することを特徴とする請求項2または3ま
たは6または7または8項記載の軸流送風機。
9. The axial flow blower according to claim 2, comprising a plurality of blades whose angle β is changed with respect to each of the blades.
【請求項10】 個個の羽根に対し半径O−1bs’を
変化させた複数の羽根を有することを特徴とする請求項
2または3または4または6または7または8または9
項記載の軸流送風機。
10. A blade having a plurality of blades having different radii O-1bs' with respect to each of the blades.
The axial flow blower according to the item.
【請求項11】 羽根前縁部のボス部より部分を回転方
向延長させた羽根形状を、1bs’及び1bb’におけ
る接線を回転方向に対し、凹となるような曲線で結び上
記羽根前縁部とするように形成したことを特徴とする請
求項2または3または4または6または7または8項記
載の軸流送風機。
11. A blade shape in which a portion of the blade front edge portion extending from the boss portion in the rotation direction is connected to a tangent line at 1bs ′ and 1bb ′ by a curved line that is concave with respect to the rotation direction. 9. The axial flow blower according to claim 2, wherein the axial flow blower is formed as follows.
【請求項12】 羽根前縁部とボス部との接続部を羽根
外周部半径の15〜35%の大きさの半径とする回転方
向に対し凹となるような曲線で結び、羽根前縁部とする
ように羽根形状を形成したことを特徴とする請求項1な
いし11のうちのいずれか1項記載の軸流送風機。
12. The blade leading edge portion is connected to a connecting portion between the blade leading edge portion and the boss portion with a curve having a radius of 15 to 35% of the radius of the blade outer peripheral portion so as to be concave in the rotation direction. The axial flow blower according to any one of claims 1 to 11, wherein the blade shape is formed as follows.
【請求項13】 羽根を取り付けて回転するボス部と、
回転方向に面する羽根前縁部、回転方向と反対方向に面
する羽根後縁部、および上記ボス部に対向する羽根外周
部から周が構成される羽根とを備え、上記羽根前縁部上の任意の点1bs’と上記羽根前縁部
の先端との間の接線より回転方向よりに位置するボス部
側面の点1bb’と上記点1bs’とを直線的に結ぶよ
うな羽根前縁形状とし、 回転の軸中心を原点Oとした場合の半径O−1bs’を
羽根外周部半径Rtの40〜75%にしたことを特徴と
する軸流送風機。
13. A boss portion to which a blade is attached and which rotates.
A blade front edge portion facing in the rotation direction, a blade rear edge portion facing in the opposite direction to the rotation direction, and a blade having a circumference formed by a blade outer peripheral portion facing the boss portion; Any point 1bs' of the blade and the leading edge of the blade
Boss located in the direction of rotation from the tangent to the tip of
The point 1bb 'on the side and the above point 1bs' are linearly connected.
The radius O-1bs' when the shape of the blade is the leading edge and the center of rotation is the origin O
40 to 75% of the blade outer radius Rt
Axial blower.
【請求項14】 羽根を取り付けて回転するボス部と、
回転方向に面する羽根前縁部、回転方向と反対方向に面
する羽根後縁部、および上記ボス部に対向する羽根外周
部から周が構成される羽根とを備え、 回転の軸中心を原点Oとし、原点Oと羽根前縁部上の任
意の点1bs’とを結ぶ直線1bs’−Oを原点Oを中
心に回転方向に回転させたときの、直線1bs’−Oと
ボス部側面との交点1bb’と上記点1bs’における
接線を回転方向に対し、凹となるような任意曲線で結
び、羽根前縁部とするとともに、 回転の軸中心を原点Oとし、羽根の付け根の羽根前縁部
上の点1baO’と原点Oを結んだ直線1baO’−O
を、原点Oを中心に回転方向に20〜50°の問である
角度δαb分回転させた時のボス部半径Rbの点1b
b’と羽根外周部半径の40〜70%の半径Rsをもつ
羽根前縁部上の点1bs’の問の形状を、前記羽根前縁
部を基準として、前記羽根のボス部半径Rbである羽根
前縁部上の点1ba’から前記角度δαb分回転方向に
回転させたときのボス部半径Rbの羽根前縁部上の点1
bb’の問に存在するボス部半径Rb〜半径Rsの問の
半径Rcの点1bc’と原点Oを結んだ直線1bc’−
Oと直線1ba’−Oとのなす角度を示すδαの半径方
向分布を δα=(δαb/(Rb−Rs)2)×(R−Rs)2 (Rb≦R≦Rs) で与え、前記羽根と連続するように、羽根前縁部上の点
1bs’よりボス部寄り部分の羽根前縁部を回転方向に
延長し、羽根形状を形成したことを特徴とする軸流送風
機。
14. A boss portion which rotates by attaching a blade,
Blade leading edge facing in the direction of rotation, facing in the direction opposite to the direction of rotation
Trailing edge of the blade and the outer periphery of the blade facing the boss
A rotation center of rotation is defined as an origin O, and the origin O
A straight line 1bs'-O connecting the point 1bs'
The line 1bs'-O and the
At the point of intersection 1bb 'with the side surface of the boss and the point 1bs'
Connect the tangent with an arbitrary curve that is concave in the direction of rotation.
A straight line 1baO'-O connecting the origin O to the point 1baO 'on the blade front edge of the root of the blade, with the center of rotation being the origin O.
Is the point 1b of the boss portion radius Rb when rotated by an angle δαb, which is a question of 20 to 50 ° in the rotation direction about the origin O as a center.
The shape of the point 1bs 'on the leading edge of the blade having b' and a radius Rs of 40 to 70% of the radius of the outer peripheral portion of the blade is the boss radius Rb of the blade with respect to the leading edge of the blade. Point 1 on the blade front edge of boss radius Rb when rotated in the rotation direction by the angle δαb from point 1ba ′ on the blade front edge
A straight line 1bc'- connecting the point 1bc 'of the radius Rc of the boss portion radius Rb to the radius Rs existing in the region of bb' and the origin O.
The radial distribution of δα indicating the angle between O and the straight line 1ba′-O is given by δα = (δαb / (Rb−Rs) 2 ) × (R−Rs) 2 (Rb ≦ R ≦ Rs) An axial blower characterized in that the blade front edge of the portion closer to the boss portion is extended in the rotation direction from point 1bs' on the blade front edge so as to be continuous with the blade front edge to form a blade shape.
【請求項15】 羽根を取り付けて回転するボス部と、
回転方向に面する羽根前縁部、回転方向と反対方向に面
する羽根後縁部、および上記ボス部に対向する羽根外周
部から周が構成される羽根とを備え、 回転の軸中心を原点Oとし、原点Oと羽根前縁部上の任
意の点1bs’とを結ぶ直線1bs’−Oを原点Oを中
心に回転方向に回転させたときの、直線1bs’−Oと
ボス部側面との交点1bb’と点1bs’における接線
を回転方向に対し、凹となるような任意曲線で結び、羽
根前縁部とするとともに、 回転の軸中心を原点Oとし、ベースの羽根1O’のボス
部半径Rbにおける羽根前縁部上の点1baO’と原点
Oを結んだ直線1baO’−Oを、原点Oを中心に回転
方向に20〜50°の間である角度δαb分回転させた
時の点を羽根前縁ボス部延長終点1bb’としたとき、
羽根を任意半径Rの円筒面で切断し、その断面を2次元
平面に展開して得られる展開図において、前記羽根1O
とそり角θ、食い違い角εが同一のまま、ボス部半径R
bでの翼弦を、前記点1bbまで延長し、このときの前
記羽根1Oのボス部半径Rbにおける翼弦長LbOと前
記点1bb〜羽根後縁部1cbまでの翼弦長Lb、この
差を△Lbとし、羽根外周部半径の40〜60%の半径
Rsでの羽根前縁部上の点1bsでの翼弦長Lsとする
と、ボス部半径Rbから前記羽根前縁部上の点1bsま
での翼弦長Lの半径方向分布を L=△Lb/(Rs一Rb)2×(R一Rs)2+Ls (Rb≦R≦Rs) で与え、羽根形状を形成したことを特徴とする軸流送風
機。
15. A boss portion to which a blade is attached and which rotates.
Blade leading edge facing in the direction of rotation, facing in the direction opposite to the direction of rotation
Trailing edge of the blade and the outer periphery of the blade facing the boss
A rotation center of rotation is defined as an origin O, and the origin O
A straight line 1bs'-O connecting the point 1bs'
The line 1bs'-O and the
Tangent line at intersection 1bb 'and point 1bs' with boss side surface
With an arbitrary curve that is concave with respect to the direction of rotation.
A straight line 1baO'-O connecting the origin O with the point 1baO 'on the blade front edge in the boss radius Rb of the blade 1O' of the base as the root front edge and the rotation axis center as the origin O, When the point when rotated by an angle δαb between 20 and 50 ° in the rotation direction about the origin O is defined as the blade front edge boss extension end point 1bb ′,
In a developed view obtained by cutting the blade at a cylindrical surface having an arbitrary radius R and expanding the cross section into a two-dimensional plane, the blade 10
The boss radius R while maintaining the same sled angle θ and stagger angle ε
b, the chord length LbO at the boss radius Rb of the blade 1O and the chord length Lb from the point 1bb to the blade rear edge 1cb, and the difference between the chord length LbO at this point and Let ΔLb be the chord length Ls at point 1bs on the leading edge of the blade at a radius Rs of 40 to 60% of the radius of the outer periphery of the blade, from the radius Rb of the boss to point 1bs on the leading edge of the blade. A radial distribution of the chord length L of L = Lb / (Rs-Rb) 2 × (R-Rs) 2 + Ls (Rb ≦ R ≦ Rs) to form a blade shape. Flow blower.
【請求項16】 羽根を取り付けて回転するボス部と、
回転方向に面する羽根前縁部、回転方向と反対方向に面
する羽根後縁部、および上記ボス部に対向する羽根外周
部から周が構成される羽根とを備え、 回転の軸中心を原点Oとし、原点Oと羽根前縁部上の任
意の点1bs’とを結ぶ直線1bs’−Oを原点Oを中
心に回転方向に回転させたときの、直線1bs’−Oと
ボス部側面との交点1bb’と点1bs’における接線
を回転方向に対し、凹となるような任意曲線で結び、羽
根前縁部とするとともに、 軸流送風機の羽根を任意半径Rの円筒面で切断し、その
断面を2次元平面に展開して得られる展開図において、
その羽根断面におけるそり線の形状を円弧形状とし、そ
の円弧を形成するための中心角をθ(θ:そり角)とし
た場合、θの半径方向分布をθ=(θt一θb)×(R
−Rb)/(Rt一Rb)+θb(θt:羽根外周部で
のそり角、θb:羽根ボス部半径Rbにおけるそり角)
で与え、θt=25°〜35°、θb=30°〜55
°、θtくθbとし、 上記展開図において、羽棋の翼弦線と上記回転軸と平行
で上記羽根の前縁部を通る直線とのなす角度をε(ε:
食い違い角)とするとき、εの半径方向分布を、ε=
(εt−εb)×(R−Rb)/(Rt−Rb)+εb
(εt:羽根外周部での食い連い角ε、εb=ボス部半
径Rbにおける食い運い角)で与え、εt=55°〜7
0°、εb=40°〜65°、εt>εbとし、 さらに、翼弦長L、羽根間の円周方向距離(ピッチ)で
あるTとの比で定義される節弦比T/Lの値を、各半径
点においてT/L=1.1〜2.0とし、 かつ上記回転軸と直交する平面に軸流送風機を投影した
投影図において、上記羽根のボス部半径Rbの円筒面で
切断したときの断面における翼弦線中心点をPb’と
し、上記回転軸を原点Oとして、上記O点とPb’点と
を結ぶ直線をX軸とした座標系で、上記羽根を任意半径
Rの円筒面で切断した時の翼弦線中心点をPR’とし
て、直線PR’−Oと上記X軸とのなす角度をδθ(δ
θ:回転方向前進角)とした場合、δθの半径方向分布
を δθ=δθt×(R一Rb)/(Rt一Rb) (Rt:羽根外周部半径、Rb:羽根ボス部半径、δθ
t:直線Pt’−OとX軸のなす角度)で与え、δθt
を25〜40°とし、まず羽根形状を形成し、この時の
羽根の付け根の羽根前縁部上の点1ba’と原点Oを結
んだ直線1ba’−Oを、原点Oを中心に回転方向に2
0〜50°の間である角度δαb分回転させた時のボス
部半径Rbの点1bb’と羽根外周部半径の40〜70
%の半径Rsをもつ羽根前縁部上の点1bs’の間の形
状を、前記羽根前縁部を基準として、前記羽根のボス部
半径Rbである羽根前縁部上の点1ba’から前記角度
δαb分回転方向に回転させたときのボス部半径Rbの
羽根前縁部上の点1bb’の間に存在するボス部半径R
b〜半径Rsの問の半径Rcの点1bc’と原点Oを結
んだ直線1bc’−Oと直線1ba’−Oとのなす角度
を示すδαの半径方向分布を δα=(δαb/(Rb一Rs)2)×(R一Rs)2 (Rb≦R≦Rs) で与え、前記羽根と連続するように、羽根前縁都上の点
1bs’よりボス部寄り部分の羽根前縁部を回転方向に
延長し、羽根形状を形成したことを特徴とする軸流送風
機。
16. A boss portion which rotates by attaching a blade,
Blade leading edge facing in the direction of rotation, facing in the direction opposite to the direction of rotation
Trailing edge of the blade and the outer periphery of the blade facing the boss
A rotation center of rotation is defined as an origin O, and the origin O
A straight line 1bs'-O connecting the point 1bs'
The line 1bs'-O and the
Tangent line at intersection 1bb 'and point 1bs' with boss side surface
With an arbitrary curve that is concave with respect to the direction of rotation.
In the developed view obtained by cutting the blade of the axial blower with a cylindrical surface having an arbitrary radius R and developing the cross section into a two-dimensional plane,
If the shape of the warp line in the blade cross section is an arc shape and the central angle for forming the arc is θ (θ: warp angle), the radial distribution of θ is θ = (θt-θb) × (R
−Rb) / (Rt−Rb) + θb (θt: sled angle at the outer periphery of the blade, θb: sled angle at the blade boss radius Rb)
Θt = 25 ° to 35 °, θb = 30 ° to 55
In the above development, the angle between the chord line of the hagi and a straight line parallel to the rotation axis and passing through the front edge of the blade is ε (ε:
Stagger angle), the radial distribution of ε is given by ε =
(Εt−εb) × (R−Rb) / (Rt−Rb) + εb
(Εt: bite angle ε at the outer periphery of the blade, εb = bite angle at boss radius Rb), εt = 55 ° to 7
0 °, εb = 40 ° to 65 °, εt> εb. Further, the chord length L, the chord ratio T / L defined by the ratio to the circumferential distance (pitch) T between the blades, T / L, The value is set to T / L = 1.1 to 2.0 at each radial point, and the projection of the axial flow blower on a plane perpendicular to the rotation axis indicates the cylindrical surface of the boss radius Rb of the blade. In the coordinate system in which the chord line center point in the cross section at the time of cutting is Pb ′, the rotation axis is the origin O, and a straight line connecting the point O and the point Pb ′ is the X axis, the blade has an arbitrary radius R. The center point of the chord line when cut along the cylindrical surface is PR ′, and the angle between the straight line PR′-O and the X axis is δθ (δ
When θ is the advancing angle in the rotation direction, the radial distribution of δθ is δθ = δθt × (R-Rb) / (Rt-Rb) (Rt: radius of outer periphery of blade, Rb: radius of blade boss, δθ
t: the angle between the straight line Pt′-O and the X axis), and δθt
Is set to 25 to 40 °, a blade shape is first formed, and a straight line 1ba′-O connecting the point 1ba ′ on the blade front edge portion of the root of the blade at this time and the origin O is rotated around the origin O. To 2
The point 1bb ′ of the boss radius Rb when rotated by an angle δαb between 0 and 50 ° and the radius of the outer periphery of the blade 40 to 70
% From the point 1ba 'on the leading edge of the blade, which is the boss radius Rb of the blade, with respect to the leading edge of the blade, with respect to the leading edge of the blade. The boss radius R existing between points 1bb 'on the blade leading edge at the boss radius Rb when rotated in the rotation direction by the angle δαb
The radial distribution of δα indicating the angle formed between the straight line 1bc′-O and the straight line 1ba′-O connecting the point 1bc ′ of the radius Rc and the origin O between b and the radius Rs is represented by δα = (δαb / (Rb-1 Rs) 2 ) × (R-Rs) 2 (Rb ≦ R ≦ Rs), and rotate the leading edge of the blade closer to the boss from the point 1bs ′ on the leading edge of the blade so as to be continuous with the blade. An axial blower characterized by extending in the direction and forming a blade shape.
【請求項17】 羽根を取り付けて回転するボス部と、
回転方向に面する羽根前縁部、回転方向と反対方向に面
する羽根後縁部、および上記ボス部に対向する羽根外周
部から周が構成される羽根とを備え、 回転の軸中心を原点Oとし、原点Oと羽根前縁部上の任
意の点1bs’とを結ぶ直線1bs’−Oを原点Oを中
心に回転方向に回転させたときの、直線1bs’−Oと
ボス部側面との交点1bb’と点1bs’における接線
を回転方向に対し、凹となるような任意曲線で結び、羽
根前縁部とするとともに、 軸流送風機の羽根を任意半径Rの円筒面で切断し、その
断面を2次元平面に展開して得られる展開図において、
その羽根断面におけるそり線の形状を円弧形状とし、そ
の円弧を形成するための中心角をθ(θ:そり角)とし
た場合、θの半径方向分布をθ=(θt一θb)×(R
−Rb)/(Rt−Rb)+θb(θt:羽板外周部で
のそり角、θb:羽根ボス部半径Rbにおけるそり角)
で与え、θt=25°〜35°、θb=30°〜55
°、θt<θbとし、 上記展開図において、羽根の翼弦線と上記回転軸と平行
で上記羽根の前縁部を通る直線とのなす角度をε(ε:
食い違い角)とするとき、εの半径方向分布を、ε=
(εt−εb)×(R−Rb)/(Rt−Rb)+εb
(εt:羽根外周部での食い違い角ε、εb:ボス部半
径Rbにおける食い違い角)で与え、εt=55°〜7
0°、εb=40°〜65°、εt>εbとし、 かつ上記回転軸と直交する平面に軸流送風機を投影した
没影図において、上記羽根のボス部半径Rbの円筒面で
切断したときの断面における翼弦線中心点をPbO’と
し、上記回転軸を原点Oとして、上記O点とPbO’点
とを結ぶ直線をX軸とした座標系で、上記羽根を任意半
径Rの円筒面で切断した時の翼弦線中心点をPRO’と
して、直線PRO’−Oと上記X軸とのなす角度をδθ
(δθ:回転方向前進角)とした場合、δθの半径方向
分布を δθ=δθt×(R−Rb)/(Rt−Rb) (Rt:羽根外周部半径、Rb:羽根ボス部半径、δθ
t:直線PtO’−OとX軸のなす角度)で与え、δθ
tを25〜40°とし、 さらに、翼弦長LO、羽根間の円周方向距離(ピッチ)
であるTとの比で定義される節弦比T/LOの値を、各
半径点においてT/LO=1.1〜2.0とし、まず羽
根形状1O’を形成し、 前記投影図において、羽根1O’のボス部半径Rbにお
ける羽根前縁部上の点1baO’と原点Oを結んだ直線
1baO’−Oを、原点Oを中心に20〜50°の間で
ある角度δαb分回転させた時の点を羽根前縁ボス部延
長終点1bb’としたとき、羽根を任意半径Rの円筒面
で切断し、その断面を2次元平面に展開して得られる展
開図において、前記羽根1Oとそり角θ、食い違い角ε
が同一のまま、ボス部半径Rbでの翼弦を、前記点1b
bまで延長し、このときの前記羽根1Oのボス部半径R
bにおける翼弦長LbOと前記点1bb〜羽根後縁部1
cbまでの翼弦長Lb、この差を△Lbとし、羽根外周
部半径の40〜60%の半径Rsでの羽根前縁部上の点
1bsでの翼弦長Lsとすると、ボス部半径Rbから前
記羽根前縁部上の点1bsまでの翼弦長Lの半径方向分
布を L=△Lb/(Rs−Rb)2×(R−Rs)2+Ls (Rb≦R≦Rs) で与え、羽根形状を形成したことを特徴とする軸流送風
機。
17. A boss portion which rotates by attaching a blade,
Blade leading edge facing in the direction of rotation, facing in the direction opposite to the direction of rotation
Trailing edge of the blade and the outer periphery of the blade facing the boss
A rotation center of rotation is defined as an origin O, and the origin O
A straight line 1bs'-O connecting the point 1bs'
The line 1bs'-O and the
Tangent line at intersection 1bb 'and point 1bs' with boss side surface
With an arbitrary curve that is concave with respect to the direction of rotation.
In the developed view obtained by cutting the blade of the axial blower with a cylindrical surface having an arbitrary radius R and developing the cross section into a two-dimensional plane,
If the shape of the warp line in the blade cross section is an arc shape and the central angle for forming the arc is θ (θ: warp angle), the radial distribution of θ is θ = (θt-θb) × (R
−Rb) / (Rt−Rb) + θb (θt: sled angle at the outer periphery of the blade, θb: sled angle at the blade boss radius Rb)
Θt = 25 ° to 35 °, θb = 30 ° to 55
Θ, θt <θb, and in the above developed view, the angle formed between the chord line of the blade and a straight line parallel to the rotation axis and passing through the leading edge of the blade is ε (ε:
Stagger angle), the radial distribution of ε is given by ε =
(Εt−εb) × (R−Rb) / (Rt−Rb) + εb
(Εt: stagger angle ε at blade outer periphery, εb: stagger angle at boss radius Rb), and εt = 55 ° to 7
0 °, εb = 40 ° to 65 °, εt> εb, and in an engraved view in which the axial flow blower is projected on a plane perpendicular to the rotation axis, the blade is cut by a cylindrical surface having a boss radius Rb of the blade. In the coordinate system in which the chord line center point in the cross section is PbO ', the rotation axis is the origin O, and a straight line connecting the point O and the PbO' point is the X axis, the blade is a cylindrical surface having an arbitrary radius R. Assuming that the chord line center point at the time of cutting is PRO ′, the angle between the straight line PRO′-O and the X axis is δθ.
When (δθ: rotational angle advancing angle), the radial distribution of δθ is δθ = δθt × (R−Rb) / (Rt−Rb) (Rt: radius of outer periphery of blade, Rb: radius of blade boss, δθ
t: the angle between the straight line PtO'-O and the X axis), δθ
t is 25-40 °, chord length LO, circumferential distance (pitch) between blades
The value of the chord ratio T / LO defined by the ratio of T to T / LO is set to T / LO = 1.1 to 2.0 at each radial point to first form a blade shape 1O ′. A straight line 1baO'-O connecting the point 1baO 'on the leading edge of the blade at the boss radius Rb of the blade 1O' and the origin O is rotated by an angle δαb between 20 and 50 ° about the origin O. When the point at which the blade is extended is defined as a blade leading edge boss portion extension end point 1bb ', the blade is cut by a cylindrical surface having an arbitrary radius R, and the cross-section thereof is developed into a two-dimensional plane. Warp angle θ, stagger angle ε
Is the same, the chord at the boss radius Rb is changed to the point 1b.
b, and the boss radius R of the blade 10 at this time is
b at chord length LbO and point 1bb to blade trailing edge 1
Assuming that the chord length Lb up to cb, the difference is ΔLb, and the chord length Ls at the point 1bs on the leading edge of the blade at a radius Rs of 40 to 60% of the outer radius of the blade, the boss portion radius Rb And the radial distribution of the chord length L from the point to the point 1 bs on the blade leading edge is given by L = Lb / (Rs−Rb) 2 × (R−Rs) 2 + Ls (Rb ≦ R ≦ Rs) An axial blower characterized by having a blade shape.
【請求項18】 請求項1ないし17のうちのいずれか
1項記載の軸流送風機を使用したことを特徴とする空気
調和機。
18. An air conditioner using the axial blower according to any one of claims 1 to 17.
JP22409395A 1995-08-31 1995-08-31 Axial blower, air conditioner Expired - Lifetime JP2932975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22409395A JP2932975B2 (en) 1995-08-31 1995-08-31 Axial blower, air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22409395A JP2932975B2 (en) 1995-08-31 1995-08-31 Axial blower, air conditioner

Publications (2)

Publication Number Publication Date
JPH0968199A JPH0968199A (en) 1997-03-11
JP2932975B2 true JP2932975B2 (en) 1999-08-09

Family

ID=16808442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22409395A Expired - Lifetime JP2932975B2 (en) 1995-08-31 1995-08-31 Axial blower, air conditioner

Country Status (1)

Country Link
JP (1) JP2932975B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106030117A (en) * 2014-02-24 2016-10-12 三菱电机株式会社 Axial flow fan

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101408196B (en) * 2003-06-18 2011-06-01 三菱电机株式会社 Blower
JP4444307B2 (en) * 2003-06-18 2010-03-31 三菱電機株式会社 Blower
WO2014102970A1 (en) 2012-12-27 2014-07-03 三菱電機株式会社 Propeller fan, air blowing equipment, outdoor unit
CN105473853B (en) * 2013-10-01 2017-07-07 夏普株式会社 Propeller type fan and air-supply arrangement
CN105927586B (en) * 2016-06-03 2018-05-11 华中科技大学 The Start-stop control leaf and its modified method of a kind of remodeling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106030117A (en) * 2014-02-24 2016-10-12 三菱电机株式会社 Axial flow fan
CN106030117B (en) * 2014-02-24 2018-06-22 三菱电机株式会社 Axial flow fan
US10208770B2 (en) 2014-02-24 2019-02-19 Mitsubishi Electric Corporation Axial flow fan

Also Published As

Publication number Publication date
JPH0968199A (en) 1997-03-11

Similar Documents

Publication Publication Date Title
CA2572925C (en) Axial fan blade having a convex leading edge
EP2426362A2 (en) Turbo fan and air conditioner with turbo fan
JP3203994B2 (en) Axial blower
US7273354B2 (en) High efficiency axial fan
EP1741935B1 (en) Centrifugal compressor and method of manufacturing impeller
WO2017060987A1 (en) Blower and air conditioning device provided with same
US6863500B2 (en) Blast fan
AU714395B2 (en) Axial fan
JP4689262B2 (en) Axial fan, outdoor unit of air conditioner
JP2932975B2 (en) Axial blower, air conditioner
CN107956739B (en) Cross flow wind wheel and air conditioner
JP3469857B2 (en) Axial flow fan for cooling air circulation
GB2615910A (en) Turbofan and air conditioner
US20040175269A1 (en) Axial-flow fan
US6695584B2 (en) Turbo fan
US20020197162A1 (en) Fan blade
US6814545B2 (en) Fan blade
JP4183005B2 (en) Centrifugal multiblade blower
JP2000192898A (en) Propeller fan
JPH06173895A (en) Propeller fan
JP2902577B2 (en) Propeller fan
JP2730268B2 (en) Centrifugal impeller
JP2956566B2 (en) Impeller for blower
CN216430052U (en) Axial flow impeller, axial flow fan and air conditioner
JP4152158B2 (en) Axial fan

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 15

EXPY Cancellation because of completion of term