JP2000192898A - Propeller fan - Google Patents

Propeller fan

Info

Publication number
JP2000192898A
JP2000192898A JP10370042A JP37004298A JP2000192898A JP 2000192898 A JP2000192898 A JP 2000192898A JP 10370042 A JP10370042 A JP 10370042A JP 37004298 A JP37004298 A JP 37004298A JP 2000192898 A JP2000192898 A JP 2000192898A
Authority
JP
Japan
Prior art keywords
blade
groove
propeller fan
vortex
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10370042A
Other languages
Japanese (ja)
Other versions
JP3524410B2 (en
Inventor
Masao Otsuka
大塚  雅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP37004298A priority Critical patent/JP3524410B2/en
Publication of JP2000192898A publication Critical patent/JP2000192898A/en
Application granted granted Critical
Publication of JP3524410B2 publication Critical patent/JP3524410B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress fluctuation and advance of vortex generated by a tip end part and an end part of a blade by arranging a groove along a flow line on a negative pressure side blade surface of a downstream region of the tip end part of the blade. SOLUTION: A groove 11 is disposed on a negative pressure surface of a blade 5 of a propeller fan 2 along a flow line on a blade surface in a downstream region of a flange shaped blade tip end part 5d. The groove 11 may be formed from a blade tip end part 5d, a blade front end part 5a, and a blade outer peripheral part 5b to a blade rear end part 5c, or may be formed from the halfway. Horseshoe vortex 9 generated from the blade end and blade tip end vortex 8 generated from the blade tip end part are held along the blade 5 to the groove 11. Namely, the separating region 10 is small, and the horseshoe vortex 9 and the blade tip end vortex 8 flow along the blade 5. It is thus possible to suppress fluctuation and advance of the vortex, and it is also possible to prevent separation by pouring energy of the vortex held to the groove 11 to the separation region 10 on the blade surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば空調装置の
熱交換器内を流動する作動ガスの冷却または加熱を行う
空気等の媒体をポンプする送風機あるいは換気装置等に
用いられるプロペラファンに関し、特に送風装置の低騒
音化及び高効率化に好適なプロペラファンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a propeller fan used for a blower or a ventilator for pumping a medium such as air for cooling or heating a working gas flowing in a heat exchanger of an air conditioner, and in particular, to a propeller fan. The present invention relates to a propeller fan suitable for lowering noise and increasing efficiency of a blower.

【0002】[0002]

【従来の技術】図9は従来の送風装置の要部の斜視図で
ある。送風装置1を構成する主要部はプロペラファン2
とベルマウス3である。プロペラファン2は円筒状のボ
ス4と複数の翼5から成り、翼5はボス4の外周表面の
円周方向に沿い、複数枚が等間隔に設けられている。翼
5は、ボス4の中心軸6の正方向を矢印方向Pに決める
と、そのP方向に対して左捩じれ曲面を成す。この翼5
の曲面は、ボス4の外表面4aに加えて前縁5a、外縁
5b、後縁5c及び各々の縁を滑らかに連結する前連結
部即ち翼先端部5d、後連結部5eで形成される。一般
的に翼先端部5dが鎌状に尖った形態を成し、外縁5b
は軸6に対し半径一定で直径dなる形態を成す。
2. Description of the Related Art FIG. 9 is a perspective view of a main part of a conventional blower. The main part of the blower 1 is a propeller fan 2
And Bellmouth 3. The propeller fan 2 includes a cylindrical boss 4 and a plurality of blades 5, and a plurality of blades 5 are provided at equal intervals along the circumferential direction of the outer peripheral surface of the boss 4. When the positive direction of the central axis 6 of the boss 4 is determined in the arrow direction P, the wing 5 forms a left-hand twisted surface with respect to the P direction. This wing 5
Is formed by a front edge 5a, an outer edge 5b, a rear edge 5c and a front connection portion, that is, a wing tip portion 5d and a rear connection portion 5e that smoothly connect the respective edges in addition to the outer surface 4a of the boss 4. Generally, the wing tip 5d has a sickle-like shape, and the outer edge 5b
Has a constant radius with respect to the shaft 6 and a diameter d.

【0003】ベルマウス3は、プロペラファン2の外径
dに対し所定の隙間εを成す厚さtの円弧状オリフィス
7を設けた板状体である。ベルマウス3とプロペラファ
ン2は適宜の手段で同軸上に固定され、プロペラファン
2は図示しない電動機、内燃機関、プーリ等の駆動手段
で駆動される。
The bell mouth 3 is a plate-like body provided with an arc-shaped orifice 7 having a thickness t and a predetermined gap ε with respect to the outer diameter d of the propeller fan 2. The bell mouth 3 and the propeller fan 2 are coaxially fixed by an appropriate means, and the propeller fan 2 is driven by driving means (not shown) such as an electric motor, an internal combustion engine, and a pulley.

【0004】今、プロペラファン2が白抜き矢印Nで示
す右方向に回転すると、上流Eから下流Fに向かい中心
軸6の正方向Pの流れが生じる。この種のプロペラファ
ン2は、低静圧で大風量を得る為、即ち送風性能向上の
為、オリフィス7の厚さtを薄くし、翼5を上流側に突
き出す構造が一般に用いられる。
[0004] When the propeller fan 2 rotates rightward as shown by the white arrow N, a flow in the forward direction P of the center axis 6 is generated from the upstream E to the downstream F. The propeller fan 2 of this type generally has a structure in which the thickness t of the orifice 7 is reduced and the blades 5 protrude to the upstream side in order to obtain a large air volume at a low static pressure, that is, to improve the blowing performance.

【0005】この様子は図9の円周方向に沿い外方から
中心に向かうB−B展開図で示した図10に示してあ
る。図10において、7aはオリフィス7の前縁であ
り、ベルマウス3の前縁でもある。7bはオリフィス7
の後縁であり、オリフィス7は幅tの帯状を成し、翼5
の外縁5bの投影は翼数に応じて等間隔に並ぶ。Lf、
Lbは夫々オリフィス7の前縁7a及び後縁7bに対す
る翼5の突出量を示し、オリフィス前縁7aに対し大き
く突出しているのが解る。
This situation is shown in FIG. 10 which is a BB development view from the outside toward the center along the circumferential direction in FIG. In FIG. 10, reference numeral 7 a denotes a front edge of the orifice 7 and also a front edge of the bell mouth 3. 7b is the orifice 7
And the orifice 7 has a band shape of width t, and the wing 5
Are projected at equal intervals according to the number of blades. Lf,
Lb indicates the amount of protrusion of the wing 5 with respect to the leading edge 7a and trailing edge 7b of the orifice 7, respectively, and it can be seen that the wing 5 largely projects with respect to the orifice leading edge 7a.

【0006】プロペラファン2は、樹脂製の場合、ボス
4と翼5が一体に成形されるのが一般であるが、ボス4
と翼5を別体に加工して一体に組み立てる場合も用途に
より材料を選択的に用いて行われる。いずれの場合も、
翼5の外縁5bの翼の厚み方向断面はバリ取りを施した
程度の鋭い形状をなしている。この様子を図9のC−C
断面により図11に示す。
When the propeller fan 2 is made of resin, the boss 4 and the wing 5 are generally formed integrally, but the boss 4
Also, when the wing 5 and the wing 5 are processed separately and assembled together, the material is selectively used depending on the application. In either case,
The cross section of the outer edge 5b of the blade 5 in the thickness direction of the blade has a sharp shape to the extent that deburring has been performed. This situation is shown by CC in FIG.
FIG. 11 is a cross-sectional view.

【0007】[0007]

【発明が解決しようとする課題】上述した従来の送風装
置1では、翼5の先端部5d及び外縁5bの大部分はベ
ルマウス3の厚みからはみ出していること、及び図11
に示すように翼5の流れに対する迎え角ψが大きいこと
もあり、翼先端部5dから剥離による渦(翼先端渦)8
が発生し、これが図12のように翼5の翼面上且つ翼先
端部5dの下流域に流線に沿って発達しやすい。また、
翼5において流れの上流側の面(負圧面)と下流側の面
(正圧面)の圧力差により流れが正圧面から負圧面へと
向かう2次流れが生じ、これが発達して図10に示すよ
うな翼端渦(馬蹄渦)9となりやすい。
In the conventional blower 1 described above, most of the tip 5d and the outer edge 5b of the wing 5 protrude from the thickness of the bell mouth 3, and FIG.
Since the angle of attack 流 れ with respect to the flow of the wing 5 is large as shown in FIG.
This tends to develop along the streamline on the blade surface of the blade 5 and downstream of the blade tip 5d as shown in FIG. Also,
Due to the pressure difference between the upstream surface (vacuum surface) and the downstream surface (vacuum surface) of the flow in the wing 5, a secondary flow is generated in which the flow goes from the pressure surface to the vacuum surface, which develops and is shown in FIG. Such a wing tip vortex (horse-shoe vortex) 9 tends to occur.

【0008】図12に示す如く翼5の先端部及び外縁の
上流で発生した翼先端渦8と馬蹄渦9は、それぞれ下流
に流され、翼5の負圧面上を変動、発達、更には互いに
干渉しあいながら通過する。
As shown in FIG. 12, the wing tip vortex 8 and the horseshoe vortex 9 generated upstream of the tip portion and the outer edge of the wing 5 flow downstream respectively, and fluctuate and develop on the suction surface of the wing 5, and furthermore, Passing while interfering.

【0009】また、静圧の比較的高い動作点即ち中圧域
及び高圧域にて動作する場合には、翼5の後縁5cから
ボス4の外表面4aにかけて剥離領域10が大きく発達
し(図10参照)、騒音発生の大きな原因となる。これ
は図13に示すファン直後の平均風速分布の測定結果か
ら窺える。但し、図13はファン直後の軸方向風速Vを
ファンの翼端風速Utにて無次元表示した無次元風速で
示している。また、この剥離領域の影響により翼先端渦
8及び馬蹄渦9がめくれあがり、ベルマウス3に衝突し
たり、翼間を流れて次の翼5に衝突したりして、更なる
乱れや圧力変動が発生し、騒音発生の原因になるという
問題があった。
When operating at a relatively high static pressure operating point, that is, at an intermediate pressure range and a high pressure range, the separation region 10 largely develops from the trailing edge 5c of the blade 5 to the outer surface 4a of the boss 4. 10), which is a major cause of noise generation. This can be seen from the measurement results of the average wind speed distribution immediately after the fan shown in FIG. However, FIG. 13 shows the axial wind velocity V immediately after the fan as a dimensionless wind velocity that is dimensionlessly displayed with the fan tip wind velocity Ut. Further, the wing tip vortex 8 and the horseshoe vortex 9 are turned up by the influence of the separation region, and collide with the bell mouth 3 or flow between the wings and collide with the next wing 5, thereby causing further turbulence and pressure fluctuation. This causes a problem that noise is generated.

【0010】本発明は、上記問題解決のため、プロペラ
ファンの翼中央部の形状を適切にして翼先端部及び翼端
部より生じる渦の変動、発達を抑制し、ベルマウスや翼
との干渉音を低減するとともに、翼面上の剥離を防ぎ、
風量を増加させ高効率化できるプロペラファンを提供す
ることを目的とする。
In order to solve the above-mentioned problems, the present invention suppresses the fluctuation and development of the vortex generated from the wing tip and the wing tip by appropriately adjusting the shape of the wing central portion of the propeller fan, and interferes with the bellmouth and the wing. While reducing the sound, preventing peeling on the wing surface,
It is an object of the present invention to provide a propeller fan capable of increasing air flow and increasing efficiency.

【0011】[0011]

【課題を解決するための手段】請求項1記載のプロペラ
ファンは、翼先端部の下流域にあたる負圧側翼面上に、
流線に沿った溝を設けたことを特徴とする。
According to a first aspect of the present invention, there is provided a propeller fan, comprising:
It is characterized in that a groove is provided along the streamline.

【0012】請求項2記載のプロペラファンは、請求項
1記載のプロペラファンにおいて、ファンの回転中心か
ら溝の外周までの距離をr、ファンの半径をR、無次元
溝位置をλ=r/Rとしたとき、この無次元溝位置λ
を、 0.40≦λ≦0.98 の範囲で設定したことを特徴とする。
A propeller fan according to a second aspect of the present invention is the propeller fan according to the first aspect, wherein the distance from the center of rotation of the fan to the outer periphery of the groove is r, the radius of the fan is R, and the dimensionless groove position is λ = r /. R, this dimensionless groove position λ
Is set in the range of 0.40 ≦ λ ≦ 0.98.

【0013】請求項3記載のプロペラファンは、請求項
2記載のプロペラファンにおいて、無次元溝位置λを、 0.50≦λ≦0.64 の範囲で設定したことを特徴とする。
According to a third aspect of the present invention, there is provided a propeller fan according to the second aspect, wherein the dimensionless groove position λ is set in a range of 0.50 ≦ λ ≦ 0.64.

【0014】請求項4記載のプロペラファンは、請求項
2記載のプロペラファンにおいて、無次元溝位置λを 0.60≦λ≦0.76 の範囲で設定したことを特徴とする。
According to a fourth aspect of the present invention, there is provided a propeller fan according to the second aspect, wherein the dimensionless groove position λ is set in a range of 0.60 ≦ λ ≦ 0.76.

【0015】請求項5記載のプロペラファンは、請求項
2のプロペラファンにおいて、無次元溝位置λを、 0.74≦λ≦0.84 の範囲で設定したことを特徴とする。
According to a fifth aspect of the present invention, in the propeller fan according to the second aspect, the dimensionless groove position λ is set in a range of 0.74 ≦ λ ≦ 0.84.

【0016】請求項6記載のプロペラファンは、請求項
3乃至5記載のプロペラファンにおいて、前記無次元溝
位置に形成した溝のさらに外側に溝を形成し、該外側溝
の無次元溝位置λを、 0.86≦λ≦0.96 の範囲で設定したことことを特徴とする。
A propeller fan according to a sixth aspect of the present invention is the propeller fan according to the third to fifth aspects, wherein a groove is further formed outside the groove formed at the non-dimensional groove position, and a non-dimensional groove position λ of the outer groove is formed. Is set in the range of 0.86 ≦ λ ≦ 0.96.

【0017】請求項7記載のプロペラファンは、請求項
1のプロペラファンにおいて、溝を複数設けたことを特
徴とする。
According to a seventh aspect of the present invention, there is provided a propeller fan according to the first aspect, wherein a plurality of grooves are provided.

【0018】請求項8記載の流体送り装置は、請求項1
乃至請求項7のいずれかに記載のプロペラファンと、該
プロペラファンを駆動する駆動モータとから成る送風機
を設けたことを特徴とする。
[0018] The fluid feeder according to the eighth aspect is the first aspect.
A blower comprising the propeller fan according to any one of claims 7 to 7 and a drive motor for driving the propeller fan is provided.

【0019】本発明に係るプロペラファンは、ファンの
鎌形状先端部の下流域にあたる翼面上に流線に沿った溝
を設けているので、この溝に翼端から生じる渦(馬蹄
渦)と翼先端部から生じる渦(翼先端渦)をある程度保
持させることができ、そのため渦の変動、発達を抑制
し、ベルマウスや翼との干渉音を低減することができる
とともに、溝に保持された渦のエネルギーを翼面上の剥
離領域にそそぎ込むことで剥離を防ぐことができ、風量
を増加させ高効率化できる。
In the propeller fan according to the present invention, a groove is formed along the streamline on the blade surface downstream of the sickle-shaped tip of the fan. Vortex (wing tip vortex) generated from the tip of the wing can be held to some extent, so that fluctuation and development of the vortex can be suppressed, interference noise with bell mouths and wings can be reduced, and the vortex is held in the groove By flowing the energy of the vortex into the separation area on the wing surface, separation can be prevented, and the air volume can be increased to increase the efficiency.

【0020】[0020]

【発明の実施の形態】以下に、本発明の実施形態につい
て、図を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】(第1実施形態)本発明に係る第1実施形
態を図1〜図5により説明する。図1は本実施形態のプ
ロペラファンの図で、(a)は正面図、(b)は(a)
のA−A矢視断面図である。
(First Embodiment) A first embodiment according to the present invention will be described with reference to FIGS. 1A and 1B are diagrams of a propeller fan according to the present embodiment, wherein FIG. 1A is a front view, and FIG.
3 is a sectional view taken along the line AA of FIG.

【0022】図1において、本実施形態のプロペラファ
ン2は翼5の負圧面上に、鎌形状翼先端部5dの下流域
にあたる翼面上に流線に沿った溝11が設けられてい
る。そのほかは従来例と同一であり、説明を省略する。
In FIG. 1, the propeller fan 2 of this embodiment is provided with a groove 11 along the streamline on the suction surface of the blade 5 on the blade surface downstream of the sickle-shaped blade tip 5d. The rest is the same as the conventional example, and the description is omitted.

【0023】図2は、圧力係数0.19の溝11の半径
方向位置r(ファンの回転中心から溝の外周までの距
離)を最適値にとったときの空力特性図で、(a)は圧
力流量特性、(b)はファン効率特性の各図である。上
記構成の作用と効果は、図2に示すように同じ静圧にお
いて風量が増し、そのため効率も向上する。図3は、溝
11の位置をその動作点で最大の効果を発揮する位置に
あわせたときの本実施形態ファンの直後の軸方向風速分
布図である。この図からも窺えるように本実施形態の剥
離領域が小さくなっているのが窺える。
FIG. 2 is an aerodynamic characteristic diagram when the radial position r (the distance from the center of rotation of the fan to the outer periphery of the groove) of the groove 11 having a pressure coefficient of 0.19 is set to an optimum value. FIG. 4B is a diagram showing a pressure flow rate characteristic, and FIG. The operation and effect of the above-described configuration are as shown in FIG. 2, in which the air volume increases at the same static pressure, and thus the efficiency also improves. FIG. 3 is an axial wind speed distribution diagram immediately after the fan of the present embodiment when the position of the groove 11 is adjusted to the position where the maximum effect is exhibited at the operating point. As can be seen from this figure, it can be seen that the peeled area of the present embodiment is small.

【0024】この理由について図4を参照して説明す
る。図4は本実施形態と従来例の翼面上の流れ及び渦の
挙動の説明図である。図1に示したように、ファン2の
鎌形状翼先端部5dの下流域にあたる負圧側翼面上に流
線に沿った溝11を設けているので、この溝に翼端から
生じる馬蹄渦9と翼先端部から生じる翼先端渦8をある
程度、翼5に沿って保持させることができる。図4
(a)の従来例に比較して図4(b)の本実施例を見る
と、従来よりも剥離領域10が小さく、馬蹄渦9と翼先
端渦8が翼5に沿って流れている。これは、渦の変動、
発達を抑制し、溝11に保持された渦のエネルギーを翼
面上の剥離領域10にそそぎ込むことで剥離を防ぐこと
ができたためである。
The reason will be described with reference to FIG. FIG. 4 is an explanatory diagram of the behavior of the flow and the vortex on the wing surface of the present embodiment and the conventional example. As shown in FIG. 1, a groove 11 is formed along the streamline on the suction-side blade surface downstream of the sickle-shaped blade tip 5d of the fan 2, so that the horseshoe vortex 9 generated from the blade tip is formed in this groove. And the wing tip vortex 8 generated from the wing tip portion can be held along the wing 5 to some extent. FIG.
4B, the separation area 10 is smaller than in the conventional example, and the horseshoe vortex 9 and the wing tip vortex 8 flow along the wing 5. This is the vortex fluctuation,
This is because the growth was suppressed and the energy of the vortex held in the groove 11 was poured into the separation region 10 on the blade surface, thereby preventing separation.

【0025】ここで、翼後縁部5cにおける溝11の半
径方向位置(ファンの回転中心から溝11の外周までの
距離)をr、ファンの半径をR、溝の形成位置をファン
の半径で無次元表示した無次元溝位置λ=r/Rとす
る。無次元溝位置λを、 0.40≦λ≦0.98 の範囲に設定すると、大きな騒音低減及び高効率化の効
果が認められた。
Here, the radial position of the groove 11 at the blade trailing edge 5c (the distance from the center of rotation of the fan to the outer periphery of the groove 11) is r, the radius of the fan is R, and the position of the groove is the fan radius. It is assumed that the dimensionless groove position λ = r / R displayed dimensionlessly. When the dimensionless groove position λ was set in the range of 0.40 ≦ λ ≦ 0.98, the effects of large noise reduction and high efficiency were recognized.

【0026】さらに、無次元溝位置λを、 0.50≦λ≦0.64 の範囲に設定すると、低圧域での動作時において大きな
騒音低減及び高効率化の効果が認められた。
Further, when the dimensionless groove position λ was set in the range of 0.50 ≦ λ ≦ 0.64, a great effect of reducing noise and increasing efficiency during operation in a low pressure range was recognized.

【0027】また、無次元溝位置λを、 0.60≦λ≦0.76 の範囲に設定すると、中圧域での動作時において大きな
騒音低減及び高効率化の効果が認められた。
Further, when the dimensionless groove position λ was set in the range of 0.60 ≦ λ ≦ 0.76, a large noise reduction and high efficiency were observed during operation in the medium pressure range.

【0028】また、無次元溝位置λを、 0.74≦λ≦0.84 の範囲に設定すると、高圧域での動作時において大きな
騒音低減及び高効率化の効果が認められた。
Further, when the dimensionless groove position λ was set in the range of 0.74 ≦ λ ≦ 0.84, a great effect of noise reduction and high efficiency was observed during operation in a high pressure range.

【0029】溝を上述の無次元溝位置λの範囲に形成す
ると、騒音値及び効率化においても従来ファンに比べて
改善されることが確認できた。これは、剥離領域から発
生する騒音を低減できただけでなく、翼先端渦及び馬蹄
渦の変動、発達を抑制し、ベルマウスや翼との干渉音を
低減することができたためである。
It has been confirmed that when the groove is formed in the range of the dimensionless groove position λ, the noise value and the efficiency are improved as compared with the conventional fan. This is because not only the noise generated from the separation area could be reduced, but also the fluctuation and development of the wing tip vortex and the horseshoe vortex could be suppressed, and the interference sound with the bell mouth and the wing could be reduced.

【0030】尚、上記溝11は翼先端部5d、翼前縁部
5aおよび翼外周部5bから翼後縁部5cまで施しても
よいし、途中から施してもよい。特に、翼を厚肉に形成
し、翼断面形状を図5様な翼型にする場合には、翼の最
大厚み位置より下流域から溝11を施すことが望まし
い。また、上記溝11は、負圧側翼面上だけでなく、必
要に応じて正圧側翼面上に施してもよい。
The groove 11 may be formed from the blade tip 5d, the blade leading edge 5a and the blade outer peripheral portion 5b to the blade trailing edge 5c, or may be formed midway. In particular, in the case where the blade is formed to be thick and the blade cross section is formed into a blade shape as shown in FIG. 5, it is desirable to form the groove 11 from a downstream area from the maximum thickness position of the blade. The grooves 11 may be formed not only on the suction-side blade surface but also on the pressure-side blade surface as needed.

【0031】(第2実施形態)本発明に係る第2実施形
態を図6により説明する。図6は本実施形態のプロペラ
ファンの図で、(a)は正面図、(b)は(a)のA−
A矢視断面図である。
(Second Embodiment) A second embodiment according to the present invention will be described with reference to FIG. 6A and 6B are diagrams of the propeller fan according to the present embodiment, in which FIG. 6A is a front view, and FIG.
It is arrow A sectional drawing.

【0032】図6において、本実施形態プロペラファン
2は翼5の負圧面上に、鎌形状翼先端部5dの下流域に
あたる翼面上に流線に沿った溝11が2本設けられてい
る。そのほかは従来例と同一であり説明を省略する。
In FIG. 6, the propeller fan 2 of this embodiment is provided with two grooves 11 along the streamline on the suction surface of the blade 5 on the blade surface downstream of the sickle-shaped blade tip 5d. . Others are the same as the conventional example, and the description is omitted.

【0033】本実施形態のファンにおける内側の溝は第
1実施形態で示された溝であり、外側の溝の無次元溝位
置を、 0.86≦λ≦0.96 の位置に設ける。この位置が馬蹄渦8を保持するに最も
都合のよい位置であるので、馬蹄渦は発生の直後にこの
第2の溝により保持されるため、その成長が抑制され、
それに伴う騒音が低減できるだけでなく、この第2の溝
に馬蹄渦を、第1の溝に翼先端渦を別々に保持できるた
め、互いの渦の干渉による騒音をさらに低減できる。
The inner groove of the fan of this embodiment is the groove shown in the first embodiment, and the dimensionless groove position of the outer groove is provided at a position of 0.86 ≦ λ ≦ 0.96. Since this position is the most convenient position for holding the horseshoe vortex 8, the growth of the horseshoe vortex is suppressed because the horseshoe vortex is held by the second groove immediately after the occurrence,
Not only can the accompanying noise be reduced, but also the horseshoe vortex in the second groove and the wing tip vortex in the first groove separately, so that noise due to interference between the vortices can be further reduced.

【0034】尚、上記溝11は翼先端部5d、翼前縁部
5aおよび翼外周部5bから翼後縁部5cまで施しても
よいし、途中から施してもよい。特に、翼を厚肉に形成
し、翼断面形状を図5の様な翼型にする場合には、翼の
最大厚み位置より下流域から溝11に施すことが望まし
い。また、上記溝11は、負圧側翼面上だけでなく、必
要に応じて正圧側翼面上に施してもよい。
The groove 11 may be formed from the blade tip 5d, the blade leading edge 5a and the blade outer peripheral portion 5b to the blade trailing edge 5c, or may be formed midway. In particular, when the blade is formed to be thick and the blade has a blade shape as shown in FIG. 5, it is desirable to apply the groove 11 to the groove 11 from a downstream region from the maximum thickness position of the blade. The grooves 11 may be formed not only on the suction-side blade surface but also on the pressure-side blade surface as needed.

【0035】(第3実施形態)本発明に係る第3実施形
態を図7により説明する。図7は本実施形態のプロペラ
ファンの図で、(a)は正面図、(b)は(a)のA−
A矢視断面図である。
(Third Embodiment) A third embodiment according to the present invention will be described with reference to FIG. 7A and 7B are diagrams of the propeller fan according to the present embodiment, in which FIG. 7A is a front view, and FIG.
It is arrow A sectional drawing.

【0036】図7において、本実施形態プロペラファン
2は翼5の負圧面上に、鎌形状翼先端部5dの下流域に
あたる翼面上に流線に沿った溝11が多数設けられてい
る。そのほかは従来例と同一であり説明を省略する。
In FIG. 7, the propeller fan 2 of this embodiment has a large number of grooves 11 along the streamline on the wing surface downstream of the tip 5d of the sickle-shaped wing on the suction surface of the wing 5. Others are the same as the conventional example, and the description is omitted.

【0037】本実施形態のファンにおける溝11は第1
実施形態で示された溝11が狭い間隔で多数設けられた
ものである。従って、実施形態1及び2記載のプロペラ
ファンの特長をある程度併せ持つことができ、低圧域動
作時、中圧域動作時、高圧域動作時など、様々な動作点
での動作時において騒音低減及び高効率化できる。従っ
て、動作点が刻一刻変化するような環境下において効果
を発揮する。
The groove 11 in the fan of the present embodiment is the first groove.
A large number of grooves 11 shown in the embodiment are provided at narrow intervals. Therefore, the propeller fan described in the first and second embodiments can have the features to some extent, and can reduce noise and increase noise when operating at various operating points such as low-pressure operation, medium-pressure operation, and high-pressure operation. Can be more efficient. Therefore, it is effective in an environment where the operating point changes every moment.

【0038】尚、上記溝11は翼先端部5d、翼前縁部
5aおよび翼外周部5bから翼後縁部5cまで施しても
よいし、途中から施してもよい。特に、翼を厚肉に形成
し、翼断面形状を図5の様な翼型にする場合には、翼の
最大厚み位置より下流域から溝11を施すことが望まし
い。また、上記溝11は、何本設けてもよいし、負圧側
翼面上だけでなく、必要に応じて正圧側翼面上に施して
もよい。
The groove 11 may be formed from the blade tip 5d, the blade leading edge 5a and the blade outer peripheral portion 5b to the blade trailing edge 5c, or may be formed midway. In particular, when the wing is formed to be thick and the wing cross-sectional shape is as shown in FIG. 5, it is desirable to form the groove 11 from the downstream region from the maximum thickness position of the wing. Any number of the grooves 11 may be provided, and the grooves 11 may be provided not only on the suction-side wing surface but also on the pressure-side wing surface as needed.

【0039】(流体送り装置)次に、本発明に係る流体
送り装置の実施形態について説明する。図8は、空気調
和機の室外機12の本体内における送風装置1を示す構
成図である。この流体送り装置は、第1実施形態のプロ
ペラファン2と駆動モータ13から成る送風装置1を備
えており、この送風装置1によって流体を送出する構成
となっている。このような構成の流体送り装置として
は、例えば、空気清浄機、加湿器、ファンヒータ、冷却
装置、換気装置などがあるが、本実施形態の流体送り装
置は空気調和機の室外機12である。この室外機12内
には、室外熱交換器14が備えられており、上記送風装
置1により、効率的に熱交換を行う。
(Fluid Feeding Device) Next, an embodiment of the fluid feeding device according to the present invention will be described. FIG. 8 is a configuration diagram illustrating the blower 1 in the main body of the outdoor unit 12 of the air conditioner. The fluid feeder includes a blower 1 including a propeller fan 2 and a drive motor 13 according to the first embodiment, and is configured to send out fluid by the blower 1. Examples of the fluid feeder having such a configuration include an air purifier, a humidifier, a fan heater, a cooling device, and a ventilator. The fluid feeder of the present embodiment is the outdoor unit 12 of the air conditioner. . An outdoor heat exchanger 14 is provided in the outdoor unit 12, and heat is efficiently exchanged by the blower 1.

【0040】本実施形態の室外機12は、第1実施形態
のプロペラファン2を備えていることから、騒音が低減
された静かな室外機となる。また、プロペラファン2は
ファン効率が向上したものなので、省エネの実現した効
率のよい室外機となる。
Since the outdoor unit 12 of the present embodiment includes the propeller fan 2 of the first embodiment, it is a quiet outdoor unit with reduced noise. In addition, since the propeller fan 2 has improved fan efficiency, the propeller fan 2 is an efficient outdoor unit that achieves energy saving.

【0041】[0041]

【発明の効果】本発明は上記のように構成されるので次
の効果を有する。
The present invention has the following effects because it is configured as described above.

【0042】即ち、請求項1乃至請求項7記載の発明に
よれば、翼先端渦及び馬蹄渦の変動、発達、ベルマウス
や翼との干渉を抑制でき、更には翼面上の剥離を防ぐこ
とができるため、静粛且つ高効率なプロペラファンが得
られる。
That is, according to the first to seventh aspects of the present invention, the fluctuation and development of the wing tip vortex and the horseshoe vortex, the interference with the bellmouth and the wing, and the separation on the wing surface can be prevented. Therefore, a quiet and highly efficient propeller fan can be obtained.

【0043】特に、請求項3記載の発明によれば、低圧
域での動作時における低騒音化および高効率化の最適化
を行ったプロペラファンが得られる。
In particular, according to the third aspect of the present invention, there is provided a propeller fan optimized for low noise and high efficiency during operation in a low pressure range.

【0044】特に、請求項4記載の発明によれば、中圧
域での動作時における低騒音化および高効率化の最適化
を行ったプロペラファンが得られる。
In particular, according to the fourth aspect of the present invention, there is provided a propeller fan which has been optimized for low noise and high efficiency during operation in a medium pressure range.

【0045】特に、請求項5記載の発明によれば、高圧
域での動作時における低騒音化および高効率化の最適化
を行ったプロペラファンが得られる。
In particular, according to the fifth aspect of the present invention, it is possible to obtain a propeller fan optimized for low noise and high efficiency during operation in a high pressure range.

【0046】また、請求項6記載の発明によれば、馬蹄
渦と翼先端渦を別々に保持できるため、互いの渦の干渉
による騒音をある程度低減でき、低騒音化の効果がいっ
そう得られるため、静粛且つ高効率なプロペラファンが
得られる。
According to the sixth aspect of the present invention, since the horseshoe vortex and the wing tip vortex can be separately held, noise due to mutual vortex interference can be reduced to some extent, and the effect of noise reduction can be further obtained. A quiet and highly efficient propeller fan can be obtained.

【0047】また、請求項7記載の発明によれば、請求
項3乃至請求項6記載のプロペラファンの特長をある程
度併せ持つことができるため、様々な動作点での動作時
において騒音低減及び高効率化の効果が認められる。従
って、動作点が刻一刻変化するような環境下において騒
音、効率とも有利なプロペラファンが得られる。
According to the seventh aspect of the present invention, since the propeller fan according to the third to sixth aspects can be combined with the features to some extent, noise reduction and high efficiency can be achieved during operation at various operating points. The effect of conversion is recognized. Therefore, a propeller fan that is advantageous in both noise and efficiency under an environment where the operating point changes every moment is obtained.

【0048】また、請求項8記載の流体送り装置は、上
記請求項1乃至請求項7のいずれかのプロペラファンを
備えた送風装置により構成されていることから、効率が
良好で省エネが達成され騒音の小さいものとなる。
The fluid feeder according to the eighth aspect is constituted by the blower provided with the propeller fan according to any one of the first to seventh aspects, so that good efficiency and energy saving are achieved. The noise is low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の第1実施形態のプロペラファ
ンの正面図であり、(b)は本発明の第1実施形態のプ
ロペラファンの(a)のA−A矢視断面図である。
FIG. 1A is a front view of a propeller fan according to a first embodiment of the present invention, and FIG. 1B is a cross-sectional view of the propeller fan according to the first embodiment of the present invention taken along line AA of FIG. It is.

【図2】本発明の第1実施形態のプロペラファンの圧力
係数0.19での溝の半径方向位置rを最適値にとった
ときの空力特性図である。
FIG. 2 is an aerodynamic characteristic diagram when the radial position r of the groove at the pressure coefficient of 0.19 of the propeller fan according to the first embodiment of the present invention is set to an optimum value.

【図3】本発明の第1実施形態のプロペラファンの溝の
位置をその動作点で最大の効果を発揮する位置にあわせ
たときのファン直後の軸方向風速分布図である。
FIG. 3 is an axial wind speed distribution diagram immediately after the propeller fan according to the first embodiment of the present invention, in which the position of the groove is adjusted to a position where the maximum effect is exhibited at the operating point.

【図4】本実施形態と従来例の翼面上の流れ及び渦の挙
動の説明図である。
FIG. 4 is an explanatory diagram of the behavior of a flow and a vortex on a wing surface of the present embodiment and a conventional example.

【図5】翼断面形状の一例である。FIG. 5 is an example of a wing cross-sectional shape.

【図6】(a)は本発明の第2実施形態のプロペラファ
ンの正面図であり、(b)は本発明の第2実施形態のプ
ロペラファンの(a)のA−A矢視断面図である。
FIG. 6A is a front view of a propeller fan according to a second embodiment of the present invention, and FIG. 6B is a cross-sectional view of the propeller fan according to the second embodiment of the present invention, taken along line AA of FIG. It is.

【図7】(a)は本発明の第3実施形態のプロペラファ
ンの正面図であり、(b)は本発明の第3実施形態のプ
ロペラファンの(a)のA−A矢視断面図である。
FIG. 7A is a front view of a propeller fan according to a third embodiment of the present invention, and FIG. 7B is a cross-sectional view of the propeller fan according to the third embodiment of the present invention taken along line AA of FIG. It is.

【図8】本発明の流体送り装置の一実施形態を示した構
成図である。
FIG. 8 is a configuration diagram showing one embodiment of a fluid feeder of the present invention.

【図9】従来の送風装置の斜視図である。FIG. 9 is a perspective view of a conventional blower.

【図10】従来の送風装置における翼先端渦、馬蹄渦の
翼間流れの説明図である。
FIG. 10 is an explanatory diagram of a wing tip vortex and a horseshoe vortex flow between wings in a conventional blower.

【図11】従来の送風装置における翼先端渦の模式図で
ある。
FIG. 11 is a schematic view of a wing tip vortex in a conventional blower.

【図12】従来の送風装置における負圧面上の翼先端
渦、馬蹄渦の模式図である。
FIG. 12 is a schematic diagram of a wing tip vortex and a horseshoe vortex on a suction surface in a conventional blower.

【図13】従来の送風装置のファン直後の軸方向風速分
布図である。
FIG. 13 is an axial wind speed distribution diagram immediately after a fan of a conventional blower.

【符号の説明】[Explanation of symbols]

2 プロペラファン 4 ボス 4a ボス外表面 5 翼 5c 翼後縁部 5d 翼先端部 11 溝 r 溝の半径方向位置 R ファンの半径 2 Propeller fan 4 Boss 4a Boss outer surface 5 Blade 5c Blade trailing edge 5d Blade tip 11 Groove r Radial position of groove R Radius of fan

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 翼先端部の下流域にあたる負圧側翼面上
に、流線に沿った溝を設けたことを特徴とするプロペラ
ファン。
1. A propeller fan, wherein a groove is formed along a streamline on a suction-side blade surface downstream of a blade tip.
【請求項2】 請求項1記載のプロペラファンにおい
て、 ファンの回転中心から溝の外周までの距離をr、ファン
の半径をR、無次元溝位置をλ=r/Rとしたとき、こ
の無次元溝位置λを、 0.40≦λ≦0.98 の範囲で設定したことを特徴とするプロペラファン。
2. The propeller fan according to claim 1, wherein the distance from the center of rotation of the fan to the outer periphery of the groove is r, the radius of the fan is R, and the dimensionless groove position is λ = r / R. A propeller fan, wherein the dimension groove position λ is set in the range of 0.40 ≦ λ ≦ 0.98.
【請求項3】 請求項2記載のプロペラファンにおい
て、 無次元溝位置λを、 0.50≦λ≦0.64 の範囲で設定したことを特徴とするプロペラファン。
3. The propeller fan according to claim 2, wherein the dimensionless groove position λ is set in a range of 0.50 ≦ λ ≦ 0.64.
【請求項4】 請求項2記載のプロペラファンにおい
て、 無次元溝位置λを 0.60≦λ≦0.76 の範囲で設定したことを特徴とするプロペラファン。
4. The propeller fan according to claim 2, wherein the dimensionless groove position λ is set in a range of 0.60 ≦ λ ≦ 0.76.
【請求項5】 請求項2のプロペラファンにおいて、 無次元溝位置λを、 0.74≦λ≦0.84 の範囲で設定したことを特徴とするプロペラファン。5. The propeller fan according to claim 2, wherein the dimensionless groove position λ is set in a range of 0.74 ≦ λ ≦ 0.84. 【請求項6】 請求項3乃至5記載のプロペラファンに
おいて、 前記無次元溝位置に形成した溝のさらに外側に溝を形成
し、該外側溝の無次元溝位置λを、 0.86≦λ≦0.96 の範囲で設定したことことを特徴とするプロペラファ
ン。
6. The propeller fan according to claim 3, wherein a groove is formed further outside the groove formed at the dimensionless groove position, and the dimensionless groove position λ of the outer groove is set to 0.86 ≦ λ. A propeller fan set in the range of ≦ 0.96.
【請求項7】 請求項1のプロペラファンにおいて、 溝を複数設けたことを特徴とするプロペラファン。7. The propeller fan according to claim 1, wherein a plurality of grooves are provided. 【請求項8】 請求項1乃至請求項7のいずれかに記載
のプロペラファンと、該プロペラファンを駆動する駆動
モータとから成る送風機を設けたことを特徴とする流体
送り装置。
8. A fluid feeder comprising a blower comprising the propeller fan according to claim 1 and a drive motor for driving the propeller fan.
JP37004298A 1998-12-25 1998-12-25 Propeller fan Expired - Lifetime JP3524410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37004298A JP3524410B2 (en) 1998-12-25 1998-12-25 Propeller fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37004298A JP3524410B2 (en) 1998-12-25 1998-12-25 Propeller fan

Publications (2)

Publication Number Publication Date
JP2000192898A true JP2000192898A (en) 2000-07-11
JP3524410B2 JP3524410B2 (en) 2004-05-10

Family

ID=18495934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37004298A Expired - Lifetime JP3524410B2 (en) 1998-12-25 1998-12-25 Propeller fan

Country Status (1)

Country Link
JP (1) JP3524410B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019576A (en) * 2007-07-12 2009-01-29 Daikin Ind Ltd Propeller fan
WO2015030048A1 (en) 2013-09-02 2015-03-05 三菱電機株式会社 Propeller fan, air-blowing device, and outdoor unit
EP2199620A3 (en) * 2008-12-22 2017-02-22 Sanyo Denki Co., Ltd. Axial flow fan
EP3085966A4 (en) * 2013-12-20 2017-08-16 Mitsubishi Electric Corporation Axial flow fan
JP2017145832A (en) * 2017-06-02 2017-08-24 シャープ株式会社 Propeller fan for electric fan, electric fan with propeller fan, and molding die for propeller fan for electric fan
US10487846B2 (en) 2012-04-10 2019-11-26 Sharp Kabushiki Kaisha Propeller fan, fluid feeder, and molding die
US10539146B2 (en) 2015-06-03 2020-01-21 Denso Corporation Centrifugal pump
US10544797B2 (en) 2012-04-10 2020-01-28 Sharp Kabushiki Kaisha Propeller fan, fluid feeder, electric fan, and molding die
EP3591236A4 (en) * 2017-02-28 2020-03-11 Mitsubishi Electric Corporation Propeller fan, blower, and air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109958659B (en) * 2019-03-10 2021-04-02 江苏大学镇江流体工程装备技术研究院 Centrifugal pump with flow guide structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019576A (en) * 2007-07-12 2009-01-29 Daikin Ind Ltd Propeller fan
EP2199620A3 (en) * 2008-12-22 2017-02-22 Sanyo Denki Co., Ltd. Axial flow fan
US10487846B2 (en) 2012-04-10 2019-11-26 Sharp Kabushiki Kaisha Propeller fan, fluid feeder, and molding die
US10544797B2 (en) 2012-04-10 2020-01-28 Sharp Kabushiki Kaisha Propeller fan, fluid feeder, electric fan, and molding die
WO2015030048A1 (en) 2013-09-02 2015-03-05 三菱電機株式会社 Propeller fan, air-blowing device, and outdoor unit
EP3043077A4 (en) * 2013-09-02 2017-04-19 Mitsubishi Electric Corporation Propeller fan, air-blowing device, and outdoor unit
EP3085966A4 (en) * 2013-12-20 2017-08-16 Mitsubishi Electric Corporation Axial flow fan
US10539146B2 (en) 2015-06-03 2020-01-21 Denso Corporation Centrifugal pump
EP3591236A4 (en) * 2017-02-28 2020-03-11 Mitsubishi Electric Corporation Propeller fan, blower, and air conditioner
JP2017145832A (en) * 2017-06-02 2017-08-24 シャープ株式会社 Propeller fan for electric fan, electric fan with propeller fan, and molding die for propeller fan for electric fan

Also Published As

Publication number Publication date
JP3524410B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
US6994523B2 (en) Air blower apparatus having blades with outer peripheral bends
JP4132826B2 (en) Propeller fan, its mold and fluid feeder
US8784060B2 (en) Centrifugal fan
US20030095864A1 (en) Fan with reduced noise
EP2383473B1 (en) Propeller fan
EP0601119A1 (en) Forward skew fan with rake and chordwise camber corrections
JP2000192898A (en) Propeller fan
JP2002106494A (en) Axial flow type fan
US7771169B2 (en) Centrifugal multiblade fan
JP3337248B2 (en) Propeller fan
JP2000018194A (en) Impeller for blower
US6648598B2 (en) Axial flow fan
JP3744489B2 (en) Blower
JP2002250298A (en) Propeller fan
JP4152158B2 (en) Axial fan
JP2859448B2 (en) Multi-wing fan
JP3111963B2 (en) Impeller for blower and impeller for blower
JP2002285996A (en) Multi-blade blower fan
CN216430052U (en) Axial flow impeller, axial flow fan and air conditioner
JP2000002197A (en) Propeller fan
WO2022191034A1 (en) Propeller fan and refrigeration device
JP4749175B2 (en) Propeller fan and fluid feeder
JP2000002194A (en) Propeller fan
JP2000110782A (en) Turbo fan
JPH02173395A (en) Axial flow fan

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term