JPH0963637A - Manufacture of secondary battery - Google Patents

Manufacture of secondary battery

Info

Publication number
JPH0963637A
JPH0963637A JP7214721A JP21472195A JPH0963637A JP H0963637 A JPH0963637 A JP H0963637A JP 7214721 A JP7214721 A JP 7214721A JP 21472195 A JP21472195 A JP 21472195A JP H0963637 A JPH0963637 A JP H0963637A
Authority
JP
Japan
Prior art keywords
diameter
negative electrode
positive electrode
pores
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7214721A
Other languages
Japanese (ja)
Inventor
Yasushi Kawase
裕史 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP7214721A priority Critical patent/JPH0963637A/en
Publication of JPH0963637A publication Critical patent/JPH0963637A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a battery characteristic without extending process more than conventional one. SOLUTION: Roughly conforming the mesh of the sieve for sorting negative electrode active material powder and the mesh of the sieve for sorting the positive electrode active material powder will roughly conform the diameter of the thin hole of the negative electrode or the positive electrode made by using this powder or the diameter of median and the distribution to each other. Accordingly, the quantity of electrolyte contained in the negative electrode and that of the positive electrode roughly conforms to each other, and the drop of battery reaction by the shortage of electrolyte in the electrode on the side where the electrolyte is low can be prevented, and the battery performance improves.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、密閉型水素電池の
製造方法に関し、詳しくはその特性改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sealed hydrogen battery, and more particularly to improving the characteristics thereof.

【0002】[0002]

【従来の技術】水素吸蔵合金電極を負極とし、水酸化ニ
ッケルを正極とする従来のニッケル水素電池などのアル
カリ二次電池では、所定の粒子化方法により形成された
粗粒子を所定のメッシュ幅の篩いにより分別してなり平
均直径が所定の単峰分布特性をもつ負極活物質粉末を有
機高分子材料からなる増粘剤又は結着剤及び水と混合し
て形成したペーストを予備成形するか又は直接、金属集
電体に圧着して負極を形成し、所定の粒子化方法により
形成された粗粒子を所定メッシュの篩いにより分別して
なり平均直径が所定の単峰分布特性をもつ正極活物質粉
末を有機高分子材料からなる増粘剤又は結着剤及び水と
混合して形成したペーストを予備成形するか又は直接、
金属集電体に圧着して正極を形成し、これら負極及び正
極をセパレータを挟んで電槽内にてアルカリ電解液に浸
漬して作製している。
2. Description of the Related Art In an alkaline secondary battery such as a conventional nickel-hydrogen battery in which a hydrogen-absorbing alloy electrode is used as a negative electrode and nickel hydroxide is used as a positive electrode, coarse particles formed by a predetermined graining method have a predetermined mesh width. A negative electrode active material powder having a predetermined unimodal distribution with an average diameter separated by sieving is mixed with a thickener or binder made of an organic polymer material and water to preform or directly form a paste. , A negative electrode is formed by pressure bonding to a metal current collector, and coarse particles formed by a predetermined particle formation method are separated by a sieve of a predetermined mesh to obtain a positive electrode active material powder having an average diameter having a predetermined unimodal distribution characteristic. Preforming or directly forming a paste formed by mixing with a thickener or binder made of an organic polymer material and water,
It is manufactured by pressure-bonding to a metal current collector to form a positive electrode, and immersing the negative electrode and the positive electrode in an alkaline electrolyte in a battery case with a separator interposed therebetween.

【0003】[0003]

【発明が解決しようとする課題】上記二次電池では、活
物質粉末を固めてなる負極及び正極内の細孔の表面にお
ける電解液、電極、ガスの液体−固体−気体共存状態に
て充放電が行われるが、上記従来方法で作製した負極及
び正極では電極内のアルカリ電解液の分布量(浸透量)
が異なり、このためアルカリ電解液の不足などが生じて
電池反応が抑制され、高率放電特性やサイクル寿命など
の電池性能が低下する場合があった。
In the above secondary battery, charge / discharge is performed in the liquid-solid-gas coexisting state of the electrolyte, electrode and gas on the surface of the pores in the negative electrode and the positive electrode formed by solidifying the active material powder. However, in the case of the negative electrode and the positive electrode produced by the above-mentioned conventional method, the distribution amount (permeation amount) of the alkaline electrolyte in the electrode is
However, this may cause a shortage of the alkaline electrolyte to suppress the battery reaction and reduce the battery performance such as high rate discharge characteristics and cycle life.

【0004】本発明は上記問題点に鑑みなされたもので
あり、従来より工程を延長することなく電池特性の向上
を実現することを、その解決すべき課題としている。
The present invention has been made in view of the above problems, and it is a problem to be solved to realize improvement of battery characteristics without extending the process as compared with the conventional case.

【0005】[0005]

【課題を解決するための手段及び発明の効果】本発明の
第1の構成は、所定のメッシュ幅の篩いを通して選別さ
れた負極活物質粉末を有機高分子材料からなる増粘剤又
は結着剤及び水と混合して形成したペーストを予備成形
するか又は直接、金属集電体に圧着して負極を形成し、
所定のメッシュ幅の篩いを通して選別された正極活物質
粉末を有機高分子材料からなる増粘剤又は結着剤及び水
と混合して形成したペーストを予備成形するか又は直
接、金属集電体に圧着して正極を形成し、前記負極及び
正極をセパレータを挟んで電槽内にてアルカリ電解液に
浸漬して形成する二次電池の製造方法において、前記負
極の空孔率と前記正極の空孔率とを略一致させることを
特徴とする二次電池の製造方法である。増粘剤とは粉末
のスラリー化を容易化するための添加剤であり、結着剤
は粉末を結合する添加剤である。増粘剤及び結着剤は予
め水と混合又は水に溶解した状態で粉末に混合すること
ができる。
Means for Solving the Problems and Effects of the Invention A first constitution of the present invention is a thickener or binder made of an organic polymer material for a negative electrode active material powder selected through a sieve having a predetermined mesh width. And preforming a paste formed by mixing with water, or directly by pressure bonding to a metal current collector to form a negative electrode,
A positive electrode active material powder selected through a sieve having a predetermined mesh width is mixed with a thickener or binder made of an organic polymer material and water to preform a paste or directly to a metal current collector. In a method for manufacturing a secondary battery, which comprises forming a positive electrode by pressure bonding, and immersing the negative electrode and the positive electrode in an alkaline electrolytic solution in a battery case with a separator interposed therebetween, a porosity of the negative electrode and a void of the positive electrode. It is a method of manufacturing a secondary battery, which is characterized in that the porosity is substantially the same. The thickener is an additive for facilitating slurrying of the powder, and the binder is an additive for binding the powder. The thickener and the binder can be mixed with water in advance or can be mixed with the powder in a state of being dissolved in water.

【0006】なお、本構成でいう空孔率の略一致とは、
負極の空孔率(細孔の全体積/負極及び正極の体積)を
X、正極の空孔率をYとする場合に、前記両空孔率の差
を(X−Y)とし、前記両空孔率の平均を((X+Y)
/2)とした場合に、前記両空孔率のばらつき(2(X
−Y)/(X+Y))の絶対値を0.5以下、更に好ま
しくは0.2以下とすることを意味するものとする。
Incidentally, the term "substantially the same porosity" as used in this configuration means that
When the porosity of the negative electrode (total volume of pores / volume of the negative electrode and positive electrode) is X and the porosity of the positive electrode is Y, the difference between the porosities is (XY), and The average porosity is ((X + Y)
/ 2), the variation of both porosities (2 (X
It means that the absolute value of −Y) / (X + Y)) is 0.5 or less, more preferably 0.2 or less.

【0007】ただし、空孔率は、例えば以下の方法で測
定されることができる。まず乾燥負極(又は正極)を容
器に入れ、予め計量した充分な量のアルカリ電解液を注
入し、所定時間(例えば36時間)放置し、その後、残
ったアルカリ電解液の量又は重量を計測する。これによ
り吸収されたアルカリ電解液の量がわかり、それから空
孔率を推定することができる。または、予め重量を計測
した乾燥負極(又は正極)を容器に入れ、充分な量のア
ルカリ電解液を注入し、所定時間(例えば36時間)放
置し、その後、アルカリ電解液を吸収した負極(又は正
極)の重量を再度計測し、この重量差から空孔率を推定
することができる。その他、金属集電体の空孔率、それ
に圧着したぺーストの乾燥重量及び比重から負極(又は
正極)の空孔率を推定することもできる。すなわち、電
極の空孔率自体の測定は容易である。
However, the porosity can be measured, for example, by the following method. First, put the dry negative electrode (or positive electrode) in a container, inject a sufficient amount of the alkaline electrolyte solution pre-measured, leave it for a predetermined time (for example, 36 hours), and then measure the amount or weight of the remaining alkaline electrolyte solution. . This gives the amount of absorbed alkaline electrolyte, from which the porosity can be estimated. Alternatively, a dry negative electrode (or positive electrode) whose weight has been measured in advance is placed in a container, a sufficient amount of alkaline electrolyte is injected, and the mixture is allowed to stand for a predetermined time (for example, 36 hours), and then, the negative electrode that has absorbed the alkaline electrolyte (or The weight of the positive electrode) can be measured again, and the porosity can be estimated from the weight difference. In addition, the porosity of the negative electrode (or the positive electrode) can be estimated from the porosity of the metal current collector and the dry weight and specific gravity of the paste pressure-bonded thereto. That is, it is easy to measure the porosity of the electrode itself.

【0008】本構成では、従来より工程を延長すること
なく電池特性の向上を実現することができる。詳しく説
明すると、両極の空孔率を略一致させることにより、ア
ルカリ電解液が両極に均一かつ等量に浸透することにな
り、正極での電池反応速度及び反応量と負極での電池反
応速度及び反応量とが一致することになり、全体として
高率放電特性、電池内圧特性、サイクル寿命などの電池
性能を良好とすることができる。
With this structure, it is possible to improve the battery characteristics without extending the process as compared with the conventional case. Explaining in detail, by making the porosities of both electrodes substantially the same, the alkaline electrolyte will penetrate into both electrodes uniformly and in an equal amount, and the battery reaction rate and reaction amount at the positive electrode and the battery reaction rate at the negative electrode Since the reaction amounts match, the battery performance such as high rate discharge characteristics, battery internal pressure characteristics, and cycle life can be improved as a whole.

【0009】なお、両粗粒子の粒子化方法としては、例
えば機械的粉砕や急冷などの手段を等しくすることが好
ましい。このようにすれば、篩いをかけるまえの両粗粒
子の平均直径の分布をより一層一致させることができる
ので、正極での電池反応速度及び反応量と負極での電池
反応速度及び反応量とが一層一致することになり、上記
電池性能を一層良好とすることができる。
Incidentally, as a method of making both coarse particles into particles, it is preferable to use the same means such as mechanical pulverization or rapid cooling. In this way, the distribution of the average diameters of both coarse particles before sieving can be made more consistent, so that the battery reaction rate and reaction amount at the positive electrode and the battery reaction rate and reaction amount at the negative electrode are This is more consistent, and the battery performance can be further improved.

【0010】本発明の第2の構成は、上記第1の構成に
おいて更に、前記両篩いのメッシュ幅を略一致させるこ
とを特徴としている。この明細書では、上記略一致と
は、前記負極活物質粉末選別用の前記篩いの前記メッシ
ュ幅(篩いの各隙間の平均幅)をAとし、前記正極活物
質粉末選別用の前記篩いの前記メッシュ幅をBとし、前
記両メッシュ幅の差を(A−B)とし、前記両メッシュ
幅の平均を((A+B)/2)とした場合に、前記両メ
ッシュ幅のばらつき(2(A−B)/(A+B))の絶
対値を0.5以下、好ましくは0.2以下とすることを
意味するものとする。
A second structure of the present invention is further characterized in that, in the first structure, the mesh widths of the both screens are substantially the same. In this specification, the above-mentioned approximately coincidence means that the mesh width (average width of each gap of the sieve) of the sieve for selecting the negative electrode active material powder is A, and the mesh of the sieve for selecting the positive electrode active material powder is When the mesh width is B, the difference between both mesh widths is (AB), and the average of both mesh widths is ((A + B) / 2), the variation of both mesh widths (2 (A- It means that the absolute value of (B) / (A + B)) is 0.5 or less, preferably 0.2 or less.

【0011】本構成では、上記第1の構成において更
に、両活物質粉末の粒径(粉径)の最頻値(メジアン
値)及び分布範囲を略一致させることができるので、両
極に形成される各細孔の平均幅(平均断面積)を略一致
させることができ、一層、正極での電池反応速度及び反
応量と負極での電池反応速度及び反応量とを一致させる
ことができ、全体として高率放電特性、電池内圧特性、
サイクル寿命などの電池性能を良好とすることができ
る。
In this configuration, the mode (median value) and distribution range of the particle size (powder diameter) of both active material powders can be made substantially the same as in the first configuration, so that they are formed on both poles. The average width (average cross-sectional area) of each of the pores can be made to substantially match, and the battery reaction rate and reaction amount at the positive electrode and the battery reaction rate and reaction amount at the negative electrode can be further made to match. As high rate discharge characteristics, battery internal pressure characteristics,
Battery performance such as cycle life can be improved.

【0012】本発明の第3の構成は、上記第1の構成に
おいて更に、前記負極活物質粉末の径の最頻値と前記正
極活物質粉末の径の最頻値とを略一致させることを特徴
としている。粉末の径とは正確には粉末の平均径を意味
する。この明細書では、上記径の最頻値の略一致とは、
前記負極活物質粉末の径a及び正極活物質粉末の径bを
それぞれ単峰状(ピークが一個の分布形状)に分布さ
せ、前記両径のメジアン値(最頻値)の差を(a−b)
とし、前記両径のメジアン値の平均を((a+b)/
2)とした場合に、前記両径のメジアン値のばらつき
(2(a−b)/(a+b))の絶対値を0.5以下、
好ましくは0.2以下とすることを意味している。
A third structure of the present invention is that in the above-mentioned first structure, the mode of the diameter of the negative electrode active material powder and the mode of the diameter of the positive electrode active material powder are substantially matched. It has a feature. To be exact, the diameter of the powder means the average diameter of the powder. In this specification, the approximate match of the mode of the diameter is
The diameter a of the negative electrode active material powder and the diameter b of the positive electrode active material powder are respectively distributed in a unimodal shape (distribution shape with one peak), and the difference between the median values (modes) of both diameters is (a− b)
And the average of the median values of both diameters is ((a + b) /
2), the absolute value of the variation (2 (a−b) / (a + b)) of the median values of the two diameters is 0.5 or less,
It preferably means 0.2 or less.

【0013】本構成によれば、負極活物質粉末及び正極
活物質粉末の径の最頻値(メジアン値)が良好に一致す
るので、これら各粉末の間に形成される細孔の径が負極
と正極とでより一層一致することになり、電池特性が一
層向上する。本発明の第4の構成は、上記第1の構成に
おいて更に、前記負極内の細孔の径の最頻値と前記正極
内の細孔の径の最頻値とを略一致させることを特徴とし
ている。細孔の径とは正確には細孔の平均径を意味す
る。
According to this structure, since the mode values (median values) of the diameters of the negative electrode active material powder and the positive electrode active material powder are in good agreement, the diameter of the pores formed between these powders is the negative electrode. Since the positive electrode and the positive electrode are more matched, the battery characteristics are further improved. A fourth configuration of the present invention is characterized in that, in the first configuration, the mode of the diameter of the pores in the negative electrode and the mode of the diameter of the pores in the positive electrode are substantially matched. I am trying. To be precise, the diameter of the pores means the average diameter of the pores.

【0014】この明細書では、上記径の略一致とは、前
記負極内の細孔の径c及び正極内の細孔の径dをそれぞ
れ単峰状(ピークが一個の分布形状)に分布させ、前記
両径のメジアン値(最頻値)の差を(c−d)とし、前
記両径のメジアン値の平均を((c+d)/2)とした
場合に、前記両径のメジアン値のばらつき(2(c−
d)/(c+d))の絶対値を0.5以下、好ましくは
0.2以下とすることを意味している。
In the present specification, the term "substantially equal in diameter" means that the diameter c of the pores in the negative electrode and the diameter d of the pores in the positive electrode are distributed in a unimodal shape (a distribution shape with one peak). , The difference between the median values (mode values) of both diameters is (cd), and the average of the median values of both diameters is ((c + d) / 2), the median value of both diameters is Variation (2 (c-
This means that the absolute value of d) / (c + d)) is 0.5 or less, preferably 0.2 or less.

【0015】本構成によれば、負極の細孔及び正極の細
孔の径の最頻値が良好に一致するので、電池特性が一層
向上する。本発明の第5の構成は、上記第4の構成にお
いて更に、95%以上の前記細孔の径が1500オング
ストローム以下の範囲内にて単峰状に分布しており、前
記正極の細孔の径の最頻値と前記負極の細孔の径の最頻
値との差は20オングストローム以下とされることを特
徴としている。
According to this structure, the mode values of the diameters of the pores of the negative electrode and the pores of the positive electrode match well, so that the battery characteristics are further improved. A fifth structure of the present invention is the same as the fourth structure, wherein 95% or more of the pores are distributed in a unimodal form within a range of 1500 angstroms or less. The difference between the mode value of the diameter and the mode value of the diameter of the pores of the negative electrode is set to 20 angstroms or less.

【0016】本発明の第6の構成は、上記第4の構成に
おいて更に、95%以上の前記細孔の径は1000オン
グストローム以下の範囲内にて単峰状に分布しており、
前記正極の細孔の径の最頻値と前記負極の細孔の径の最
頻値との差は10オングストローム以下とされることを
特徴としている。本発明の第7の構成は、上記第4の構
成において更に、95%以上の前記細孔の径は500オ
ングストローム以下の範囲内にて単峰状に分布してお
り、前記正極の細孔の径の最頻値と前記負極の細孔の径
の最頻値との差は5オングストローム以下とされること
を特徴としている。
According to a sixth aspect of the present invention, in addition to the above-mentioned fourth aspect, 95% or more of the pores have a unimodal distribution in the range of 1000 angstroms or less.
The difference between the mode of the diameter of the pores of the positive electrode and the mode of the diameter of the pores of the negative electrode is 10 angstroms or less. In a seventh configuration of the present invention, further, in the fourth configuration, 95% or more of the pore diameters are distributed in a unimodal manner within a range of 500 angstroms or less, and the pores of the positive electrode are The difference between the mode value of the diameter and the mode value of the diameter of the pores of the negative electrode is 5 angstroms or less.

【0017】上記第5〜第7の構成によれば、負極の細
孔及び正極の細孔の径の最頻値(メジアン値)とその分
布範囲とが良好に一致するので、電池特性が一層向上す
る。
According to the above fifth to seventh configurations, since the mode (median value) of the diameters of the pores of the negative electrode and the pores of the positive electrode and the distribution range thereof are well matched, the battery characteristics are further improved. improves.

【0018】[0018]

【発明を実施する形態】本発明の好適な態様を以下の実
施例に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described based on the following examples.

【0019】[0019]

【実施例】組成がMmNi3.8 Co0.75Al0.3 Mn
0.35(La/Mm=0.6)である水素吸蔵合金を機械
粉砕し所定メッシュ幅の篩いで選別した水素吸蔵合金粉
末に増粘剤として重合度が約5万のメチルセルロース
(MC)の1wt%水溶液を水素吸蔵合金粉末に対して
30wt%加えて攪拌し、ペーストを形成した。次に、
このペーストを発泡ニッケル集電体(575g/m2
に充填し、70〜80℃で乾燥し、ロールプレスにて厚
さが0.6mmの負極a、b、cを作製した。負極aは
篩いが100メッシュであって直径が150μm以下の
水素吸蔵合金粉末から作製されたものであり、負極bは
篩いが200メッシュであって直径が75μm以下の水
素吸蔵合金粉末から作製されたものであり、負極cは篩
いが330メッシュであって直径が50μm以下の水素
吸蔵合金粉末から作製されたものである。
Example: The composition is MmNi 3.8 Co 0.75 Al 0.3 Mn
Hydrogen storage alloy powder of 0.35 (La / Mm = 0.6) was mechanically pulverized and screened with a sieve having a predetermined mesh width. Hydrogen storage alloy powder was selected as a thickening agent. Methyl cellulose (MC) with a degree of polymerization of about 50,000 was 1 wt%. An aqueous solution was added to the hydrogen storage alloy powder in an amount of 30 wt% and stirred to form a paste. next,
This paste is mixed with a foamed nickel current collector (575 g / m 2 ).
Was filled in a roll, and dried at 70 to 80 ° C., and negative electrodes a, b, and c having a thickness of 0.6 mm were manufactured by a roll press. The negative electrode a was made of a hydrogen storage alloy powder having a sieve of 100 mesh and a diameter of 150 μm or less, and the negative electrode b was made of a hydrogen storage alloy powder of 200 mesh and a diameter of 75 μm or less. The negative electrode c is made of hydrogen storage alloy powder having a sieve of 330 mesh and a diameter of 50 μm or less.

【0020】また、水酸化ニッケルを機械粉砕し所定メ
ッシュ幅の篩いで選別した水酸化ニッケル粉末に増粘剤
として重合度が約5万のメチルセルロース(MC)の1
wt%水溶液を水酸化ニッケル粉末重量に対して30w
t%加えて攪拌し、ペーストを形成した。次に、このペ
ーストを発泡ニッケル集電体(575g/m2 )に充填
し、70〜80℃で乾燥し、上記と同じロールプレスに
て厚さが0.6mmの正極e、f、gを作製した。正極
dは篩いが100メッシュであって直径が150μm以
下の水酸化ニッケル粉末から作製されたものであり、正
極eは篩いが200メッシュであって直径が75μm以
下の水酸化ニッケル粉末から作製されたものであり、正
極fは篩いが330メッシュであって直径が50μm以
下の水酸化ニッケル粉末から作製されたものである。
Further, nickel hydroxide powder mechanically pulverized and screened with a sieve having a predetermined mesh width is used as a thickening agent for methyl cellulose (MC) having a degree of polymerization of about 50,000.
30 wt% aqueous solution of nickel hydroxide powder
t% was added and stirred to form a paste. Next, this paste was filled in a foamed nickel current collector (575 g / m 2 ) and dried at 70 to 80 ° C., and the positive electrodes e, f, and g having a thickness of 0.6 mm were subjected to the same roll pressing as above. It was made. The positive electrode d was made of nickel hydroxide powder having a sieve of 100 mesh and a diameter of 150 μm or less, and the positive electrode e was made of nickel hydroxide powder of 200 mesh and a diameter of 75 μm or less. The positive electrode f is made of nickel hydroxide powder having a sieve of 330 mesh and a diameter of 50 μm or less.

【0021】次に、これら正極、負極の細孔分布を窒素
ガス吸着式BET測定装置を用いて測定した後、ポリプ
ロピレンセパレータを挟んで巻装してサブCサイズの円
筒状電極アセンブリを構成し、これを円筒状の電槽にい
れ、5ccの6NKOH水溶液を注入して密閉すること
により、上記負極a〜cと正極d〜fとを組み合わせた
9種類の電池(101〜109)の円筒状密閉電池を各
5個作製した。電池101は負極bと正極dとの組合せ
であり、電池102は負極bと正極eとの組合せであ
り、電池103は負極bと正極fとの組合せであり、電
池104は負極aと正極dとの組合せであり、電池10
5は負極aと正極eとの組合せであり、電池106は負
極aと正極fとの組合せであり、電池107は負極cと
正極dとの組合せであり、電池108は負極cと正極e
との組合せであり、電池109は負極cと正極fとの組
合せである。
Next, the pore distributions of the positive electrode and the negative electrode were measured using a nitrogen gas adsorption type BET measuring device, and then the polypropylene electrode was sandwiched and wound to form a sub-C size cylindrical electrode assembly. This is put in a cylindrical battery case, and 5 cc of 6 NKOH aqueous solution is injected and hermetically sealed, so that 9 types of batteries (101 to 109) in which the above negative electrodes a to c and positive electrodes d to f are combined are hermetically sealed. Five batteries were prepared for each. Battery 101 is a combination of negative electrode b and positive electrode d, battery 102 is a combination of negative electrode b and positive electrode e, battery 103 is a combination of negative electrode b and positive electrode f, and battery 104 is negative electrode a and positive electrode d. In combination with the battery 10
5 is a combination of negative electrode a and positive electrode e, battery 106 is a combination of negative electrode a and positive electrode f, battery 107 is a combination of negative electrode c and positive electrode d, and battery 108 is negative electrode c and positive electrode e.
And the battery 109 is a combination of the negative electrode c and the positive electrode f.

【0022】(試験1)各電池101〜109の100
サイクル充放電した後の容量維持率((残存容量/初期
容量)×100%)を調べた結果を図1に示す。ただ
し、充放電サイクルの充電は0.2cで5.5時間実施
され、放電は0.4cで端子電圧が1Vとなるまで実施
した。図1の縦軸は5個の電池の容量維持率の平均値で
ある。図1から、両粉末を選別するための2種類の篩い
のメッシュ幅が等しい場合に優れた容量維持率(サイク
ル寿命)が得られること、及び、篩いのメッシュ幅が細
かいほうが優れた容量維持率(サイクル寿命)が得られ
ることがわかった。
(Test 1) 100 of each battery 101-109
The result of examining the capacity retention rate ((remaining capacity / initial capacity) × 100%) after cycle charge / discharge is shown in FIG. However, the charging and discharging cycle was performed at 0.2c for 5.5 hours, and discharging was performed at 0.4c until the terminal voltage became 1V. The vertical axis of FIG. 1 is the average value of the capacity retention rates of the five batteries. From FIG. 1, it is possible to obtain an excellent capacity retention rate (cycle life) when the mesh widths of two types of sieves for selecting both powders are equal, and the capacity retention rate is better when the mesh width of the sieve is smaller. It was found that (cycle life) was obtained.

【0023】(試験2)各電池101〜109の100
サイクル充放電した後の高率放電時の容量維持率を調べ
た結果を図2に示す。ただし、充電は0.2cで6時間
実施され、放電は3cで端子電圧が0.8Vとなるまで
実施した。図2の縦軸は5個の電池の容量維持率の平均
値である。図2から、両粉末を選別するための2種類の
篩いのメッシュ幅が等しい場合に優れた容量維持率(サ
イクル寿命)が得られること、及び、篩いのメッシュ幅
が細かいほうが優れた容量維持率(サイクル寿命)が得
られることがわかった。
(Test 2) 100 of each battery 101-109
FIG. 2 shows the result of examining the capacity retention rate during high rate discharge after cycle charge and discharge. However, charging was carried out at 0.2c for 6 hours, and discharging was carried out at 3c until the terminal voltage reached 0.8V. The vertical axis of FIG. 2 is the average value of the capacity retention rates of the five batteries. From FIG. 2, an excellent capacity retention rate (cycle life) is obtained when the mesh widths of the two types of sieves for selecting both powders are equal, and the capacity retention rate is better when the mesh width of the sieve is smaller. It was found that (cycle life) was obtained.

【0024】(試験3)各電池101〜109の100
サイクル充放電した後の充電終了時点における電池内圧
を調べた結果を図3に示す。ただし、ただし、充放電サ
イクルの充電は0.2cで5.5時間実施され、放電は
0.4cで端子電圧が1Vとなるまで実施した。図3の
縦軸は5個の電池の充電末期における電池内圧の平均値
である。図3から、両粉末を選別するための2種類の篩
いのメッシュ幅が等しい場合に電池内圧の上昇が少ない
こと、及び、篩いのメッシュ幅が細かいほうが電池内圧
の上昇が少ないことがわかった。
(Test 3) 100 of each battery 101-109
FIG. 3 shows the results of examining the internal pressure of the battery at the end of charging after cycle charging / discharging. However, the charging and discharging cycle was performed at 0.2 c for 5.5 hours, and discharging was performed at 0.4 c until the terminal voltage became 1V. The vertical axis of FIG. 3 is the average value of the battery internal pressures at the end of charging of the five batteries. From FIG. 3, it was found that the increase in the battery internal pressure was small when the mesh widths of the two types of sieves for selecting both powders were equal, and that the smaller the mesh width of the sieve was, the less the increase in the battery internal pressure was.

【0025】次に、電極a〜fの細孔の分布を図4〜図
9に示す。これらの図から、細孔分布が一致すればする
ほど電池特性が改善されること、並びに、細孔の径が小
さいほど電池特性が改善されることがわかる。細孔分布
を揃えるには、負極活物質粉末の篩いのメッシュ幅と正
極活物質粉末の篩いのメッシュ幅とをできるだけ揃えれ
ばよいことがわかる。例えば、負極活物質粉末選別用の
篩いのメッシュ幅(隙間幅)をAとし、正極活物質粉末
選別用の篩いのメッシュ幅をBとし、両メッシュ幅の差
を(A−B)とし、両メッシュ幅の平均を((A+B)
/2)とした場合に、両メッシュ幅の差(A−B)をそ
れらの平均((A+B)/2)の50%以下、更に好ま
しくは20%以下とすればよい。このように、両篩いの
メッシュ幅を略一致させることにより、負極活物質粉末
の径と正極活物質粉末の径の最頻値及びその分布範囲を
略一致させることができる。その結果、これら粉末を成
形してなる負極及び正極内の細孔の径のメジアン値及び
その分布範囲の一致が良好となり、電槽内に注入した電
解液量が均一かつ等量に浸透することになり、正極での
電池反応速度及び反応量と負極での電池反応速度及び反
応量とが一致して全体として高率放電特性、電池内圧特
性、サイクル寿命などの電池性能が改善される。
Next, the distribution of the pores of the electrodes a to f is shown in FIGS. From these figures, it can be seen that the more consistent the pore distribution, the better the battery characteristics, and the smaller the pore diameter, the better the battery characteristics. It can be seen that in order to make the pore distributions uniform, the mesh width of the sieve of the negative electrode active material powder and the mesh width of the sieve of the positive electrode active material powder should be made as uniform as possible. For example, the mesh width (gap width) of the sieve for selecting the negative electrode active material powder is A, the mesh width of the sieve for selecting the positive electrode active material powder is B, and the difference between both mesh widths is (AB). The average of mesh width is ((A + B)
/ 2), the difference (AB) between the two mesh widths may be 50% or less, more preferably 20% or less of the average ((A + B) / 2). As described above, by making the mesh widths of both screens substantially the same, the mode of the diameter of the negative electrode active material powder and the mode of the diameter of the positive electrode active material powder and the distribution range thereof can be made substantially the same. As a result, the median values of the pore diameters in the negative electrode and the positive electrode formed by molding these powders and the distribution range thereof are well matched, and the amount of the electrolyte solution injected into the battery case penetrates uniformly and evenly. Thus, the battery reaction rate and reaction amount at the positive electrode and the battery reaction rate and reaction amount at the negative electrode are matched to improve battery performance such as high rate discharge characteristics, battery internal pressure characteristics, and cycle life as a whole.

【0026】言い換えれば電池性能は、上記した両活物
質粉末の径の最頻値及び分布範囲とを略一致させること
により達成される。このようにすれば、これら各粉末の
間に形成される細孔の径の最頻値及び分布範囲が負極と
正極でより一層一致することになり、電池特性が一層向
上する。また、本実施例では、増粘剤と活物質粉末の比
率、ぺーストの発泡状ニッケル多孔体への充填密度、ロ
ールプレスの圧力を負極と正極とで一致させている。こ
れにより、負極と正極との細孔との分布の一致がより良
好とすることができ、上記電池性能を一層良好とするこ
とができる。
In other words, the battery performance is achieved by making the mode values of the diameters of both active material powders and the distribution range substantially coincide with each other. By doing so, the mode and distribution range of the diameter of the pores formed between these powders will be more consistent between the negative electrode and the positive electrode, and the battery characteristics will be further improved. Further, in this example, the ratio of the thickener to the active material powder, the packing density of the paste in the foamed nickel porous body, and the pressure of the roll press were made to match between the negative electrode and the positive electrode. Thereby, the distribution of the pores of the negative electrode and the positive electrode can be better matched, and the battery performance can be further improved.

【0027】結局、95%以上の細孔の径が1500オ
ングストローム以下、好ましくは1000オングストロ
ーム以下、更に好ましくは500オングストローム以下
の範囲内にて単峰状に分布しており、正極の細孔の径の
最頻値と負極の細孔の径の最頻値との差が上記径の25
%以下とすれば電池特性を良好とすることができる。
After all, 95% or more of the pores have a unimodal distribution in the range of 1500 angstroms or less, preferably 1000 angstroms or less, and more preferably 500 angstroms or less, and the pore size of the positive electrode. The difference between the mode and the mode of the pore size of the negative electrode is 25
If it is at most%, good battery characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】各電池101〜109の50サイクル充放電し
た後の容量維持率((残存容量/初期容量)×100
%)を示す図である。
FIG. 1 is a capacity maintenance ratio ((remaining capacity / initial capacity) × 100 of each battery 101 to 109 after 50 cycles of charge / discharge.
FIG.

【図2】各電池101〜109の50サイクル充放電し
た後の高率放電時の容量維持率を調べた結果を示す図で
ある。
FIG. 2 is a diagram showing a result of examining a capacity retention rate at high rate discharge after 50 cycles of charge / discharge of each of the batteries 101 to 109.

【図3】各電池101〜109の50サイクル充放電し
た後の充電終了時点における電池内圧を示す図である。
FIG. 3 is a diagram showing the battery internal pressure at the end of charging after 50 cycles of charging / discharging of each battery 101-109.

【図4】電極aの細孔の分布を示す図である。FIG. 4 is a diagram showing a distribution of pores of an electrode a.

【図5】電極bの細孔の分布を示す図である。FIG. 5 is a diagram showing a distribution of pores of an electrode b.

【図6】電極cの細孔の分布を示す図である。FIG. 6 is a diagram showing a distribution of pores of an electrode c.

【図7】電極dの細孔の分布を示す図である。FIG. 7 is a diagram showing a distribution of pores of an electrode d.

【図8】電極eの細孔の分布を示す図である。FIG. 8 is a diagram showing a distribution of pores of an electrode e.

【図9】電極fの細孔の分布を示す図である。FIG. 9 is a diagram showing a distribution of pores of an electrode f.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】所定のメッシュ幅の篩いを通して選別され
た負極活物質粉末を有機高分子剤料からなる増粘剤又は
結着剤及び水と混合して形成したペーストを予備成形す
るか又は直接、金属集電体に圧着して負極を形成し、所
定のメッシュ幅の篩いを通して選別された正極活物質粉
末を有機高分子材料からなる増粘剤又は結着剤及び水と
混合して形成したペーストを予備成形するか又は直接、
金属集電体に圧着して正極を形成し、前記負極及び正極
をセパレータを挟んで電槽内にてアルカリ電解液に浸漬
して形成する二次電池の製造方法において、 前記負極の空孔率と前記正極の空孔率とを略一致させる
ことを特徴とする二次電池の製造方法。
1. A paste formed by mixing a negative electrode active material powder selected through a sieve having a predetermined mesh width with a thickener or binder made of an organic polymer material and water, or directly preforming the paste. , A negative electrode was formed by pressure bonding to a metal current collector, and the positive electrode active material powder selected through a sieve having a predetermined mesh width was mixed with a thickener or binder made of an organic polymer material and water. Preform the paste or directly,
In a method of manufacturing a secondary battery, which is formed by pressing a metal current collector to form a positive electrode, and immersing the negative electrode and the positive electrode in an alkaline electrolyte in a battery case with a separator interposed therebetween, the porosity of the negative electrode. And the porosity of the positive electrode are substantially equal to each other.
【請求項2】前記両篩いのメッシュ幅を略一致させる請
求項1記載の二次電池の製造方法。
2. The method for producing a secondary battery according to claim 1, wherein the mesh widths of the both screens are substantially the same.
【請求項3】前記負極活物質粉末の径の最頻値と前記正
極活物質粉末の径の最頻値とを略一致させる請求項1記
載の二次電池の製造方法。
3. The method for producing a secondary battery according to claim 1, wherein the mode of the diameter of the negative electrode active material powder and the mode of the diameter of the positive electrode active material powder are made to substantially coincide with each other.
【請求項4】前記負極内の細孔の径の最頻値と前記正極
内の細孔との径の最頻値とを略一致させる請求項1記載
の二次電池の製造方法。
4. The method for producing a secondary battery according to claim 1, wherein the mode value of the diameter of the pores in the negative electrode and the mode value of the diameter of the pores in the positive electrode are substantially matched.
【請求項5】95%以上の前記細孔の径は1500オン
グストローム以下の範囲内にて単峰状に分布しており、
前記正極の細孔の径の最頻値と前記負極の細孔の径の最
頻値との差は20オングストローム以下とされる請求項
4記載の二次電池の製造方法。
5. The diameter of 95% or more of the pores is unimodally distributed within a range of 1500 angstroms or less,
The method for manufacturing a secondary battery according to claim 4, wherein the difference between the mode value of the diameter of the pores of the positive electrode and the mode value of the diameter of the pores of the negative electrode is 20 angstroms or less.
【請求項6】95%以上の前記細孔の径は1000オン
グストローム以下の範囲内にて単峰状に分布しており、
前記正極の細孔の径の最頻値と前記負極の細孔の径の最
頻値との差は10オングストローム以下とされる請求項
4記載の二次電池の製造方法。
6. 95% or more of the pore diameters are unimodally distributed within a range of 1000 angstroms or less,
The method for manufacturing a secondary battery according to claim 4, wherein the difference between the mode of the diameter of the pores of the positive electrode and the mode of the diameter of the pores of the negative electrode is 10 angstroms or less.
【請求項7】95%以上の前記細孔の径は500オング
ストローム以下の範囲内にて単峰状に分布しており、前
記正極の細孔の径の最頻値と前記負極の細孔の径の最頻
値との差は5オングストローム以下とされる請求項4記
載の二次電池の製造方法。
7. The diameter of 95% or more of the pores is distributed in a unimodal form within a range of 500 angstroms or less, and the mode of the diameter of the pores of the positive electrode and the pores of the negative electrode are The method for manufacturing a secondary battery according to claim 4, wherein the difference from the mode value of the diameter is 5 angstroms or less.
JP7214721A 1995-08-23 1995-08-23 Manufacture of secondary battery Pending JPH0963637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7214721A JPH0963637A (en) 1995-08-23 1995-08-23 Manufacture of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7214721A JPH0963637A (en) 1995-08-23 1995-08-23 Manufacture of secondary battery

Publications (1)

Publication Number Publication Date
JPH0963637A true JPH0963637A (en) 1997-03-07

Family

ID=16660529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7214721A Pending JPH0963637A (en) 1995-08-23 1995-08-23 Manufacture of secondary battery

Country Status (1)

Country Link
JP (1) JPH0963637A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515457A (en) * 2002-12-12 2006-05-25 ユニヴァーシティ・オブ・サウザンプトン Electrochemical cell suitable for use in electronic devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515457A (en) * 2002-12-12 2006-05-25 ユニヴァーシティ・オブ・サウザンプトン Electrochemical cell suitable for use in electronic devices

Similar Documents

Publication Publication Date Title
JP4772185B2 (en) Positive electrode plate for alkaline storage battery, method for producing the same, and alkaline storage battery using the same
US4000005A (en) Method for making a nickel positive electrode for an alkaline battery
JPH0837004A (en) Hydrogen storage alloy electrode for metal-hydride alkaline storage battery
JPH0963637A (en) Manufacture of secondary battery
JP2765029B2 (en) Manufacturing method of nickel hydroxide electrode
JP3114402B2 (en) Manufacturing method of alkaline storage battery
JP3443209B2 (en) Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same
JP2000182611A (en) Alkaline storage battery and its manufacture
JP3505269B2 (en) Non-sintered positive electrode for alkaline storage battery and method for manufacturing alkaline storage battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3088649B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2981538B2 (en) Electrodes for alkaline batteries
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3464717B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JPH1021904A (en) Alkaline storage battery
JPH11354115A (en) Alkaline storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP3003218B2 (en) Method for producing nickel electrode plate and method for producing alkaline storage battery
JP2561200B2 (en) Hydrogen storage electrode
JP2590437B2 (en) Electrode substrate for alkaline batteries
JP2925591B2 (en) Method for producing hydrogen storage electrode
JPH09167616A (en) Alkaline secondary battery and its manufacture
JPH044560A (en) Alkaline storage battery ni electrode and its manufacture
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery
JPS63170853A (en) Paste type nickel positive electrode