JPH0963586A - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JPH0963586A
JPH0963586A JP7239209A JP23920995A JPH0963586A JP H0963586 A JPH0963586 A JP H0963586A JP 7239209 A JP7239209 A JP 7239209A JP 23920995 A JP23920995 A JP 23920995A JP H0963586 A JPH0963586 A JP H0963586A
Authority
JP
Japan
Prior art keywords
carbon
secondary battery
electrolyte secondary
organic electrolyte
low crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7239209A
Other languages
Japanese (ja)
Other versions
JP3508889B2 (en
Inventor
Keiichiro Uenae
圭一郎 植苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP23920995A priority Critical patent/JP3508889B2/en
Publication of JPH0963586A publication Critical patent/JPH0963586A/en
Application granted granted Critical
Publication of JP3508889B2 publication Critical patent/JP3508889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an organic electrolyte secondary battery with good load characteristics at low temperature without remarkable drop in charging/ discharging capacity at room temperature. SOLUTION: In an organic electrolyte secondary battery using a lithium- containing transition metal chalcogenide as a positive active material, a mixture of graphitized carbon having a mean particle size of 9μm or more and low crystalline carbon having a mean particle size of 0.5-2μm is used as a negative active material. As the graphitized carbon, carbon having a spacing d002 of 3.36Å or less and a crystallite size in the diection of (c) axis Lc of 400Å or more is preferable. As the low crystalline carbon, carbon having a spacing d002 of 3.37Å or more and a crystalline size, in the direction of (c) axis Lc of 250Å or less is preferable, and the mixing ratio of the graphitized carbon and the low crystalline carbon is 98:2 to 85:15 by weight.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機電解液二次電
池に係わり、さらに詳しくは、その負極活物質のカーボ
ンの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte secondary battery, and more particularly to improvement of carbon as a negative electrode active material thereof.

【0002】[0002]

【従来の技術】リチウム含有遷移金属カルコゲナイドを
正極活物質とする有機電解液二次電池では、負極活物質
として一般にカーボンが用いられている。このカーボン
は層状構造をしており、その層間をリチウムがインター
カレートすることによって充電される。この層状構造に
ついては原料を熱処理することによって制御でき、たと
えばカーボン作製過程において熱処理温度が高い場合に
は、層間距離d002 が狭くなり、現存する最高の結晶性
を有する天然黒鉛では層間距離d002 が3.35Å
(0.335nm)近くになり、c軸方向の結晶子サイ
ズLcは大きくなり1000Å以上にもなる。また、原
料に比較的多くのベンゼン環を含んでいる場合と、たと
えば炭素の一次結合の多い原料とでは、同じ熱処理温度
でも、異なった層間距離d002 とc軸方向の結晶子サイ
ズLcを持つことになる。
2. Description of the Related Art Carbon is generally used as a negative electrode active material in an organic electrolyte secondary battery using a lithium-containing transition metal chalcogenide as a positive electrode active material. This carbon has a layered structure and is charged by intercalating lithium between the layers. This layered structure can be controlled by heat-treating the raw material. For example, when the heat treatment temperature is high in the carbon production process, the interlayer distance d 002 becomes narrow, and in the existing natural graphite having the highest crystallinity, the interlayer distance d 002. Is 3.35Å
(0.335 nm), the crystallite size Lc in the c-axis direction becomes large, reaching 1000 Å or more. Further, when the raw material contains a relatively large number of benzene rings and, for example, the raw material having a large number of carbon primary bonds, the interlayer distance d 002 and the crystallite size Lc in the c-axis direction are different even at the same heat treatment temperature. It will be.

【0003】ところで、これらのカーボンを負極活物質
として用い、たとえばLiNiO2やLiCoO2 など
のリチウム含有遷移金属カルコゲナイドを正極活物質と
して用いた有機電解液二次電池では、黒鉛化が進んだカ
ーボンを負極活物質として用いた方が高い充放電容量を
得ることができ、理論的にはC6 Li、つまり372m
Ah/gの充放電容量が得られることになっている。
By the way, in an organic electrolyte secondary battery in which these carbons are used as a negative electrode active material, for example, a lithium-containing transition metal chalcogenide such as LiNiO 2 or LiCoO 2 is used as a positive electrode active material, graphitized carbon is used. Higher charge / discharge capacity can be obtained when used as the negative electrode active material, and theoretically C 6 Li, that is, 372 m
A charge / discharge capacity of Ah / g is to be obtained.

【0004】しかしながら、黒鉛化が進んだ場合、前述
したように層間距離d002 が小さくなるため、この二次
電池におけるモビリティ(移動イオン)であるLi(リ
チウム)イオンのバルク(固体)内拡散速度が低下し、
結果的に高い電流密度(たとえば2mA/cm2 程度)
での充放電容量が低下する傾向がある。つまり、電池の
負荷特性が悪くなる傾向がある。これはバルク本来の持
つ物性に起因するため、カーボンの黒鉛化度を低減する
以外に改善方法はなく、そのため、このような欠点を持
つカーボンを負極活物質として用いた電池では、定電流
−定電圧法という充電方法を取り入れていて、充電後期
に充電電流密度が減衰するようにしているので、実用上
は今までのところほとんど問題が生じなかった。
However, as the graphitization progresses, the interlayer distance d 002 becomes smaller as described above, so that the diffusion rate in the bulk (solid) of Li (lithium) ions which are mobility (mobile ions) in this secondary battery. Is reduced,
As a result, high current density (for example, about 2 mA / cm 2 )
Charge and discharge capacity tends to decrease. That is, the load characteristics of the battery tend to deteriorate. Since this is due to the physical properties inherent in the bulk, there is no improvement method other than reducing the graphitization degree of carbon.Therefore, in a battery using carbon having such a defect as a negative electrode active material, constant current-constant Since the charging method called the voltage method is adopted and the charging current density is attenuated in the latter half of charging, practically no problems have occurred so far.

【0005】しかしながら、本発明者が電池が充電され
る可能性のある各種条件下での充電特性を検討するた
め、上記電池の充電時の温度や電流密度を変化させて充
放電容量を測定したところ、低温(0℃以下)では極端
に充放電容量が低下し、またカーボンへのリチウムのイ
ンターカレーションとの競争反応の結果、負極表面にリ
チウムが非常に析出しやすいことが判明した。すなわ
ち、負極の各部位で電位が均一でなくなった場合、その
電位の低いところでリチウムが析出しやすく、電池の短
絡や発火が生じやすいという問題があった。
However, in order for the present inventor to study the charging characteristics under various conditions in which the battery may be charged, the charge and discharge capacity was measured by changing the temperature and current density during charging of the battery. However, it was found that at low temperatures (0 ° C. or lower), the charge / discharge capacity was extremely reduced, and as a result of a competitive reaction with intercalation of lithium into carbon, lithium was very likely to be deposited on the negative electrode surface. That is, when the potential is not uniform in each part of the negative electrode, lithium is likely to be deposited at a low potential, which causes a problem of short circuit and ignition of the battery.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記のよう
な従来の有機電解液二次電池が持っていた問題点を解決
し、負荷特性、特に低温負荷特性が良好で、かつ負極表
面にリチウムが析出しにくい安全性の高い有機電解液二
次電池を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the problems of the conventional organic electrolyte secondary battery as described above, has good load characteristics, especially low temperature load characteristics, and has a negative electrode surface. An object is to provide a highly safe organic electrolyte secondary battery in which lithium is less likely to deposit.

【0007】[0007]

【課題を解決するための手段】本発明は、リチウム含有
遷移金属カルコゲナイドを正極活物質とする有機電解液
二次電池において、負極活物質として平均粒径9μm以
上の黒鉛化カーボンと平均粒径0.5〜2μmの低結晶
カーボンとの混合物を用いることによって、上記目的を
達成したものである。
The present invention is directed to an organic electrolyte secondary battery having a lithium-containing transition metal chalcogenide as a positive electrode active material, and a graphitized carbon having an average particle diameter of 9 μm or more and an average particle diameter of 0 as an anode active material. The above object was achieved by using a mixture with low crystalline carbon of 0.5 to 2 μm.

【0008】すなわち、本発明においては、室温での充
放電容量の大きい黒鉛化カーボンの粒子間の空隙に、平
均粒径が0.5〜2μmという特定粒径の低結晶カーボ
ンが充填されることによって、低温負荷特性が改善さ
れ、かつ負極表面へのリチウムの析出が防止され、低温
負荷特性が良好で、かつ負極表面にリチウムが析出しに
くい安全性の高い有機電解液二次電池が得られるように
なったものと考えられる。
That is, in the present invention, the voids between the particles of the graphitized carbon having a large charge / discharge capacity at room temperature are filled with low crystalline carbon having a specific particle diameter of 0.5 to 2 μm. As a result, a low-temperature load characteristic is improved, lithium is prevented from depositing on the negative electrode surface, a low-temperature load characteristic is good, and a highly safe organic electrolyte secondary battery in which lithium is less likely to deposit on the negative electrode surface is obtained. It is thought that it has become like this.

【0009】本発明にいたった経過などについて詳細に
説明すると、次の通りである。
The process of the present invention will be described in detail as follows.

【0010】低温負荷特性の改善には一般に電解液を改
良する方法がとられている。しかしながら、本発明者
は、上記の温度や電流密度を変化させた充放電試験をし
て充放電容量を測定した結果、低結晶カーボンが低温負
荷特性を大きく改善させることを見出し、この低結晶カ
ーボンを黒鉛化カーボンに混合することによって、室温
での充放電容量を大幅に低下させることなく、低温負荷
特性が良好な有機電解液二次電池を提供することができ
るようにしたのである。
In order to improve low temperature load characteristics, a method of improving an electrolytic solution is generally used. However, the present inventor has found that the low crystalline carbon significantly improves low temperature load characteristics as a result of measuring the charge / discharge capacity by performing a charge / discharge test in which the above temperature and current density are changed, and this low crystalline carbon is found. It was made possible to provide an organic electrolytic solution secondary battery having good low temperature load characteristics without significantly reducing the charge / discharge capacity at room temperature by mixing with the graphitized carbon.

【0011】低結晶カーボンは、一般に結晶化が進んだ
黒鉛化カーボンとは反対の性質を有し、黒鉛化カーボン
に比べて層間距離d002 が大きく、リチウムが析出しに
くい反面、充放電容量が低いという問題がある。そのた
め、黒鉛化カーボンにそれと同粒径の低結晶カーボンを
混合すると、その重量比率に応じて充放電容量が低下す
るが、低温負荷特性を改善するためには低結晶カーボン
の重量比率を高くしなければならないという事情があ
る。
Low crystalline carbon generally has a property opposite to that of highly crystallized graphitized carbon, has a larger interlayer distance d 002 than graphitized carbon, and is less likely to deposit lithium, but has a high charge / discharge capacity. There is a problem of being low. Therefore, when low-crystalline carbon having the same particle size as that of graphitized carbon is mixed, the charge / discharge capacity decreases depending on the weight ratio, but in order to improve low temperature load characteristics, the weight ratio of low-crystalline carbon should be increased. There is a circumstance that it must be.

【0012】一方、一般に導電助剤などに使用されてい
るカーボンブラックやアセチレンブラックを用いた場
合、前記低結晶カーボンの10重量%以下の少量で低温
負荷特性の改善をすることができるが、体積比率では大
きくなり、また、その比表面積が大きすぎることから、
初回サイクルにおいて生じる充電容量と放電容量との差
(不可逆充電容量)の放電容量に対する比率(以下、
「リテンション」という)が大きくなるという問題があ
る。
On the other hand, when carbon black or acetylene black which is generally used as a conductive auxiliary agent is used, the low temperature load characteristics can be improved with a small amount of 10% by weight or less of the low crystalline carbon, but the volume is small. The ratio is large, and because its specific surface area is too large,
The ratio of the difference between the charge capacity and the discharge capacity (irreversible charge capacity) generated in the first cycle to the discharge capacity (hereinafter,
There is a problem that "retention" becomes large.

【0013】そこで、本発明者は、添加する低結晶カー
ボンの重量比率、体積比率とも少なくする方法を検討し
た結果、その平均粒径が0.5〜2μmという特定粒径
の低結晶カーボンを用いることより、充放電容量の大幅
な低下やリテンションの増加を招くことなく、低温負荷
特性を改善できることを見出した。
Therefore, the present inventor has studied a method of reducing both the weight ratio and the volume ratio of the low crystalline carbon to be added, and as a result, the low crystalline carbon having a specific particle diameter of 0.5 to 2 μm is used. Therefore, it has been found that the low temperature load characteristics can be improved without causing a significant decrease in charge / discharge capacity and an increase in retention.

【0014】すなわち、低結晶カーボンの平均粒径が
0.5μmより小さい場合は、比表面積が大きくなるた
め、リテンションが大きくなり、低結晶カーボンの平均
粒径が2μmより大きくなると、負極の体積あたりの放
電容量が低下する。
That is, when the average particle size of the low crystalline carbon is smaller than 0.5 μm, the specific surface area is large, so that the retention is large, and when the average particle size of the low crystalline carbon is larger than 2 μm, it is per volume of the negative electrode. Discharge capacity decreases.

【0015】一方、黒鉛化カーボンは、平均粒径が9μ
m以上のものを用いる。これは、黒鉛化カーボンの粒径
が小さくなりすぎると、室温での充放電容量が低下する
おそれがあるため、平均粒径で9μm以上のものを用い
ることが必要であるという理由によるものである。しか
し、黒鉛化カーボンの粒径が大きくなりすぎると、負極
の体積密度が減少して、電池容量が低下するおそれがあ
るため、平均粒径で9〜20μmの黒鉛化カーボンが最
も適している。
On the other hand, graphitized carbon has an average particle size of 9 μm.
Use the thing of m or more. This is because if the particle size of the graphitized carbon becomes too small, the charge / discharge capacity at room temperature may decrease, so it is necessary to use particles having an average particle size of 9 μm or more. . However, if the particle size of the graphitized carbon becomes too large, the volume density of the negative electrode may decrease, and the battery capacity may decrease. Therefore, the graphitized carbon having an average particle size of 9 to 20 μm is most suitable.

【0016】また、上記のような低温負荷特性の改善以
外にも、低結晶カーボンの黒鉛化カーボンへの添加によ
って、マイクロポアが増加し、それによって電解液の吸
液性が向上し、負極の膨張率が増加することによって、
電池内での負極の強度が向上し、結果的に充放電サイク
ルも増加する。
Further, in addition to the improvement of the low temperature load characteristics as described above, addition of low crystalline carbon to graphitized carbon increases micropores, thereby improving the liquid absorbing property of the electrolytic solution, and By increasing the expansion rate,
The strength of the negative electrode in the battery is improved, and as a result, the charge / discharge cycle is also increased.

【0017】黒鉛化カーボンと低結晶カーボンとの混合
比は、特に限定されるものではないが、重量比で98:
2〜85:15が好ましく、特に95:5〜87:13
が好ましい。黒鉛化カーボンの量が上記範囲より多くな
ると、低結晶カーボンの減少により低温負荷特性を充分
に改善することができなくなるおそれがあり、また、黒
鉛化カーボンの量が上記範囲より少ない場合は、室温で
の充放電容量の低下やリテンションの増加が生じるおそ
れがある。
The mixing ratio of the graphitized carbon and the low crystalline carbon is not particularly limited, but the weight ratio is 98 :.
2 to 85:15 are preferable, and particularly 95: 5 to 87:13.
Is preferred. If the amount of graphitized carbon is more than the above range, it may not be possible to sufficiently improve the low temperature load characteristics due to the reduction of low crystalline carbon, and if the amount of graphitized carbon is less than the above range, room temperature In this case, the charge / discharge capacity may decrease and the retention may increase.

【0018】本発明において、正極活物質としては、た
とえばリチウムニッケル酸化物、リチウムマンガン酸化
物、リチウムコバルト酸化物(これらは、通常、それぞ
れ、LiNiO2 、LiMnO2 、LiCoO2 などで
表すが、これらのLiとNiの比、LiとMnの比、L
iとCoの比は化学量論組成からずれている場合が多
い)などのリチウム含有遷移金属カルコゲナイドが単独
でまたは2種以上の混合物として用いられる。ただし、
正極活物質が上記化合物として存在するのは、電池が放
電状態にある時であり、電池が充電状態にある時はリチ
ウムを放出した状態で存在する。
In the present invention, examples of the positive electrode active material include lithium nickel oxide, lithium manganese oxide and lithium cobalt oxide (these are usually represented by LiNiO 2 , LiMnO 2 and LiCoO 2 , respectively. Ratio of Li to Ni, ratio of Li to Mn, L
The ratio of i to Co is often deviated from the stoichiometric composition), and a lithium-containing transition metal chalcogenide is used alone or as a mixture of two or more kinds. However,
The positive electrode active material exists as the above compound when the battery is in a discharged state, and when the battery is in a charged state, it exists in a state in which lithium is released.

【0019】そして、正極は、上記正極活物質に、必要
に応じて、たとえばりん(鱗)状黒鉛、アセチレンブラ
ック、カーボンブラックなどの導電助剤と、たとえばポ
リフッ化ビニリデン、テトラフルオロエチレン、エチレ
ンプロピレンジエンターポリマーなどのバインダーを加
えて調製した正極合剤を加圧成形するか、あるいはさら
に溶媒を加えてペースト状にし、それを金属箔(たとえ
ばアルミニウム箔、チタン箔、白金箔など)などからな
る集電体上に塗布、乾燥する工程を経て作製される。た
だし、正極の作製方法は上記例示のものに限定されるこ
とはない。
In the positive electrode, a conductive auxiliary agent such as phosphorus (scale) graphite, acetylene black or carbon black is added to the above positive electrode active material, if necessary, and, for example, polyvinylidene fluoride, tetrafluoroethylene or ethylene propylene. A positive electrode mixture prepared by adding a binder such as a diene terpolymer is pressure-molded, or a solvent is further added to form a paste, which is made of metal foil (for example, aluminum foil, titanium foil, platinum foil, etc.) It is manufactured through a process of coating and drying on a current collector. However, the method for producing the positive electrode is not limited to the above-described example.

【0020】負極は、上記特定のカーボン混合物からな
る負極活物質(ただし、負極活物質がカーボンそのもの
として存在するのは、電池が放電状態にある時であり、
電池が充電状態にある時は層間にリチウムイオンがイン
ターカレートした状態になる)に、必要に応じて、たと
えばポリフッ化ビニリデンやポリテトラフルオロエチレ
ン、エチレンプロピレンジエンターポリマーなどのバイ
ンダーを適宜加え、混合して調製した負極合剤を加圧成
形するか、あるいは、さらに溶媒を加えてペースト状に
し、そのペーストを金属箔(たとえば銅箔、ニッケル箔
など)などからなる集電体上に塗布、乾燥する工程を経
て作製される。ただし、負極の作製方法は上記例示のも
のに限定されることはない。
The negative electrode has a negative electrode active material composed of the above-mentioned specific carbon mixture (however, the negative electrode active material exists as carbon itself when the battery is in a discharged state,
When the battery is in a charged state, lithium ions are intercalated between the layers), if necessary, for example, polyvinylidene fluoride or polytetrafluoroethylene, a binder such as ethylene propylene diene terpolymer is appropriately added, The negative electrode mixture prepared by mixing is pressure-molded, or a solvent is further added to form a paste, and the paste is applied onto a current collector made of metal foil (for example, copper foil, nickel foil, etc.), It is produced through a drying process. However, the method for producing the negative electrode is not limited to the above-exemplified method.

【0021】有機電解液(以下、電池を表す場合を除
き、簡略化して「電解液」という)としては、たとえば
1,2−ジメトキシエタン、1,2−ジエトキシエタ
ン、プロピレンカーボネート、エチレンカーボネート、
γ−ブチロラクトン、テトラヒドロフラン、1,3−ジ
オキソラン、ジエチレンカーボネート、ジメチルカーボ
ネート、エチルメチルカーボネートなどの単独または2
種以上の混合溶媒に、たとえばLiCF3 SO3 、Li
4 9 SO3 、LiClO4 、LiPF6 、LiBF
4 などの電解質を単独でまたは2種以上を溶解させたも
のが用いられる。
Examples of the organic electrolytic solution (hereinafter, simply referred to as "electrolytic solution" unless a battery is shown) include 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene carbonate, ethylene carbonate,
γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, diethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, etc. alone or 2
In a mixed solvent of one or more kinds, for example, LiCF 3 SO 3 , Li
C 4 F 9 SO 3 , LiClO 4 , LiPF 6 , LiBF
Electrolyte such as 4 is used alone or in which two or more kinds are dissolved.

【0022】[0022]

【発明の実施の形態】つぎに、実施例を挙げて本発明を
より具体的に説明する。ただし、本発明はそれらの実施
例のみに限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to only those examples.

【0023】実施例1 黒鉛化カーボンとして、コークスを3000℃で熱処理
して得られたバルクカーボンを粉砕して平均粒径10μ
mの粉末を用意した。この黒鉛化カーボンの層間距離d
002 は3.36Åであり、c軸方向の結晶子サイズLc
は853Åであった。また、低結晶カーボンとして、コ
ークスを800℃で熱処理して得られたものを粉砕して
平均粒径1.5μmの粉末を用意した。この低結晶カー
ボンの層間距離d002 は3.79Åであり、c軸方向の
結晶子サイズLcは210Åであった。
Example 1 As graphitized carbon, bulk carbon obtained by heat treatment of coke at 3000 ° C. was crushed to obtain an average particle size of 10 μm.
m powder was prepared. Interlayer distance d of this graphitized carbon
002 is 3.36Å, and the crystallite size Lc in the c-axis direction
Was 853Å. Further, as low crystalline carbon, a product obtained by heat-treating coke at 800 ° C. was pulverized to prepare a powder having an average particle size of 1.5 μm. The interlayer distance d 002 of this low crystalline carbon was 3.79Å, and the crystallite size Lc in the c-axis direction was 210Å.

【0024】これらの黒鉛化カーボンと低結晶カーボン
を重量比95:5で混合し、この黒鉛化カーボンと低結
晶カーボンとの混合物100重量部に対し、バインダー
としてポリフッ化ビニリデンを10重量部配合し、溶媒
としてN−メチル−2−ピロリドンを80重量部配合し
て、カーボンペーストを調製した。そのカーボンペース
トを集電体としての銅箔上に塗布し、乾燥した後、カレ
ンダーロールでプレスして、負極として用いるカーボン
電極を作製した。なお、上記カーボンペーストの調製に
あたっては、あらかじめポリフッ化ビニリデンをN−メ
チル−2−ピロリドンに溶解しておいた。
These graphitized carbon and low crystalline carbon were mixed at a weight ratio of 95: 5, and 100 parts by weight of the mixture of the graphitized carbon and low crystalline carbon was mixed with 10 parts by weight of polyvinylidene fluoride as a binder. Then, 80 parts by weight of N-methyl-2-pyrrolidone was mixed as a solvent to prepare a carbon paste. The carbon paste was applied onto a copper foil as a current collector, dried and then pressed with a calendar roll to prepare a carbon electrode used as a negative electrode. In the preparation of the above carbon paste, polyvinylidene fluoride was previously dissolved in N-methyl-2-pyrrolidone.

【0025】一方、正極は次のようにして作製した。す
なわち、正極活物質としては、リチウムニッケル酸化物
(通常、LiNiO2 として表すが、LiとNiの比は
化学量論組成から若干ずれている)を用い、このリチウ
ムニッケル酸化物とりん状黒鉛とポリフッ化ビニリデン
とを下記の割合で含む正極形成用の活物質含有ペースト
を調製した。 リチウムニッケル酸化物 91重量部 りん状黒鉛 6重量部 ポリフッ化ビニリデン 3重量部
On the other hand, the positive electrode was manufactured as follows. That is, as the positive electrode active material, lithium nickel oxide (usually expressed as LiNiO 2 , but the ratio of Li and Ni is slightly deviated from the stoichiometric composition) was used, and this lithium nickel oxide and phosphorous graphite were used. An active material-containing paste for forming a positive electrode containing polyvinylidene fluoride in the following ratio was prepared. Lithium nickel oxide 91 parts by weight Phosphorous graphite 6 parts by weight Polyvinylidene fluoride 3 parts by weight

【0026】上記の正極形成用の活物質含有ペーストの
調製は、ポリフッ化ビニリデンをN−メチル−2−メチ
ルピロリドンにあらかじめ溶解し、それにリチウムニッ
ケル酸化物とりん状黒鉛を加えて混合し、さらにN−メ
チルピロリドンを加えて混合することによって行った。
The preparation of the above-mentioned active material-containing paste for forming the positive electrode was carried out by dissolving polyvinylidene fluoride in N-methyl-2-methylpyrrolidone in advance, and adding lithium nickel oxide and phosphorous graphite thereto and mixing them. This was done by adding N-methylpyrrolidone and mixing.

【0027】得られた正極形成用の活物質含有ペースト
を厚さ20μmのアルミニウム箔上にアプリケーターを
用いて塗布し、乾燥した後、カレンダロールでプレスし
て、正極を作製した。
The obtained active material-containing paste for forming a positive electrode was applied onto an aluminum foil having a thickness of 20 μm using an applicator, dried and then pressed with a calendar roll to produce a positive electrode.

【0028】そして、電解液としては、エチレンカーボ
ネートと1,2−ジメトキシエタンとの体積比1:1の
混合溶媒にLiPF6 を1モル/リットル溶解させたも
のを用い、図1に示す構造で、外径20mm、高さ5m
mのボタン形有機電解液二次電池を作製した。
As the electrolytic solution, a solution obtained by dissolving 1 mol / liter of LiPF 6 in a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1: 1 was used. , Outer diameter 20mm, height 5m
A m-type button-type organic electrolyte secondary battery was produced.

【0029】図1において、1は上記の正極であり、2
は上記の負極である。3は微孔性ポリプロピレンフィル
ムからなるセパレータで、4はポリプロピレン不織布か
らなる電解液吸収体である。5はステンレス鋼製の正極
缶であり、6はアルミニウム箔からなる正極集電体で、
7はステンレス鋼製で表面にニッケルメッキを施した負
極缶である。
In FIG. 1, 1 is the above positive electrode, and 2
Is the above negative electrode. Reference numeral 3 denotes a separator made of a microporous polypropylene film, and reference numeral 4 denotes an electrolyte absorber made of a polypropylene nonwoven fabric. 5 is a stainless steel positive electrode can, 6 is a positive electrode current collector made of aluminum foil,
Reference numeral 7 is a negative electrode can made of stainless steel and having a surface plated with nickel.

【0030】8は銅箔からなる負極集電体であり、9は
ポリプロピレン製の環状ガスケットであって、この電池
にはエチレンカーボネートとメチルエチルカーボネート
との体積比1:1の混合溶媒にLiPF6 を1モル/リ
ットル溶解した電解液が注入されている。
Reference numeral 8 is a negative electrode current collector made of copper foil, and 9 is a polypropylene annular gasket. In this battery, LiPF 6 was used in a mixed solvent of ethylene carbonate and methyl ethyl carbonate in a volume ratio of 1: 1. An electrolyte solution in which 1 mol / liter of is dissolved is injected.

【0031】実施例2 黒鉛化カーボンとして、実施例1と同様にコークスを3
000℃で熱処理して得られたバルクカーボンを粉砕し
て平均粒径10μmの粉末を用意した。この黒鉛化カー
ボンの層間距離d002 は3.36Åであり、c軸方向の
結晶子サイズLcは853Åであった。また、低結晶カ
ーボンとして、コークスを800℃で熱処理して得られ
たものを粉砕して平均粒径0.5μmの粉末を用意し
た。この低結晶カーボンの層間距離d002 は3.79Å
であり、c軸方向の結晶子サイズLcは210Åであっ
た。
Example 2 As graphitized carbon, coke 3 was used in the same manner as in Example 1.
Bulk carbon obtained by heat treatment at 000 ° C. was crushed to prepare a powder having an average particle size of 10 μm. The interlayer distance d 002 of this graphitized carbon was 3.36Å, and the crystallite size Lc in the c-axis direction was 853Å. Further, as low crystalline carbon, a product obtained by heat-treating coke at 800 ° C. was pulverized to prepare a powder having an average particle size of 0.5 μm. The interlayer distance d 002 of this low crystalline carbon is 3.79Å
And the crystallite size Lc in the c-axis direction was 210Å.

【0032】これらの黒鉛化カーボンと低結晶カーボン
を重量比95:5で混合し、この黒鉛化カーボンと低結
晶カーボンとの混合物100重量部に対し、バインダー
としてポリフッ化ビニリデンを10重量部配合し、溶媒
としてN−メチル−2−ピロリドンを80重量部配合し
て、カーボンペーストを調製した。そのカーボンペース
トを集電体としての銅箔上に塗布し、乾燥した後、カレ
ンダーロールでプレスして、カーボン電極を作製した。
このカーボン電極を負極として用いた以外は、実施例1
と同様にしてボタン形有機電解液二次電池を作製した。
The graphitized carbon and the low crystalline carbon were mixed at a weight ratio of 95: 5, and 100 parts by weight of the mixture of the graphitized carbon and the low crystalline carbon was mixed with 10 parts by weight of polyvinylidene fluoride as a binder. Then, 80 parts by weight of N-methyl-2-pyrrolidone was mixed as a solvent to prepare a carbon paste. The carbon paste was applied onto a copper foil as a current collector, dried and then pressed with a calendar roll to produce a carbon electrode.
Example 1 except that this carbon electrode was used as the negative electrode
A button type organic electrolyte secondary battery was produced in the same manner as in.

【0033】実施例3 黒鉛化カーボンとして、実施例1と同様にコークスを3
000℃で熱処理して得られたバルクカーボンを粉砕し
て平均粒径10μmの粉末を用意した。この黒鉛化カー
ボンの層間距離d002 は3.36Åであり、c軸方向の
結晶子サイズLcは853Åであった。また、低結晶カ
ーボンとして、フラン樹脂を1100℃で熱処理して得
られたものを粉砕して平均粒径1.5μmの粉末を用意
した。この低結晶カーボンの層間距離d002 は3.76
Åであり、c軸方向の結晶子サイズLcは41Åであっ
た。
Example 3 As the graphitized carbon, coke 3 was used in the same manner as in Example 1.
Bulk carbon obtained by heat treatment at 000 ° C. was crushed to prepare a powder having an average particle size of 10 μm. The interlayer distance d 002 of this graphitized carbon was 3.36Å, and the crystallite size Lc in the c-axis direction was 853Å. Further, as low crystalline carbon, furan resin obtained by heat treatment at 1100 ° C. was pulverized to prepare a powder having an average particle size of 1.5 μm. The interlayer distance d 002 of this low crystalline carbon is 3.76.
And the crystallite size Lc in the c-axis direction was 41Å.

【0034】これらの黒鉛化カーボンと低結晶カーボン
を重量比95:5で混合し、この黒鉛化カーボンと低結
晶カーボンとの混合物100重量部に対し、バインダー
としてポリフッ化ビニリデンを10重量部配合し、溶媒
としてN−メチル−2−ピロリドンを80重量部配合し
て、カーボンペーストを調製した。そのカーボンペース
トを集電体としての銅箔上に塗布し、乾燥した後、カレ
ンダーロールでプレスして、カーボン電極を作製した。
このカーボン電極を負極として用いた以外は、実施例1
と同様にしてボタン形有機電解液二次電池を作製した。
The graphitized carbon and the low crystalline carbon were mixed at a weight ratio of 95: 5, and 100 parts by weight of the mixture of the graphitized carbon and the low crystalline carbon was mixed with 10 parts by weight of polyvinylidene fluoride as a binder. Then, 80 parts by weight of N-methyl-2-pyrrolidone was mixed as a solvent to prepare a carbon paste. The carbon paste was applied onto a copper foil as a current collector, dried and then pressed with a calendar roll to produce a carbon electrode.
Example 1 except that this carbon electrode was used as the negative electrode
A button type organic electrolyte secondary battery was produced in the same manner as in.

【0035】実施例4 黒鉛化カーボンとして、コークスを3000℃で熱処理
して得られたバルクカーボンを粉砕して平均粒径20μ
mの粉末を用意した。この黒鉛化カーボンの層間距離d
002 は3.36Åであり、c軸方向の結晶子サイズLc
は790Åであった。また、低結晶カーボンとして、コ
ークスを800℃で熱処理して得られたものを粉砕して
平均粒径2.0μmの粉末を用意した。この低結晶カー
ボンの層間距離d002 は3.80Åであり、c軸方向の
結晶子サイズLcは25Åであった。
Example 4 As graphitized carbon, bulk carbon obtained by heat treatment of coke at 3000 ° C. was crushed to obtain an average particle size of 20 μm.
m powder was prepared. Interlayer distance d of this graphitized carbon
002 is 3.36Å, and the crystallite size Lc in the c-axis direction
Was 790Å. Further, as low crystalline carbon, a product obtained by heat-treating coke at 800 ° C. was pulverized to prepare a powder having an average particle size of 2.0 μm. The interlayer distance d 002 of this low crystalline carbon was 3.80Å, and the crystallite size Lc in the c-axis direction was 25Å.

【0036】これらの黒鉛化カーボンと低結晶カーボン
を重量比87:13で混合し、この黒鉛化カーボンと低
結晶カーボンとの混合物100重量部に対し、バインダ
ーとしてポリフッ化ビニリデンを10重量部配合し、溶
媒としてN−メチル−2−ピロリドンを80重量部配合
して、カーボンペーストを調製した。そのカーボンペー
ストを集電体としての銅箔上に塗布し、乾燥した後、カ
レンダーロールでプレスして、カーボン電極を作製し
た。このカーボン電極を負極として用いた以外は、実施
例1と同様にしてボタン形有機電解液二次電池を作製し
た。
These graphitized carbon and low crystalline carbon were mixed at a weight ratio of 87:13, and 100 parts by weight of the mixture of the graphitized carbon and low crystalline carbon was mixed with 10 parts by weight of polyvinylidene fluoride as a binder. Then, 80 parts by weight of N-methyl-2-pyrrolidone was mixed as a solvent to prepare a carbon paste. The carbon paste was applied onto a copper foil as a current collector, dried and then pressed with a calendar roll to produce a carbon electrode. A button type organic electrolyte secondary battery was produced in the same manner as in Example 1 except that this carbon electrode was used as the negative electrode.

【0037】比較例1 低結晶カーボンを用いず、そのぶん黒鉛化カーボンを増
量した以外は、実施例1と同様にしてボタン形有機電解
液二次電池を作製した。
Comparative Example 1 A button type organic electrolyte secondary battery was prepared in the same manner as in Example 1 except that low crystal carbon was not used and the amount of graphitized carbon was increased accordingly.

【0038】比較例2 低結晶カーボンとして、コークスを800℃で熱処理し
て得られたものを平均粒径12μmの粉末にして用いた
以外は、実施例1と同様にしてボタン形有機電解液二次
電池を作製した。
Comparative Example 2 Button-shaped organic electrolyte solution 2 was prepared in the same manner as in Example 1 except that low crystalline carbon obtained by heat treatment of coke at 800 ° C. was used as powder having an average particle size of 12 μm. A secondary battery was produced.

【0039】比較例3 低結晶カーボンとして、平均粒径43mμmのアセチレ
ンブラックを用いた以外は、実施例1と同様にしてボタ
ン形有機電解液二次電池を作製した。
Comparative Example 3 A button type organic electrolyte secondary battery was prepared in the same manner as in Example 1 except that acetylene black having an average particle size of 43 mμm was used as the low crystalline carbon.

【0040】上記のようにして作製した実施例1〜4お
よび比較例1〜3の電池を20℃、充放電電流密度0.
5mA/cm2 、電圧10mV〜1Vの範囲で充放電さ
せた時の放電容量、リテンション、0℃、充放電電流密
度2mA/cm2 、電圧−0.03〜1V(vs Li
/Li+ )の範囲で充放電させた時の放電容量、電解液
吸収率(電解液浸漬前後の負極の重量差を集電体として
の銅箔の重量を除く負極重量で除したもの)および充放
電電流密度0.5mA/cm2 、電圧10mV〜1Vの
範囲で充放電させた時の放電容量が初期の80%に低下
するまでのサイクル数を調べた。その結果を表1および
表2に示す。
The batteries of Examples 1 to 4 and Comparative Examples 1 to 3 produced as described above were stored at 20 ° C. at a charge / discharge current density of 0.
5 mA / cm 2, discharge capacity when were charged and discharged in the range of voltage 10MV~1V, retention, 0 ° C., the charge and discharge current density of 2 mA / cm 2, voltage -0.03~1V (vs Li
/ Li + ), the discharge capacity when charged and discharged, the electrolyte absorption rate (the difference in the weight of the negative electrode before and after immersion in the electrolytic solution, divided by the weight of the negative electrode excluding the weight of the copper foil as the current collector), and The number of cycles until the discharge capacity was reduced to 80% of the initial value when charging / discharging was performed at a charge / discharge current density of 0.5 mA / cm 2 and a voltage of 10 mV to 1 V was examined. The results are shown in Tables 1 and 2.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】表1に示す実施例1〜4の特性と表2に示
す比較例1〜3の特性との対比から明らかなように、実
施例1〜4は0℃での放電容量が大きく、低温負荷特性
が良好であり、またサイクル数も多く、しかも室温(2
0)℃での放電容量も大きく、高い充放電容量が維持さ
れており、またリテンションの増加も少なかった。
As is clear from the comparison between the characteristics of Examples 1 to 4 shown in Table 1 and the characteristics of Comparative Examples 1 to 3 shown in Table 2, Examples 1 to 4 have a large discharge capacity at 0 ° C. It has good low temperature load characteristics, many cycles, and room temperature (2
The discharge capacity at 0) ° C. was large, the high charge / discharge capacity was maintained, and the increase in retention was small.

【0044】これに対して、比較例1は、結晶性の高い
黒鉛化カーボンのみを用いているため、室温での充放電
容量は大きいものの、0℃での放電容量が小さく、低温
負荷特性が悪く、サイクル数も少なかった。また、比較
例2は、低結晶カーボンの平均粒径が12μmと大きい
ため、室温での充放電容量の低下が認められ、かつサイ
クル数が少なく、比較例3は、低結晶カーボンの平均粒
径が小さすぎるため、リテンションが増加しており、ま
た、サイクル数も少なかった。
On the other hand, in Comparative Example 1, since only graphitized carbon having high crystallinity is used, the charge / discharge capacity at room temperature is large, but the discharge capacity at 0 ° C. is small and the low temperature load characteristics are low. It was bad and the number of cycles was small. In Comparative Example 2, the average grain size of the low crystalline carbon was as large as 12 μm, so that the charge / discharge capacity at room temperature was decreased and the number of cycles was small. Was too small, so retention was increased and the number of cycles was also small.

【0045】[0045]

【発明の効果】以上説明したように、本発明では、負極
活物質として黒鉛化カーボンと低結晶カーボンとの混合
物を用いることによって、室温での充放電容量の大幅な
低下を招くことなく、低温負荷特性の良好な有機電解液
二次電池を提供することができた。
As described above, in the present invention, by using the mixture of graphitized carbon and low crystalline carbon as the negative electrode active material, the charge and discharge capacity at room temperature is not significantly lowered and It was possible to provide an organic electrolyte secondary battery having excellent load characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る有機電解液二次電池の一例を示す
断面図である。
FIG. 1 is a cross-sectional view showing an example of an organic electrolyte secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電解液吸収体 1 Positive electrode 2 Negative electrode 3 Separator 4 Electrolyte absorber

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有遷移金属カルコゲナイドを
正極活物質とする正極、負極および有機電解液を有する
有機電解液二次電池において、負極活物質が平均粒径9
μm以上の黒鉛化カーボンと平均粒径0.5〜2μmの
低結晶カーボンとの混合物からなることを特徴とする有
機電解液二次電池。
1. In an organic electrolyte secondary battery having a positive electrode using lithium-containing transition metal chalcogenide as a positive electrode active material, a negative electrode, and an organic electrolytic solution, the negative electrode active material has an average particle size of 9
An organic electrolyte secondary battery comprising a mixture of graphitized carbon having a size of at least μm and low crystalline carbon having an average particle size of 0.5 to 2 μm.
【請求項2】 黒鉛化カーボンと低結晶カーボンとの混
合比が重量比で98:2〜85:15であることを特徴
とする請求項1記載の有機電解液二次電池。
2. The organic electrolyte secondary battery according to claim 1, wherein the mixing ratio of the graphitized carbon and the low crystalline carbon is 98: 2 to 85:15 by weight.
【請求項3】 黒鉛化カーボンの層間距離d002 が3.
36Å以下で、c軸方向の結晶子サイズLcが400Å
以上であることを特徴とする請求項1または2記載の有
機電解液二次電池。
3. The interlayer distance d 002 of graphitized carbon is 3.
Below 36Å, the crystallite size Lc in the c-axis direction is 400Å
It is above, The organic electrolyte secondary battery of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 低結晶カーボンの層間距離d002 が3.
37Å以上で、c軸方向の結晶子サイズLcが250Å
以下であることを特徴とする請求項1または2記載の有
機電解液二次電池。
4. The interlayer distance d 002 of low crystalline carbon is 3.
Crystallite size Lc in the c-axis direction is 250Å above 37Å
The organic electrolyte secondary battery according to claim 1 or 2, wherein:
JP23920995A 1995-08-23 1995-08-23 Organic electrolyte secondary battery Expired - Fee Related JP3508889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23920995A JP3508889B2 (en) 1995-08-23 1995-08-23 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23920995A JP3508889B2 (en) 1995-08-23 1995-08-23 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0963586A true JPH0963586A (en) 1997-03-07
JP3508889B2 JP3508889B2 (en) 2004-03-22

Family

ID=17041369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23920995A Expired - Fee Related JP3508889B2 (en) 1995-08-23 1995-08-23 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3508889B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014092141A1 (en) * 2012-12-13 2017-01-12 昭和電工株式会社 Negative electrode material for lithium ion secondary battery, negative electrode sheet for lithium ion secondary battery, and lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014092141A1 (en) * 2012-12-13 2017-01-12 昭和電工株式会社 Negative electrode material for lithium ion secondary battery, negative electrode sheet for lithium ion secondary battery, and lithium secondary battery

Also Published As

Publication number Publication date
JP3508889B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
US8535829B2 (en) Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
EP0713256B1 (en) Lithium secondary battery and process for preparing negative-electrode active material for use in the same
US20070111102A1 (en) Negative electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery having the electrode, and method for producing negative electrode for non-aqueous electrolyte secondary batteries
JP2008277152A (en) Active material, electrode, battery, and manufacturing method of active material
JPH04115457A (en) Non-aqueous electrolyte secondary battery
JP2001196063A (en) Active material for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2003303585A (en) Battery
JP6376280B2 (en) Lithium ion battery, negative electrode for lithium ion battery, battery module, automobile and power storage device
US11784314B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
JP3532016B2 (en) Organic electrolyte secondary battery
US10547055B2 (en) Positive-electrode active material for nonaqueous-electrolyte secondary battery, and positive electrode and secondary battery using said positive-electrode active material
JP2003308880A (en) Method of manufacturing lithium secondary battery
JPH09161778A (en) Organic electrolyte secondary battery
JP3734145B2 (en) Lithium secondary battery
US20010031399A1 (en) Positive active material for rechargeable lithium battery and method of preparing same
JPH07134988A (en) Nonaqueous electrolyte secondary battery
JP6946536B1 (en) Lithium secondary battery
KR101065377B1 (en) Negative active material for lithium ion battery and lithium ion battery comprising the same
JP7143006B2 (en) Manufacturing method of negative electrode active material for secondary battery, negative electrode for secondary battery, and lithium secondary battery including the same
KR102320977B1 (en) Anode Active Material including Silicon Composite and Lithium Secondary Battery Comprising the Same
JP3508889B2 (en) Organic electrolyte secondary battery
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode
JPH09320570A (en) Lithium ton secondary battery
JP2003100294A (en) Negative electrode active material for battery and nonaqueous electrolyte battery using the same
JPH0963587A (en) Organic electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees