JPH0960333A - Vibration isolation device - Google Patents

Vibration isolation device

Info

Publication number
JPH0960333A
JPH0960333A JP24099895A JP24099895A JPH0960333A JP H0960333 A JPH0960333 A JP H0960333A JP 24099895 A JP24099895 A JP 24099895A JP 24099895 A JP24099895 A JP 24099895A JP H0960333 A JPH0960333 A JP H0960333A
Authority
JP
Japan
Prior art keywords
seismic isolation
rubber layer
steel plate
isolation device
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24099895A
Other languages
Japanese (ja)
Inventor
Takeru Hirakawa
長 平川
Teruo Yoneda
輝夫 米田
Shingo Takaeda
新伍 高枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP24099895A priority Critical patent/JPH0960333A/en
Publication of JPH0960333A publication Critical patent/JPH0960333A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vibration isolation device having effective base isolation for a small-scaled lightweight structure such as miniaturized building and eliminating a mold to facilitate the reduction of cost. SOLUTION: This vibration isolation device 1 is equipped with square connection steel plates 5 on both up and down sides for mounting them to the lower surface of a building A and foundation surface B. A device main body 1a is formed by laminating alternately a circular ring-shaped vibration isolation rubber layer 2 and a circular steel plate 3. A coated rubber layer 6 having effective corrosion resistance is wound on the circumference of the device main body 1a. The circular end steel plates 4 having thicker and a slightly larger outside diameter than the steel plate 3 are arranged on both up and down sides of the device main body 1a, and the end steel plate 4 are connected to the connection steel plates 5 by a large number of screw bolts arranged in the circumferential direction at equal intervals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、建造物の基礎と
地盤(地面)との間に設置され、建造物の水平方向の揺
れを吸収するための免震装置に関するもので、二階建て
や三階建ての小型のビルなどの規模の小さい、比較的軽
量な建造物に好適な免震装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation device installed between a foundation of a building and the ground (ground) to absorb horizontal shaking of the building. The present invention relates to a seismic isolation device suitable for a small-scale, relatively lightweight structure such as a small story building.

【0002】[0002]

【従来の技術】この種の免震装置は、複数の鋼板と複数
の免震ゴム層とを交互に積層し、それらの側周面を被覆
ゴムで被覆した構造を備えている。そして、免震ゴム層
の材質が天然ゴムの場合には、地震のエネルギーを吸収
する機能をもたないので、ダンパーを組み合わせたり、
あるいは地震のエネルギーを吸収する性状をもつ鉛プラ
グを免震装置の中心部に装填したりしている。また、免
震ゴム層にゴム自体がエネルギーを吸収する機能を備え
た高減衰積層ゴムを用いることにより、ダンパーや鉛プ
ラグを不要にした装置がある。
2. Description of the Related Art This type of seismic isolation device has a structure in which a plurality of steel plates and a plurality of seismic isolation rubber layers are alternately laminated and the side peripheral surfaces thereof are covered with a covering rubber. When the material of the seismic isolation rubber layer is natural rubber, it does not have the function of absorbing the energy of the earthquake, so it may be combined with a damper,
Alternatively, a lead plug, which has the property of absorbing the energy of the earthquake, is loaded in the center of the seismic isolation device. Further, there is a device that does not require a damper or a lead plug by using a high-damping laminated rubber having a function of absorbing energy in the seismic isolation rubber layer.

【0003】ところで、上記の免震装置は、通常、中型
ビルや大型ビルなどの規模の大きい重量建造物を対象と
しており、免震ゴム層の外径が小さくなると、水平変形
による曲げ応力が大きくなり過ぎ、免震ゴム層が破断す
るおそれがあるので、円形の装置の場合には外径を最低
でも500mm以上に設定した免震ゴム層と鋼板とが用
いられている。また、こうした免震装置は一つの建造物
の基礎下に間隔をあけて多数用いられるが、免震装置一
基当たりの支持荷重は最小でも百トン前後で、数百トン
に及ぶものもある。なお、鋼板と免震ゴム層の接着は、
未加硫の免震ゴム層を金型内で所定の加圧力下で加熱し
て加硫することにより行われる。
By the way, the above-mentioned seismic isolation device is generally intended for large-scale heavy buildings such as medium-sized buildings and large-sized buildings. When the outer diameter of the seismic isolation rubber layer becomes small, the bending stress due to horizontal deformation becomes large. Since the seismic isolation rubber layer may be broken too much, the seismic isolation rubber layer and the steel plate whose outer diameter is set to at least 500 mm or more are used in the case of a circular device. In addition, a large number of such seismic isolation devices are used under the foundation of a single building at intervals, but the supporting load per seismic isolation device is around 100 tons at the minimum, and some seismic isolation devices reach several hundreds of tons. In addition, the adhesion of the steel plate and the seismic isolation rubber layer,
It is carried out by heating an unvulcanized base-isolated rubber layer in a mold under a predetermined pressure and vulcanizing it.

【0004】この種の先行技術に、たとえば特公平3−
11336号広報に記載の装置がある。
The prior art of this type is disclosed in, for example, Japanese Patent Publication No.
There is a device described in No. 11336 public information.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
た従来の一般的な免震装置を小型ビルなどの、重量建造
物に比べて重量が10分の1程度の軽量建造物に適用し
ようとすると、次のような課題が生じる。
However, when the conventional general seismic isolation device described above is applied to a lightweight building such as a small building whose weight is about one tenth of that of a heavy building, The following issues arise.

【0006】 軽量建造物に配置される間隔は従来と
同程度にする必要があるため、免震装置の基数はほとん
ど変わらないので、免震装置一基当たりの支持荷重は1
0トン前後と従来の10分の1程度に軽減される。この
ため、免震装置を全体的に縮小した小型の装置にすれば
よい。しかし、地震が発生した際に軽量建造物の横揺れ
時の加速度を低減して、地震による横揺れを効果的に吸
収しようとすると、免震ゴム層の変形能力を重量建造物
用の従来の免震装置の場合と同程度にする必要があり、
そのためには、免震ゴム層が水平方向に少なくとも20
0mm〜300mmは変形可能にしなければならない。
[0006] Since it is necessary to set the intervals in the lightweight structure to the same level as the conventional one, the number of bases of the seismic isolation device hardly changes, so that the supporting load per seismic isolation device is 1
It will be reduced to around 0 tons, about 1/10 of the conventional level. Therefore, the seismic isolation device may be a small device that is wholly downsized. However, when the rolling acceleration of a lightweight building is reduced in the event of an earthquake to effectively absorb the rolling caused by the earthquake, the deformation capacity of the seismic isolation rubber layer is reduced to that of the conventional structure for heavy buildings. It is necessary to have the same level as in the case of seismic isolation device,
For that purpose, the seismic isolation rubber layer should be at least 20 horizontally.
0 mm to 300 mm must be deformable.

【0007】 免震ゴム層のゴム硬度を免震装置の支
持荷重の低減に応じて10分の1前後(ゴム硬度Hsで
例えば4〜5°)にすることができれば、免震装置を全
体的に縮小することにより対応できるが、ゴム硬度の低
減には限界があって、現在はせいぜい40°位までしか
低減できない。したがって、単に従来の免震装置を全体
的に縮小するだけでは、実施できない。
If the rubber hardness of the seismic isolation rubber layer can be set to about 1/10 (for example, 4 to 5 ° in rubber hardness Hs) according to the reduction of the supporting load of the seismic isolation device, the seismic isolation device can be used as a whole. However, there is a limit to the reduction of rubber hardness, and at present, it can be reduced to about 40 ° at most. Therefore, it cannot be implemented by simply reducing the size of the conventional seismic isolation device.

【0008】 従来の免震装置では、鋼板と免震ゴム
層との積層構造を金型内に装填して加熱することにより
実施しているため、成形するための金型が必要で、金型
の製作費が装置の製造コストを大きくするという問題が
ある。
In the conventional seismic isolation device, since a laminated structure of a steel plate and a seismic isolation rubber layer is loaded into a mold and heated, a mold for molding is required. There is a problem that the manufacturing cost of the device increases the manufacturing cost of the device.

【0009】この発明は上述の点に鑑みなされたもの
で、1)小型ビルなどの規模の小さい軽量構造物の免震に
有効で、2)金型を不要にして低コスト化が容易な免震装
置を提供することを課題にしている。
The present invention has been made in view of the above points, and is 1) effective for seismic isolation of small-scale and lightweight structures such as small buildings, and 2) is easy to reduce cost without a mold. The challenge is to provide a seismic device.

【0010】[0010]

【課題を解決するための手段】上記した課題を解決する
ために本発明の免震装置は、a)鋼板と免震ゴム層とを交
互に積層し、それらの側周面を被覆ゴムで被覆した構造
を備えた免震装置において、b)前記鋼板を円形又は正多
角形とし、前記免震ゴム層を前記鋼板の形状に対応する
リング状としている。なお、本発明の免震装置における
上記免震ゴム層は、ゴム自体が地震のエネルギーを吸収
する性状を有する高減衰積層ゴムからなる。
In order to solve the above-mentioned problems, the seismic isolation device of the present invention comprises: a) steel plates and seismic isolation rubber layers which are alternately laminated and whose side peripheral surfaces are covered with a covering rubber. In the seismic isolation device having the above structure, b) the steel plate is circular or regular polygonal, and the seismic isolation rubber layer is ring-shaped corresponding to the shape of the steel plate. The seismic isolation rubber layer in the seismic isolation device of the present invention is made of a high damping laminated rubber having a property that the rubber itself absorbs earthquake energy.

【0011】上記の構成を有する本発明の免震装置によ
れば、従来の免震装置が対象としていた大規模の重量建
造物と違って、二階建てや三階建ての小型ビルのような
軽量建造物の基礎下に所定の間隔をあけて複数設置した
場合に軽量建造物を確実に支持するとともに、従来の全
面的に板状の免震ゴム層に比べて断面積が大幅に削減
(例えば10分の1)されて、バネ定数が大幅に小さく
(例えば10分の1)なる。いいかえれば、免震ゴム層
全体の水平方向への変形を許容するゴム硬さは断面積に
比例することから、ゴムの硬度を従来のそれと同程度
(例えば40°Hs)に設定している場合でも、免震ゴ
ム層全体の水平方向への変形を許容するゴム硬さが大幅
に小さく(例えば10分の1)なる。
According to the seismic isolation device of the present invention having the above-mentioned structure, unlike the large-scale heavy construction which the conventional seismic isolation device has been intended for, it is lightweight such as a two-story or three-story small building. It reliably supports lightweight structures when they are installed under the foundation of a structure with a certain space between them, and the cross-sectional area is significantly reduced compared to the conventional plate-like base isolation rubber layer. 1/10), and the spring constant is significantly reduced (for example, 1/10). In other words, since the rubber hardness that allows horizontal deformation of the entire seismic isolation rubber layer is proportional to the cross-sectional area, when the rubber hardness is set to the same level as that of the conventional one (for example, 40 ° Hs) However, the rubber hardness allowing the horizontal deformation of the entire seismic isolation rubber layer is significantly reduced (for example, 1/10).

【0012】一方、リング状の免震ゴム層の外形(円形
の倍は直径)は従来のそれと変わらないから、地震の際
に免震ゴム層が水平変形することによる曲げ応力も従来
のそれと変わらなくなるので、水平方向への剪断変形に
対応する変形能力(変形量)が重量建造物の場合とほぼ
同程度まで確保される。このため、地震の際に免震装置
上の軽量建造物は、従来の免震装置による免震作用と変
わらない程度に小さな加速度で大きな振幅(例えば20
0mm前後)で水平方向へ全体的にゆっくりと揺れ、本
来ならば(免震装置が設置されていない場合は)軽量建
造物自体に作用していた水平方向における剪断変形のエ
ネルギーが免震ゴム層で吸収されて減衰され、軽量建造
物の損壊や座屈が防止される。また、リング状にしたこ
とで外形を大きくできるので、免震ゴム層の曲げ応力
(免震ゴム層に作用する主として引張応力)を抑えられ
るから、請求項2に記載のように常温の下で鋼板に接着
剤により接着できる。
On the other hand, since the outer shape of the ring-shaped seismic isolation rubber layer (the diameter of a circle is the diameter) is the same as that of the conventional one, the bending stress due to the horizontal deformation of the seismic isolation rubber layer is also the same as that of the conventional one. Since it disappears, the deformation ability (deformation amount) corresponding to the shearing deformation in the horizontal direction is secured to about the same level as in the case of heavy construction. Therefore, in the event of an earthquake, a lightweight building on a seismic isolation device has a large amplitude (for example, 20%) with a small acceleration that does not differ from the seismic isolation effect of a conventional seismic isolation device.
About 0 mm), it slowly sways in the horizontal direction, and originally (when no seismic isolation device is installed), the energy of shear deformation in the horizontal direction that originally acted on the lightweight building itself is the seismic isolation rubber layer. It is absorbed and dampened by and prevents damage and buckling of lightweight structures. In addition, since the outer shape can be increased by forming the ring shape, bending stress of the base isolation rubber layer (mainly tensile stress acting on the base isolation rubber layer) can be suppressed. Therefore, at room temperature as described in claim 2. Can be adhered to steel plate with adhesive.

【0013】請求項2記載のように、c)前記免震ゴム板
は、加硫済みの板状ゴムをリング状に打ち抜いて形成
し、前記鋼板に対し接着剤により常温で接着することが
好ましい。
As described in claim 2, c) it is preferable that the seismic isolation rubber plate is formed by punching a vulcanized plate-shaped rubber into a ring shape and bonded to the steel plate at room temperature with an adhesive. .

【0014】上記の免震装置によれば、同装置の製造、
つまり鋼板と免震ゴム層との接着(積層)に際して金型
を使用する必要がないから、高価な金型が不要でまた加
硫工程も省かれるため、製造が容易で大幅なコストダウ
ンが図られる。また免震ゴム層を鋼板に加硫接着する場
合にはゴムの品質にばらつきが生じるが、加硫済みゴム
層を常温接着するからゴムの品質が安定し、免震装置の
品質も安定する。
According to the seismic isolation device described above,
In other words, since it is not necessary to use a mold for bonding (laminating) the steel plate and the seismic isolation rubber layer, an expensive mold is not required and the vulcanization process is omitted. Therefore, manufacturing is easy and significant cost reduction is achieved. To be Further, when the seismic isolation rubber layer is vulcanized and bonded to the steel plate, the quality of the rubber varies, but since the vulcanized rubber layer is bonded at room temperature, the quality of the rubber is stable and the quality of the seismic isolation device is also stable.

【0015】請求項3記載のように、d)前記鋼板の中心
部に開口を設けるのが望ましい。
As described in claim 3, d) it is desirable to provide an opening at the center of the steel plate.

【0016】上記の免震装置によると、鉛直方向に立設
した芯棒に鋼板の中心部開口を通すことにより、多数枚
のリング状免震ゴム層と多数枚の鋼板とを芯を合わせて
交互に積層することができ、積層作業を効率よく行え
る。また、鋼板とリング状免震ゴム層とを積層する際に
中心部開口から空気が抜けるから、鋼板間の免震ゴム層
内に空気が溜まることがない。
According to the above-described seismic isolation device, a large number of ring-shaped seismic isolation rubber layers and a large number of steel plates are aligned with each other by passing the central opening of the steel plate through a vertically extending core rod. The layers can be stacked alternately, and the stacking work can be performed efficiently. Further, since air escapes from the central opening when laminating the steel sheet and the ring-shaped seismic isolation rubber layer, air does not collect in the seismic isolation rubber layer between the steel sheets.

【0017】請求項4記載のように、前記鋼板を前記免
震ゴム層の形状に対応するリング状に形成することがで
きる。なお、鋼板の厚さは円形板又は多角形板の場合に
比べて厚くする必要がある。
As described in claim 4, the steel plate can be formed in a ring shape corresponding to the shape of the seismic isolation rubber layer. The thickness of the steel plate needs to be thicker than that of a circular plate or a polygonal plate.

【0018】上記の免震装置によると、免震ゴム層だけ
でなく免震ゴム層と相互に積層される鋼板もリング状に
形成されているから、取り扱いが容易で装置の製作が簡
単になる。なお、鋼板をリング状にした場合、地震の際
の水平変形による曲げ応力が大きくなるが、板厚を厚く
することで対応できる。
According to the above-mentioned seismic isolation device, not only the seismic isolation rubber layer but also the steel plates laminated with the seismic isolation rubber layer are formed in a ring shape, so that the seismic isolation device can be easily handled and the device can be easily manufactured. . When the steel plate is formed into a ring shape, bending stress due to horizontal deformation during an earthquake increases, but it can be dealt with by increasing the plate thickness.

【0019】[0019]

【発明の実施の形態】以下、この発明にかかる免震装置
の実施の形態を図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a seismic isolation device according to the present invention will be described below with reference to the drawings.

【0020】図1は低層階(2〜3階建て)ビルの下面
と基礎面との間に設置された一つの免震装置を示すもの
で、図1(a)の左半分は断面図を、右半分は正面図を示
し、図1(b)は図1(a)のb−b線断面図である。図2
(a)は免震装置の装置本体を一部を切欠いて断面で表し
た斜視図、図2(b)は円形のリング状免震ゴム層と円形
鋼板とを示す斜視図である。
FIG. 1 shows one seismic isolation device installed between the lower surface of a low-rise building (2 to 3 floors) and the foundation surface. The left half of FIG. 1 (a) is a sectional view. The right half shows a front view, and FIG. 1 (b) is a sectional view taken along line bb of FIG. 1 (a). FIG.
FIG. 2A is a perspective view showing a section of a device body of a seismic isolation device with a part cut away, and FIG. 2B is a perspective view showing a circular ring-shaped seismic isolation rubber layer and a circular steel plate.

【0021】図1に示すように、免震装置1は、ビルA
の下面と基礎面Bとに取り付けるための正方形の取合鋼
板5を上下両面に備えている。装置本体1aは円形のリ
ング状免震ゴム層2と円形鋼板3とを交互に積層した構
造からなる。本例では、免震ゴム層2に高減衰免震ゴム
を用いているが、この高減衰免震ゴムは「荷重支持機
能」および「バネ機能」と「減衰機能」とを同時に兼ね
備えている。装置本体1aの周囲には、防錆に有効な被
覆ゴム層6が巻装されている。また装置本体1aの上下
両面には、他の鋼板3に比べて厚く外径がやや大きい円
形の端部鋼板4が配置され、各端部鋼板4は円周方向に
等間隔に配置された多数のネジボルト4aにより取合鋼
板5に連結されているが、各ネジボルト4aは取合鋼板
5側から端部鋼板4に向けてネジ項4bに螺着されてい
る。そして、取合鋼板5の各隅角部にはボルト孔5bが
穿設され、それらのボルト孔5bに通したアンカーボル
ト5aをビルA下面(鉄筋コンクリート部)および基礎
面(鉄筋コンクリート部)に固着することによって、ビ
ルAの下面と基礎面Bとの間に免震装置1が介設され
る。
As shown in FIG. 1, the seismic isolation device 1 is a building A.
Square bonding steel plates 5 for attachment to the lower surface of the base and the base surface B are provided on both upper and lower surfaces. The device body 1a has a structure in which circular ring-shaped seismic isolation rubber layers 2 and circular steel plates 3 are alternately laminated. In this example, a high damping seismic isolation rubber is used for the seismic isolation rubber layer 2, but this high damping seismic isolation rubber has both a “load supporting function” and a “spring function” and a “damping function” at the same time. A coating rubber layer 6 effective for rust prevention is wound around the apparatus main body 1a. Further, circular end steel plates 4 that are thicker and have a slightly larger outer diameter than the other steel plates 3 are arranged on both upper and lower surfaces of the apparatus main body 1a, and each end steel plate 4 is arranged at equal intervals in the circumferential direction. The screw bolts 4a are connected to the joining steel plate 5, but each of the screw bolts 4a is screwed to the screw item 4b from the joining steel plate 5 side toward the end steel plate 4. Then, bolt holes 5b are formed in each corner of the laminated steel plate 5, and the anchor bolts 5a passed through the bolt holes 5b are fixed to the lower surface (reinforced concrete portion) of the building A and the foundation surface (reinforced concrete portion). As a result, the seismic isolation device 1 is provided between the lower surface of the building A and the foundation surface B.

【0022】本実施形態にかかる免震装置1において
は、装置本体1aの免震ゴム層2と円形鋼板3と積層は
次のようにして行われる。すなわち、加硫済みの免震ゴ
ム板をプレス機械によってリング状に打ち抜き、接着剤
を用いてリング状免震ゴム層2を円形鋼板3の外周縁部
に接着することにより常温で積層している。図2に示す
ように、鋼板3の中心部には開口3aを設けて、鉛直に
立設した心棒に鋼板3の開口3aを通して心合わせしな
がら、リング状免震ゴム層2を鋼板3・3間に介装して
いる。このとき鋼板3の開口3aから空気が抜けるの
で、免震ゴム層2内の鋼板3・3間に空気が溜まるのが
防止される。こうして所定枚数の免震ゴム層2と円形鋼
板3とが一体に積層されたのち、その側周面に被覆ゴム
6(図1)が接着剤を用いて巻き付けられる。
In the seismic isolation device 1 according to this embodiment, the seismic isolation rubber layer 2 and the circular steel plate 3 of the device body 1a are laminated as follows. That is, a vulcanized seismic isolation rubber plate is punched into a ring shape by a press machine, and the ring-shaped seismic isolation rubber layer 2 is adhered to the outer peripheral edge portion of the circular steel plate 3 by using an adhesive to laminate them at room temperature. . As shown in FIG. 2, an opening 3a is provided in the central portion of the steel plate 3, and the ring-shaped seismic isolation rubber layer 2 is attached to the steel plates 3 and 3 while aligning the vertically standing mandrel through the opening 3a of the steel plate 3. It is interposed between them. At this time, air escapes from the opening 3a of the steel plate 3, so that the air is prevented from accumulating between the steel plates 3 and 3 in the seismic isolation rubber layer 2. In this way, a predetermined number of the seismic isolation rubber layer 2 and the circular steel plate 3 are integrally laminated, and then the covering rubber 6 (FIG. 1) is wound around the side peripheral surface thereof using an adhesive.

【0023】上記に一実施形態を示したが、本発明の免
震装置は次のように実施することができる。
Although one embodiment has been shown above, the seismic isolation device of the present invention can be implemented as follows.

【0024】1) リング状免震ゴム層2および鋼板3の
形状を、それぞれ相互に対応する多角形にする。
1) The ring-shaped seismic isolation rubber layer 2 and the steel plate 3 are formed into polygons corresponding to each other.

【0025】2) 鋼板3の厚さを厚くして剛性を上げ、
免震ゴム層2に対応するリング状に形成し、リング状免
震ゴム層2と鋼板3とを交互に積層する。この場合に
は、上記実施形態で示したように接着剤により常温で接
着する方法のほか、3)のように加硫接着してもよい。
2) Increase the rigidity by increasing the thickness of the steel plate 3,
It is formed in a ring shape corresponding to the seismic isolation rubber layer 2, and the ring-shaped seismic isolation rubber layers 2 and the steel plates 3 are alternately laminated. In this case, in addition to the method of adhering at room temperature with an adhesive as shown in the above embodiment, vulcanization adhering may be performed as in 3).

【0026】3) 鋼板3および免震ゴム層2の外径より
やや大きい内径を有する凹状金型と鋼板3および免震ゴ
ム層2の内径よりわずかに小さい外径を有する凸状金型
とを用い、未加硫の免震ゴム層2と鋼板3とを凸状金型
の周囲に交互に積み重ねた状態で、免震ゴム層2と鋼板
3の周囲に未加硫の被覆ゴム層6を巻き付け、凸状金型
ごと凹状金型内に挿入して加圧加熱することにより加硫
接着する。
3) A concave mold having an inner diameter slightly larger than the outer diameters of the steel plate 3 and the seismic isolation rubber layer 2 and a convex mold having an outer diameter slightly smaller than the inner diameters of the steel plate 3 and the seismic isolation rubber layer 2. Using the unvulcanized seismic isolation rubber layer 2 and the steel plate 3 alternately stacked around the convex mold, the unvulcanized coated rubber layer 6 is provided around the seismic isolation rubber layer 2 and the steel plate 3. It is wound, inserted together with the convex mold into the concave mold, and vulcanized and adhered by heating under pressure.

【0027】[0027]

【実施例】本例における各構成部材の寸法等について具
体的に示すと、 免震装置1の鉛直支持荷重:7トン/1基 免震装置1(装置本体1a)の水平バネ剛性(バネ定
数):67kg/cm 免震ゴム層2:外径×内径×厚さ×枚数=520mm×4
87mm×2mm×70枚 免震ゴム層2の物性値: ゴム硬度40°Hs相当;G(剪断弾性係数)=4.0k
g/cm2,k(補正係数)=0.89,E∞(体積弾
性率)=20400kg/cm2 鋼板3:外径×厚さ×枚数=520mm×0.8mm×69
枚 端部鋼板4:外径×厚さ×枚数=520mm×12mm×2
枚 取合鋼板5:縦長×横長×厚さ×枚数=540mm×54
0mm×25mm×2枚 ネジボルト4a:外径×個数×箇所=10mm×12個×
2箇所 アンカーボルト5a:外径×個数×箇所=28mm×4個
×2箇所 上記実施例の免震装置1によると、同装置一基当たりで
7トン程度の鉛直荷重を鋼板3が確実に支持するとも
に、鋼板3および免震ゴム層2の厚さを極力薄くして積
層枚数を大幅に増やしてたことにより、ゴムの剛性が増
大するにもかかわらず、免震ゴム層全体がゴム単体の状
態とほぼ同様な柔らかさで水平方向へ変形するため、水
平方向の変形能力は十分に確保される。このため、地震
の際には、免震装置1を介して支承された軽量建造物
(ビル)Aが、小さな加速度で大きな振幅で水平方向へ
全体的にゆっくりと揺れ、水平方向における剪断変形の
エネルギーが免震ゴム層2で吸収されて減衰され、軽量
建造物Aの損壊や座屈が防止される。
[Examples] The dimensions of each component in this example will be specifically described. Vertical support load of seismic isolation device 1: 7 tons / unit Horizontal spring rigidity (spring constant) of seismic isolation device 1 (device body 1a) ): 67 kg / cm Seismic isolation rubber layer 2: outer diameter x inner diameter x thickness x number of sheets = 520 mm x 4
87 mm x 2 mm x 70 sheets Physical property value of seismic isolation rubber layer 2: Rubber hardness 40 ° Hs equivalent; G (shear elastic modulus) = 4.0k
g / cm 2 , k (correction coefficient) = 0.89, E∞ (bulk modulus) = 20400 kg / cm 2 Steel plate 3: outer diameter × thickness × number of sheets = 520 mm × 0.8 mm × 69
Sheet End Steel Plate 4: Outer Diameter x Thickness x Number of Sheets = 520mm x 12mm x 2
Sheet Laminated Steel Plate 5: Vertical x Horizontal x Thickness x Number of Sheets = 540 mm x 54
0mm x 25mm x 2 pieces Screw bolt 4a: outer diameter x number x location = 10mm x 12 pieces x
2 places Anchor bolt 5a: outer diameter x number x places = 28 mm x 4 pieces x 2 places According to the seismic isolation device 1 of the above-mentioned example, the steel plate 3 reliably supports a vertical load of about 7 tons per unit of the device. In addition, since the thickness of the steel plate 3 and the seismic isolation rubber layer 2 is made as thin as possible and the number of laminated layers is greatly increased, the rigidity of the rubber is increased, but the entire seismic isolation rubber layer is made of a single rubber. Since it deforms in the horizontal direction with almost the same softness as the state, the horizontal deformation ability is sufficiently secured. Therefore, in the event of an earthquake, the lightweight building (building) A supported by the seismic isolation device 1 shakes slowly in the horizontal direction with a small amplitude and a large amplitude, and shear deformation in the horizontal direction occurs. Energy is absorbed and attenuated by the seismic isolation rubber layer 2, and damage or buckling of the lightweight building A is prevented.

【0028】ここで、上記実施例についての各数値をど
のようにして求めたかを、計算式に基づいて説明する。
Here, how each of the numerical values in the above embodiment is obtained will be described based on the calculation formula.

【0029】小型ビルAの重量Wを28トンと仮定し、
図3の示すように、この小型ビルAの下面の四隅に免震
装置1を設置する。したがって、免震装置/1基当たり
の鉛直支持荷重は7トンになる。ここで経験的に、免震
装置1による目標の固有振動数T=2秒、等価減衰比h
e=0.15に設定する。また、過去の代表的な地震波形
による応答解析から、免震ゴム層2の最大水平変形量
(免震装置1の変形能力)δmax=300mmとする。 ◎免震装置1の設計条件: Pv=W/4=7トン=7000kg 水平バネ定数K,K=m(2π/T)2,m=Pv/g K=(Pv/g)×(2π/T)2=7000/980×(2π/
2)2=70.5kg/cm ◎免震ゴム層2に使用するゴム物性値: ゴム硬度40°Hs相当; G(剪断弾性係数)=4.0kg/
cm2,k(補正係数)=0.89, E∞(体積弾性率)=2
0400kg/cm2 ゴムの設計用許容応力度;圧縮σc=500kg/cm2,引張
(ゴム)σt=20kg/cm2,剪断τ=20kg/cm2,引張(ゴム接
着面)σb=15kg/cm2 ◎免震装置1の形態設計:経験則に基づきあらかじめ下
記部材の寸法等を、次のように一応仮定する。 免震ゴム層の外径(mm)×内径(mm)×厚さ(mm)×枚数=52
0×487(内径)×2×70 鋼板の外径(mm)×厚さ(mm)×枚数=520×0.8×69 免震ゴム層の断面積A=π/4×(522−48.72)=261cm2 バネ定数Kh=67kg/cm …… Lindleyの式に基
づき計算した値[但し、圧縮がないと仮定した場合のバ
ネ定数Kh=(4.0×261)/14=74.6kg/cm]
Assuming that the weight W of the small building A is 28 tons,
As shown in FIG. 3, seismic isolation devices 1 are installed at the four corners of the lower surface of the small building A. Therefore, the vertical support load per seismic isolation device / unit will be 7 tons. Here, empirically, the target natural frequency T = 2 seconds by the seismic isolation device 1 and the equivalent damping ratio h
Set e = 0.15. In addition, from the response analysis based on typical earthquake waveforms in the past, the maximum horizontal deformation amount of the seismic isolation rubber layer 2 (deformation capacity of the seismic isolation device 1) δ max = 300 mm. ◎ Design conditions for seismic isolation device 1: Pv = W / 4 = 7 ton = 7000 kg Horizontal spring constant K, K = m (2π / T) 2 , m = Pv / g K = (Pv / g) × (2π / T) 2 = 7000/980 x (2π /
2) 2 = 70.5 kg / cm ◎ Physical properties of rubber used for the seismic isolation rubber layer 2: equivalent to rubber hardness of 40 ° Hs; G (shear elastic modulus) = 4.0 kg /
cm 2 , k (correction coefficient) = 0.89, E∞ (bulk modulus) = 2
0400kg / cm 2 Allowable stress for rubber design; compression σ c = 500kg / cm 2 , tensile
(Rubber) σ t = 20 kg / cm 2 , shear τ = 20 kg / cm 2 , tensile (rubber adhesive surface) σ b = 15 kg / cm 2 ◎ Design of the seismic isolation device 1: Dimensions of the following members based on experience rules Etc. are tentatively assumed as follows. Seismic isolation rubber layer outer diameter (mm) x inner diameter (mm) x thickness (mm) x number of sheets = 52
0 × 487 (inner diameter) × 2 × 70 Steel plate outer diameter (mm) × thickness (mm) × number of sheets = 520 × 0.8 × 69 Cross-section area of seismic isolation rubber layer A = π / 4 × (52 2 −48.7 2 ) = 261cm 2 Spring constant Kh = 67kg / cm …… Value calculated based on Lindley's formula [However, spring constant Kh = (4.0 × 261) /14=74.6kg/cm assuming no compression)

【0030】◎免震ゴム層2の強度(応力) 水平変形δ=30cm,バネ定数Kh=67kg/cmとすると、 剪断応力τ=Ph/A=Kh・δ/A=67×30÷261=7.7kg/cm2<20kg/cm2(許容 剪断応力) 圧縮応力σCmax=+σh bc+σv bc+σv c=+16/π・Kh・δ・(H/D1 3)・1/{1 −(D2/D1)4}・{1+Pv/Kh・1/H}+Pv/A =66kg/cm2<500kg/cm2(許容圧縮応力) 引張応力σtmax=σh bt+σv bt−σv c=+16/π・Kh・δ・(H/D1 3)・1/{1 −(D2/D1)4}・{1+Pv/Kh・1/H}−Pv/A =12kg/cm2<15kg/cm2(ゴム接着面の許容引張応力) また、上記の式から免震ゴム層2の水平変形による引張
応力σtを抑えるためには、免震ゴム層2の外径(D1
を大きくすることが有効であることが確認される。
◎ Strength (stress) of seismic isolation rubber layer 2 If horizontal deformation δ = 30 cm and spring constant Kh = 67 kg / cm, shear stress τ = Ph / A = Kh · δ / A = 67 × 30 ÷ 261 = 7.7kg / cm 2 <20kg / cm 2 ( allowable shear stress) compressive stress σ Cmax = + σ h bc + σ v bc + σ v c = + 16 / π · Kh · δ · (H / D 1 3) · 1 / {1 − (D 2 / D 1 ) 4 } ・ {1 + Pv / Kh ・ 1 / H} + Pv / A = 66kg / cm 2 <500kg / cm 2 (Allowable compressive stress) Tensile stress σ tmax = σ h bt + σ v bt σ v c = + 16 / π · Kh · δ · (H / D 1 3) · 1 / {1 - (D 2 / D 1) 4} · {1 + Pv / Kh · 1 / H} -Pv / A = 12kg / cm 2 <15kg / cm 2 (Allowable tensile stress of rubber bonded surface) In order to suppress the tensile stress σ t due to horizontal deformation of the seismic isolation rubber layer 2 from the above formula, the outer diameter of the seismic isolation rubber layer 2 (D 1 )
It is confirmed that increasing the value is effective.

【0031】[0031]

【比較例】免震ゴム層2の物性値は上記実施例と同一と
する。
[Comparative Example] The physical properties of the seismic isolation rubber layer 2 are the same as those in the above example.

【0032】 目標周期:T=2.0〜2.2秒 鉛直支持荷重:Aタイプ;Pv=70トン Bタイプ;Pv=7トン 本実施例;Pv=7トン 重量建造物用 軽量建造物用 Aタイプ Bタイプ 本実施例 目標バネ定数: 580■700kg/cm 58■70kg/cm 58■70kg/cm 免震ゴム層の外径(mm)×厚さ(mm)×枚数: 520×6×22 180×3×45 520×487(内径)×2×70 鋼板の外径(mm)×厚さ(mm)×枚数: 520×2.8×21 180×1.2×44 520×0.8×69 ゴム層断面積: 2123cm2 254.5cm2 261cm2 全ゴム層高さ: 132mm 135mm 140mm ゴム層・鋼板全高さ: 190.8mm 187.8mm 195.2mm バネ定数: 646kg/cm 66kg/cm 67kg/cm 水平変形時最大応力 水平変形δ(mm) δ=200,δ=300 δ=200,δ=300 δ=200,δ=300 面圧σLO(kg/cm2): 33(δ=0) 28(δ=0) 27 (δ=0) 剪断応力τ(kg/cm2): 6 9 5 8 5 8 圧縮応力σc(kg/cm2):93 123 171 243 53 66 引張応力σt(kg/cm2):27 57 116 188 −1 12 接着方法:加硫によりσtに対応可/σtが過大で実施不可/σtが小で常温接着可 ◎Aタイプは高減衰免震ゴムを用いた従来構造の装置 ◎Bタイプは従来構造をゴム層断面を縮小して軽量建造物に適用した装置Target period: T = 2.0 to 2.2 seconds Vertical support load: A type; Pv = 70 tons B type; Pv = 7 tons This embodiment; Pv = 7 tons Heavy construction For lightweight construction A type B type This example Target spring constant: 580 ■ 700kg / cm 58 ■ 70kg / cm 58 ■ 70kg / cm Seismic isolation rubber layer outer diameter (mm) × thickness (mm) × number of sheets: 520 × 6 × 22 180 × 3 × 45 520 × 487 (inner diameter) × 2 × 70 Steel plate outer diameter (mm) × thickness (mm) × number of sheets: 520 × 2.8 × 21 180 × 1.2 × 44 520 × 0.8 × 69 rubber layer cross-sectional area : 2123cm 2 254.5cm 2 261cm 2 Total rubber layer height: 132mm 135mm 140mm Rubber layer / steel plate total height: 190.8mm 187.8mm 195.2mm Spring constant: 646kg / cm 66kg / cm 67kg / cm Maximum stress horizontal deformation δ (mm) δ = 200, δ = 300 δ = 200, δ = 300 δ = 200, δ = 300 Surface pressure σ LO (kg / cm 2 ): 33 (δ = 0) 28 (δ = 0) 27 (δ = 0) Shear stress τ (kg / cm 2 ): 6 9 5 8 5 8 Compressive stress σ c (kg / cm 2 ): 93 123 171 243 53 66 Tensile stress σ t (kg / cm 2 ): 27 57 116 188 -1 12 bonding method: vulcanization More sigma t in-available / sigma t excessive and incapable / sigma t is cold bonding friendly small ◎ A type high damping seismic isolation rubber device of the conventional structure using the ◎ B type rubber layer section a conventional structure Equipment reduced in size and applied to lightweight construction

【0033】上記の比較結果から認められるとおり、従
来の重量建造物用であるAタイプの免震装置を全体的に
縮小し、とくに免震ゴム層の断面積を縮小して軽量建造
物に適用可能な水平バネ定数(水平バネ剛性)を得よう
とすると、水平変形量δを例えば200mmに設定した場合
にも引張応力σtがゴムの許容引張応力である20kg/cm2
をはるかに越えるから、実施できないことが分かる。な
お、従来のAタイプについても引張応力σtがゴムの許
容引張応力を越えているが、比較を容易にするため免震
ゴム層の外径を520mmと最低限の数値に設定したためで
あり、実際には600〜700mm以上に設定するため、許容引
張応力の範囲内に収まることになる。
As can be seen from the above comparison results, the conventional type A seismic isolation device for heavy buildings has been reduced in size as a whole, and in particular, the cross-sectional area of the seismic isolation rubber layer has been reduced to apply to lightweight construction. To obtain a possible horizontal spring constant (horizontal spring rigidity), the tensile stress σ t is 20 kg / cm 2 which is the allowable tensile stress of the rubber even when the horizontal deformation amount δ is set to 200 mm, for example.
It means that it cannot be implemented because it goes far beyond. The tensile stress σ t of the conventional A type exceeds the allowable tensile stress of the rubber, but this is because the outer diameter of the seismic isolation rubber layer is set to the minimum value of 520 mm for easy comparison. Actually, it is set to 600 to 700 mm or more, so that it falls within the range of allowable tensile stress.

【0034】これに対し、本発明の実施例にかかる免震
装置では、水平変形量δを200mmに設定した場合には引
張応力σが−(マイナス)となって圧縮応力となり、
また水平変形量δを300mmに設定した場合には引張応力
σtが12kg/cm2で、ゴム接着面の許容引張応力である20k
g/cm2以下になるから、十分に実施できるだけでなく、
加硫接着に比べて接着能力はやや低いが、金型が不要に
なるなどの利点をもつ接着剤を用いた常温接着が可能に
なる。なお、上記に示した数値はあくまで一例であり、
免震装置を設置しようとする建造物の重量(正確には、
1基当たりの鉛直支持荷重)に応じて任意に設定できる
ことは言うまでもない。また、本発明に免震装置はとく
に軽量建造物に好適であるが、比較的重量のある中層階
ビルなどにも適用できる。
On the other hand, in the seismic isolation device according to the embodiment of the present invention, when the horizontal deformation amount δ is set to 200 mm, the tensile stress σ t becomes-(minus) and becomes the compressive stress,
When the horizontal deformation amount δ is set to 300 mm, the tensile stress σ t is 12 kg / cm 2 , which is the allowable tensile stress of the rubber bonded surface of 20 k / cm 2.
Since it will be g / cm 2 or less, not only can it be fully implemented,
Although the bonding ability is slightly lower than that of vulcanization bonding, room temperature bonding using an adhesive that has the advantage of eliminating the need for molds becomes possible. In addition, the numerical value shown above is an example to the last,
The weight of the building on which the seismic isolation device is to be installed (to be exact,
It goes without saying that it can be arbitrarily set according to the vertical support load per unit). Further, although the seismic isolation device of the present invention is particularly suitable for a lightweight building, it can be applied to a comparatively heavy building such as a middle floor building.

【0035】[0035]

【発明の効果】以上説明したことから明らかなように、
この発明の免震装置には、次のような優れた効果があ
る。 (1) 小型ビルなどの規模の小さい軽量構造物の免震にと
くに効果的である。また免震ゴム層をリング状にしたこ
とにより断面積を小さくしたにもかかわらず、外形を大
きくできるので、免震ゴム層の曲げ応力を抑えられるか
ら耐久性が向上し長期間安定して使用できる。
As is apparent from the above description,
The seismic isolation device of the present invention has the following excellent effects. (1) It is particularly effective for seismic isolation of small and lightweight structures such as small buildings. In addition, since the seismic isolation rubber layer has a ring-shaped cross-sectional area, it is possible to increase the outer shape, so the bending stress of the seismic isolation rubber layer can be suppressed, which improves durability and ensures stable long-term use. it can.

【0036】(2) 請求項2記載の装置は、鋼板と免震ゴ
ム層との接着(積層)に際して金型を使用する必要がな
いから、製造が容易で大幅なコストダウンが図られる。
また加硫済み免震ゴム層を常温接着するからゴムの品質
が安定し、免震装置の品質も安定する。
(2) In the device according to the second aspect, it is not necessary to use a mold for adhering (laminating) the steel plate and the seismic isolation rubber layer, so that the manufacturing is easy and the cost can be largely reduced.
Also, since the vulcanized seismic isolation rubber layer is bonded at room temperature, the quality of the rubber is stable and the quality of the seismic isolation device is also stable.

【0037】(3) 請求項3記載の装置は、鉛直方向に立
設した芯棒に鋼板の中心部開口を通すことにより、多数
枚のリング状免震ゴム層と多数枚の鋼板とを芯を合わせ
て交互に積層することができ、積層作業を効率よく行え
るとともに、鋼板とリング状免震ゴム層とを積層する際
に中心部開口から空気が抜けるから、鋼板間の免震ゴム
層内に空気が溜まることがない。
(3) In the device according to the third aspect, a plurality of ring-shaped seismic isolation rubber layers and a plurality of steel plates are cored by passing a central opening of the steel plate through a core rod standing upright in the vertical direction. Can be stacked alternately, and the stacking work can be done efficiently, and when stacking the steel plate and the ring-shaped seismic isolation rubber layer, air escapes from the center opening, so Air does not collect in the.

【0038】(4) 請求項4記載の装置は、免震ゴム層だ
けでなく免震ゴム層と相互に積層される鋼板もリング状
に形成されているから、取り扱いが容易で装置の製作が
簡単になる。
(4) In the device according to claim 4, not only the seismic isolation rubber layer but also the steel plates laminated with the seismic isolation rubber layer are formed in a ring shape, so that the device is easy to handle and the device can be manufactured. It will be easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】低層階(2〜3階建て)ビルの下面と基礎面と
の間に設置された本発明の実施形態にかかる免震装置の
一つを示すもので、図1(a)の左半分は断面図を、右半
分は正面図を示し、図1(b)は図1(a)のb−b線断面
図である。
1 shows one of the seismic isolation devices according to an embodiment of the present invention installed between a lower surface of a low-rise building (2 to 3 floors) and a foundation surface, and FIG. The left half shows a sectional view, the right half shows a front view, and FIG. 1B is a sectional view taken along line bb of FIG. 1A.

【図2】図2(a)は免震装置の装置本体を一部を切欠い
て断面で表した斜視図、図2(b)は円形のリング状免震
ゴム層と円形鋼板とを示す斜視図である。
FIG. 2 (a) is a perspective view in which a part of the device body of the seismic isolation device is cut away to show a cross section, and FIG. 2 (b) is a perspective view showing a circular ring-shaped seismic isolation rubber layer and a circular steel plate. It is a figure.

【図3】2階建てビルの下面と基礎面との間に免震装置
を設置した状態を概略的に示す正面図である。
FIG. 3 is a front view schematically showing a state where a seismic isolation device is installed between the lower surface of a two-story building and the foundation surface.

【符号の説明】[Explanation of symbols]

1 免震装置 1a装置本体 2 免震ゴム層 3 鋼板 4 端部鋼板 5 取合鋼板 6 被覆ゴム A 小型ビル(軽量建造物) B 基礎面 1 seismic isolation device 1a device body 2 seismic isolation rubber layer 3 steel plate 4 end steel plate 5 joining steel plate 6 coated rubber A small building (lightweight building) B foundation surface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鋼板と免震ゴム層とを交互に積層し、そ
れらの側周面を被覆ゴムで被覆した構造を備えた免震装
置において、 前記鋼板を円形又は正多角形とし、前記免震ゴム層を前
記鋼板の形状に対応するリング状としたことを特徴とす
る免震装置。
1. A seismic isolation device having a structure in which steel plates and seismic isolation rubber layers are alternately laminated, and side surfaces thereof are covered with a covering rubber, wherein the steel plates are circular or regular polygonal. A seismic isolation device, wherein the seismic rubber layer has a ring shape corresponding to the shape of the steel plate.
【請求項2】 前記免震ゴム層は、加硫済みの板状ゴム
をリング状に打ち抜いて形成し、前記鋼板に対し接着剤
により常温で接着した請求項1記載の免震装置。
2. The seismic isolation device according to claim 1, wherein the seismic isolation rubber layer is formed by punching a vulcanized plate-shaped rubber into a ring shape and is bonded to the steel plate at room temperature with an adhesive.
【請求項3】 前記鋼板の中心部に開口を設けた請求項
1又は2記載の免震装置。
3. The seismic isolation device according to claim 1, wherein an opening is provided in the central portion of the steel plate.
【請求項4】 前記鋼板を前記免震ゴム層の形状に対応
するリング状に形成した請求項1又は2記載の免震装
置。
4. The seismic isolation device according to claim 1, wherein the steel plate is formed in a ring shape corresponding to the shape of the seismic isolation rubber layer.
JP24099895A 1995-08-25 1995-08-25 Vibration isolation device Pending JPH0960333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24099895A JPH0960333A (en) 1995-08-25 1995-08-25 Vibration isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24099895A JPH0960333A (en) 1995-08-25 1995-08-25 Vibration isolation device

Publications (1)

Publication Number Publication Date
JPH0960333A true JPH0960333A (en) 1997-03-04

Family

ID=17067812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24099895A Pending JPH0960333A (en) 1995-08-25 1995-08-25 Vibration isolation device

Country Status (1)

Country Link
JP (1) JPH0960333A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205492A (en) * 2006-02-02 2007-08-16 Takenaka Komuten Co Ltd Laminated rubber support and vibration-isolation vibration-resistant structure
JP2017026569A (en) * 2015-07-28 2017-02-02 清水建設株式会社 Base isolation member response estimation device and base isolation member response estimation method
CN110965834A (en) * 2019-11-01 2020-04-07 中国建筑股份有限公司 Graphene-based shock insulation support and construction method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489979A (en) * 1990-07-30 1992-03-24 Nitta Ind Corp Anti-seismic device for lightweight building
JPH05239267A (en) * 1992-03-02 1993-09-17 Yokohama Rubber Co Ltd:The Rubber composition
JPH06158910A (en) * 1992-11-17 1994-06-07 Hideyuki Tada Laminated rubber bearing body
JPH0726782A (en) * 1993-07-08 1995-01-27 Daido Steel Co Ltd Earthquake isolation body of building structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489979A (en) * 1990-07-30 1992-03-24 Nitta Ind Corp Anti-seismic device for lightweight building
JPH05239267A (en) * 1992-03-02 1993-09-17 Yokohama Rubber Co Ltd:The Rubber composition
JPH06158910A (en) * 1992-11-17 1994-06-07 Hideyuki Tada Laminated rubber bearing body
JPH0726782A (en) * 1993-07-08 1995-01-27 Daido Steel Co Ltd Earthquake isolation body of building structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205492A (en) * 2006-02-02 2007-08-16 Takenaka Komuten Co Ltd Laminated rubber support and vibration-isolation vibration-resistant structure
JP2017026569A (en) * 2015-07-28 2017-02-02 清水建設株式会社 Base isolation member response estimation device and base isolation member response estimation method
CN110965834A (en) * 2019-11-01 2020-04-07 中国建筑股份有限公司 Graphene-based shock insulation support and construction method thereof
CN110965834B (en) * 2019-11-01 2023-01-03 中国建筑股份有限公司 Graphene-based shock insulation support and construction method thereof

Similar Documents

Publication Publication Date Title
WO1997006372A1 (en) Vibration isolation device
EP1948878B1 (en) Structure with increased damping by means of fork configuration dampers
US8621791B2 (en) Damping system
WO2016032538A1 (en) Diaphragm to lateral support coupling in a structure
CN112281641B (en) Grid damping support
JPH0960333A (en) Vibration isolation device
JP6821494B2 (en) Seismic isolation support device
JP2008274545A (en) Steel frame stairs
JP2006207680A (en) Laminated rubber supporter
JP3039846B2 (en) Laminated rubber bearing
JP6917738B2 (en) Laminated vibration damping structure
JP3024562B2 (en) Seismic isolation device
JP5727690B2 (en) Long-period building
JP2000328810A (en) Vibration control frame
JP2003239425A (en) Impulse insulation instrument
JP2825893B2 (en) Laminated rubber bearing
JP3359465B2 (en) Laminated rubber bearing
JP2937983B2 (en) Vertical shock-absorbing laminated rubber bearing
JP2008144400A (en) Base-isolating device
JP3988849B2 (en) Seismic isolation device
JPH10317715A (en) Base isolation mechanism
TWI704303B (en) Base isolation supporting device
JP4631274B2 (en) Laminated rubber seismic isolation device mounting structure
JP3602107B2 (en) Floor bundle foundation
JP3067578B2 (en) Flexible bearing