JP2017026569A - Base isolation member response estimation device and base isolation member response estimation method - Google Patents

Base isolation member response estimation device and base isolation member response estimation method Download PDF

Info

Publication number
JP2017026569A
JP2017026569A JP2015148391A JP2015148391A JP2017026569A JP 2017026569 A JP2017026569 A JP 2017026569A JP 2015148391 A JP2015148391 A JP 2015148391A JP 2015148391 A JP2015148391 A JP 2015148391A JP 2017026569 A JP2017026569 A JP 2017026569A
Authority
JP
Japan
Prior art keywords
isolation member
seismic isolation
base isolation
response estimation
excitation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015148391A
Other languages
Japanese (ja)
Other versions
JP6696742B2 (en
Inventor
雄史 森井
Takeshi Morii
雄史 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2015148391A priority Critical patent/JP6696742B2/en
Publication of JP2017026569A publication Critical patent/JP2017026569A/en
Application granted granted Critical
Publication of JP6696742B2 publication Critical patent/JP6696742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a base isolation member response estimation device and a base isolation member response estimation method enabling response estimation to be easily performed to distortion of a base isolation member.SOLUTION: A base isolation member response estimation device 1 capable of estimating response of a base isolation member from relationship between a characteristic of an excitation source and a vibration characteristic of the base isolation member, includes: an input unit 2 configured to input a dominant frequency fof the excitation source, an input acceleration A of the excitation source, a mass Mof the excitation source, an equivalent damping constant hof the base isolation member, a dominant frequency of the base isolation member, and a mass M of the base isolation member; a calculation unit 3 configured to calculate distortion γ of the base isolation member by at least any one of specific formulas, in a case where relationship between the dominant frequency fof the excitation source and the dominant frequency f of the base isolation member satisfies the following: f≥f, on the basis of each numerical value input from the input unit 2; and an output unit 4 configured to output the distortion γ of the base isolation member calculated by the calculation unit 3.SELECTED DRAWING: Figure 1

Description

本発明は、免震部材の応答推定を行う免震部材応答推定装置及び免震部材応答推定方法に関する。   The present invention relates to a seismic isolation member response estimation apparatus and a seismic isolation member response estimation method for estimating response of a seismic isolation member.

従来、剛性が変化する免震部材を対象とした加振問題に対する応答推定を行う場合、免震部材の時刻歴応答解析を行うものが一般的である(非特許文献1参照)。   Conventionally, when performing response estimation for an excitation problem for a seismic isolation member whose rigidity varies, it is common to perform a time history response analysis of the seismic isolation member (see Non-Patent Document 1).

竹中康雄、山田和彦、吉川和秀、「免震用積層ゴム支承の曲線型履歴復元力モデル:「修正HDモデル」」、日本建築学会技術報告集、2001年12月、第14号、p.87−92Yasuo Takenaka, Kazuhiko Yamada, Kazuhide Yoshikawa, “Curve-type history restoring force model of laminated rubber bearing for seismic isolation:“ modified HD model ””, Architectural Institute of Japan Technical Report, December 2001, No. 14, p. 87-92

しかしながら、免震部材の時刻歴応答解析を行うには、実験などで実際の挙動との対応を確かめる必要があり、免震部材の歪みを容易に応答推定することができなかった。   However, in order to perform time history response analysis of the seismic isolation member, it is necessary to confirm the correspondence with the actual behavior through experiments and the like, and it was not possible to easily estimate the response of the seismic isolation member.

本発明は、免震部材の歪みを容易に応答推定することが可能な免震部材応答推定装置及び免震部材応答推定方法を提供することを目的とする。   An object of this invention is to provide the seismic isolation member response estimation apparatus and the seismic isolation member response estimation method which can estimate response easily of the distortion of a seismic isolation member.

本発明に係る免震部材応答推定装置は、
加振源の特性と免震部材の振動特性との関係から前記免震部材の応答を推定可能な免震部材応答推定装置であって、
前記加振源の卓越振動数fe、前記加振源の入力加速度A、前記加振源の質量Me

、前記免震部材の等価減衰定数heq、前記免震部材の卓越振動数f、及び前記免震部材の質量Mを入力する入力部と、
前記入力部から入力された各数値に基づき、前記加振源の卓越振動数feと前記免震部材の卓越振動数fとの関係がfe≧f の場合、少なくとも以下の式(1)〜(3)のいずれか
1つの式によって免震部材の歪みγを演算する演算部と、
前記演算部によって演算された前記免震部材の歪みγを出力する出力部と、
を備える
ことを特徴とする。

Figure 2017026569
The seismic isolation member response estimation apparatus according to the present invention is:
A seismic isolation member response estimation device capable of estimating the response of the base isolation member from the relationship between the characteristics of the excitation source and the vibration characteristics of the base isolation member,
The excitation source of the predominant frequency f e, an input acceleration A of the vibration source, the mass of the vibration source M e

An input unit for inputting the equivalent damping constant h eq of the base isolation member, the dominant frequency f of the base isolation member, and the mass M of the base isolation member;
When the relationship between the dominant frequency f e of the excitation source and the dominant frequency f of the seismic isolation member is f e ≧ f based on the numerical values input from the input unit, at least the following formula (1) A calculation unit for calculating the strain γ of the seismic isolation member by any one of the formulas (3),
An output unit that outputs the strain γ of the seismic isolation member calculated by the calculation unit;
It is characterized by providing.
Figure 2017026569

本発明に係る免震部材応答推定装置では、
前記入力部は、前記式(1)〜(3)のいずれかを選択する選択部を有する
ことを特徴とする
In the seismic isolation member response estimation apparatus according to the present invention,
The input unit includes a selection unit that selects any one of the formulas (1) to (3).

本発明に係る免震部材応答推定方法は、
加振源の特性と免震部材の振動特性との関係から前記免震部材の応答を推定可能な免震部材応答推定方法であって、
前記加振源の卓越振動数fe、前記加振源の入力加速度A、前記加振源の質量Me

、前記免震部材の等価減衰定数heq、前記免震部材の卓越振動数f、及び前記免震部材の質量Mを入力するステップと、
入力された各数値に基づき、前記加振源の卓越振動数feと前記免震部材の卓越振動数f
との関係がfe≧f の場合、少なくとも以下の式(1)〜(3)のいずれか1つの式によって免震部材の歪みγを演算するステップと、
演算された前記免震部材の歪みγを出力するステップと、
を有する
ことを特徴とする。

Figure 2017026569
The seismic isolation member response estimation method according to the present invention is:
A seismic isolation member response estimation method capable of estimating the response of the base isolation member from the relationship between the characteristics of the excitation source and the vibration characteristics of the base isolation member,
The excitation source of the predominant frequency f e, an input acceleration A of the vibration source, the mass of the vibration source M e

Inputting the equivalent damping constant h eq of the base isolation member, the dominant frequency f of the base isolation member, and the mass M of the base isolation member;
Based on each input numerical value, the dominant frequency f e of the excitation source and the dominant frequency f of the seismic isolation member
If the relationship with f e ≧ f, the step of calculating the strain γ of the seismic isolation member by at least one of the following formulas (1) to (3):
Outputting the calculated strain γ of the seismic isolation member;
It is characterized by having.
Figure 2017026569

本発明に係る免震部材応答推定方法は、
前記式(1)〜(3)のいずれかを選択するステップを有する
ことを特徴とする。
The seismic isolation member response estimation method according to the present invention is:
It has the step which selects either of said Formula (1)-(3), It is characterized by the above-mentioned.

本発明に係る免震部材応答推定装置は、
加振源の特性と免震部材の振動特性との関係から前記免震部材の応答を推定可能な免震部材応答推定装置であって、
前記加振源の卓越振動数fe、前記加振源の入力加速度A、前記加振源の質量Me

、前記免震部材の等価減衰定数heq、前記免震部材の卓越振動数f、及び前記免震部材の質量Mを入力する入力部と、
前記入力部から入力された各数値に基づき、前記加振源の卓越振動数feと前記免震部材の卓越振動数fとの関係がfe≧f の場合、少なくとも以下の式(1)〜(3)のいずれか
1つの式によって免震部材の歪みγを演算する演算部と、
前記演算部によって演算された前記免震部材の歪みγを出力する出力部と、
を備えるので、
免震部材の歪みγを容易に応答推定することが可能となる。

Figure 2017026569
The seismic isolation member response estimation apparatus according to the present invention is:
A seismic isolation member response estimation device capable of estimating the response of the base isolation member from the relationship between the characteristics of the excitation source and the vibration characteristics of the base isolation member,
The excitation source of the predominant frequency f e, an input acceleration A of the vibration source, the mass of the vibration source M e

An input unit for inputting the equivalent damping constant h eq of the base isolation member, the dominant frequency f of the base isolation member, and the mass M of the base isolation member;
When the relationship between the dominant frequency f e of the excitation source and the dominant frequency f of the seismic isolation member is f e ≧ f based on the numerical values input from the input unit, at least the following formula (1) A calculation unit for calculating the strain γ of the seismic isolation member by any one of the formulas (3),
An output unit that outputs the strain γ of the seismic isolation member calculated by the calculation unit;
So that
The response γ of the seismic isolation member can be easily estimated.
Figure 2017026569

本発明に係る免震部材応答推定装置では、
前記入力部は、前記式(1)〜(3)のいずれかを選択する選択部を有するので、
免震部材の歪みγの推定性能を調整することが可能となる。
In the seismic isolation member response estimation apparatus according to the present invention,
Since the input unit includes a selection unit that selects any one of the formulas (1) to (3),
It is possible to adjust the estimated performance of the distortion γ of the seismic isolation member.

本発明に係る免震部材応答推定方法は、
加振源の特性と免震部材の振動特性との関係から前記免震部材の応答を推定可能な免震部材応答推定方法であって、
前記加振源の卓越振動数fe、前記加振源の入力加速度A、前記加振源の質量Me

、前記免震部材の等価減衰定数heq、前記免震部材の卓越振動数f、及び前記免震部材の質量Mを入力するステップと、
入力された各数値に基づき、前記加振源の卓越振動数feと前記免震部材の卓越振動数f
との関係がfe≧f の場合、少なくとも以下の式(1)〜(3)のいずれか1つの式によって免震部材の歪みγを演算するステップと、
演算された前記免震部材の歪みγを出力するステップと、
を有するので、
免震部材を容易に応答推定することが可能となる。

Figure 2017026569
The seismic isolation member response estimation method according to the present invention is:
A seismic isolation member response estimation method capable of estimating the response of the base isolation member from the relationship between the characteristics of the excitation source and the vibration characteristics of the base isolation member,
The excitation source of the predominant frequency f e, an input acceleration A of the vibration source, the mass of the vibration source M e

Inputting the equivalent damping constant h eq of the base isolation member, the dominant frequency f of the base isolation member, and the mass M of the base isolation member;
Based on each input numerical value, the dominant frequency f e of the excitation source and the dominant frequency f of the seismic isolation member
If the relationship with f e ≧ f, the step of calculating the strain γ of the seismic isolation member by at least one of the following formulas (1) to (3):
Outputting the calculated strain γ of the seismic isolation member;
So that
It is possible to easily estimate the response of the seismic isolation member.
Figure 2017026569

本発明に係る免震部材応答推定方法は、
前記式(1)〜(3)のいずれかを選択するステップを有するので、
免震部材の歪みγの推定性能を調整することが可能となる。
The seismic isolation member response estimation method according to the present invention is:
Since there is a step of selecting any one of the formulas (1) to (3),
It is possible to adjust the estimated performance of the distortion γ of the seismic isolation member.

本実施形態の免震部材応答推定装置を示す。The seismic isolation member response estimation apparatus of this embodiment is shown. 本実施形態の免震部材応答推定装置に用いられる近似式を求めるためのモデルを示す。The model for calculating | requiring the approximate expression used for the seismic isolation member response estimation apparatus of this embodiment is shown. 本実施形態の免震部材応答推定装置における加振源の入力加速度と免震部材の歪みとの関係を示す。The relationship between the input acceleration of a vibration source and the distortion of a seismic isolation member in the seismic isolation member response estimation apparatus of this embodiment is shown. 本実施形態の免震部材応答推定装置における卓越振動数が異なる場合の基準化入力加速度と免震部材の歪みとの関係を示す。The relationship between the standardized input acceleration and the distortion of a seismic isolation member when the dominant frequencies in the seismic isolation member response estimation apparatus of this embodiment differ is shown. 本実施形態の免震部材応答推定装置における免震部材の面圧が異なる場合の基準化入力加速度と免震部材の歪みとの関係を示す。The relationship between the normalized input acceleration and the distortion of a seismic isolation member when the surface pressure of the seismic isolation member in the seismic isolation member response estimation apparatus of this embodiment differs is shown.

以下、図面を参照して本発明にかかる免震部材応答推定装置1の実施形態を説明する。   Hereinafter, an embodiment of a seismic isolation member response estimation apparatus 1 according to the present invention will be described with reference to the drawings.

図1は、本実施形態の免震部材応答推定装置1を示す。図2は、本実施形態の免震部材応答推定装置1に用いられる近似式を求めるためのモデル10を示す。   FIG. 1 shows a seismic isolation member response estimation apparatus 1 according to this embodiment. FIG. 2 shows a model 10 for obtaining an approximate expression used in the seismic isolation member response estimation apparatus 1 of the present embodiment.

本実施形態の免震部材応答推定装置1は、入力部2と、演算部3と、出力部4と、を備え、加振源の特性と免震部材の振動特性との関係から応答解析を行わず、免震部材の応答を簡略的に推定することが可能である。免震部材応答推定装置1の演算部3で用いられる近似式を求めるためのモデル10は、図2に示すように、床11に免震部材12を介して加振源13を載置したものである。   The seismic isolation member response estimation apparatus 1 of the present embodiment includes an input unit 2, a calculation unit 3, and an output unit 4, and performs response analysis from the relationship between the characteristics of the excitation source and the vibration characteristics of the seismic isolation member. Without doing so, it is possible to simply estimate the response of the seismic isolation member. As shown in FIG. 2, a model 10 for obtaining an approximate expression used in the calculation unit 3 of the seismic isolation member response estimation apparatus 1 is obtained by placing an excitation source 13 on a floor 11 via a seismic isolation member 12. It is.

入力部2は、加振源13の卓越振動数fe、加振源13の入力加速度A、加振源13の質
量Me、免震部材12の等価減衰定数heq、免震部材12のバネ定数Keq、免震部材12の卓越振動数f、及び免震部材12の質量Mを入力する。
Input unit 2, predominant frequency f e of the vibration source 13, the input acceleration A of the vibration source 13, mass M e of vibration source 13, the equivalent damping constant h eq seismic isolation member 12, the seismic isolation member 12 The spring constant K eq , the dominant frequency f of the seismic isolation member 12 and the mass M of the seismic isolation member 12 are input.

演算部3は、入力部2から入力された各数値に基づき、加振源13の卓越振動数feと免震部材12の卓越振動数fとの関係がfe≧f の場合、少なくとも以下の式(1)〜(3)
のいずれか1つの式によって免震部材12の歪みγを近似的に推定する。式(1)〜(3)は、少なくともいずれか1つを記憶しておき演算に用いればよい。また、入力部2が選択部21を有し、選択部21で式(1)〜(3)を選択し、選択された式で免震部材12の歪みγを演算できるようにしてもよい。

Figure 2017026569
Based on the numerical values input from the input unit 2, the calculation unit 3 is at least the following when the relationship between the dominant frequency fe of the excitation source 13 and the dominant frequency f of the seismic isolation member 12 is fe ≧ f. Equations (1) to (3)
The strain γ of the seismic isolation member 12 is approximately estimated by any one of the equations. Any one of the expressions (1) to (3) may be stored and used for the calculation. Alternatively, the input unit 2 may include a selection unit 21, and the selection unit 21 may select Equations (1) to (3) so that the strain γ of the seismic isolation member 12 can be calculated using the selected equation.
Figure 2017026569

出力部3は、演算部2によって演算された免震部材12の歪みγを出力する。なお、式(1)又は式(2)を用いた場合には、免震部材12の歪みγは、所定の範囲内に存在するものとして表される。   The output unit 3 outputs the distortion γ of the seismic isolation member 12 calculated by the calculation unit 2. In addition, when Formula (1) or Formula (2) is used, distortion (gamma) of the seismic isolation member 12 is represented as what exists in a predetermined range.

図3は、本実施形態の免震部材応答推定装置1における加振源13の入力加速度と免震部材12の歪みγとの関係を示す。   FIG. 3 shows the relationship between the input acceleration of the excitation source 13 and the strain γ of the seismic isolation member 12 in the seismic isolation member response estimation apparatus 1 of the present embodiment.

本実施形態の免震部材応答推定装置1において、免震部材12の加振実験を想定して演算した結果を図3に示す。図3に示した例では、仮想的に、質量Me=0.2tonの加振源13を入力加速度A=50〜1000cm/s2で変化させて演算した。加振するサイン波の振動数feは、2〜10Hzで変化させた。図3に示すように、加振源13の入力加速度Aが増大すると共に、免震部材12の歪みγは、増大しているが、加振源13の卓越振動数feによって変化の度合いは異なる。 In the seismic isolation member response estimation apparatus 1 of the present embodiment, the calculation result assuming an excitation experiment of the seismic isolation member 12 is shown in FIG. In the example shown in FIG. 3, the calculation is performed by virtually changing the excitation source 13 having a mass M e = 0.2 ton at an input acceleration A = 50 to 1000 cm / s 2 . The frequency fe of the sine wave to be excited was changed from 2 to 10 Hz. As shown in FIG. 3, the input acceleration A of the vibration source 13 increases and the distortion γ of the seismic isolation member 12 increases. However, the degree of change depends on the dominant frequency f e of the vibration source 13. Different.

図4は、本実施形態の免震部材応答推定装置1における卓越振動数feが異なる場合の基準化入力加速度(α・Me・A/M)と免震部材12の歪みγとの関係を示す。 FIG. 4 shows the relationship between the normalized input acceleration (α · Me · A / M) and the strain γ of the seismic isolation member 12 when the dominant frequency fe is different in the seismic isolation member response estimation apparatus 1 of the present embodiment. Indicates.

加振源13の卓越振動数feと免震部材12の卓越振動数fとの関係がfe≧f の場合、す
なわち共振していない場合、基準化入力加速度(α・Me・A/M)と免震部材12の歪みγ
との関係は、卓越振動数feが異なる場合であっても以下の式(1)を満足する。
0.03(α・Me・A/M)0.8≦γ≦0.3(α・Me
・A/M)0.8 (1
If the relationship between the dominant frequency f e and predominant frequency f of the seismic isolation member 12 of the vibration source 13 is f e ≧ f, ie if not resonate, scaled input acceleration (α · M e · A / M) and distortion γ of the seismic isolation member 12
The following relationship (1) is satisfied even when the dominant frequency fe is different.
0.03 (α ・Me・ A / M) 0.8 ≦ γ ≦ 0.3 (α ・Me
・ A / M) 0.8 (1
)

また、卓越振動数feを選択した場合には、基準化入力加速度(α4Me4

・A/M)0.8 (2)
When the dominant frequency fe is selected, the normalized input acceleration (α 4 Me 4

・ A / M) 0.8 (2)

さらに、基準化入力加速度(α・Me・A/M)と免震部材12の歪みγとの関係は、ほぼ
以下の式(3)を満足すると言い換えてもよい。
γ=0.05(α・Me・A/M)0.8 (3)
Furthermore, the relationship between the normalized input acceleration (α · Me · A / M) and the strain γ of the seismic isolation member 12 may be rephrased as substantially satisfying the following expression (3).
γ = 0.05 (α ・Me・ A / M) 0.8 (3)

このように、加振源13の卓越振動数feと免震部材12の卓越振動数fとの関係がfe≧f
の場合、すなわち共振していない場合、基準化入力加速度(α・Me・A/M)を入力するだけで、時刻歴応答解析や周波数応答解析を必要とせずに、卓越振動数feが異なる場合であっても、免震部材12の歪みγを容易に推定することが可能となる。
Thus, the relationship between the dominant frequency f e of the excitation source 13 and the dominant frequency f of the seismic isolation member 12 is expressed as f e ≧ f
For, if i.e. not resonate, simply by inputting the scaled input acceleration (α · M e · A / M), without the need for time history analysis and frequency response analysis, the predominant frequency f e Even if they are different, the strain γ of the seismic isolation member 12 can be easily estimated.

図5は、本実施形態の免震部材応答推定装置1における免震部材12の面圧が異なる場合の基準化入力加速度(α・Me・A/M)と免震部材12の歪みγとの関係を示す。 FIG. 5 shows the normalized input acceleration (α · Me · A / M) and the strain γ of the seismic isolation member 12 when the surface pressure of the seismic isolation member 12 is different in the seismic isolation member response estimation apparatus 1 of the present embodiment. The relationship is shown.

加振源13の卓越振動数feと免震部材12の卓越振動数fとの関係がfe≧f の場合、す
なわち共振していない場合、基準化入力加速度(α・Me・A/M)と免震部材12の歪みγ
との関係は、免震部材12の面圧が異なる場合であっても、以下の式(2)を満足する。
0.03(α・Me・A/M)0.8≦γ≦0.07(α・Me
・A/M)0.8 (2
If the relationship between the dominant frequency f e and predominant frequency f of the seismic isolation member 12 of the vibration source 13 is f e ≧ f, ie if not resonate, scaled input acceleration (α · M e · A / M) and distortion γ of the seismic isolation member 12
The following relationship (2) is satisfied even when the surface pressure of the seismic isolation member 12 is different.
0.03 (α ・Me・ A / M) 0.8 ≦ γ ≦ 0.07 (α ・Me
・ A / M) 0.8 (2
)

さらに、基準化入力加速度(α・Me・A/M)と免震部材12の歪みγとの関係は、ほぼ
以下の式(3)を満足すると言い換えてもよい。
γ=0.05(α・Me・A/M)0.8 (3)
Furthermore, the relationship between the normalized input acceleration (α · Me · A / M) and the strain γ of the seismic isolation member 12 may be rephrased as substantially satisfying the following expression (3).
γ = 0.05 (α ・Me・ A / M) 0.8 (3)

このように、加振源13の卓越振動数feと免震部材12の卓越振動数fとの関係がfe≧f
の場合、すなわち共振していない場合、基準化入力加速度(α・Me・A/M)を入力するだけで、時刻歴応答解析や周波数応答解析を必要とせずに、免震部材12の面圧が異なる場合であっても、免震部材12の歪みγを容易に推定することが可能となる。
Thus, the relationship between the dominant frequency f e of the excitation source 13 and the dominant frequency f of the seismic isolation member 12 is expressed as f e ≧ f
In this case, that is, when there is no resonance, the input of the standardized input acceleration (α · Me · A / M) is required, and the surface of the seismic isolation member 12 is not required to perform time history response analysis or frequency response analysis. Even if the pressures are different, the strain γ of the seismic isolation member 12 can be easily estimated.

以上、本実施形態の免震部材応答推定装置1によれば、加振源13の特性と免震部材12の振動特性との関係から免震部材12の応答を推定可能な免震部材応答推定装置1であって、加振源13の卓越振動数fe、加振源13の入力加速度A、加振源13の質量Me、免
震部材12の等価減衰定数heq、免震部材12の卓越振動数f、及び免震部材12の質量M
を入力する入力部2と、入力部2から入力された各数値に基づき、加振源13の卓越振動数feと免震部材12の卓越振動数fとの関係がfe≧f の場合、少なくとも以下の式(1)
〜(3)のいずれか1つの式によって免震部材12の歪みγを演算する演算部3と、演算部3によって演算された免震部材12の歪みγを出力する出力部4と、を備えるので、免震部材12の歪みγを容易に応答推定することが可能となる。

Figure 2017026569
As mentioned above, according to the seismic isolation member response estimation apparatus 1 of this embodiment, the seismic isolation member response estimation which can estimate the response of the seismic isolation member 12 from the relationship between the characteristic of the excitation source 13 and the vibration characteristic of the seismic isolation member 12 is possible. an apparatus 1, predominant frequency f e of the vibration source 13, the input acceleration a of the vibration source 13, the vibration source mass M e of 13, the equivalent damping constant h eq seismic isolation member 12, the seismic isolation member 12 Prevailing frequency f and mass M of the seismic isolation member 12
When the relationship between the dominant frequency f e of the excitation source 13 and the dominant frequency f of the seismic isolation member 12 is f e ≧ f based on the input unit 2 for inputting , At least the following formula (1)
A calculation unit 3 that calculates the strain γ of the seismic isolation member 12 according to any one of the equations (3) and an output unit 4 that outputs the strain γ of the seismic isolation member 12 calculated by the calculation unit 3. Therefore, the response γ of the seismic isolation member 12 can be easily estimated.
Figure 2017026569

また、本実施形態の免震部材応答推定装置1によれば、入力部2は、式(1)〜(3)のいずれかを選択する選択部21を有するので、免震部材12の歪みγの推定性能を調整することが可能となる。   Moreover, according to the seismic isolation member response estimation apparatus 1 of the present embodiment, the input unit 2 includes the selection unit 21 that selects any one of the formulas (1) to (3). It is possible to adjust the estimated performance of.

さらに、本実施形態の免震部材応答推定方法によれば、加振源13の特性と免震部材12の振動特性との関係から免震部材12の応答を推定可能な免震部材応答推定方法であって、加振源13の卓越振動数fe、加振源13の入力加速度A、加振源13の質量Me、免震
部材12の等価減衰定数heq、免震部材12の卓越振動数f、及び免震部材12の質量Mを
入力するステップと、入力された各数値に基づき、加振源13の卓越振動数feと免震部材12の卓越振動数fとの関係がfe≧f の場合、少なくとも以下の式(1)〜(3)のいず
れか1つの式によって免震部材12の歪みγを演算するステップと、演算された免震部材12の歪みγを出力するステップと、を有するので、免震部材12を容易に応答推定することが可能となる。

Figure 2017026569
Furthermore, according to the seismic isolation member response estimation method of the present embodiment, the seismic isolation member response estimation method capable of estimating the response of the seismic isolation member 12 from the relationship between the characteristics of the excitation source 13 and the vibration characteristics of the seismic isolation member 12. a is, predominant frequency f e of the vibration source 13, the input acceleration a of the vibration source 13, mass M e of vibration source 13, the equivalent damping constant h eq seismic isolation member 12, excellence of seismic isolation member 12 Based on the step of inputting the frequency f and the mass M of the seismic isolation member 12 and the input numerical values, the relationship between the dominant frequency fe of the excitation source 13 and the dominant frequency f of the seismic isolation member 12 is When f e ≧ f, the step of calculating the strain γ of the seismic isolation member 12 according to at least one of the following formulas (1) to (3), and the calculated strain γ of the seismic isolation member 12 are output. Therefore, it is possible to easily estimate the response of the seismic isolation member 12.
Figure 2017026569

また、本実施形態の免震部材応答推定方法によれば、式(1)〜(3)のいずれかを選択するステップを有するので、免震部材12の歪みγの推定性能を調整することが可能となる。   Moreover, according to the seismic isolation member response estimation method of this embodiment, since it has the step which selects any of Formula (1)-(3), adjusting the estimation performance of distortion (gamma) of the seismic isolation member 12 is possible. It becomes possible.

なお、この実施形態によって本発明は限定されるものではない。すなわち、実施形態の説明に当たって、例示のために特定の詳細な内容が多く含まれるが、当業者であれば、これらの詳細な内容に色々なバリエーションや変更を加えてもよい。   In addition, this invention is not limited by this embodiment. That is, in describing the embodiment, many specific details are included for illustration, but those skilled in the art may add various variations and changes to these details.

1…免震部材応答推定装置
2…入力部
3…演算部
4…出力部
10…モデル
11…床
12…免震部材
13…加振源
DESCRIPTION OF SYMBOLS 1 ... Seismic isolation member response estimation apparatus 2 ... Input part 3 ... Calculation part 4 ... Output part 10 ... Model 11 ... Floor 12 ... Seismic isolation member 13 ... Excitation source

Claims (4)

加振源の特性と免震部材の振動特性との関係から前記免震部材の応答を推定可能な免震部材応答推定装置であって、
前記加振源の卓越振動数fe、前記加振源の入力加速度A、前記加振源の質量Me

、前記免震部材の等価減衰定数heq、前記免震部材の卓越振動数f、及び前記免震部材の質量Mを入力する入力部と、
前記入力部から入力された各数値に基づき、前記加振源の卓越振動数feと前記免震部材の卓越振動数fとの関係がfe≧f の場合、少なくとも以下の式(1)〜(3)のいずれか
1つの式によって免震部材の歪みγを演算する演算部と、
前記演算部によって演算された前記免震部材の歪みγを出力する出力部と、
を備える
ことを特徴とする免震部材応答推定装置。
Figure 2017026569
A seismic isolation member response estimation device capable of estimating the response of the base isolation member from the relationship between the characteristics of the excitation source and the vibration characteristics of the base isolation member,
The excitation source of the predominant frequency f e, an input acceleration A of the vibration source, the mass of the vibration source M e

An input unit for inputting the equivalent damping constant h eq of the base isolation member, the dominant frequency f of the base isolation member, and the mass M of the base isolation member;
When the relationship between the dominant frequency f e of the excitation source and the dominant frequency f of the seismic isolation member is f e ≧ f based on the numerical values input from the input unit, at least the following formula (1) A calculation unit for calculating the strain γ of the seismic isolation member by any one of the formulas (3),
An output unit that outputs the strain γ of the seismic isolation member calculated by the calculation unit;
A seismic isolation member response estimation device comprising:
Figure 2017026569
前記入力部は、前記式(1)〜(3)のいずれかを選択する選択部を有する
ことを特徴とする請求項1に記載の免震部材応答推定装置。
The seismic isolation member response estimation apparatus according to claim 1, wherein the input unit includes a selection unit that selects any one of the equations (1) to (3).
加振源の特性と免震部材の振動特性との関係から前記免震部材の応答を推定可能な免震部材応答推定方法であって、
前記加振源の卓越振動数fe、前記加振源の入力加速度A、前記加振源の質量Me

、前記免震部材の等価減衰定数heq、前記免震部材の卓越振動数f、及び前記免震部材の質量Mを入力するステップと、
入力された各数値に基づき、前記加振源の卓越振動数feと前記免震部材の卓越振動数f
との関係がfe≧f の場合、少なくとも以下の式(1)〜(3)のいずれか1つの式によって免震部材の歪みγを演算するステップと、
演算された前記免震部材の歪みγを出力するステップと、
を有する
ことを特徴とする免震部材応答推定方法。
Figure 2017026569
A seismic isolation member response estimation method capable of estimating the response of the base isolation member from the relationship between the characteristics of the excitation source and the vibration characteristics of the base isolation member,
The excitation source of the predominant frequency f e, an input acceleration A of the vibration source, the mass of the vibration source M e

Inputting the equivalent damping constant h eq of the base isolation member, the dominant frequency f of the base isolation member, and the mass M of the base isolation member;
Based on each input numerical value, the dominant frequency f e of the excitation source and the dominant frequency f of the seismic isolation member
If the relationship with f e ≧ f, the step of calculating the strain γ of the seismic isolation member by at least one of the following formulas (1) to (3):
Outputting the calculated strain γ of the seismic isolation member;
A seismic isolation member response estimation method characterized by comprising:
Figure 2017026569
前記式(1)〜(3)のいずれかを選択するステップを有する
ことを特徴とする請求項3に記載の免震部材応答推定方法。
The seismic isolation member response estimation method according to claim 3, further comprising a step of selecting any one of the equations (1) to (3).
JP2015148391A 2015-07-28 2015-07-28 Seismic isolation member response estimation device and seismic isolation member response estimation method Active JP6696742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015148391A JP6696742B2 (en) 2015-07-28 2015-07-28 Seismic isolation member response estimation device and seismic isolation member response estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015148391A JP6696742B2 (en) 2015-07-28 2015-07-28 Seismic isolation member response estimation device and seismic isolation member response estimation method

Publications (2)

Publication Number Publication Date
JP2017026569A true JP2017026569A (en) 2017-02-02
JP6696742B2 JP6696742B2 (en) 2020-05-20

Family

ID=57950451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015148391A Active JP6696742B2 (en) 2015-07-28 2015-07-28 Seismic isolation member response estimation device and seismic isolation member response estimation method

Country Status (1)

Country Link
JP (1) JP6696742B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022242435A1 (en) * 2021-05-21 2022-11-24 浙江大学 Rapid evaluation method of site seismic liquefaction disaster based on artificial intelligence

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0960333A (en) * 1995-08-25 1997-03-04 Kawasaki Heavy Ind Ltd Vibration isolation device
JP2003184106A (en) * 2001-12-17 2003-07-03 Yasuhiro Kawachi Vibration isolation foundation structure for lightweight building
JP2005037210A (en) * 2003-07-18 2005-02-10 Kyodo Yushi Co Ltd Method and apparatus for measuring coefficient of oscillation energy loss
US20070283635A1 (en) * 2006-06-13 2007-12-13 Jong-Seh Lee Seismic control bearing device and seismic control system including the same
JP2013156091A (en) * 2012-01-27 2013-08-15 National Institute Of Advanced Industrial & Technology Method for measuring linear elastic modulus, and linear elastic modulus measuring apparatus
JP2014102231A (en) * 2012-11-22 2014-06-05 Daiwa House Industry Co Ltd Safety evaluation device in seismic isolation architectural structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0960333A (en) * 1995-08-25 1997-03-04 Kawasaki Heavy Ind Ltd Vibration isolation device
JP2003184106A (en) * 2001-12-17 2003-07-03 Yasuhiro Kawachi Vibration isolation foundation structure for lightweight building
JP2005037210A (en) * 2003-07-18 2005-02-10 Kyodo Yushi Co Ltd Method and apparatus for measuring coefficient of oscillation energy loss
US20070283635A1 (en) * 2006-06-13 2007-12-13 Jong-Seh Lee Seismic control bearing device and seismic control system including the same
JP2013156091A (en) * 2012-01-27 2013-08-15 National Institute Of Advanced Industrial & Technology Method for measuring linear elastic modulus, and linear elastic modulus measuring apparatus
JP2014102231A (en) * 2012-11-22 2014-06-05 Daiwa House Industry Co Ltd Safety evaluation device in seismic isolation architectural structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022242435A1 (en) * 2021-05-21 2022-11-24 浙江大学 Rapid evaluation method of site seismic liquefaction disaster based on artificial intelligence

Also Published As

Publication number Publication date
JP6696742B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
Amiri et al. Derivation of a new parametric impulse response matrix utilized for nodal wind load identification by response measurement
JP6453627B2 (en) Seismic analysis apparatus, method and program
GB2565005A (en) Analysis device, analysis method, and storage medium storing program
van der Seijs et al. A robust transfer path analysis method for steering gear vibrations on a test bench
JP6310841B2 (en) Equipment design method
JP6477411B2 (en) Analysis program
Varghese et al. Damage identification using combined transient power flow balance and acceleration matching technique
JP2017026569A (en) Base isolation member response estimation device and base isolation member response estimation method
JP2016080538A (en) Vibration testing device, vibration testing method
CN113486516A (en) Method, device, equipment and storage medium for determining motor non-linear parameter
Rizos et al. Structural identification of a prototype pre-stressable leaf-spring based adaptive tuned mass damper: Nonlinear characterization and classification
RU2658125C1 (en) Method for determining parameters of natural tones of structure vibrations in resonant tests
Xie et al. Innovative substructure approach to estimating structural parameters of shear structures
Kim et al. Structure borne noise control of a clamped panel using shunt damping system
RU2018122418A (en) METHODS AND DEVICE FOR CALIBRATING THE CONTROLLERS OF DEEP DEPTH PUMPS
US10107355B2 (en) Active damping device and design method
US20170185066A1 (en) Information processing device, information processing method, program, and recording medium
Jahani et al. Predicting the dynamic material constants of Mooney-Rivlin model in broad frequency range for elastomeric components
Chandravanshi et al. Experimental modal analysis of the vibratory feeder and its structural elements
CN106258000A (en) Acceleration detector and active noise controller
CN109635326B (en) Mechanical structure and aviation hydraulic pipeline vibration failure sensitivity analysis method
Rovšček et al. Operational mode-shape normalisation with a structural modification for small and light structures
JP2012021927A (en) Method and apparatus for estimating response quantity of structure in contact with liquid
Singh et al. Active control of viscoelastic systems by the method of receptance
KR20170075537A (en) Simultaneous detection of the nonlinear restoring and excitation of a forced nonlinear oscillation: an integral approach

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200423

R150 Certificate of patent or registration of utility model

Ref document number: 6696742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150