JPH0959093A - Production of magnetic garnet single crystal by lpe method - Google Patents

Production of magnetic garnet single crystal by lpe method

Info

Publication number
JPH0959093A
JPH0959093A JP23474195A JP23474195A JPH0959093A JP H0959093 A JPH0959093 A JP H0959093A JP 23474195 A JP23474195 A JP 23474195A JP 23474195 A JP23474195 A JP 23474195A JP H0959093 A JPH0959093 A JP H0959093A
Authority
JP
Japan
Prior art keywords
single crystal
substrate
magnetic garnet
garnet single
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23474195A
Other languages
Japanese (ja)
Other versions
JP3119795B2 (en
Inventor
Hirotaka Kawai
博貴 河合
Hiromitsu Umezawa
浩光 梅澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP07234741A priority Critical patent/JP3119795B2/en
Publication of JPH0959093A publication Critical patent/JPH0959093A/en
Application granted granted Critical
Publication of JP3119795B2 publication Critical patent/JP3119795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To grow an NdBi-based magnetic garnet single crystal on a nonmagnetic garnet substrate in high yield by LPE method. SOLUTION: An NdBi-based magnetic garnet single crystal is grown on a nonmagnetic garnet substrate having thickness (t) in the range of 200μm<=t<=450μm by CPE method. For example, Gd3-y Ndy Sc2 Ga3 O12 (1.0<=y<=1.4) is used as the nonmagnetic garnet substrate. The magnetic garnet single crystal to be grown has preferably a composition represend by the formula Nd3-x Bix Fe5 O12 (0.5<=x<=1.9).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、LPE法(液相エ
ピタキシャル法)による磁性ガーネット単結晶の製造方
法に関し、更に詳しく述べると、薄い非磁性ガーネット
基板上にNdBi(ネオジム・ビスマス)系の磁性ガー
ネット単結晶を育成することで、単結晶のひび割れを防
止する技術に関するものである。この技術は、光アイソ
レータなどのファラデー素子などの製造に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetic garnet single crystal by the LPE method (liquid phase epitaxial method). The present invention relates to a technique for preventing cracking of a single crystal by growing a garnet single crystal. This technique is useful for manufacturing Faraday elements such as optical isolators.

【0002】[0002]

【従来の技術】磁性ガーネット単結晶はファラデー効果
を持っており、光アイソレータの中心材料である。近
年、この種の磁性ガーネット単結晶としては、LPE法
により非磁性ガーネット基板上に育成するビスマス置換
希土類鉄ガーネットが主になってきている。これは希土
類鉄ガーネット単結晶の中の希土類元素の一部をBi
(ビスマス)で置換したものであり、厚さ〜数百μmの
厚膜である。LPE法を採用する理由は、LPE法が量
産性に優れており、高品質の単結晶膜を低価格で製造で
きるからである。
2. Description of the Related Art A magnetic garnet single crystal has a Faraday effect and is a central material of an optical isolator. In recent years, a bismuth-substituted rare earth iron garnet grown on a non-magnetic garnet substrate by the LPE method has been mainly used as a magnetic garnet single crystal of this type. This is part of the rare earth element in the rare earth iron garnet single crystal.
It is replaced with (bismuth) and is a thick film having a thickness of several hundreds of μm. The reason why the LPE method is adopted is that the LPE method is excellent in mass productivity and a high quality single crystal film can be manufactured at a low price.

【0003】従来、非磁性ガーネット基板上にLPE法
により磁性ガーネット単結晶を育成する場合は、厚い基
板を使用し、はじめに原料を完全に溶融し、その後その
液相温度から過冷却状態(結晶の析出が可能な温度状
態)に融液の温度を降下させ、その過冷却状態において
温度一定の条件を維持して育成している。このようなL
PE法による単結晶の育成においては、しばしばひび割
れ(クラック)などの発生により育成が困難となる現象
が生じる。これは、基板と単結晶の格子定数の不一致
(ミスマッチ)によると言われている。そこで、単結晶
を育成する時には基板との間で格子定数が一致するよう
な単結晶及び基板の組成を選択する。
Conventionally, when growing a magnetic garnet single crystal on a non-magnetic garnet substrate by the LPE method, a thick substrate is used, the raw material is completely melted first, and then the liquid phase temperature thereof is supercooled (crystal The temperature of the melt is lowered to a temperature state in which precipitation is possible), and in the supercooled state, the condition of constant temperature is maintained for growth. Such L
In the growth of a single crystal by the PE method, a phenomenon that the growth becomes difficult due to the occurrence of cracks often occurs. It is said that this is due to a mismatch (mismatch) between the lattice constants of the substrate and the single crystal. Therefore, when growing a single crystal, the composition of the single crystal and the substrate is selected so that the lattice constants of the single crystal and the substrate are the same.

【0004】しかし基板と単結晶は熱膨張率が異なるた
め、室温から結晶育成温度(例えば800℃程度)に至
る全ての温度範囲で両者の格子定数を一致させることは
不可能である。特に、ビスマス置換希土類鉄ガーネット
単結晶の場合、ビスマス含有量に比例して単結晶のファ
ラデー回転係数が大きくなり、その分、必要なファラデ
ー回転角を得るための膜厚を薄くできるので好ましい
が、反面、それに比例して単結晶の熱膨張率が大きくな
るため、育成中にひび割れが入り易くなるのである。
However, since the substrate and the single crystal have different coefficients of thermal expansion, it is impossible to match the lattice constants of both with each other in the entire temperature range from room temperature to the crystal growth temperature (eg, about 800 ° C.). In particular, in the case of a bismuth-substituted rare earth iron garnet single crystal, the Faraday rotation coefficient of the single crystal increases in proportion to the bismuth content, which is preferable because the film thickness for obtaining the necessary Faraday rotation angle can be reduced. On the other hand, since the coefficient of thermal expansion of the single crystal increases in proportion to it, cracks easily occur during the growth.

【0005】そこで、格子定数の不一致(ミスマッチ)
により生じる応力を緩和するため、育成方向で格子定数
を変化させる技術が開発されている(例えば特開平6─
92796号公報参照)。具体的には、単結晶の育成中
に温度を変えてビスマス置換量を変えるという手法を採
っている。
Therefore, the lattice constants do not match (mismatch).
In order to relieve the stress caused by, the technique of changing the lattice constant in the growing direction has been developed (for example, JP-A-6-
92796). Specifically, a method of changing the bismuth substitution amount by changing the temperature during the growth of the single crystal is adopted.

【0006】[0006]

【発明が解決しようとする課題】ところでビスマス置換
希土類鉄ガーネット単結晶の中で、NdBi系の磁性ガ
ーネット単結晶は、950〜1070nm帯でファラデ
ー回転素子として優れた性能を呈することが分かってい
る。しかし、このNdBi系の磁性ガーネット単結晶
は、Bi(ビスマス)とNd(ネオジム)のイオン半径
が非常に近いため、ビスマスの置換量を変えても結晶の
格子定数はほとんど変わらないという性質がある。従っ
て、単結晶育成中に温度を変えてビスマス置換量を変え
るという従来方法では応力を緩和することができず、ひ
び割れが多発する。
By the way, among bismuth-substituted rare earth iron garnet single crystals, NdBi-based magnetic garnet single crystals are known to exhibit excellent performance as a Faraday rotation element in the 950 to 1070 nm band. However, in this NdBi-based magnetic garnet single crystal, since the ionic radii of Bi (bismuth) and Nd (neodymium) are very close to each other, the lattice constant of the crystal hardly changes even if the substitution amount of bismuth is changed. . Therefore, the stress cannot be relaxed by the conventional method of changing the bismuth substitution amount by changing the temperature during the growth of the single crystal, and cracks frequently occur.

【0007】本発明の目的は、NdBi系の磁性ガーネ
ット単結晶をLPE法によって歩留りよく育成できる方
法を提供することである。
An object of the present invention is to provide a method capable of growing NdBi-based magnetic garnet single crystals by the LPE method with a high yield.

【0008】[0008]

【課題を解決するための手段】本発明は厚さが200〜
450μmの非磁性ガーネット基板を使用し、その基板
上にLPE法によってNdBi系の磁性ガーネット単結
晶を育成する方法である。本発明者は、使用する非磁性
ガーネット基板をある程度以下まで薄くすることによっ
て、LPE法によりNdBi系の磁性ガーネット単結晶
を製造した時に歩留りが著しく向上すること見出した。
本発明は、このような現象の知得に基づき完成したもの
である。
The present invention has a thickness of 200 to
This is a method in which a nonmagnetic garnet substrate of 450 μm is used and an NdBi-based magnetic garnet single crystal is grown on the substrate by the LPE method. The present inventor has found that the yield is significantly improved when an NdBi-based magnetic garnet single crystal is produced by the LPE method by thinning the non-magnetic garnet substrate used to a certain extent or less.
The present invention has been completed based on the knowledge of such a phenomenon.

【0009】使用する非磁性ガーネット基板の厚さt
を、200μm≦t≦450μmとしたのは、以下の理
由による。450μmを超えて基板が厚くなると、急激
に育成する単結晶にクラックが入り、歩留りが極度に悪
化する。また基板の厚さが200μm未満の場合には、
そのような薄い基板をインゴットから切り出す際に基板
自体に割れが発生し、基板作製の歩留りが著しく低下し
てしまう。なお実験の結果によれば、基板の厚さは、2
00〜320μm程度が好ましく、なかでも作業性など
の観点からいうと300μm程度が最も好ましい。
The thickness t of the non-magnetic garnet substrate used
Is set to 200 μm ≦ t ≦ 450 μm for the following reason. When the thickness of the substrate exceeds 450 μm, the rapidly growing single crystal is cracked and the yield is extremely deteriorated. If the substrate thickness is less than 200 μm,
When such a thin substrate is cut out from an ingot, a crack occurs in the substrate itself, resulting in a significant reduction in the yield of manufacturing the substrate. According to the result of the experiment, the thickness of the substrate is 2
The thickness is preferably about 00 to 320 μm, and most preferably about 300 μm from the viewpoint of workability.

【0010】本発明において非磁性ガーネット基板とし
てGd3-y Ndy Sc2 Ga3 12(但し、1.0≦y
≦1.4)を用い、その上にLPE法で育成する磁性ガ
ーネット単結晶はNd3-x Bix Fe5 12(但し、
0.5≦x≦1.9)なる組成を有するものが望まし
い。
In the present invention, Gd 3-y Nd y Sc 2 Ga 3 O 12 (provided that 1.0≤y
≦ 1.4) using a magnetic garnet single crystal Nd 3-x Bi x Fe 5 O 12 for growing in LPE method on it (provided that
Those having a composition of 0.5 ≦ x ≦ 1.9) are desirable.

【0011】本発明において磁性ガーネット単結晶に希
土類元素としてNd(ネオジム)を用いるのは、Ndが
Bi(ビスマス)と同じ負のファラデー回転を生じ、フ
ァラデー回転係数θF を大きくすることができるためで
ある。なお、Ndは1500nm帯に吸収があり、その
ため波長1550nm帯のファラデー素子材料としては
不適切なものであるが、それより短波長側ではそのよう
な不都合は無い。そして、ビスマスの置換量xを0.5
〜1.9とするのがよい理由は、0.5未満ではファラ
デー回転係数θF が小さく、そのため光アイソレータに
必要な45度回転膜厚が厚くなり、特に短波長側での吸
収が大きくなること、1.9を超えてビスマス置換が多
くなると育成した磁性ガーネット単結晶膜に割れが生じ
易くなることによる。
In the present invention, Nd (neodymium) is used as the rare earth element in the magnetic garnet single crystal because Nd causes the same negative Faraday rotation as Bi (bismuth) and the Faraday rotation coefficient θ F can be increased. Is. Nd has absorption in the 1500 nm band and is therefore unsuitable as a Faraday element material in the 1550 nm wavelength band, but there is no such inconvenience on the shorter wavelength side. Then, the replacement amount x of bismuth is 0.5
The reason why it is preferable to be ˜1.9 is that if it is less than 0.5, the Faraday rotation coefficient θ F is small, so that the 45 ° -rotation film thickness necessary for the optical isolator becomes thicker, and the absorption especially on the short wavelength side becomes large. That is, when the bismuth substitution exceeds 1.9, the grown magnetic garnet single crystal film is likely to be cracked.

【0012】(NdBi)3 Fe5 12なる組成の磁性
ガーネット単結晶は、格子定数aがa=12.62Åで
ある。LPE法で結晶を育成する場合、当然のことなが
ら基板とLPE膜との格子定数を合わせなければならな
い制約を受ける。本発明で使用する組成式Gd3-y Nd
y Sc2 Ga3 12(但し、1.0≦y≦1.4)で示
される非磁性ガーネット基板は、格子定数aが、12.
61〜12.63Åであり、上記磁性ガーネット単結晶
のLPE法による成膜に最適なのである。
A magnetic garnet single crystal having a composition of (NdBi) 3 Fe 5 O 12 has a lattice constant a of a = 12.62Å. When a crystal is grown by the LPE method, naturally, there is a constraint that the lattice constants of the substrate and the LPE film should be matched. Compositional formula Gd 3-y Nd used in the present invention
The nonmagnetic garnet substrate represented by y Sc 2 Ga 3 O 12 (where 1.0 ≦ y ≦ 1.4) has a lattice constant a of 12.
It is 61 to 12.63Å, which is optimal for film formation of the above magnetic garnet single crystal by the LPE method.

【0013】[0013]

【発明の実施の態様】薄い非磁性ガーネット基板を使用
し、それ以外は従来の一般的なLPE法によってNdB
i系の磁性ガーネット単結晶を育成する。育成温度は、
通常800℃程度であり、育成した単結晶を取り出す温
度は100℃〜室温程度である。育成温度では、基板と
単結晶の格子定数はほぼ一致した状態であり(そのよう
に育成する単結晶の組成に対して使用する基板の組成を
選択している)、所定の膜厚まで育成する。実際には、
膜厚1〜2μmの単結晶薄膜を形成したテストチップを
育成温度を変えて数種類作製し、X線回折装置で測定し
てピークが重なっている(一致している)か否かを判定
する。そしてピークが重なっている、即ち、格子定数の
ミスマッチがほぼゼロであることを確認したテストチッ
プの製作条件に従って製品を製造する。
BEST MODE FOR CARRYING OUT THE INVENTION A thin non-magnetic garnet substrate is used, otherwise NdB is obtained by a conventional general LPE method.
An i-based magnetic garnet single crystal is grown. The growth temperature is
The temperature is usually about 800 ° C., and the temperature at which the grown single crystal is taken out is about 100 ° C. to room temperature. At the growth temperature, the lattice constants of the substrate and the single crystal are almost the same (the composition of the substrate used is selected with respect to the composition of the single crystal grown in that way), and the film is grown to a predetermined film thickness. . actually,
Several kinds of test chips each having a single crystal thin film with a film thickness of 1 to 2 μm are formed by changing the growth temperature and measured with an X-ray diffractometer to determine whether or not the peaks overlap (match). Then, the product is manufactured according to the manufacturing conditions of the test chip in which it is confirmed that the peaks are overlapped, that is, the mismatch of the lattice constant is almost zero.

【0014】その後、単結晶を取り出すために温度を下
げると、基板と単結晶とは熱膨張率が違うため応力が発
生する。しかし本発明では基板が非常に薄いため、発生
した応力によって全体(基板と単結晶の両方)が反るよ
うに変形する。これによって応力が緩和され、単結晶に
クラックなどが入るのを防止している。つまり本発明で
は、基板を薄くすることによって、変形し易く且つ変形
に対する耐久性を向上しているのである。
Thereafter, when the temperature is lowered to take out the single crystal, stress is generated because the substrate and the single crystal have different coefficients of thermal expansion. However, in the present invention, since the substrate is very thin, the entire stress (both the substrate and the single crystal) is deformed by the generated stress. This relieves the stress and prevents cracks from entering the single crystal. That is, in the present invention, by making the substrate thin, it is easy to deform and the durability against deformation is improved.

【0015】[0015]

【実施例】Gd1.8 Nd1.2 Sc2 Ga3 12(格子定
数a=12.62Å)の直径1インチ(約25mm)の単
結晶インゴットを薄く切断した基板を用い、その上にL
PE法によりNd1.7 Bi1.3 Fe5 12の単結晶を育
成した。結晶育成の原料として、Nd2 3 ,Fe2
3 ,Bi2 3 ,PbO,B2 3 を用いた。まず95
0℃で10時間溶融し、次いで同じ950℃で3時間攪
拌した。その後、735℃に下げ、LPE法で単結晶を
育成した。基板の厚みを変えて試料番号1〜5の5回の
実験を行った。その結果を表1に示す。同時に図1に基
板の厚みと歩留りの関係を示す。
EXAMPLE A substrate obtained by thinly cutting a single crystal ingot of Gd 1.8 Nd 1.2 Sc 2 Ga 3 O 12 (lattice constant a = 12.62Å) with a diameter of 1 inch (about 25 mm) was used.
A single crystal of Nd 1.7 Bi 1.3 Fe 5 O 12 was grown by the PE method. As a raw material for crystal growth, Nd 2 O 3 , Fe 2 O
3 , Bi 2 O 3 , PbO and B 2 O 3 were used. First 95
It was melted at 0 ° C. for 10 hours and then stirred at the same 950 ° C. for 3 hours. After that, the temperature was lowered to 735 ° C., and a single crystal was grown by the LPE method. Five experiments of sample numbers 1 to 5 were performed by changing the thickness of the substrate. Table 1 shows the results. At the same time, FIG. 1 shows the relationship between the substrate thickness and the yield.

【0016】[0016]

【表1】 [Table 1]

【0017】結晶育成時は、テストチップの結果、ミス
マッチがほぼゼロであることから、図2の(a)に示す
ように、基板及び育成中の単結晶膜は平坦と考えられる
が、育成後に単結晶を取り出した時には、図2の(b)
に示すように、すべて球状に反るように変形していた。
そこで、変形は、反りの曲率半径r(mm)を算出し、そ
の逆数を変形度として評価した。従って、1/rが大き
いほど変形が大きいということになる。
During the crystal growth, as a result of the test chip, the mismatch is almost zero. Therefore, as shown in FIG. 2A, the substrate and the single crystal film under growth are considered to be flat. When the single crystal is taken out, (b) of FIG.
As shown in, all of them were deformed so as to be spherically warped.
Therefore, for the deformation, the curvature radius r (mm) of the warp was calculated, and the reciprocal thereof was evaluated as the deformation degree. Therefore, the larger 1 / r is, the larger the deformation is.

【0018】割れの評価には歩留りを用いた。歩留り
(%)は、単結晶育成後、基板の付いた単結晶を3mm角
に切断して、得られる3mm角のチップ全数に対する得ら
れたクラックフリー(割れの無い)の3mm角チップ数の
比率で求めた。即ち、 歩留り(%)=(クラックフリーの3mm角チップ数)/
(得られた3mm角チップ全数)×100
The yield was used for the evaluation of cracks. Yield (%) is the ratio of the obtained crack-free (no crack) 3mm square chips to the total number of 3mm square chips obtained by cutting a single crystal with a substrate into 3mm squares after growing the single crystal. I asked for. That is, yield (%) = (number of crack-free 3 mm square chips) /
(Total number of 3mm square chips obtained) x 100

【0019】この結果から、基板の厚みは450μm以
下とすることが適当であることがわかる。本実験では基
板の厚みが200μmの場合までしか行っていない。そ
の理由は、基板の厚みが200μm未満になると、イン
ゴットから切り出す時に割れ易く、基板を製作する歩留
りが極端に悪くなるからである。表1の結果から、基板
の厚みtは、200μm≦t≦450μmの範囲とする
必要があり、なかでも200〜320μmとすることが
望ましいことが分かる。一般に基板が厚くなる方が取り
扱いが容易なため、基板の厚みは300μm程度が最も
好ましい。
From this result, it is understood that it is appropriate that the thickness of the substrate is 450 μm or less. In this experiment, the experiment was performed only when the thickness of the substrate was 200 μm. The reason is that when the thickness of the substrate is less than 200 μm, the substrate is easily cracked when it is cut out from the ingot, and the yield of manufacturing the substrate is extremely deteriorated. From the results of Table 1, it is understood that the thickness t of the substrate needs to be in the range of 200 μm ≦ t ≦ 450 μm, and is preferably 200 to 320 μm. Generally, the thicker the substrate is, the easier it is to handle. Therefore, the thickness of the substrate is most preferably about 300 μm.

【0020】[0020]

【発明の効果】本発明は上記のように、LPE法でNd
Bi系磁性ガーネット単結晶を育成する際の非磁性ガー
ネット基板の厚みを薄くしたことにより、ひび割れの発
生を抑制でき、これによって製造の歩留りを著しく向上
することができる。
INDUSTRIAL APPLICABILITY The present invention, as described above, uses the LPE method for Nd
By reducing the thickness of the non-magnetic garnet substrate when growing the Bi-based magnetic garnet single crystal, it is possible to suppress the occurrence of cracks, thereby significantly improving the manufacturing yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】基板の厚みと歩留りの関係を示すグラフ。FIG. 1 is a graph showing the relationship between substrate thickness and yield.

【図2】単結晶育成中と取り出し後の基板と単結晶の断
面形状を示す説明図。
FIG. 2 is an explanatory view showing the cross-sectional shapes of the substrate and the single crystal during and after the single crystal growth.

【符号の説明】[Explanation of symbols]

10 非磁性ガーネット基板 12 磁性ガーネット単結晶 10 Non-magnetic garnet substrate 12 Magnetic garnet single crystal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非磁性ガーネット基板上に、LPE法に
よってNdBi系の磁性ガーネット単結晶を育成する方
法において、 使用する前記基板の厚さtを、200μm≦t≦450
μmとすることを特徴とするLPE法による磁性ガーネ
ット単結晶の製造方法。
1. A method for growing an NdBi-based magnetic garnet single crystal on a non-magnetic garnet substrate by the LPE method, wherein the thickness t of the substrate used is 200 μm ≦ t ≦ 450.
A method for producing a magnetic garnet single crystal by the LPE method, characterized in that the thickness is μm.
【請求項2】 非磁性ガーネット基板の組成がGd3-y
Ndy Sc2 Ga312(但し、1.0≦y≦1.4)
であり、育成する磁性ガーネット単結晶の組成がNd
3-x Bix Fe5 12(但し、0.5≦x≦1.9)で
ある請求項1記載のLPE法による磁性ガーネット単結
晶の製造方法。
2. The composition of the non-magnetic garnet substrate is Gd 3-y
Nd y Sc 2 Ga 3 O 12 (however, 1.0 ≦ y ≦ 1.4)
And the composition of the growing magnetic garnet single crystal is Nd.
3-x Bi x Fe 5 O 12 ( where, 0.5 ≦ x ≦ 1.9) the method of manufacturing a magnetic garnet single crystal by the LPE method according to claim 1, wherein a.
JP07234741A 1995-08-21 1995-08-21 Method for producing magnetic garnet single crystal by LPE method Expired - Fee Related JP3119795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07234741A JP3119795B2 (en) 1995-08-21 1995-08-21 Method for producing magnetic garnet single crystal by LPE method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07234741A JP3119795B2 (en) 1995-08-21 1995-08-21 Method for producing magnetic garnet single crystal by LPE method

Publications (2)

Publication Number Publication Date
JPH0959093A true JPH0959093A (en) 1997-03-04
JP3119795B2 JP3119795B2 (en) 2000-12-25

Family

ID=16975639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07234741A Expired - Fee Related JP3119795B2 (en) 1995-08-21 1995-08-21 Method for producing magnetic garnet single crystal by LPE method

Country Status (1)

Country Link
JP (1) JP3119795B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073670A1 (en) * 2010-11-29 2012-06-07 住友金属鉱山株式会社 Bismuth-substituted rare earth iron garnet crystal film and optical isolator
JP2013087015A (en) * 2011-10-18 2013-05-13 Sumitomo Metal Mining Co Ltd Liquid phase epitaxial growth method of bismuth substituted rare earth-iron-garnet film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073670A1 (en) * 2010-11-29 2012-06-07 住友金属鉱山株式会社 Bismuth-substituted rare earth iron garnet crystal film and optical isolator
JP2012116672A (en) * 2010-11-29 2012-06-21 Sumitomo Metal Mining Co Ltd Bismuth-substituted rare earth iron garnet crystal film and optical isolator
US9303333B2 (en) 2010-11-29 2016-04-05 Sumitomo Metal Mining Co., Ltd. Bismuth-substituted rare-earth iron garnet crystal film and optical isolator
JP2013087015A (en) * 2011-10-18 2013-05-13 Sumitomo Metal Mining Co Ltd Liquid phase epitaxial growth method of bismuth substituted rare earth-iron-garnet film

Also Published As

Publication number Publication date
JP3119795B2 (en) 2000-12-25

Similar Documents

Publication Publication Date Title
JP3753920B2 (en) Magnetic garnet single crystal film, manufacturing method thereof, and Faraday rotator using the same
JPH11255600A (en) Production of bismuth-substituted rare earth iron garnet single crystal thick film
JP2004269305A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
JPH0959093A (en) Production of magnetic garnet single crystal by lpe method
JP6610417B2 (en) Method for growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JP4218448B2 (en) Garnet single crystal, its growth method, and garnet substrate for liquid phase epitaxial growth method using the same
JP3197383B2 (en) Manufacturing method of thin film by epitaxial growth
EP0785618B1 (en) Magnetostatic wave device
JP3816591B2 (en) Method for producing bismuth-substituted rare earth iron garnet single crystal film
JP5659999B2 (en) Liquid phase epitaxial growth method of bismuth-substituted rare earth-iron garnet films
JPH0766114B2 (en) Magneto-optical element material
JP3547089B2 (en) Microwave device material
JP2715053B2 (en) Magneto-optical element material
JP3894685B2 (en) Method for producing oxide garnet single crystal film
JP3649935B2 (en) Magnetic garnet material and Faraday rotator using the same
JPH0867600A (en) Production of bismuth-substituted rare-earth iron garnet single crystal
JP2004269283A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
JPH0748425B2 (en) Microwave device
JP3917859B2 (en) Faraday rotator
JP2002308696A (en) Garnet single crystal substrate and method for producing bismuth-substituted rare earth garnet single crystal film using the same
JP2005060156A (en) Single crystal substrate and its manufacturing method
JP2543997B2 (en) Bismuth-substituted oxide garnet single crystal and method for producing the same
JP2868166B2 (en) Garnet crystal film and method of manufacturing the same
JPH03103398A (en) Oxide garnet single crystal and production thereof
JPH0549638B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees