JPH0959060A - Piezoelectric porcelain composition - Google Patents

Piezoelectric porcelain composition

Info

Publication number
JPH0959060A
JPH0959060A JP7237834A JP23783495A JPH0959060A JP H0959060 A JPH0959060 A JP H0959060A JP 7237834 A JP7237834 A JP 7237834A JP 23783495 A JP23783495 A JP 23783495A JP H0959060 A JPH0959060 A JP H0959060A
Authority
JP
Japan
Prior art keywords
composition
lead
vibration level
vibration
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7237834A
Other languages
Japanese (ja)
Inventor
Yasuhiro Sasaki
康弘 佐々木
Sadayuki Takahashi
貞行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7237834A priority Critical patent/JPH0959060A/en
Publication of JPH0959060A publication Critical patent/JPH0959060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a piezoelectric porcelain material having a low inner energy loss and capable of being driven at high vibration level. SOLUTION: This porcelain composition consists of three components of Pb(Mg1/3 Nb2/3 )O3 , Pb(Mn1/3 Sb2/3 )O3 and PbTiO3 , and has composition ratios expressed by the slant lined part. Than is, when the composition is expressed by the formula [(Pb(Mg1/3 Nb2/3 )O3 ]x [Pb(Mn1/3 Sb2/3 )O3 ]y [PbTiO3 ]z (x+y+z=1), the porcelain composition exists inside the quadrilateral formed by connecting the four points of the following A, B, C and D in a three-component composition diagram. A: (x=0.01, y=0.75, z=0.42). B: (x=0.01, v=0.71, z=0.28). C: (x=0.15, v=0.43, z=0.42). D: (x=0.15, v=0.57, z=0.28).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧電磁器組成物に
関し、特に、高振動レベルまたは大振幅駆動が可能な圧
電磁器組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric ceramic composition, and more particularly to a piezoelectric ceramic composition capable of driving a high vibration level or a large amplitude.

【0002】[0002]

【従来の技術】電気エネルギーを機械的振動エネルギー
に変換することのできる圧電材料は圧電アクチュエータ
や超音波モータなど、動力分野への応用がなされてい
る。これらの応用に対しては極めて大きな機械的出力が
要求されるため、圧電材料は大振幅または高振動レベル
で駆動されることになる。したがって、これらの応用に
対しては、圧電材料には高振動レベルで駆動しても内部
エネルギー損失の増大が抑制されることが、すなわち、
高い振動レベルで限界を有することが求められる。
2. Description of the Related Art Piezoelectric materials capable of converting electrical energy into mechanical vibration energy have been applied to the field of power such as piezoelectric actuators and ultrasonic motors. Due to the extremely high mechanical output required for these applications, the piezoelectric material will be driven with large amplitude or high vibration levels. Therefore, for these applications, piezoelectric materials can be suppressed from increasing internal energy loss even when driven at high vibration levels:
It is required to have limits at high vibration levels.

【0003】従来、圧電磁器組成物として鉛系複合ペロ
ブスカイト化合物が広く知られ、一部の組成で実用化が
なされている。その中でも誘電率が大きいため大振幅駆
動に適した代表的な組成材料に、マグネシウム・ニオブ
酸鉛[Pb(Mg1/3 Nb2/3 )O3 ]とチタン酸鉛
[PbTiO3 ]の2成分化合物(以下、PMN−PT
と記す)があるが、この材料は動作振動レベルが高くな
るのに伴い、内部エネルギー損失による発熱が増大し、
やがて材料の絶縁破壊が起こる。
Heretofore, lead-based composite perovskite compounds have been widely known as piezoelectric ceramic compositions, and some compositions have been put to practical use. Among them, lead magnesium niobate [Pb (Mg 1/3 Nb 2/3 ) O 3 ] and lead titanate [PbTiO 3 ] are two typical composition materials suitable for large-amplitude driving because of their large dielectric constant. Component compound (hereinafter PMN-PT
However, this material increases heat generation due to internal energy loss as the operating vibration level increases,
Eventually dielectric breakdown of the material occurs.

【0004】ここで、振動レベルを、光学式変位測定器
から得られる振動子の最大先端振幅ξm と振動子の共振
周波数f0 の測定から算出できる実効的振動速度v0
与えられるものとする。v0 は次式で表わすことができ
る。 v0 =(√2)πf0 ξm …(1) このように振動レベルを振動速度で表現した場合、従来
材料は安定して使用できる振動レベル(速度)の限界が
0.1m/sに留まっていた。
Here, it is assumed that the vibration level is given by an effective vibration velocity v 0 which can be calculated from the measurement of the maximum tip amplitude ξ m of the vibrator and the resonance frequency f 0 of the vibrator obtained from the optical displacement measuring device. To do. v 0 can be expressed by the following equation. v 0 = (√2) πf 0 ξ m (1) When the vibration level is expressed by the vibration speed in this way, the limit of the vibration level (speed) that can be stably used in the conventional material is 0.1 m / s. It stayed.

【0005】[0005]

【発明が解決しようとする課題】従来のPMN−PT材
料では、0.1m/s程度を上限とした低振動レベル
(速度)での駆動に制限されるため、大きな機械的出力
が要求される動力デバイスへの応用は困難であった。ま
た、PMN−PTの高出力化のため数々の手段がとられ
たが、その材料性能は向上させる効果はみられなかっ
た。
Since the conventional PMN-PT material is limited to driving at a low vibration level (speed) with an upper limit of about 0.1 m / s, a large mechanical output is required. Application to power devices was difficult. Further, various measures were taken to increase the output of PMN-PT, but the effect of improving the material performance was not found.

【0006】本発明は、従来困難であった振動レベル
(速度)限界v0maxが従来の3倍以上となるv0max
0.3m/sの特性を有する圧電磁器組成を提供するこ
とを目的としてなされたものである。
In the present invention, the vibration level (speed) limit v 0max , which has been difficult in the past, becomes three times or more than that in the conventional v 0max
It was made for the purpose of providing a piezoelectric ceramic composition having a characteristic of 0.3 m / s.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による圧電磁器組成物は、マグネシウム・ニ
オブ酸鉛[Pb(Mg1/3 Nb2/3 )O3 ]、マンガン
・アンチモン酸鉛[Pb(Mn1/3 Sb2/3 )O3 ]お
よびチタン酸鉛[PbTiO3 ]の3成分からなるもの
であり、特に、マグネシウム・ニオブ酸鉛[Pb(Mg
1/3 Nb2/3 )O3 ]、マンガン・アンチモン酸鉛[P
b(Mn1/3 Sb2/3 )O3 ]およびチタン酸鉛[Pb
TiO3 ]からなる3成分組成物を[Pb(Mg1/3
2/3 )O3x [Pb(Mn1/3 Sb2/3 )O3y
[PbTiO3z (但し、x+y+z=1)と表現し
たとき、この3成分組成物の3成分組成図において、次
のA、B、C、Dの4点、 A:(x=0.01、 y=0.57、 z=0.42) B:(x=0.01、 y=0.71、 z=0.28) C:(x=0.15、 y=0.43、 z=0.42) D:(x=0.15、 y=0.57、 z=0.28) を結ぶ線上の点およびこれによって形成される四辺形内
に含まれる点によって定められる組成比のものである。
The piezoelectric ceramic composition according to the present invention for achieving the above object is a lead magnesium niobate [Pb (Mg 1/3 Nb 2/3 ) O 3 ], manganese antimony. It is composed of three components, lead acid [Pb (Mn 1/3 Sb 2/3 ) O 3 ] and lead titanate [PbTiO 3 ], and particularly magnesium lead niobate [Pb (Mg
1/3 Nb 2/3 ) O 3 ], manganese / lead antimonate [P
b (Mn 1/3 Sb 2/3 ) O 3 ] and lead titanate [Pb
A three-component composition consisting of [TiO 3 ] [Pb (Mg 1/3 N
b 2/3 ) O 3 ] x [Pb (Mn 1/3 Sb 2/3 ) O 3 ] y
When expressed as [PbTiO 3 ] z (however, x + y + z = 1), in the three-component composition diagram of this three-component composition, the following four points A, B, C and D, A: (x = 0.01 , Y = 0.57, z = 0.42) B: (x = 0.01, y = 0.71, z = 0.28) C: (x = 0.15, y = 0.43, z = 0.42) D: of the composition ratio defined by the points on the line connecting (x = 0.15, y = 0.57, z = 0.28) and the points included in the quadrangle formed thereby. It is a thing.

【0008】[0008]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。本発明による圧電磁器組成
物は、マグネシウム・ニオブ酸鉛[Pb(Mg1/3Nb
2/3 )O3 ]、マンガン・アンチモン酸鉛[Pb(Mn
1/3 Sb2/3 )O3]およびチタン酸鉛[PbTiO
3 ]の3成分からなり、ペロブスカイト構造の磁器組成
物である。
Next, embodiments of the present invention will be described with reference to the drawings. The piezoelectric ceramic composition according to the present invention is a lead magnesium niobate [Pb (Mg 1/3 Nb
2/3 ) O 3 ], manganese / lead antimonate [Pb (Mn
1/3 Sb 2/3 ) O 3 ] and lead titanate [PbTiO 3
[3 ]] and is a porcelain composition having a perovskite structure.

【0009】好ましい組成比は、図1の3成分組成図に
おいて、斜線部分で示される。すなわち、マグネシウム
・ニオブ酸鉛[Pb(Mg1/3 Nb2/3 )O3 ]、マン
ガン・アンチモン酸鉛[Pb(Mn1/3 Sb2/3 )O
3 ]およびチタン酸鉛[PbTiO3 ]からなる3成分
組成物を[Pb(Mg1/3 Nb2/3 )O3x [Pb
(Mn1/3 Sb2/3 )O3y [PbTiO3z (但
し、x+y+z=1)と表現したとき、この3成分組成
物の3成分組成図において、次のA、B、C、Dの4
点、 A:(x=0.01、 y=0.57、 z=0.42) B:(x=0.01、 y=0.71、 z=0.28) C:(x=0.15、 y=0.43、 z=0.42) D:(x=0.15、 y=0.57、 z=0.28) を結ぶ線上の点およびこれによって形成される四辺形内
に含まれる点によって定められる組成比のものである。
The preferable composition ratio is shown by the hatched portion in the three-component composition diagram of FIG. That is, lead magnesium niobate [Pb (Mg 1/3 Nb 2/3 ) O 3 ], lead manganese antimonate [Pb (Mn 1/3 Sb 2/3 ) O
3 ] and lead titanate [PbTiO 3 ] are added to the three-component composition [Pb (Mg 1/3 Nb 2/3 ) O 3 ] x [Pb
When expressed as (Mn 1/3 Sb 2/3 ) O 3 ] y [PbTiO 3 ] z (where x + y + z = 1), in the three-component composition diagram of this three-component composition, the following A, B, C , D 4
Point, A: (x = 0.01, y = 0.57, z = 0.42) B: (x = 0.01, y = 0.71, z = 0.28) C: (x = 0 .15, y = 0.43, z = 0.42) D: a point on a line connecting (x = 0.15, y = 0.57, z = 0.28) and a quadrangle formed thereby. The composition ratio is determined by the points included in.

【0010】[0010]

【実施例】次に、本発明の実施例について説明する。本
発明の材料を得る出発原料として酸化鉛(PbO)、酸
化チタン(TiO2)、酸化マグネシウム(MgO)、
酸化ニオブ(Nb25 )および、炭酸マンガン(Mn
CO3 )、酸化アンチモン(Sb23 )の各粉末を用
いた。ここでMnCO3 はMnOに換算して必要量得る
ようにした。
Next, an embodiment of the present invention will be described. As starting materials for obtaining the material of the present invention, lead oxide (PbO), titanium oxide (TiO 2 ), magnesium oxide (MgO),
Niobium oxide (Nb 2 O 5 ) and manganese carbonate (Mn
CO 3 ) and antimony oxide (Sb 2 O 3 ) powders were used. Here, MnCO 3 was converted to MnO to obtain the required amount.

【0011】各原料粉末を実施例毎に所定量秤量し、ボ
ールミルによる湿式混合後、混合粉末を850℃、2
h、大気中で仮焼した。仮焼粉を粉砕後、造粒、成形
し、1200℃、2時間、大気中で焼成を行い、長さ6
0mm、幅30mm、厚さ10mmの焼結ブロックを得
た。このブロックを切断、研磨により43×7×1mm
tの矩形板に加工した後、相対向する両主面に銀電極を
焼き付け、100℃の絶縁油中で4kV/mmの直流電
界を1時間印加して分極処理を施した。
A predetermined amount of each raw material powder was weighed for each example, wet-mixed with a ball mill, and the mixed powder was 850 ° C. for 2 minutes.
h, calcined in the atmosphere. After calcination of the calcined powder, granulation and molding, firing at 1200 ° C. for 2 hours in the air, length 6
A sintered block having a width of 0 mm, a width of 30 mm and a thickness of 10 mm was obtained. 43 × 7 × 1mm by cutting and polishing this block
After processing into a rectangular plate of t , silver electrodes were baked on both main surfaces facing each other, and a direct current electric field of 4 kV / mm was applied in insulating oil at 100 ° C. for 1 hour to perform polarization treatment.

【0012】24時間室温放置した後、定電流駆動回路
により圧電横効果長さ縦振動の基本モードを励振させ、
振動レベル限界の測定を行った。振動レベルは光学式変
位測定器から得られる振動子の最大先端振動振幅ξm
振動子の共振周波数f0 の測定から算出できる実効的振
動速度v0 で求めた。 v0 =(√2)πf0 ξm …(1) 振動レベル(速度)限界は圧電振動子の振動の節点に設
けられた熱電対の温度測定により、その温度上昇(振動
子の温度と室温の差)ΔTが20℃になる振動速度をv
0maxと表し、これを振動レベル限界とした。表1および
表2に各実施例の組成比と振動レベル限界を示す。
After being left at room temperature for 24 hours, a constant current drive circuit excites the basic mode of piezoelectric transverse effect length longitudinal vibration.
The vibration level limit was measured. The vibration level was obtained by the effective vibration velocity v 0 that can be calculated from the measurement of the maximum tip vibration amplitude ξ m of the vibrator and the resonance frequency f 0 of the vibrator obtained from the optical displacement measuring device. v 0 = (√2) πf 0 ξ m (1) The vibration level (velocity) limit is the temperature rise (vibrator temperature and room temperature) measured by measuring the temperature of a thermocouple installed at the vibration node of the piezoelectric vibrator. Difference) ΔT is 20 ° C
It was expressed as 0max, and this was set as the vibration level limit. Table 1 and Table 2 show the composition ratio and vibration level limit of each example.

【0013】[0013]

【表1】 [Table 1]

【0014】また、図2に、本発明の実施例の振動レベ
ル(速度)と温度上昇ΔTの相関について示す。本発明
の実施例のものでは、振動レベルが0.3m/sに至っ
ても温度上昇は10℃程度に留まり、この範囲を越えて
も温度上昇は緩やかである。
FIG. 2 shows the correlation between the vibration level (speed) and the temperature increase ΔT in the embodiment of the present invention. In the example of the present invention, the temperature rise remains at about 10 ° C. even when the vibration level reaches 0.3 m / s, and the temperature rise is gentle even if it exceeds this range.

【0015】[0015]

【表2】 [Table 2]

【0016】[比較例]比較のために、出発原料として
酸化鉛(PbO)、酸化チタン(TiO2 )、酸化マグ
ネシウム(MgO)および酸化ニオブ(Nb25 )の
粉末のみを用い、本発明の実施例と同様の方法により同
様の素子を形成した。得られた素子について、実施例と
同様の測定を行い表3の結果を得た。また、比較例の振
動レベル(速度)と温度上昇ΔTの相関を、図2に示
す。
[Comparative Example] For comparison, the present invention was conducted using only lead oxide (PbO), titanium oxide (TiO 2 ), magnesium oxide (MgO) and niobium oxide (Nb 2 O 5 ) powders as starting materials. A similar device was formed by the same method as in the above example. The obtained device was measured in the same manner as in the example, and the results shown in Table 3 were obtained. Further, the correlation between the vibration level (speed) and the temperature increase ΔT in the comparative example is shown in FIG.

【0017】[0017]

【表3】 [Table 3]

【0018】表3と表1および表2との比較から、従来
例のPMN−PTに本発明に従ってPb(Mn1/3 Sb
2/3 )O3 を配合させることにより、振動レベル限界が
3倍以上向上すること分かる。また、図2に示されるよ
うに、従来材料では振動レベル(速度)が0.05m/
sを越えると急激な温度上昇が起こり0.1m/s以上
に振動レベルを高くすることができない。これは、大振
幅させるために振動子に電力を印加しても、振動子の内
部エネルギー損失のため熱消散が高まり、熱破壊を起こ
す恐れが高くなるためである。これに対し、本発明によ
る組成物は内部エネルギー損失が小さいため、印加電力
が高効率で振動エネルギーに変換され、高振動レベルで
駆動できる。
From the comparison between Table 3 and Table 1 and Table 2, PMN-PT of the conventional example was prepared according to the present invention with Pb (Mn 1/3 Sb).
It can be seen that the vibration level limit is more than tripled by adding 2/3 ) O 3 . Further, as shown in FIG. 2, the vibration level (speed) of the conventional material is 0.05 m /
When it exceeds s, a rapid temperature rise occurs and the vibration level cannot be increased to 0.1 m / s or more. This is because even if electric power is applied to the vibrator in order to make it have a large amplitude, heat dissipation is increased due to internal energy loss of the vibrator, and there is a high risk of thermal destruction. On the other hand, since the composition according to the present invention has a small internal energy loss, the applied power is converted into vibration energy with high efficiency and can be driven at a high vibration level.

【0019】[0019]

【発明の効果】以上説明したように、本発明によるマグ
ネシウム・ニオブ酸鉛、マンガン・アンチモン酸鉛およ
びチタン酸鉛の3成分から構成される磁器組成物は、内
部エネルギー損失が小さいため、高い振動レベルでの駆
動が可能となる。従って、本発明によれば、高振動レベ
ルまたは大振幅で駆動させる動力圧電デバイスを製作す
るための優れた材料を提供することができる。
As described above, the porcelain composition according to the present invention composed of the three components magnesium lead niobate, manganese lead antimonate, and lead titanate has a small internal energy loss, and therefore has a high vibration. It becomes possible to drive at the level. Therefore, according to the present invention, it is possible to provide an excellent material for manufacturing a power piezoelectric device driven at a high vibration level or a large amplitude.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を説明するための3成分組
成図。
FIG. 1 is a three-component composition diagram for explaining an embodiment of the present invention.

【図2】本発明の実施例の材料により製作した素子と従
来例材料を用いた素子との振動レベル−温度上昇の特性
を示すグラフ。
FIG. 2 is a graph showing vibration level-temperature rise characteristics of an element manufactured using the material of the example of the present invention and an element using the conventional example material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 マグネシウム・ニオブ酸鉛[Pb(Mg
1/3 Nb2/3 )O3]、マンガン・アンチモン酸鉛[P
b(Mn1/3 Sb2/3 )O3 ]およびチタン酸鉛[Pb
TiO3 ]の3成分からなる圧電磁器組成物。
1. Magnesium lead niobate [Pb (Mg
1/3 Nb 2/3 ) O 3 ], manganese / lead antimonate [P
b (Mn 1/3 Sb 2/3 ) O 3 ] and lead titanate [Pb
TiO 3 ], a piezoelectric ceramic composition comprising three components.
【請求項2】 マグネシウム・ニオブ酸鉛[Pb(Mg
1/3 Nb2/3 )O3]、マンガン・アンチモン酸鉛[P
b(Mn1/3 Sb2/3 )O3 ]およびチタン酸鉛[Pb
TiO3 ]からなる3成分組成物を[Pb(Mg1/3
2/3 )O3x [Pb(Mn1/3 Sb2/3 )O3y
[PbTiO3z (但し、x+y+z=1)と表現し
たとき、この組成物の3成分組成図において、次のA、
B、C、Dの4点、 A:(x=0.01、 y=0.57、 z=0.42) B:(x=0.01、 y=0.71、 z=0.28) C:(x=0.15、 y=0.43、 z=0.42) D:(x=0.15、 y=0.57、 z=0.28) を結ぶ線上の点およびこれによって形成される四辺形内
に含まれる点によって定められる組成比の圧電磁器組成
物。
2. Magnesium lead niobate [Pb (Mg
1/3 Nb 2/3 ) O 3 ], manganese / lead antimonate [P
b (Mn 1/3 Sb 2/3 ) O 3 ] and lead titanate [Pb
A three-component composition consisting of [TiO 3 ] [Pb (Mg 1/3 N
b 2/3 ) O 3 ] x [Pb (Mn 1/3 Sb 2/3 ) O 3 ] y
When expressed as [PbTiO 3 ] z (however, x + y + z = 1), in the three-component composition diagram of this composition, the following A,
4 points of B, C, and D, A: (x = 0.01, y = 0.57, z = 0.42) B: (x = 0.01, y = 0.71, z = 0.28) ) C: (x = 0.15, y = 0.43, z = 0.42) D: (x = 0.15, y = 0.57, z = 0.28) A point on the line connecting this and this A piezoelectric porcelain composition having a composition ratio defined by points contained in a quadrangle formed by.
JP7237834A 1995-08-24 1995-08-24 Piezoelectric porcelain composition Pending JPH0959060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7237834A JPH0959060A (en) 1995-08-24 1995-08-24 Piezoelectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7237834A JPH0959060A (en) 1995-08-24 1995-08-24 Piezoelectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH0959060A true JPH0959060A (en) 1997-03-04

Family

ID=17021107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7237834A Pending JPH0959060A (en) 1995-08-24 1995-08-24 Piezoelectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH0959060A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294579A (en) * 1988-09-30 1990-04-05 Hitachi Ltd Electrostrictive porcelain composition for ultrasonic vibrator
JPH04300246A (en) * 1991-01-30 1992-10-23 Nippondenso Co Ltd Pzt piezoelectric ceramic material and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294579A (en) * 1988-09-30 1990-04-05 Hitachi Ltd Electrostrictive porcelain composition for ultrasonic vibrator
JPH04300246A (en) * 1991-01-30 1992-10-23 Nippondenso Co Ltd Pzt piezoelectric ceramic material and production thereof

Similar Documents

Publication Publication Date Title
JP5217997B2 (en) Piezoelectric ceramic, vibrator and ultrasonic motor
KR100314762B1 (en) Piezoelectric Ceramics and Piezoelectric Device
JP4466652B2 (en) Piezoelectric ceramic and piezoelectric ceramic element
JP2005179143A (en) Piezoelectric ceramic and method of producing the same
JP2005047745A (en) Piezoelectric ceramic
JP2674576B2 (en) Piezoelectric ceramic composition
KR20120033980A (en) Piezoelectric porcelain and piezoelectric element having the same, and piezoelectric device having the piezoelectric element
JP4756629B2 (en) Piezoelectric ceramic composition
JP2005047748A (en) Piezoelectric ceramic
JP4636222B2 (en) Piezoelectric ceramic
JP2003277145A (en) Piezoelectric porcelain
JP2836572B2 (en) High output pressure ceramic composition and method for producing the same
JP4383120B2 (en) Piezoelectric ceramic
JP4070967B2 (en) Piezoelectric ceramic
JPH0959060A (en) Piezoelectric porcelain composition
JPH0558729A (en) Piezoelectric ceramic composition
JPH11322423A (en) Piezoelectric percelain composition
JP2000239064A (en) Piezoelectric porcelain composition
JP2004203629A (en) Piezoelectric ceramic composition, piezoelectric transformer, piezoelectric transformer inverter circuit, and process for manufacturing piezoelectric ceramic composition
JP2856147B2 (en) Piezoelectric ceramic composition
JP2004051417A (en) Piezoelectric ceramic formulation
JP2000007431A (en) Piezoelectric porcelain and piezoelectric device
JPH11310457A (en) Piezoelectric porcelain material
JP2017165618A (en) Piezoelectric ceramic composition and method for producing piezoelectric ceramic composition
JP4009417B2 (en) Piezoelectric and piezoelectric devices