JP2004051417A - Piezoelectric ceramic formulation - Google Patents

Piezoelectric ceramic formulation Download PDF

Info

Publication number
JP2004051417A
JP2004051417A JP2002210829A JP2002210829A JP2004051417A JP 2004051417 A JP2004051417 A JP 2004051417A JP 2002210829 A JP2002210829 A JP 2002210829A JP 2002210829 A JP2002210829 A JP 2002210829A JP 2004051417 A JP2004051417 A JP 2004051417A
Authority
JP
Japan
Prior art keywords
mol
piezoelectric ceramic
piezoelectric
composition
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002210829A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kawakami
川上 祥広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2002210829A priority Critical patent/JP2004051417A/en
Publication of JP2004051417A publication Critical patent/JP2004051417A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric ceramic formulation which can be sintered at a temperature of ≤1, 100°C and exhibits a limit vibration speed of ≥0.4 m/s. <P>SOLUTION: The piezoelectric ceramic formulation has compositional formula: xPb<SB>a</SB>(Mn<SB>1/3</SB>Sb<SB>1/3</SB>Nb<SB>1/3</SB>)O<SB>3</SB>-yPb<SB>a</SB>ZrO<SB>3</SB>-zPb<SB>a</SB>TiO<SB>3</SB>, (wherein, x+y+z=100). The range of main components is on a line connecting compositional points of D(x=3 mol%, y=40 mol%, z=57 mol%), E(x=3 mol%, Y=60 mol%, z=37 mol%), F(x=12 mol%, y=53 mol%, z=35 mol%), and G(x=12 mol%, y=33 mol%, z=55 mol%) and in an area surrounded by these four points, and a is ≥1.00 and ≤1.02. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、洗浄機用振動子や、圧電アクチュエーター、超音波モーター、圧電トランスなど、高出力の振動速度で使用される圧電デバイス用の圧電磁器組成物に関する。
【0002】
【従来の技術】
電気エネルギーを機械エネルギーに変換することのできる圧電材料は、超音波洗浄機用振動子や、圧電アクチュエーター、超音波モーター、圧電トランスなど、高出力の圧電デバイスに実用化されている。これらの応用に際して、圧電材料には電気エネルギーを機械エネルギーへ変換する際のエネルギー損失が小さいことが要求される。
【0003】
また、最近、前記圧電デバイスを搭載する電気電子機器の小型化に伴い、圧電デバイスには小型化と機械的出力の増大が求められている。この要求に対し、従来の圧電材料では圧電デバイスの振動速度が高くなるのにともない、内部エネルギー損失による発熱がおこるため、やがて振動速度限界値に達し、さらには圧電材料が絶縁破壊に至るという問題点がある。従って、前記圧電デバイスの機械的出力を増大するためには、高い振動速度限界値を有する圧電材料の開発が求められている。
【0004】
ここで説明に用いる振動速度限界値とは、文献電子情報通信学会技報US92−3(広瀬清二著、圧電振動子のハイパワー特性の自動測定)に報告されているように、光学式変位測定器から得られる振動子先端の最大振動振幅ξmと振動子の共振周波数frの測定から算出できる実効的振動速度とし、振動速度の増加に伴い振動子の内部エネルギー損失による発熱が増加し、圧電振動子表面温度が室温プラス20degとなる振動速度を振動速度限界値と定義している。
【0005】
従来、係る高出力用圧電磁器組成物としては、ジルコン酸鉛(PZ)−チタン酸鉛(PT)系の二成分系圧電磁器組成物や複合ペロブスカイト型化合物とPZ−PT系の三成分圧電磁器組成物にアクセプタ材などを添加したものが使用されてきた。その中でも、三成分系のマンガンアンチモン酸鉛(PMS)−PZ−PT系の圧電磁器組成物は、高振動速度駆動に適した材料として魚群探知機や超音波洗浄機などに実用化されているが、限界振動速度が0.3m/秒程度であり、それ以上の振動速度では発熱が急激に大きくなり、実用できないという問題点があった。
【0006】
さらに、圧電デバイスの小型化の要求に対しては、複数層の銀−パラジウム系内部電極を有する積層型圧電デバイスが開発され、一部の電気電子機器に搭載されている。
【0007】
銀−パラジウム系内部電極は、その銀とパラジウムの組成比率によって焼結可能な温度が限定され、銀とパラジウムの比が7:3では1100℃以下、8:2では1000℃以下、9:1では950℃以下での焼結が可能になるが、前述の圧電磁器組成物の焼結温度は、ほとんどが1200℃以上で、1100℃以下の温度で焼結出来る圧電磁器組成物は限定されている。また、パラジウムは高価な貴金属であるため、その含有率によって電極のコストが大きく変わり、焼結温度を下げることは、内部電極のパラジウム含有率を下げることになり、製造コストの低減で大きな効果が期待される。
【0008】
また、本発明と類似組成系の圧電磁器組成物に関する公知文献として、特開平8−283069がある。しかしながら、それらの圧電磁器組成物を焼結するには、1200℃の温度が必要であり、銀とパラジウムの比が6:4の内部電極を使用する必要があり、圧電デバイスのコストの中でパラジウムの占める割合が大きくなり、安価な製品を製造することは困難になるという問題点がある。
【0009】
【発明が解決しようとする課題】
そこで、本発明は前述の問題点を鑑みてなされたもので、その技術的課題は、限界振動速度が0.4m/s以上で、かつ1100℃以下で焼結することが可能な圧電磁器組成物を提供することにある。
【0010】
【課題を解決するための手段】
本発明によれば、組成式がxPb(Mn1/3Sb1/3Nb1/3)O−yPbZrO−zPbTiO(x+y+z=100)で表され、その組成範囲が、
D(x=3mol%、y=40mol%、z=57mol%)、
E(x=3mol%、y=60mol%、z=37mol%)、
F(x=12mol%、y=53mol%、z=35mol%)、
G(x=12mol%、y=33mol%、z=55mol%)、
の組成点を結ぶ線上およびこの4点に囲まれた領域とする範囲を主成分とし、1.00≦a≦1.02であることを特徴とする圧電磁器組成物が得られる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
【0012】
本発明の圧電磁器組成物を得るための出発原料として、一般市販の酸化鉛(PbO)、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、炭酸マンガン(MnCO)、酸化アンチモン(Sb)、酸化ニオブ(Nb)の各粉末を用いた。
【0013】
試作した組成点を表1に示した。図1は、本発明の圧電磁器組成物の主成分の組成を示す図である。図1中で、D,E,F,Gの組成点を結ぶ線上およびこの4点に囲まれた領域とする範囲を主成分とする組成物は、本発明によるものである。
【0014】
【表1】

Figure 2004051417
【0015】
表1に記載の組成範囲になるように前記各原料粉末を秤量し、ジルコニアボールを用いたボールミルで湿式混合し、この混合粉末を大気中温度850℃で、2時間仮焼した。この仮焼粉末を再度ジルコニアボールを用いたボールミルで湿式粉砕し、この粉砕粉末にバインダーとしてポリビニルアルコールを添加造粒し、寸法20mm×15mm×2mmの矩形板にプレス成形した後、大気中、温度950℃〜1050℃の範囲で2〜6時間保持し焼成した。
【0016】
しかる後に、焼結体を寸法12mm×3mm×1mmの形状に切断研磨加工し、12mm×3mmの両面に銀電極を焼き付け、温度100℃のシリコーンオイル中で4kV/mmの直流電界を印加して分極処理を行い、測定用試料を作製した。
【0017】
前記測定用試料に正弦波電圧を印加し、周波数カウンターを用いて共振周波数になるように正弦波周波数を調整して励振し、前記正弦波電圧を徐々に大きくしながら、同時に振動速度と発熱の測定を行った。試料端面の振動速度は、レーザードップラ変位計、試料の表面温度はレーザー式非接触温度計を用いて測定した。
【0018】
表1に、各試料の組成と、焼成温度、及び限界振動速度の測定結果を示した。
【0019】
表1から、Pb(Mn1/3Sb1/3Nb1/3)Oの比率が0.03よりも小さな範囲及び0.12を越える範囲では、限界振動速度が0.4m/秒未満であり、高出力が得られない事が分かる。また、a>1.02の場合には、緻密化はするが限界振動速度が低減する事が分かる。
【0020】
【発明の効果】
以上詳細に説明したように、本発明によれば、0.4m/秒以上の高い限界振動速度を有し、7:3以上の銀の比率が多い安価な銀−パラジウム電極を内部電極とすることが可能な圧電磁器組成物を提供することが出来、工業的価値は多大である。
【図面の簡単な説明】
【図1】本発明の圧電磁器組成物の主成分の組成を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a piezoelectric ceramic composition for a piezoelectric device used at a high output vibration speed, such as a vibrator for a washing machine, a piezoelectric actuator, an ultrasonic motor, and a piezoelectric transformer.
[0002]
[Prior art]
2. Description of the Related Art Piezoelectric materials capable of converting electric energy into mechanical energy have been put to practical use in high-output piezoelectric devices such as ultrasonic cleaner vibrators, piezoelectric actuators, ultrasonic motors, and piezoelectric transformers. For these applications, piezoelectric materials are required to have low energy loss when converting electrical energy to mechanical energy.
[0003]
Further, recently, with the miniaturization of electric and electronic equipment on which the piezoelectric device is mounted, the miniaturization of the piezoelectric device and an increase in mechanical output are required. In response to this requirement, conventional piezoelectric materials generate heat due to internal energy loss as the vibration speed of the piezoelectric device increases, eventually reaching the vibration speed limit value and eventually causing the piezoelectric material to undergo dielectric breakdown. There are points. Therefore, in order to increase the mechanical output of the piezoelectric device, development of a piezoelectric material having a high vibration velocity limit value is required.
[0004]
The vibration speed limit value used in the description is defined as an optical displacement measurement as reported in the technical report of the Institute of Electronics, Information and Communication Engineers, US92-3 (Seiji Hirose, Automatic Measurement of High Power Characteristics of Piezoelectric Vibrator). The effective vibration velocity can be calculated from the measurement of the maximum vibration amplitude ξm of the vibrator tip obtained from the vibrator and the resonance frequency fr of the vibrator. As the vibration velocity increases, heat generation due to internal energy loss of the vibrator increases, The vibration speed at which the daughter surface temperature becomes room temperature plus 20 deg is defined as the vibration speed limit value.
[0005]
Conventionally, as such a high-output piezoelectric ceramic composition, a lead zirconate (PZ) -lead titanate (PT) -based two-component piezoelectric ceramic composition or a composite perovskite compound and a PZ-PT-based three-component piezoelectric ceramic have been used. A composition obtained by adding an acceptor material or the like to a composition has been used. Among them, a ternary lead manganese antimonate (PMS) -PZ-PT piezoelectric ceramic composition has been put to practical use in fish finders, ultrasonic cleaners, and the like as a material suitable for high vibration speed driving. However, the limit vibration speed is about 0.3 m / sec, and at a vibration speed higher than that, heat generation is rapidly increased, and there is a problem that it is not practical.
[0006]
Further, in response to a demand for miniaturization of a piezoelectric device, a multilayer piezoelectric device having a plurality of layers of silver-palladium-based internal electrodes has been developed and mounted on some electric and electronic devices.
[0007]
The sinterable temperature of the silver-palladium-based internal electrode is limited by the composition ratio of silver and palladium. When the ratio of silver to palladium is 7: 3, the sintering temperature is 1100 ° C. or less; Although sintering at 950 ° C. or less is possible, the sintering temperature of the above-described piezoelectric ceramic composition is mostly 1200 ° C. or more, and the piezoelectric ceramic composition that can be sintered at a temperature of 1100 ° C. or less is limited. I have. Also, since palladium is an expensive noble metal, the content of the electrode greatly changes the cost of the electrode, and lowering the sintering temperature lowers the palladium content of the internal electrode, which has a significant effect on reducing the manufacturing cost. Be expected.
[0008]
Further, as a known document relating to a piezoelectric ceramic composition having a composition similar to that of the present invention, there is JP-A-8-283069. However, sintering these piezoelectric ceramic compositions requires a temperature of 1200 ° C. and requires the use of internal electrodes with a silver to palladium ratio of 6: 4, which results in a cost of piezoelectric devices. There is a problem that the proportion of palladium increases and it becomes difficult to manufacture inexpensive products.
[0009]
[Problems to be solved by the invention]
Therefore, the present invention has been made in view of the above-mentioned problems, and a technical problem thereof is that a piezoelectric ceramic composition capable of sintering at a critical vibration speed of 0.4 m / s or more and 1100 ° C. or less. To provide things.
[0010]
[Means for Solving the Problems]
According to the present invention, it is represented by a compositional formula of xPb a (Mn 1/3 Sb 1/3 Nb 1/3) O 3 -yPb a ZrO 3 -zPb a TiO 3 (x + y + z = 100), its composition range ,
D (x = 3 mol%, y = 40 mol%, z = 57 mol%),
E (x = 3 mol%, y = 60 mol%, z = 37 mol%),
F (x = 12 mol%, y = 53 mol%, z = 35 mol%),
G (x = 12 mol%, y = 33 mol%, z = 55 mol%),
A piezoelectric ceramic composition characterized by having 1.00 ≦ a ≦ 1.02 as a main component on a line connecting the composition points of the above and a region surrounded by these four points is obtained.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
As starting materials for obtaining the piezoelectric ceramic composition of the present invention, commercially available lead oxide (PbO), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), manganese carbonate (MnCO 3 ), and antimony oxide (Sb 2) O 3 ) and niobium oxide (Nb 2 O 5 ) powder were used.
[0013]
Table 1 shows the composition points of the prototypes. FIG. 1 is a diagram showing the composition of the main components of the piezoelectric ceramic composition of the present invention. In FIG. 1, a composition mainly composed of a range connecting the composition points of D, E, F, and G and an area surrounded by these four points is according to the present invention.
[0014]
[Table 1]
Figure 2004051417
[0015]
Each of the raw material powders was weighed so as to have the composition range shown in Table 1, and was wet-mixed with a ball mill using zirconia balls, and this mixed powder was calcined at 850 ° C. in the atmosphere for 2 hours. The calcined powder was wet-pulverized again with a ball mill using zirconia balls, polyvinyl alcohol was added as a binder to the pulverized powder, granulated, and press-molded into a rectangular plate having a size of 20 mm × 15 mm × 2 mm. It was kept at 950 ° C. to 1050 ° C. for 2 to 6 hours and fired.
[0016]
Thereafter, the sintered body was cut and polished into a shape of dimensions 12 mm × 3 mm × 1 mm, silver electrodes were baked on both sides of 12 mm × 3 mm, and a DC electric field of 4 kV / mm was applied in silicone oil at a temperature of 100 ° C. A polarization treatment was performed to prepare a measurement sample.
[0017]
A sine wave voltage is applied to the measurement sample, and the sine wave frequency is adjusted so as to be a resonance frequency by using a frequency counter, and excitation is performed. A measurement was made. The vibration velocity of the sample end face was measured by using a laser Doppler displacement meter, and the sample surface temperature was measured by using a laser type non-contact thermometer.
[0018]
Table 1 shows the composition of each sample, the firing temperature, and the measurement results of the critical vibration speed.
[0019]
From Table 1, it can be seen that in the range where the ratio of Pb (Mn 1/3 Sb 1/3 Nb 1/3 ) O 3 is smaller than 0.03 and larger than 0.12, the critical vibration velocity is less than 0.4 m / sec. It can be seen that high output cannot be obtained. Also, when a> 1.02, it can be seen that the limiting vibration velocity is reduced although the density is increased.
[0020]
【The invention's effect】
As described in detail above, according to the present invention, an inexpensive silver-palladium electrode having a high critical vibration speed of 0.4 m / sec or more and a large silver ratio of 7: 3 or more is used as an internal electrode. It is possible to provide a piezoelectric ceramic composition capable of performing the method, and the industrial value is great.
[Brief description of the drawings]
FIG. 1 is a view showing a composition of a main component of a piezoelectric ceramic composition of the present invention.

Claims (1)

組成式が、xPb(Mn1/3Sb1/3Nb1/3)O−yPbZrO−zPbTiO(x+y+z=100)で表され、その組成範囲が、
D(x=3mol%、y=40mol%、z=57mol%)、
E(x=3mol%、y=60mol%、z=37mol%)、
F(x=12mol%、y=53mol%、z=35mol%)、
G(x=12mol%、y=33mol%、z=55mol%)、
の組成点を結ぶ線上およびこの4点に囲まれた領域とする範囲を主成分とし、1.00≦a≦1.02であることを特徴とする圧電磁器組成物。
Composition formula is represented by xPb a (Mn 1/3 Sb 1/3 Nb 1/3) O 3 -yPb a ZrO 3 -zPb a TiO 3 (x + y + z = 100), the composition range,
D (x = 3 mol%, y = 40 mol%, z = 57 mol%),
E (x = 3 mol%, y = 60 mol%, z = 37 mol%),
F (x = 12 mol%, y = 53 mol%, z = 35 mol%),
G (x = 12 mol%, y = 33 mol%, z = 55 mol%),
A piezoelectric ceramic composition characterized by having 1.00 ≦ a ≦ 1.02, which is mainly composed of a range on a line connecting the composition points of (1) and (4).
JP2002210829A 2002-07-19 2002-07-19 Piezoelectric ceramic formulation Pending JP2004051417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002210829A JP2004051417A (en) 2002-07-19 2002-07-19 Piezoelectric ceramic formulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002210829A JP2004051417A (en) 2002-07-19 2002-07-19 Piezoelectric ceramic formulation

Publications (1)

Publication Number Publication Date
JP2004051417A true JP2004051417A (en) 2004-02-19

Family

ID=31934233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002210829A Pending JP2004051417A (en) 2002-07-19 2002-07-19 Piezoelectric ceramic formulation

Country Status (1)

Country Link
JP (1) JP2004051417A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199524A (en) * 2005-01-19 2006-08-03 Nec Tokin Corp Piezoelectric ceramic composition
JP2008007335A (en) * 2006-06-27 2008-01-17 Nec Tokin Corp Piezoelectric ceramic composition
JP2008280204A (en) * 2007-05-10 2008-11-20 Nec Tokin Corp Piezoelectric ceramic composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199524A (en) * 2005-01-19 2006-08-03 Nec Tokin Corp Piezoelectric ceramic composition
JP2008007335A (en) * 2006-06-27 2008-01-17 Nec Tokin Corp Piezoelectric ceramic composition
JP2008280204A (en) * 2007-05-10 2008-11-20 Nec Tokin Corp Piezoelectric ceramic composition

Similar Documents

Publication Publication Date Title
JP5217997B2 (en) Piezoelectric ceramic, vibrator and ultrasonic motor
JP2006108639A (en) Piezoelectric actuator
JP4513948B2 (en) Piezoelectric ceramic and manufacturing method thereof
JP4674405B2 (en) Piezoelectric ceramic
JP2005047745A (en) Piezoelectric ceramic
JP2005179144A (en) Piezoelectric ceramic and method of producing the same
KR100481226B1 (en) Piezoelectric ceramic composition for ceramic actuators and Method of fabricating the piezoelectric ceramics
JP2674576B2 (en) Piezoelectric ceramic composition
JP2005047748A (en) Piezoelectric ceramic
JP4779243B2 (en) Piezoelectric ceramic
JP2004051417A (en) Piezoelectric ceramic formulation
JP4070967B2 (en) Piezoelectric ceramic
JP2005082422A (en) Piezoelectric ceramic
JP2957564B1 (en) Piezoelectric and piezoelectric devices
JPH0558729A (en) Piezoelectric ceramic composition
JP2836572B2 (en) High output pressure ceramic composition and method for producing the same
JP2003081675A (en) Piezoelectric porcelain
JP2005047747A (en) Piezoelectric ceramic
JP2007070160A (en) Piezoelectric ceramic and piezoelectric ceramic component
JPH11322423A (en) Piezoelectric percelain composition
JP2001146470A (en) High-power piezoelectric ceramic composition
JP2000239064A (en) Piezoelectric porcelain composition
WO2024070626A1 (en) Lead-free piezoelectric composition, and piezoelectric element
JPH11310457A (en) Piezoelectric porcelain material
JP2017165618A (en) Piezoelectric ceramic composition and method for producing piezoelectric ceramic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080709