JPH0956692A - Magnet opposition type permanent magnet magnetic circuit and method of regulating its magnetic field - Google Patents

Magnet opposition type permanent magnet magnetic circuit and method of regulating its magnetic field

Info

Publication number
JPH0956692A
JPH0956692A JP7218549A JP21854995A JPH0956692A JP H0956692 A JPH0956692 A JP H0956692A JP 7218549 A JP7218549 A JP 7218549A JP 21854995 A JP21854995 A JP 21854995A JP H0956692 A JPH0956692 A JP H0956692A
Authority
JP
Japan
Prior art keywords
magnetic
plate
shim
magnet
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7218549A
Other languages
Japanese (ja)
Other versions
JP3151129B2 (en
Inventor
Takeshi Ohashi
健 大橋
Koji Miyata
浩二 宮田
Sukehito Yoneda
祐仁 米田
Yuji Inoue
勇二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
GE Healthcare Japan Corp
Original Assignee
Shin Etsu Chemical Co Ltd
GE Yokogawa Medical System Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP21854995A priority Critical patent/JP3151129B2/en
Application filed by Shin Etsu Chemical Co Ltd, GE Yokogawa Medical System Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to US08/703,450 priority patent/US5864275A/en
Priority to DE69613061T priority patent/DE69613061T2/en
Priority to EP99402778A priority patent/EP0985934B1/en
Priority to DE69633683T priority patent/DE69633683T2/en
Priority to EP96401834A priority patent/EP0760484B1/en
Priority to EP04077874A priority patent/EP1515150A1/en
Publication of JPH0956692A publication Critical patent/JPH0956692A/en
Priority to US09/206,291 priority patent/US5963117A/en
Application granted granted Critical
Publication of JP3151129B2 publication Critical patent/JP3151129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily realize an uniform magnetic field, and the regulation of magnetic field by fixing a magnetic field regulating magnet or magnetic material to a magnetic shunt plate surface, arranging a shim plate closer to the cavity side from a gradient coil, and fixing a magnetic field regulating magnet or magnetic material onto the shim plate. SOLUTION: A magnetic shunt plate 16 has an annular projection 161 (first shim), and a circumferential stepped part (higher shim), which is not shown, can be particularly formed on a bottom part 162 as occasion demands. A gradient coil 18 and a shim plate 19 are housed in the recessed part of the magnetic shunt plate, and fixed to the magnetic shunt plate 16, respectively. A magnetic field regulating shim materials 20 and 21 are fixed onto the magnetic shunt plate bottom part 162 and the shim plate 19, and shimming regulation is performed on both the magnetic shunt plate and the shim plate. The nonmagnetic shim plate 19 is formed on the gradient coil 18, the shim material 21 is further fixed on (or under) the shim plate, the shim material 20 is fixed to the magnetic shunt plate bottom part 162 on the magnetic shunt plate 16, and the magnetic fine control is performed by shimming regulation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はNMRやESRの磁
場発生装置に用いられる磁気回路に関するものであり、
特に永久磁石型MRI装置の磁石対向型永久磁石磁気回
路に関するものである。
TECHNICAL FIELD The present invention relates to a magnetic circuit used in a magnetic field generator for NMR and ESR,
In particular, the present invention relates to a magnet facing type permanent magnet magnetic circuit of a permanent magnet type MRI apparatus.

【0002】[0002]

【従来の技術】永久磁石型MRI装置において、いくつ
かの磁気回路が提案され、実用化されている。例えば、
図3のようなダイポールリング型磁気回路は、リング周
方向に磁石の磁化方向が徐々に変化し、一周する間に磁
化は二回転する。リング内周にN、Sの二極の磁荷が出
てくるので、ダイポールリング型と呼ばれ、十分な軸方
向長さがあれば、リング内部の一軸径方向に向いた均一
な磁場分布が得られる。例えば、K.Halbach,Nuclear In
struments and Methods 169(1980), p1に磁気回路が報
告されており、MRI装置としては特開昭61−385
54号公報(USP4580098)、特開昭62−104011号
公報などがある。該磁気回路は、磁束を通すために外周
部に継鉄を用いる必要がないので、磁気回路重量が軽量
化され、コンパクトにできる。また、継鉄を使用する磁
気回路と比較し、発生磁場の上限が高く取れる利点があ
る。しかし、約3000G以下の発生磁場の領域では、他の
永久磁石磁気回路と比較して使用磁石重量が多くなるた
め、実際に実用化されている例はあまり多くない。磁場
調整は、各セグメント磁石を径方向移動やあおりを変え
ることにより行われる。
2. Description of the Related Art Several magnetic circuits have been proposed and put to practical use in a permanent magnet type MRI apparatus. For example,
In the dipole ring type magnetic circuit as shown in FIG. 3, the magnetization direction of the magnet gradually changes in the ring circumferential direction, and the magnetization makes two rotations during one round. It is called a dipole ring type because it has N and S bipolar magnetic charges coming out on the inner circumference of the ring, and if it has a sufficient axial length, a uniform magnetic field distribution in the uniaxial radial direction inside the ring is obtained. can get. For example, K. Halbach, Nuclear In
struments and Methods 169 (1980), p1, a magnetic circuit is reported, and as an MRI apparatus, it is disclosed in JP-A-61-385.
54 (USP4580098), JP-A-62-104011 and the like. Since it is not necessary to use a yoke on the outer peripheral portion of the magnetic circuit to pass magnetic flux, the weight of the magnetic circuit can be reduced and the magnetic circuit can be made compact. Further, it has an advantage that the upper limit of the generated magnetic field can be set higher than that of a magnetic circuit using a yoke. However, in the region of the generated magnetic field of about 3000 G or less, the weight of the magnet used is larger than that of other permanent magnet magnetic circuits, so there are not many practical examples. The magnetic field is adjusted by moving each segment magnet in the radial direction and changing the tilt.

【0003】一方、図2に示すような磁石対向型磁気回
路は良く知られており、現在実用化されている永久磁石
型MRIマグネットの殆どはこのタイプである。例えば
WO84/00611(PCT/US83/01175)、実公平2−44483
号公報、実公平2−44484号公報、実公平2−44
485号公報、実公平2−44486号公報や、映像情
報15 (1983),379 、病態生理4(1985),91 などがあ
る。
On the other hand, a magnet facing type magnetic circuit as shown in FIG. 2 is well known, and most of the permanent magnet type MRI magnets currently put into practical use are of this type. For example
WO84 / 00611 (PCT / US83 / 01175), Jikken 2-44483
Publication No. 2-44484, Publication No. 2-44
No. 485, Japanese Utility Model Publication No. 2-44486, video information 15 (1983), 379, pathophysiology 4 (1985), 91 and the like.

【0004】図2により、基本になる磁石対向型磁気回
路を説明する。バックヨーク10に、高さ方向に磁化さ
れた磁石14が固着されており、磁石14の空隙側表面
に、高い磁場均一性を実現するために、整磁板16と呼
ばれる磁性材が配置される。整磁板形状は軸対称であ
り、均一性を向上させるため、種々の工夫がなされてい
る。良く知られている整磁板形状は、ローズシム(また
は環状突起)と呼ばれる、円盤外周部に設けた環状の突
起161を持つものである。上下に対称な一対のバック
ヨーク・磁石・整磁板の組は、継鉄12で磁気的に結合
されている。図2では、継鉄12は、四本柱となってお
り、磁気的に閉磁路を組んでいる。勾配コイル18は整
磁板16の凹部に固定され、ギャップ側コイル高さは整
磁板の外周部の環状突起161(第一シム)とほぼ同等
の高さとなっている。
A basic magnet facing type magnetic circuit will be described with reference to FIG. A magnet 14 magnetized in the height direction is fixed to the back yoke 10, and a magnetic material called a magnetic compensator 16 is arranged on the surface of the magnet 14 on the side of the air gap in order to achieve high magnetic field uniformity. . The shape of the magnetic shunt is axially symmetric, and various measures have been taken to improve the uniformity. A well-known magnetic shunt plate shape has an annular protrusion 161 called a rose shim (or annular protrusion) provided on the outer peripheral portion of the disk. A pair of vertically symmetrical back yoke, magnet, and magnetic shunt plate are magnetically coupled by a yoke 12. In FIG. 2, the yoke 12 has four pillars and magnetically forms a closed magnetic circuit. The gradient coil 18 is fixed in the concave portion of the magnetic shunt plate 16, and the height of the gap side coil is substantially the same as the height of the annular protrusion 161 (first shim) on the outer peripheral portion of the magnetic shunt plate.

【0005】磁気回路の磁場均一度は、空隙中心部に仮
想的に設けた、球空間または楕円空間(以後、評価空間
と呼ぶ)内の磁場分布により評価される。整磁板が単純
な円盤形状の時、該空間の赤道部磁場強度は、極部に比
較し低くなる。環状突起を設けた整磁板を使用した場
合、該空間赤道部と環状突起の物理的距離が近くなり、
赤道部の磁場強度を向上させるため、評価空間全体の磁
場均一度が向上する。また、更に磁場均一度を向上させ
るため、整磁板底部162に周状の小さな突起(外周部
環状突起より段差の小さいもの)を、複数段設けること
も、考案されている。以上述べたように、整磁板形状は
該評価空間内の磁場均一度を向上させるため、非常に重
要である。
The magnetic field homogeneity of the magnetic circuit is evaluated by a magnetic field distribution in a spherical space or an elliptical space (hereinafter referred to as an evaluation space), which is virtually provided at the center of the void. When the magnetic shunt plate has a simple disk shape, the magnetic field strength in the equatorial part of the space is lower than that in the pole part. When using a magnetic shunt plate provided with an annular protrusion, the physical distance between the space equator and the annular protrusion becomes short,
Since the magnetic field strength in the equator is improved, the magnetic field homogeneity in the entire evaluation space is improved. Further, in order to further improve the magnetic field homogeneity, it is also devised to provide a plurality of circumferentially small protrusions (having smaller steps than the outer peripheral annular protrusion) on the magnetic shunt plate bottom 162. As described above, the shape of the shunt plate is very important because it improves the magnetic field homogeneity in the evaluation space.

【0006】また、磁石対向型磁気回路においては、上
下磁石の発生する磁束を鉄ヨークを通して流し閉磁路を
組ませるため、継鉄柱状ヨークが必要である。柱状ヨー
クの形状と本数は、設計により異なるが、4本柱、2本
柱、2枚板などがある。評価空間の柱方向の磁場強度
は、磁束が継鉄柱状ヨークに引かれるため、低くなる傾
向がある。これを改善するため、開口方向に磁束短絡用
シャント鉄ヨークを設け、開口部方向磁場強度を下げる
ことが考案されている。
Further, in the magnet facing type magnetic circuit, a yoke yoke is required in order to flow the magnetic flux generated by the upper and lower magnets through the iron yoke to form a closed magnetic circuit. The shape and number of the columnar yokes differ depending on the design, but there are four columns, two columns, two plates, and the like. The magnetic field strength in the column direction of the evaluation space tends to be low because the magnetic flux is attracted by the yoke columnar yoke. In order to improve this, it has been proposed to provide a shunt iron yoke for magnetic flux short circuit in the opening direction to reduce the magnetic field strength in the opening direction.

【0007】上記のような要素を組み合わせ、数値解析
などにより、評価空間に均一磁場を発生可能な磁気回路
を設計する。しかし、均一磁場発生が可能な磁気回路を
作製できたとしても、実際に組み上げて完成した磁気回
路で、設計仕様通りの磁場均一度が得られることは少な
い。磁石特性のばらつき、加工誤差、組み付け誤差など
が重畳して、一般に設計仕様より大幅に磁場均一度は低
下する。したがって、要求磁場均一度を実現するため、
組み上げ後、磁場調整を行う必要がある。
A magnetic circuit capable of generating a uniform magnetic field in the evaluation space is designed by a numerical analysis or the like by combining the above elements. However, even if a magnetic circuit capable of generating a uniform magnetic field can be produced, it is rare that the magnetic circuit completed by actually assembling can obtain the magnetic field homogeneity as designed. Generally, the magnetic field homogeneity is significantly lower than the design specification due to variations in magnet characteristics, processing errors, and assembly errors. Therefore, to achieve the required magnetic field homogeneity,
After assembly, it is necessary to adjust the magnetic field.

【0008】[0008]

【発明が解決しようとする課題】磁場調整では、粗調整
にあたる機械シミングと、微調整にあたる磁性材シミン
グが行われている。機械シミングには、バックヨークの
あおり調整、整磁板移動、シャントヨーク調整、バック
ヨークへの磁性材挿入調整などがある。磁性材シミング
は、整磁板上または整磁板とは独立に設けられたシム板
上の種々の場所に、種々な体積の磁性材を固着すること
により、磁場均一度を向上させるものである。
In magnetic field adjustment, mechanical shimming, which is a rough adjustment, and magnetic material shimming, which is a fine adjustment, are performed. Mechanical shimming includes tilt adjustment of the back yoke, movement of the rectifying plate, shunt yoke adjustment, and magnetic material insertion adjustment to the back yoke. The magnetic material shimming improves magnetic field homogeneity by fixing magnetic materials of various volumes to various places on a magnetic shunt plate or a shim plate provided independently of the magnetic shunt plate. .

【0009】磁性材としては、軟磁性の鉄または鉄系合
金、NiまたはNi系合金、アモルファスなどの軟磁性
材か、硬磁性のフェライト磁石・希土類磁石またはそれ
らのボンド磁石などの磁石材が用いられる。形状は、チ
ップ形状や薄板形状が用いられる。軟磁性材シミング
は、複数個を積層する場合、個数と調整磁場量の間に、
線形関係が成り立たないため、軟磁性材を使用しての調
整が困難であり、特に調整量が大きい時に問題である。
しかし、薄板や微小チップを作製しやすく、精密な微調
整が可能である。一方、磁石材シミングは、シミング個
数と調整磁場量の間に線形関係が成り立つので、調整が
容易である。しかし、磁石の微小チップや薄板の作製
は、軟磁性材ほど容易ではないので、精密な微調整には
向かない。
As the magnetic material, a soft magnetic material such as soft magnetic iron or iron-based alloy, Ni or Ni-based alloy, amorphous, or magnetic material such as hard magnetic ferrite magnet / rare earth magnet or bonded magnet thereof is used. To be As the shape, a chip shape or a thin plate shape is used. When laminating a plurality of soft magnetic material shimming, between the number and the adjustment magnetic field amount,
Since a linear relationship does not hold, it is difficult to make adjustments using a soft magnetic material, and this is a problem especially when the adjustment amount is large.
However, it is easy to manufacture thin plates and microchips, and precise fine adjustment is possible. On the other hand, in the magnet material shimming, a linear relationship is established between the number of shimmings and the adjustment magnetic field amount, so that the adjustment is easy. However, it is not as easy to fabricate a micro chip or a thin plate of a magnet as a soft magnetic material, and thus is not suitable for precise fine adjustment.

【0010】このような、二種類のシミング材料の特性
を有効に活かすために、両方を混在させて使用すること
が考えられる。しかし、磁石材と軟磁性材を混在させて
シミングに使用すると、磁石材が発生する磁束が軟磁性
材に影響を与え、磁石の線形性が損なわれる。このた
め、従来のシミング調整では両方を混在させて使用する
ことはできなかった。上記の点が、磁気回路の均一磁場
調整の作業の上での大きな問題であった。
In order to effectively utilize such characteristics of the two types of shimming materials, it is conceivable to mix and use both of them. However, when a magnet material and a soft magnetic material are mixed and used for shimming, the magnetic flux generated by the magnet material affects the soft magnetic material, and the linearity of the magnet is impaired. Therefore, the conventional shimming adjustment cannot be used as a mixture of both. The above-mentioned point has been a major problem in the work of adjusting the uniform magnetic field of the magnetic circuit.

【0011】[0011]

【課題を解決するための手段】本発明は、一対の磁石を
対向させ、該磁石空隙表面に整磁板を設け、これらを継
鉄にて結んで閉磁路を構成し、該整磁板凹部に勾配コイ
ルとシム板を設けた磁石対向型永久磁石磁気回路におい
て、該整磁板表面に磁場調整用の磁石または磁性材を固
着し、かつシム板を勾配コイルよりも空隙側に配置し、
更に該シム板上に磁場調整用の磁石または磁性材を固着
したことを特徴とする磁石対向型永久磁石磁気回路を要
旨とするものである。また、該磁気回路において、磁場
調整用の磁性材または磁石材の量と位置を線形計画法に
より決定し空隙空間の磁場を調整することを特徴とする
磁石対向型永久磁石磁気回路の磁場調整方法を要旨とす
るものである。以下にこれをさらに詳述する。
According to the present invention, a pair of magnets are opposed to each other, a magnetizing plate is provided on the surface of the magnet gap, and a magnetizing plate is connected to form a closed magnetic circuit. In a magnet facing permanent magnet magnetic circuit provided with a gradient coil and a shim plate, a magnet or magnetic material for magnetic field adjustment is fixed to the surface of the rectifying plate, and the shim plate is arranged on the gap side of the gradient coil.
Further, it is a gist of a magnet facing permanent magnet magnetic circuit characterized in that a magnet or a magnetic material for magnetic field adjustment is fixed on the shim plate. Further, in the magnetic circuit, the amount and position of the magnetic material or the magnetic material for magnetic field adjustment are determined by a linear programming method to adjust the magnetic field in the void space, and the magnetic field adjustment method for a magnet facing permanent magnet magnetic circuit. Is the gist. This will be described in more detail below.

【0012】[0012]

【発明の実施の形態】図1に本発明の整磁板部の実施態
様の一例を示す。従来、磁場のシミング調整は、整磁板
の底部162上で行われていた。図1では、整磁板16
は環状突起161(第一シム)を有し、底部162には
特に周状段差(高次シム)を示していないが、必要によ
り設けることができる。整磁板の凹部には、勾配コイル
18とシム板19が納められており、整磁板に各々固着
されている。本発明者等は、整磁板底部162上とシム
板19上とに、磁場調整用の磁石または磁性材(以後、
シム材20とシム材21という。)を固着することによ
り、シミング調整を整磁板上とシム板上との両方で行う
ことを見出した。すなわち、本発明ではまず勾配コイル
18上に非磁性シム板19を設け、シム板上(またはシ
ム板下)に更にシム材21を固定し、かつ整磁板16上
の、主に整磁板底部162にシム材20を固着し、シミ
ング調整で磁場微調整を行う。シム材20・21の量と
位置の決定は、経験的に行うこともあるが、主に数値計
算支援により調整が行われる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of an embodiment of a magnetic shunt plate of the present invention. Conventionally, the shimming adjustment of the magnetic field has been performed on the bottom portion 162 of the magnetic shunt plate. In FIG. 1, the magnetic shunt 16
Has an annular protrusion 161 (first shim) and does not show a circumferential step (higher shim) on the bottom 162, but it can be provided if necessary. The gradient coil 18 and the shim plate 19 are housed in the recesses of the magnetic shunt plate, and are fixed to the magnetic shunt plate, respectively. The present inventors have found that a magnet or magnetic material for magnetic field adjustment (hereinafter referred to as “magnetic compensator plate bottom portion 162” and shim plate 19)
They are called shim material 20 and shim material 21. It was found that the shimming adjustment is performed both on the magnetic shunt plate and on the shim plate by fixing). That is, according to the present invention, first, the non-magnetic shim plate 19 is provided on the gradient coil 18, the shim material 21 is further fixed on the shim plate (or under the shim plate), and the magnetic compensating plate 16 is mainly arranged. The shim member 20 is fixed to the bottom portion 162, and the magnetic field is finely adjusted by the shimming adjustment. The amount and position of the shim members 20 and 21 may be determined empirically, but adjustment is mainly performed by numerical calculation support.

【0013】整磁板底部162は、評価空間より相対的
に離れているので、シム材20の固着が磁場分布に与え
る影響は薄められるが、その影響は比較的広範囲の空隙
空間に及ぶ。一方、シム板19は、整磁板底部より、空
隙空間に近い所(勾配コイル18の上)に設けられるた
め、シム板19上のシム材21は、評価空間の磁場分布
に影響を与えやすい。また、評価空間に近いため、磁場
への影響は局所的になる。そこで、整磁板底部162上
では粗い微調整(つまり、大きな軟磁性材の固着や磁石
材の固着)を行い、評価空間の大きな領域に対する磁場
分布を改善することができる。次に、シム板19上では
小さいシム材21(微小な軟磁性材や磁石材の固着)に
よる、精密な微調整を行うことができる。
Since the bottom of the magnetic shunt plate 162 is relatively distant from the evaluation space, the influence of the fixation of the shim member 20 on the magnetic field distribution can be reduced, but the influence extends to a relatively wide void space. On the other hand, since the shim plate 19 is provided closer to the void space (on the gradient coil 18) than the bottom of the magnetic shunt plate, the shim material 21 on the shim plate 19 easily affects the magnetic field distribution in the evaluation space. . In addition, since it is close to the evaluation space, the influence on the magnetic field is local. Therefore, coarse fine adjustment (that is, fixation of a large soft magnetic material or fixation of a magnetic material) can be performed on the magnetic shunt plate bottom 162 to improve the magnetic field distribution in a large area of the evaluation space. Next, on the shim plate 19, it is possible to perform precise fine adjustment with a small shim material 21 (adhesion of minute soft magnetic material or magnet material).

【0014】シム材20,21は軟磁性材または磁石材
であるが、整磁板底部162上でのシミングの場合は磁
石材を使用すると、微調整を行うことによりシミング調
整時の線形性が確保できるので、磁場調整が容易にな
る。もちろん、軟磁性材シミングでも良いが、複数の軟
磁性材を固着する時、重ね合わせの線形性が確保できる
ようにする必要がある。一方、シム板19上では、精密
な微調整が必要なため、微小な軟磁性材が望ましい。シ
ム板上のシミング量は少ないので、軟磁性部材を使用し
ても、線形性からのずれは小さい。
Although the shim members 20 and 21 are soft magnetic materials or magnet materials, in the case of shimming on the bottom part 162 of the magnetic shunting plate, if a magnet material is used, the linearity at the time of shimming adjustment can be obtained by fine adjustment. Since it can be secured, the magnetic field adjustment becomes easy. Of course, soft magnetic material shimming may be used, but when a plurality of soft magnetic materials are fixed, it is necessary to ensure the linearity of superposition. On the other hand, a fine soft magnetic material is desirable on the shim plate 19 because precise fine adjustment is required. Since the shimming amount on the shim plate is small, the deviation from the linearity is small even if the soft magnetic member is used.

【0015】ここで、整磁板上の磁石材(シム材20)
とシム板上の磁性材(シム材21)との磁気的な結合に
よる、磁石材の線形性の乱れが懸念されるが、シム板1
9は整磁板底部より空隙側に配置され、整磁板上の磁石
材(シム材20)と空間的に切り離されているため、整
磁板上の磁石材(シム材20)の線形性は乱されないこ
とを見いだした。したがって、評価空間とシミング位置
の相対関係を利用することにより、調整を精密に行うこ
とができるようになる。ただし、同一平面上で両者を混
在させると、すでに述べたような非線形性が生じてしま
うため望ましくない。
Here, the magnet material (shim material 20) on the magnetic shunt plate
There is concern that the linearity of the magnet material may be disturbed due to the magnetic coupling between the magnetic material on the shim plate (the shim material 21).
Since 9 is arranged on the gap side from the bottom of the magnetic compensator and is spatially separated from the magnet material (shim material 20) on the magnetic compensator plate, the linearity of the magnet material (shim material 20) on the magnetic compensator plate is shown. Found out not to be disturbed. Therefore, the adjustment can be performed precisely by using the relative relationship between the evaluation space and the shimming position. However, if the two are mixed on the same plane, the nonlinearity as described above occurs, which is not desirable.

【0016】整磁板上の磁石材は、自身の吸着力のみの
固着でも良いが、振動などにより位置ずれを起こす可能
性があるため、接着またはネジなどによる固着が望まし
い。シム板上の軟磁性材は、同様に振動などにより位置
ずれを起こす可能性があるため、接着またはネジによる
固着が必須である。軟磁性材の形状としては、穴開き薄
板形状で、ネジ止め可能なものが良い。大きさは形状の
異なるものを複数種類用意しても良いが、最小単位の磁
性材の個数で調整する方が容易である。積層は、扁平な
ものを厚み方向に積層しても良いが、永久磁石による磁
場方向と磁性材の長手方向が一致するように縦に積層す
ることが望ましい。これにより、複数枚積層したときの
線形性が向上する。
The magnet material on the magnetic compensating plate may be fixed only by its own attracting force, but since it may be displaced due to vibration or the like, adhesion or fixing with screws or the like is desirable. Similarly, the soft magnetic material on the shim plate may be displaced due to vibration or the like, and therefore it is necessary to bond or fix the soft magnetic material with screws. The shape of the soft magnetic material is preferably a thin plate shape with holes and capable of being screwed. A plurality of types having different sizes may be prepared, but it is easier to adjust the number of magnetic materials in the minimum unit. As for the lamination, flat ones may be laminated in the thickness direction, but it is desirable to laminate them vertically so that the magnetic field direction of the permanent magnet and the longitudinal direction of the magnetic material coincide with each other. This improves the linearity when a plurality of sheets are stacked.

【0017】軟磁性材としては、既に述べたような鉄
(または鉄合金)かNi(またはNi合金)、アモルフ
ァス系軟磁性材が使用される。精密な微調整を行うため
には、飽和磁化が小さく、かつ薄板で微小な部材を作製
することが容易な磁性材を使用することが望ましい。例
えば、NiまたはNi基合金(例えばパーマロイ)は、
7000G以下の飽和磁化で、圧延加工などにより薄板を作
製しやすいので、シミング用軟磁性部材として適してい
る。また、Co系アモルファス系薄帯なども、比較的飽
和磁化が低く、20〜30μmの薄帯が得られるので使用で
きる。また、扁平磁石材はフェライト系、希土類系磁石
のどちらでも使用可能であり、焼結磁石とボンド磁石の
どちらでもよい。磁石材シミングでは、磁場調整量が大
きいことが多いので、大きさも調整する磁場の量により
変えればよく、何段階かの調整が可能なように、更に複
数種類の磁石材を準備しておくことが有効である。な
お、シム板19は樹脂材(例えば、ポリ塩化ビニル、ベ
ークライトなど)で作製すればよい。金属板は、勾配磁
場印加により渦電流が流れるため好ましくない。
As the soft magnetic material, iron (or iron alloy), Ni (or Ni alloy), or amorphous soft magnetic material as described above is used. In order to perform precise fine adjustment, it is desirable to use a magnetic material that has a small saturation magnetization and is easy to manufacture a small member with a thin plate. For example, Ni or a Ni-based alloy (eg, Permalloy) is
It is suitable as a soft magnetic member for shimming because it has a saturation magnetization of 7,000 G or less and can be easily manufactured into a thin plate by rolling. Also, Co-based amorphous ribbons and the like can be used because they have a relatively low saturation magnetization and a ribbon of 20 to 30 μm can be obtained. The flat magnet material may be either a ferrite magnet or a rare earth magnet, and may be either a sintered magnet or a bond magnet. In magnet material shimming, the amount of magnetic field adjustment is often large, so the size can be changed according to the amount of magnetic field to be adjusted. Prepare multiple types of magnet materials so that adjustment can be performed in several steps. Is effective. The shim plate 19 may be made of a resin material (for example, polyvinyl chloride, bakelite, etc.). Metal plates are not preferable because eddy currents flow when a gradient magnetic field is applied.

【0018】本発明における磁性部材などでのシム調整
は、磁場の微調整にあたる。シム調整の前の機械的調整
により、評価空間(例えばφ400 球)の大局的な磁場均
一度を向上させると、通常200ppm〜400ppm程度の均一度
が得られる。良好な磁場均一度を得るための、磁石材や
磁性材のシミング位置と量とは、経験的に行っても、あ
る程度まで改善することは可能である。しかし、要求さ
れる磁場均一度仕様は、例えば2000Gで50ppm 以下、望
ましくは10ppm 以下が必要とされる。これは、絶対値で
0.1 G以下であり、地磁気の数分の一以下の大きさであ
るため、計算機支援による系統的な磁場調整を行わない
と実現することは難しい。計算機支援による調整には、
数理計画法、線形計画法、7プレーン法などの手法が使
用できる。なかでも、線形計画法は初期値と目標値の差
があまり大きくなければ(例えば、二桁の差)、相対的
に少ない計算量で最適解が得られるため、本願発明のシ
ム調整に適している。
The shim adjustment of the magnetic member or the like in the present invention corresponds to the fine adjustment of the magnetic field. If the global magnetic field homogeneity of the evaluation space (for example, φ400 sphere) is improved by mechanical adjustment before shim adjustment, the homogeneity is usually about 200 ppm to 400 ppm. The shimming positions and amounts of the magnet material and the magnetic material for obtaining good magnetic field homogeneity can be improved to some extent even by empirical experiments. However, the required magnetic field homogeneity specifications are, for example, 50 ppm or less at 2000 G, preferably 10 ppm or less. This is an absolute value
Since it is less than 0.1 G, which is less than a fraction of the earth's magnetism, it will be difficult to realize without systematic magnetic field adjustment with computer support. For computer assisted adjustments,
Techniques such as mathematical programming, linear programming, and 7-plane method can be used. Among them, the linear programming method is suitable for the shim adjustment of the present invention because an optimal solution can be obtained with a relatively small amount of calculation unless the difference between the initial value and the target value is large (for example, a difference of two digits). There is.

【0019】[0019]

【発明の効果】本発明によれば、均一な磁場を実現しや
すく、磁場調整も容易な、磁石対向型MRI用マグネッ
トを実現できる。
As described above, according to the present invention, it is possible to realize a magnet facing type MRI magnet, which can easily realize a uniform magnetic field and can easily adjust the magnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における磁石対向型永久磁石磁気回路の
整磁板部縦断面模式図。
FIG. 1 is a schematic vertical cross-sectional view of a magnetic shunt plate portion of a magnet facing permanent magnet magnetic circuit according to the present invention.

【図2】従来の磁石対向型永久磁石磁気回路模式図。 (a)縦断面模式図。 (b)(a)のAA′面による横断面模式図。FIG. 2 is a schematic diagram of a conventional magnet facing permanent magnet magnetic circuit. (A) A vertical cross-sectional schematic diagram. (B) A schematic cross-sectional view taken along the line AA ′ in (a).

【図3】従来のダイポールリング型磁気回路斜視図。FIG. 3 is a perspective view of a conventional dipole ring type magnetic circuit.

【符号の説明】[Explanation of symbols]

10 バックヨーク 12 継鉄 14 磁石 16 整磁板 161 整磁板環状突起 162 整磁板底
部 18 勾配コイル 19 シム板 20 整磁板上のシム材 21 シム板上
のシム材
10 back yoke 12 yoke 14 magnet 16 magnetizing plate 161 magnetizing plate annular protrusion 162 bottom part of magnetizing plate 18 gradient coil 19 shim plate 20 shim material on magnetizing plate 21 shim material on shim plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米田 祐仁 福井県武生市北府2丁目1番5号 信越化 学工業株式会社磁性材料研究所内 (72)発明者 井上 勇二 東京都日野市旭が丘4丁目7番地の127 ジーイー横河メディカルシステム株式会社 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuji Yoneda 2-5, Kitafu, Takefu City, Fukui Prefecture Shin-Etsu Kagaku Kogyo Co., Ltd. Magnetic Materials Research Center (72) Inventor Yuji Inoue 4-chome, Asahigaoka, Hino-shi, Tokyo Address 127 GE Yokogawa Medical System Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一対の磁石を対向させ、該磁石空隙表面
に整磁板を設け、これらを継鉄にて結んで閉磁路を構成
し、該整磁板凹部に勾配コイルとシム板を設けた磁石対
向型永久磁石磁気回路において、該整磁板表面に磁場調
整用の磁石または磁性材を固着し、かつシム板を勾配コ
イルよりも空隙側に配置し、更に該シム板上に磁場調整
用の磁石または磁性材を固着したことを特徴とする磁石
対向型永久磁石磁気回路。
1. A pair of magnets are opposed to each other, a magnetizing plate is provided on the surface of the magnet gap, and a magnetic flux is connected to form a closed magnetic circuit, and a gradient coil and a shim plate are provided in the magnetizing plate recess. In a magnet facing type permanent magnet magnetic circuit, a magnet or magnetic material for magnetic field adjustment is fixed to the surface of the rectifying plate, and the shim plate is arranged closer to the gap than the gradient coil, and the magnetic field is adjusted on the shim plate. A magnet facing type permanent magnet magnetic circuit, characterized in that a magnet or a magnetic material for a vehicle is fixed.
【請求項2】 請求項1に記載の磁石対向型永久磁石磁
気回路により空隙空間の磁場を調整することを特徴とす
る磁石対向型永久磁石磁気回路の磁場調整方法。
2. A magnetic field adjusting method for a magnet facing permanent magnet magnetic circuit, comprising: adjusting a magnetic field in a void space by the magnet facing permanent magnet magnetic circuit according to claim 1.
【請求項3】 請求項2において、磁場調整用の磁性部
材または磁石部材の量と位置を線形計画法により決定し
調整する磁石対向型永久磁石磁気回路の磁場調整方法。
3. The magnetic field adjusting method for a magnet facing permanent magnet magnetic circuit according to claim 2, wherein the amount and position of the magnetic member or the magnetic member for adjusting the magnetic field is determined and adjusted by a linear programming method.
JP21854995A 1995-08-28 1995-08-28 Permanent magnet permanent magnet magnetic circuit and its magnetic field adjustment method Expired - Fee Related JP3151129B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP21854995A JP3151129B2 (en) 1995-08-28 1995-08-28 Permanent magnet permanent magnet magnetic circuit and its magnetic field adjustment method
DE69613061T DE69613061T2 (en) 1995-08-28 1996-08-27 Magnetic circuit arrangement with opposing permanent magnets
EP99402778A EP0985934B1 (en) 1995-08-28 1996-08-27 Opposed magnet-type magnetic circuit assembly with permanent magnets
DE69633683T DE69633683T2 (en) 1995-08-28 1996-08-27 Magnetic circuit arrangement with opposing permanent magnets
US08/703,450 US5864275A (en) 1995-08-28 1996-08-27 Opposed magnet-type magnetic circuit assembly with permanent magnets
EP96401834A EP0760484B1 (en) 1995-08-28 1996-08-27 Opposed magnet-type magnetic circuit assembly with permanent magnets
EP04077874A EP1515150A1 (en) 1995-08-28 1996-08-27 Opposed magnet-type magnetic circuit assembly with permanent magnets
US09/206,291 US5963117A (en) 1995-08-28 1998-12-07 Opposed magnet-type magnetic circuit assembly with permanent magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21854995A JP3151129B2 (en) 1995-08-28 1995-08-28 Permanent magnet permanent magnet magnetic circuit and its magnetic field adjustment method

Publications (2)

Publication Number Publication Date
JPH0956692A true JPH0956692A (en) 1997-03-04
JP3151129B2 JP3151129B2 (en) 2001-04-03

Family

ID=16721683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21854995A Expired - Fee Related JP3151129B2 (en) 1995-08-28 1995-08-28 Permanent magnet permanent magnet magnetic circuit and its magnetic field adjustment method

Country Status (1)

Country Link
JP (1) JP3151129B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033397A1 (en) * 1996-08-26 1999-07-08 Sumitomo Special Metals Co., Ltd. Mri magnetic field generator
EP0982598A2 (en) * 1998-08-28 2000-03-01 Picker International, Inc. Magnetic resonance system
JP2000126152A (en) * 1998-10-26 2000-05-09 Ge Yokogawa Medical Systems Ltd Mri apparatus
US6448772B1 (en) 2000-10-06 2002-09-10 Sumitomo Special Metals Co., Ltd. Magnetic field adjusting apparatus, magnetic field adjusting method and recording medium
US6933820B2 (en) 2003-12-10 2005-08-23 Shin-Etsu Chemical Co., Ltd. Magnetic circuit with opposing permanent magnets and method for adjusting magnetic field thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033397A1 (en) * 1996-08-26 1999-07-08 Sumitomo Special Metals Co., Ltd. Mri magnetic field generator
KR100373577B1 (en) * 1997-12-26 2003-02-26 스미토모 도큐슈 긴조쿠 가부시키가이샤 Mri magnetic field generator
EP0982598A2 (en) * 1998-08-28 2000-03-01 Picker International, Inc. Magnetic resonance system
EP0982598B1 (en) * 1998-08-28 2007-07-11 Koninklijke Philips Electronics N.V. Magnetic resonance system with shim rings
JP2000126152A (en) * 1998-10-26 2000-05-09 Ge Yokogawa Medical Systems Ltd Mri apparatus
US6448772B1 (en) 2000-10-06 2002-09-10 Sumitomo Special Metals Co., Ltd. Magnetic field adjusting apparatus, magnetic field adjusting method and recording medium
US6933820B2 (en) 2003-12-10 2005-08-23 Shin-Etsu Chemical Co., Ltd. Magnetic circuit with opposing permanent magnets and method for adjusting magnetic field thereof

Also Published As

Publication number Publication date
JP3151129B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
EP0760484B1 (en) Opposed magnet-type magnetic circuit assembly with permanent magnets
US5332971A (en) Permanent magnet for nuclear magnetic resonance imaging equipment
JPH0587962B2 (en)
JPH07171131A (en) Improvement of mri magnet
US6333630B1 (en) Magnetic field generating apparatus for magnetic resonance imaging system
US6275128B1 (en) MRI magnetic field generator
CN1702473B (en) Method for controlling static magnetic field and MRI apparatus
US6498488B2 (en) Magnetic resonance imaging apparatus
JPH0956692A (en) Magnet opposition type permanent magnet magnetic circuit and method of regulating its magnetic field
JP3016544B2 (en) Permanent magnet magnetic circuit
JPH09283327A (en) Magnet opposed permanent magnet circuit
JP3194699B2 (en) Permanent magnet magnetic circuit
JP2764458B2 (en) Magnetic field generator for MRI
JP4139767B2 (en) Permanent magnet facing magnetic circuit
US6933820B2 (en) Magnetic circuit with opposing permanent magnets and method for adjusting magnetic field thereof
JPH10146326A (en) Magnetic field generator for mri
JP2005237501A (en) Magnetic circuit and magnetic field adjustment method therefor
JP2007101190A (en) Electronic balance of electromagnetic force type
JPH1097917A (en) Superconductor magnet device
JPH08243087A (en) Opposite magnet type permanent magnet magnetic circuit
JP3445303B2 (en) Magnetic field generator for MRI
JPH01283905A (en) Method for deviating uniform magnetic field for mri apparatus and magnetostatic field generating apparatus using the method
JP2536297Y2 (en) Magnetic circuit for sputtering equipment
JPH0479935A (en) Magnetic field generater
JPH0422337A (en) Magnetic field generating device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees