JP3151129B2 - Permanent magnet permanent magnet magnetic circuit and its magnetic field adjustment method - Google Patents
Permanent magnet permanent magnet magnetic circuit and its magnetic field adjustment methodInfo
- Publication number
- JP3151129B2 JP3151129B2 JP21854995A JP21854995A JP3151129B2 JP 3151129 B2 JP3151129 B2 JP 3151129B2 JP 21854995 A JP21854995 A JP 21854995A JP 21854995 A JP21854995 A JP 21854995A JP 3151129 B2 JP3151129 B2 JP 3151129B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnet
- magnetic field
- permanent magnet
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明はNMRやESRの磁
場発生装置に用いられる磁気回路に関するものであり、
特に永久磁石型MRI装置の磁石対向型永久磁石磁気回
路に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic circuit used in a magnetic field generator for NMR or ESR.
In particular, the present invention relates to a permanent magnet magnetic circuit of a magnet facing type of a permanent magnet type MRI apparatus.
【0002】[0002]
【従来の技術】永久磁石型MRI装置において、いくつ
かの磁気回路が提案され、実用化されている。例えば、
図3のようなダイポールリング型磁気回路は、リング周
方向に磁石の磁化方向が徐々に変化し、一周する間に磁
化は二回転する。リング内周にN、Sの二極の磁荷が出
てくるので、ダイポールリング型と呼ばれ、十分な軸方
向長さがあれば、リング内部の一軸径方向に向いた均一
な磁場分布が得られる。例えば、K.Halbach,Nuclear In
struments and Methods 169(1980), p1に磁気回路が報
告されており、MRI装置としては特開昭61−385
54号公報(USP4580098)、特開昭62−104011号
公報などがある。該磁気回路は、磁束を通すために外周
部に継鉄を用いる必要がないので、磁気回路重量が軽量
化され、コンパクトにできる。また、継鉄を使用する磁
気回路と比較し、発生磁場の上限が高く取れる利点があ
る。しかし、約3000G以下の発生磁場の領域では、他の
永久磁石磁気回路と比較して使用磁石重量が多くなるた
め、実際に実用化されている例はあまり多くない。磁場
調整は、各セグメント磁石を径方向移動やあおりを変え
ることにより行われる。2. Description of the Related Art In a permanent magnet type MRI apparatus, several magnetic circuits have been proposed and put into practical use. For example,
In the dipole ring type magnetic circuit as shown in FIG. 3, the magnetization direction of the magnet gradually changes in the ring circumferential direction, and the magnetization rotates twice during one round. Since dipole magnetic charges of N and S appear on the inner circumference of the ring, it is called a dipole ring type, and if it has a sufficient axial length, a uniform magnetic field distribution directed in one axis radial direction inside the ring can get. For example, K. Halbach, Nuclear In
A magnetic circuit has been reported in Instruments and Methods 169 (1980), p1, and as an MRI apparatus, see JP-A-61-385.
No. 54 (US Pat. No. 4,800,098), Japanese Patent Application Laid-Open No. 62-104011, and the like. Since the magnetic circuit does not need to use a yoke at the outer periphery to pass the magnetic flux, the weight of the magnetic circuit can be reduced and the magnetic circuit can be made compact. Also, there is an advantage that the upper limit of the generated magnetic field can be set higher than a magnetic circuit using a yoke. However, in the region of the generated magnetic field of about 3000 G or less, the weight of the magnet used is larger than that of other permanent magnet magnetic circuits. The magnetic field adjustment is performed by moving each segment magnet in the radial direction and changing the tilt.
【0003】一方、図2に示すような磁石対向型磁気回
路は良く知られており、現在実用化されている永久磁石
型MRIマグネットの殆どはこのタイプである。例えば
WO84/00611(PCT/US83/01175)、実公平2−44483
号公報、実公平2−44484号公報、実公平2−44
485号公報、実公平2−44486号公報や、映像情
報15 (1983),379 、病態生理4(1985),91 などがあ
る。On the other hand, a magnet facing type magnetic circuit as shown in FIG. 2 is well known, and most of permanent magnet type MRI magnets currently in practical use are of this type. For example
WO84 / 00611 (PCT / US83 / 01175), Jiro 2-44483
Japanese Patent Publication No. 2-44484, Japanese Utility Model Publication 2-44
No. 485, Japanese Utility Model Publication No. 2-44486, image information 15 (1983), 379, and pathophysiology 4 (1985), 91.
【0004】図2により、基本になる磁石対向型磁気回
路を説明する。バックヨーク10に、高さ方向に磁化さ
れた磁石14が固着されており、磁石14の空隙側表面
に、高い磁場均一性を実現するために、整磁板16と呼
ばれる磁性材が配置される。整磁板形状は軸対称であ
り、均一性を向上させるため、種々の工夫がなされてい
る。良く知られている整磁板形状は、ローズシム(また
は環状突起)と呼ばれる、円盤外周部に設けた環状の突
起161を持つものである。上下に対称な一対のバック
ヨーク・磁石・整磁板の組は、継鉄12で磁気的に結合
されている。図2では、継鉄12は、四本柱となってお
り、磁気的に閉磁路を組んでいる。勾配コイル18は整
磁板16の凹部に固定され、ギャップ側コイル高さは整
磁板の外周部の環状突起161(第一シム)とほぼ同等
の高さとなっている。Referring to FIG. 2, a basic magnet-facing magnetic circuit will be described. A magnet 14 magnetized in the height direction is fixed to the back yoke 10, and a magnetic material called a magnetic shunt plate 16 is arranged on the gap side surface of the magnet 14 in order to realize high magnetic field uniformity. . The shape of the magnetic shunt plate is axially symmetric, and various measures have been taken to improve the uniformity. A well-known shape of the magnetic shunt plate has an annular protrusion 161 provided on the outer periphery of the disk, called a rose shim (or an annular protrusion). A pair of a back yoke, a magnet, and a magnetic shunt plate, which are vertically symmetric, are magnetically coupled by a yoke 12. In FIG. 2, the yoke 12 has four pillars, and forms a magnetically closed magnetic circuit. The gradient coil 18 is fixed to the concave portion of the magnetic shunt plate 16, and the height of the gap side coil is substantially equal to the height of the annular projection 161 (first shim) on the outer peripheral portion of the magnetic shunt plate.
【0005】磁気回路の磁場均一度は、空隙中心部に仮
想的に設けた、球空間または楕円空間(以後、評価空間
と呼ぶ)内の磁場分布により評価される。整磁板が単純
な円盤形状の時、該空間の赤道部磁場強度は、極部に比
較し低くなる。環状突起を設けた整磁板を使用した場
合、該空間赤道部と環状突起の物理的距離が近くなり、
赤道部の磁場強度を向上させるため、評価空間全体の磁
場均一度が向上する。また、更に磁場均一度を向上させ
るため、整磁板底部162に周状の小さな突起(外周部
環状突起より段差の小さいもの)を、複数段設けること
も、考案されている。以上述べたように、整磁板形状は
該評価空間内の磁場均一度を向上させるため、非常に重
要である。The magnetic field uniformity of the magnetic circuit is evaluated based on the magnetic field distribution in a spherical space or an elliptical space (hereinafter referred to as an evaluation space) virtually provided at the center of the gap. When the magnetic shunt plate has a simple disk shape, the equatorial magnetic field intensity in the space becomes lower than that of the pole. When a magnetic shunt plate provided with an annular projection is used, the physical distance between the spatial equator and the annular projection is short,
Since the magnetic field strength in the equatorial region is improved, the magnetic field uniformity in the entire evaluation space is improved. In order to further improve the uniformity of the magnetic field, it has been devised to provide a plurality of small circumferential protrusions (those having a smaller step than the outer circumferential annular protrusion) on the bottom of the magnetic shunt plate 162. As described above, the shape of the magnetic shunt plate is very important for improving the magnetic field uniformity in the evaluation space.
【0006】また、磁石対向型磁気回路においては、上
下磁石の発生する磁束を鉄ヨークを通して流し閉磁路を
組ませるため、継鉄柱状ヨークが必要である。柱状ヨー
クの形状と本数は、設計により異なるが、4本柱、2本
柱、2枚板などがある。評価空間の柱方向の磁場強度
は、磁束が継鉄柱状ヨークに引かれるため、低くなる傾
向がある。これを改善するため、開口方向に磁束短絡用
シャント鉄ヨークを設け、開口部方向磁場強度を下げる
ことが考案されている。Also, in the magnet-facing magnetic circuit, a yoke column-shaped yoke is required to allow the magnetic flux generated by the upper and lower magnets to flow through the iron yoke to form a closed magnetic path. Although the shape and the number of columnar yokes differ depending on the design, there are four columns, two columns, two plates, and the like. The magnetic field strength in the column direction of the evaluation space tends to be low because the magnetic flux is drawn by the yoke columnar yoke. In order to improve this, it has been devised to provide a shunt iron yoke for magnetic flux short-circuiting in the opening direction to reduce the magnetic field strength in the opening direction.
【0007】上記のような要素を組み合わせ、数値解析
などにより、評価空間に均一磁場を発生可能な磁気回路
を設計する。しかし、均一磁場発生が可能な磁気回路を
作製できたとしても、実際に組み上げて完成した磁気回
路で、設計仕様通りの磁場均一度が得られることは少な
い。磁石特性のばらつき、加工誤差、組み付け誤差など
が重畳して、一般に設計仕様より大幅に磁場均一度は低
下する。したがって、要求磁場均一度を実現するため、
組み上げ後、磁場調整を行う必要がある。[0007] A magnetic circuit capable of generating a uniform magnetic field in the evaluation space is designed by combining the above-described elements and performing numerical analysis or the like. However, even if a magnetic circuit capable of generating a uniform magnetic field can be manufactured, it is rare that a magnetic circuit that is actually assembled and completed will achieve magnetic field uniformity as designed. In general, variations in magnet characteristics, processing errors, assembly errors, and the like are superimposed, and the magnetic field uniformity is generally significantly lower than design specifications. Therefore, to achieve the required magnetic field uniformity,
After assembly, it is necessary to adjust the magnetic field.
【0008】[0008]
【発明が解決しようとする課題】磁場調整では、粗調整
にあたる機械シミングと、微調整にあたる磁性材シミン
グが行われている。機械シミングには、バックヨークの
あおり調整、整磁板移動、シャントヨーク調整、バック
ヨークへの磁性材挿入調整などがある。磁性材シミング
は、整磁板上または整磁板とは独立に設けられたシム板
上の種々の場所に、種々な体積の磁性材を固着すること
により、磁場均一度を向上させるものである。In the magnetic field adjustment, mechanical shimming corresponding to coarse adjustment and magnetic material shimming corresponding to fine adjustment are performed. Mechanical shimming includes tilt adjustment of the back yoke, movement of the magnetic shunt, adjustment of the shunt yoke, and adjustment of insertion of the magnetic material into the back yoke. Magnetic material shimming improves magnetic field uniformity by fixing magnetic materials of various volumes to various places on a magnetic shunt plate or on a shim plate provided independently of the magnetic shunt plate. .
【0009】磁性材としては、軟磁性の鉄または鉄系合
金、NiまたはNi系合金、アモルファスなどの軟磁性
材か、硬磁性のフェライト磁石・希土類磁石またはそれ
らのボンド磁石などの磁石材が用いられる。形状は、チ
ップ形状や薄板形状が用いられる。軟磁性材シミング
は、複数個を積層する場合、個数と調整磁場量の間に、
線形関係が成り立たないため、軟磁性材を使用しての調
整が困難であり、特に調整量が大きい時に問題である。
しかし、薄板や微小チップを作製しやすく、精密な微調
整が可能である。一方、磁石材シミングは、シミング個
数と調整磁場量の間に線形関係が成り立つので、調整が
容易である。しかし、磁石の微小チップや薄板の作製
は、軟磁性材ほど容易ではないので、精密な微調整には
向かない。As the magnetic material, a soft magnetic material such as soft magnetic iron or an iron-based alloy, Ni or a Ni-based alloy, or amorphous, or a magnetic material such as a hard magnetic ferrite magnet, a rare earth magnet, or a bonded magnet thereof is used. Can be As the shape, a chip shape or a thin plate shape is used. Soft magnetic material shimming, when laminating a plurality, between the number and the adjustment magnetic field amount,
Since a linear relationship does not hold, adjustment using a soft magnetic material is difficult, and this is a problem particularly when the adjustment amount is large.
However, a thin plate or a small chip can be easily manufactured, and precise fine adjustment is possible. On the other hand, in the case of the magnet shimming, the adjustment is easy because a linear relationship is established between the number of shimming and the amount of the adjustment magnetic field. However, it is not easy to fabricate a fine chip or a thin plate of a magnet as a soft magnetic material, so that it is not suitable for precise fine adjustment.
【0010】このような、二種類のシミング材料の特性
を有効に活かすために、両方を混在させて使用すること
が考えられる。しかし、磁石材と軟磁性材を混在させて
シミングに使用すると、磁石材が発生する磁束が軟磁性
材に影響を与え、磁石の線形性が損なわれる。このた
め、従来のシミング調整では両方を混在させて使用する
ことはできなかった。上記の点が、磁気回路の均一磁場
調整の作業の上での大きな問題であった。[0010] In order to effectively utilize the characteristics of the two types of shimming materials, it is conceivable to use both types in combination. However, when the magnet material and the soft magnetic material are mixed and used for shimming, the magnetic flux generated by the magnet material affects the soft magnetic material, and the linearity of the magnet is impaired. For this reason, in the conventional shimming adjustment, it was not possible to use both together. The above point is a major problem in the operation of adjusting the uniform magnetic field of the magnetic circuit.
【0011】[0011]
【課題を解決するための手段】本発明は、一対の磁石を
対向させ、該磁石空隙表面に整磁板を設け、これらを継
鉄にて結んで閉磁路を構成し、該整磁板凹部に勾配コイ
ルとシム板を設けた磁石対向型永久磁石磁気回路におい
て、該整磁板表面に磁場調整用の磁石または磁性材を固
着し、かつシム板を勾配コイルよりも空隙側に配置し、
更に該シム板上に磁場調整用の磁石または磁性材を固着
したことを特徴とする磁石対向型永久磁石磁気回路を要
旨とするものである。また、該磁気回路において、磁場
調整用の磁性材または磁石材の量と位置を線形計画法に
より決定し空隙空間の磁場を調整することを特徴とする
磁石対向型永久磁石磁気回路の磁場調整方法を要旨とす
るものである。以下にこれをさらに詳述する。According to the present invention, a pair of magnets are opposed to each other, a magnetic shunt is provided on the surface of the magnet gap, and these are connected with a yoke to form a closed magnetic circuit. In a magnet facing type permanent magnet magnetic circuit provided with a gradient coil and a shim plate, a magnet or a magnetic material for adjusting the magnetic field is fixed to the surface of the magnetic shunt plate, and the shim plate is arranged on the gap side than the gradient coil,
Further, the present invention provides a magnet facing type permanent magnet magnetic circuit wherein a magnet or a magnetic material for adjusting a magnetic field is fixed on the shim plate. Further, in the magnetic circuit, the amount and position of the magnetic material or the magnet material for adjusting the magnetic field are determined by a linear programming method, and the magnetic field in the void space is adjusted, and the magnetic field adjusting method for the permanent magnet magnetic circuit of the magnet facing type is characterized in that It is the gist. This will be described in more detail below.
【0012】[0012]
【発明の実施の形態】図1に本発明の整磁板部の実施態
様の一例を示す。従来、磁場のシミング調整は、整磁板
の底部162上で行われていた。図1では、整磁板16
は環状突起161(第一シム)を有し、底部162には
特に周状段差(高次シム)を示していないが、必要によ
り設けることができる。整磁板の凹部には、勾配コイル
18とシム板19が納められており、整磁板に各々固着
されている。本発明者等は、整磁板底部162上とシム
板19上とに、磁場調整用の磁石または磁性材(以後、
シム材20とシム材21という。)を固着することによ
り、シミング調整を整磁板上とシム板上との両方で行う
ことを見出した。すなわち、本発明ではまず勾配コイル
18上に非磁性シム板19を設け、シム板上(またはシ
ム板下)に更にシム材21を固定し、かつ整磁板16上
の、主に整磁板底部162にシム材20を固着し、シミ
ング調整で磁場微調整を行う。シム材20・21の量と
位置の決定は、経験的に行うこともあるが、主に数値計
算支援により調整が行われる。FIG. 1 shows an embodiment of a magnetic shunt plate according to the present invention. Conventionally, the shimming adjustment of the magnetic field has been performed on the bottom 162 of the magnetic shunt plate. In FIG. 1, the magnetic shunt plate 16 is shown.
Has an annular projection 161 (first shim), and the bottom 162 does not particularly show a circumferential step (higher order shim), but can be provided if necessary. The concave portion of the magnetic shunt plate accommodates the gradient coil 18 and the shim plate 19, which are fixed to the magnetic shunt plate, respectively. The present inventors placed a magnet or a magnetic material (hereinafter, referred to as a magnetic material) for adjusting the magnetic field on the magnetic shunt plate bottom 162 and the shim plate 19.
They are referred to as shim material 20 and shim material 21. Has been found to perform shimming adjustment both on the magnetic shunt plate and on the shim plate. That is, in the present invention, first, the nonmagnetic shim plate 19 is provided on the gradient coil 18, the shim material 21 is further fixed on the shim plate (or below the shim plate), and the magnetic The shim material 20 is fixed to the bottom part 162, and fine adjustment of the magnetic field is performed by shimming adjustment. Determining the amounts and positions of the shims 20 and 21 may be performed empirically, but is adjusted mainly with the support of numerical calculations.
【0013】整磁板底部162は、評価空間より相対的
に離れているので、シム材20の固着が磁場分布に与え
る影響は薄められるが、その影響は比較的広範囲の空隙
空間に及ぶ。一方、シム板19は、整磁板底部より、空
隙空間に近い所(勾配コイル18の上)に設けられるた
め、シム板19上のシム材21は、評価空間の磁場分布
に影響を与えやすい。また、評価空間に近いため、磁場
への影響は局所的になる。そこで、整磁板底部162上
では粗い微調整(つまり、大きな軟磁性材の固着や磁石
材の固着)を行い、評価空間の大きな領域に対する磁場
分布を改善することができる。次に、シム板19上では
小さいシム材21(微小な軟磁性材や磁石材の固着)に
よる、精密な微調整を行うことができる。Since the bottom of the magnetic shunt plate 162 is relatively far away from the evaluation space, the influence of the fixation of the shim material 20 on the magnetic field distribution is reduced, but the influence extends to a relatively wide gap space. On the other hand, since the shim plate 19 is provided closer to the gap space (above the gradient coil 18) than the bottom of the magnetic shunt plate, the shim material 21 on the shim plate 19 easily affects the magnetic field distribution in the evaluation space. . In addition, since it is close to the evaluation space, the influence on the magnetic field is local. Therefore, coarse fine adjustment (that is, fixing of a large soft magnetic material or fixing of a magnet material) is performed on the magnetic shunt plate bottom 162, and the magnetic field distribution in a large area of the evaluation space can be improved. Next, on the shim plate 19, precise fine adjustment can be performed by using a small shim material 21 (adhesion of a minute soft magnetic material or a magnet material).
【0014】シム材20,21は軟磁性材または磁石材
であるが、整磁板底部162上でのシミングの場合は磁
石材を使用すると、微調整を行うことによりシミング調
整時の線形性が確保できるので、磁場調整が容易にな
る。もちろん、軟磁性材シミングでも良いが、複数の軟
磁性材を固着する時、重ね合わせの線形性が確保できる
ようにする必要がある。一方、シム板19上では、精密
な微調整が必要なため、微小な軟磁性材が望ましい。シ
ム板上のシミング量は少ないので、軟磁性部材を使用し
ても、線形性からのずれは小さい。The shims 20 and 21 are soft magnetic materials or magnet materials. However, in the case of shimming on the magnetic shunt plate bottom 162, if a magnet material is used, fine adjustment is performed to improve linearity during shimming adjustment. Since it can be secured, the magnetic field adjustment becomes easy. Of course, soft magnetic material shimming may be used, but it is necessary to secure linearity of superposition when a plurality of soft magnetic materials are fixed. On the other hand, a fine soft magnetic material is desirable on the shim plate 19 because precise fine adjustment is required. Since the amount of shimming on the shim plate is small, even if a soft magnetic member is used, the deviation from linearity is small.
【0015】ここで、整磁板上の磁石材(シム材20)
とシム板上の磁性材(シム材21)との磁気的な結合に
よる、磁石材の線形性の乱れが懸念されるが、シム板1
9は整磁板底部より空隙側に配置され、整磁板上の磁石
材(シム材20)と空間的に切り離されているため、整
磁板上の磁石材(シム材20)の線形性は乱されないこ
とを見いだした。したがって、評価空間とシミング位置
の相対関係を利用することにより、調整を精密に行うこ
とができるようになる。ただし、同一平面上で両者を混
在させると、すでに述べたような非線形性が生じてしま
うため望ましくない。Here, the magnet material (shim material 20) on the magnetic shunt plate
It is feared that the linearity of the magnet material is disturbed due to the magnetic coupling between the magnetic material and the magnetic material (the shim material 21) on the shim plate.
Numeral 9 is disposed on the gap side from the bottom of the magnetic shunt plate and is spatially separated from the magnet material (shim material 20) on the magnetic shunt plate. Found that it was not disturbed. Therefore, the adjustment can be performed precisely by using the relative relationship between the evaluation space and the shimming position. However, if they are mixed on the same plane, the above-described non-linearity occurs, which is not desirable.
【0016】整磁板上の磁石材は、自身の吸着力のみの
固着でも良いが、振動などにより位置ずれを起こす可能
性があるため、接着またはネジなどによる固着が望まし
い。シム板上の軟磁性材は、同様に振動などにより位置
ずれを起こす可能性があるため、接着またはネジによる
固着が必須である。軟磁性材の形状としては、穴開き薄
板形状で、ネジ止め可能なものが良い。大きさは形状の
異なるものを複数種類用意しても良いが、最小単位の磁
性材の個数で調整する方が容易である。積層は、扁平な
ものを厚み方向に積層しても良いが、永久磁石による磁
場方向と磁性材の長手方向が一致するように縦に積層す
ることが望ましい。これにより、複数枚積層したときの
線形性が向上する。The magnet material on the magnetic shunt plate may be fixed only by its own attraction force. However, since there is a possibility of displacement due to vibration or the like, it is preferable to fix the magnet material with an adhesive or a screw. Since the soft magnetic material on the shim plate may be similarly displaced due to vibration or the like, it is essential to fix the soft magnetic material with an adhesive or a screw. As the shape of the soft magnetic material, a material having a perforated thin plate shape that can be screwed is preferable. A plurality of types having different shapes may be prepared, but it is easier to adjust the size by the number of magnetic materials in the minimum unit. The lamination may be performed by laminating flat ones in the thickness direction, but it is preferable that the lamination is performed vertically so that the magnetic field direction by the permanent magnet and the longitudinal direction of the magnetic material coincide. Thereby, the linearity when a plurality of sheets are stacked is improved.
【0017】軟磁性材としては、既に述べたような鉄
(または鉄合金)かNi(またはNi合金)、アモルフ
ァス系軟磁性材が使用される。精密な微調整を行うため
には、飽和磁化が小さく、かつ薄板で微小な部材を作製
することが容易な磁性材を使用することが望ましい。例
えば、NiまたはNi基合金(例えばパーマロイ)は、
7000G以下の飽和磁化で、圧延加工などにより薄板を作
製しやすいので、シミング用軟磁性部材として適してい
る。また、Co系アモルファス系薄帯なども、比較的飽
和磁化が低く、20〜30μmの薄帯が得られるので使用で
きる。また、扁平磁石材はフェライト系、希土類系磁石
のどちらでも使用可能であり、焼結磁石とボンド磁石の
どちらでもよい。磁石材シミングでは、磁場調整量が大
きいことが多いので、大きさも調整する磁場の量により
変えればよく、何段階かの調整が可能なように、更に複
数種類の磁石材を準備しておくことが有効である。な
お、シム板19は樹脂材(例えば、ポリ塩化ビニル、ベ
ークライトなど)で作製すればよい。金属板は、勾配磁
場印加により渦電流が流れるため好ましくない。As the soft magnetic material, iron (or iron alloy), Ni (or Ni alloy), or an amorphous soft magnetic material as described above is used. In order to perform precise fine adjustment, it is desirable to use a magnetic material that has a small saturation magnetization and is easy to manufacture a thin member with a small thickness. For example, Ni or a Ni-based alloy (eg, Permalloy)
It is suitable for use as a soft magnetic member for shimming because it has a saturation magnetization of 7000 G or less and can easily produce a thin plate by rolling or the like. Co-based amorphous ribbons can also be used because they have relatively low saturation magnetization and can provide ribbons of 20 to 30 μm. Further, the flat magnet material may be either a ferrite-based magnet or a rare-earth magnet, and may be either a sintered magnet or a bonded magnet. In magnetic material shimming, the amount of magnetic field adjustment is often large, so it is sufficient to change the magnitude according to the amount of magnetic field to be adjusted, and prepare multiple types of magnet materials so that adjustment can be made in several stages Is valid. Note that the shim plate 19 may be made of a resin material (for example, polyvinyl chloride, bakelite, or the like). The metal plate is not preferable because an eddy current flows when a gradient magnetic field is applied.
【0018】本発明における磁性部材などでのシム調整
は、磁場の微調整にあたる。シム調整の前の機械的調整
により、評価空間(例えばφ400 球)の大局的な磁場均
一度を向上させると、通常200ppm〜400ppm程度の均一度
が得られる。良好な磁場均一度を得るための、磁石材や
磁性材のシミング位置と量とは、経験的に行っても、あ
る程度まで改善することは可能である。しかし、要求さ
れる磁場均一度仕様は、例えば2000Gで50ppm 以下、望
ましくは10ppm 以下が必要とされる。これは、絶対値で
0.1 G以下であり、地磁気の数分の一以下の大きさであ
るため、計算機支援による系統的な磁場調整を行わない
と実現することは難しい。計算機支援による調整には、
数理計画法、線形計画法、7プレーン法などの手法が使
用できる。なかでも、線形計画法は初期値と目標値の差
があまり大きくなければ(例えば、二桁の差)、相対的
に少ない計算量で最適解が得られるため、本願発明のシ
ム調整に適している。The shim adjustment in the magnetic member or the like in the present invention corresponds to the fine adjustment of the magnetic field. When the global magnetic field uniformity of the evaluation space (for example, φ400 sphere) is improved by mechanical adjustment before shim adjustment, uniformity of about 200 ppm to 400 ppm is usually obtained. The shimming position and the amount of the magnet material or the magnetic material for obtaining a good magnetic field uniformity can be improved to some extent even if it is empirically performed. However, the required magnetic field uniformity specification is, for example, 50 ppm or less at 2000 G, preferably 10 ppm or less. This is an absolute value
Since it is 0.1 G or less, which is less than a fraction of the terrestrial magnetism, it is difficult to achieve this without systematic magnetic field adjustment with computer assistance. For computer-assisted adjustments,
Methods such as mathematical programming, linear programming, and 7-plane method can be used. Above all, in the linear programming method, if the difference between the initial value and the target value is not so large (for example, a difference of two digits), the optimal solution can be obtained with a relatively small amount of calculation. I have.
【0019】[0019]
【発明の効果】本発明によれば、均一な磁場を実現しや
すく、磁場調整も容易な、磁石対向型MRI用マグネッ
トを実現できる。According to the present invention, it is possible to realize a magnet for a magnet facing type MRI which can easily realize a uniform magnetic field and can easily adjust the magnetic field.
【図1】本発明における磁石対向型永久磁石磁気回路の
整磁板部縦断面模式図。FIG. 1 is a schematic vertical sectional view of a magnetic shunt plate portion of a permanent magnet magnetic circuit of the present invention.
【図2】従来の磁石対向型永久磁石磁気回路模式図。 (a)縦断面模式図。 (b)(a)のAA′面による横断面模式図。FIG. 2 is a schematic diagram of a conventional magnet-facing permanent magnet magnetic circuit. (A) A schematic longitudinal section. (B) The cross-sectional schematic diagram by the AA 'plane of (a).
【図3】従来のダイポールリング型磁気回路斜視図。FIG. 3 is a perspective view of a conventional dipole ring type magnetic circuit.
10 バックヨーク 12 継鉄 14 磁石 16 整磁板 161 整磁板環状突起 162 整磁板底
部 18 勾配コイル 19 シム板 20 整磁板上のシム材 21 シム板上
のシム材REFERENCE SIGNS LIST 10 back yoke 12 yoke 14 magnet 16 magnetic shunt plate 161 magnetic shunt plate annular projection 162 magnetic shunt plate bottom 18 gradient coil 19 shim plate 20 shim material on the magnetic shunt plate 21 shim material on the shim plate
フロントページの続き (72)発明者 米田 祐仁 福井県武生市北府2丁目1番5号 信越 化学工業株式会社 磁性材料研究所内 (72)発明者 井上 勇二 東京都日野市旭が丘4丁目7番地の127 ジーイー横河メディカルシステム株式 会社内 (56)参考文献 特開 平9−75324(JP,A) 特開 昭61−276309(JP,A) 特開 平1−164356(JP,A) 特開 平4−186703(JP,A) 実開 平3−83903(JP,U) 特公 平5−87962(JP,B2) 米国特許5864275(US,A) 米国特許5963117(US,A) 欧州特許出願公開760484(EP,A 2) 欧州特許出願公開985934(EP,A 1) (58)調査した分野(Int.Cl.7,DB名) A61B 5/055 H01F 7/02 Continued on the front page (72) Inventor Yuji Yoneda 2-5-1-5 Kitafu, Takefu-shi, Fukui Shin-Etsu Chemical Industry Co., Ltd. Magnetic Materials Research Laboratories Yokogawa Medical System Co., Ltd. (56) References JP-A-9-75324 (JP, A) JP-A-61-276309 (JP, A) JP-A-1-164356 (JP, A) JP-A-4- 186703 (JP, A) Japanese Utility Model Application Hei 3-83903 (JP, U) Japanese Patent Publication No. 5-87962 (JP, B2) US Patent 5,864,275 (US, A) US Patent 5,631,117 (US, A) European Patent Application 760484 ( EP, A 2) EP 985934 (EP, A 1) (58) Fields investigated (Int. Cl. 7 , DB name) A61B 5/055 H01F 7/02
Claims (3)
に整磁板を設け、これらを継鉄にて結んで閉磁路を構成
し、該整磁板凹部に勾配コイルとシム板を設けた磁石対
向型永久磁石磁気回路において、該整磁板表面に磁場調
整用の磁石または磁性材を固着し、かつシム板を勾配コ
イルよりも空隙側に配置し、更に該シム板上に磁場調整
用の磁石または磁性材を固着したことを特徴とする磁石
対向型永久磁石磁気回路。1. A pair of magnets are opposed to each other, a magnetic shunt plate is provided on the surface of the magnet gap, these are connected by a yoke to form a closed magnetic circuit, and a gradient coil and a shim plate are provided in the magnetic shunt plate recess. In the magnet facing type permanent magnet magnetic circuit, a magnet or a magnetic material for adjusting a magnetic field is fixed to the surface of the magnetic shunt plate, and a shim plate is arranged on the gap side of the gradient coil, and the magnetic field is further adjusted on the shim plate. Permanent magnet magnetic circuit, wherein a permanent magnet or magnetic material is fixed.
気回路により空隙空間の磁場を調整することを特徴とす
る磁石対向型永久磁石磁気回路の磁場調整方法。2. A method for adjusting a magnetic field of a magnet-facing permanent magnet magnetic circuit, comprising: adjusting a magnetic field in an air gap by the magnet-facing permanent magnet magnetic circuit according to claim 1.
材または磁石部材の量と位置を線形計画法により決定し
調整する磁石対向型永久磁石磁気回路の磁場調整方法。3. The magnetic field adjusting method according to claim 2, wherein the amount and the position of the magnetic member or the magnetic member for adjusting the magnetic field are determined and adjusted by a linear programming method.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21854995A JP3151129B2 (en) | 1995-08-28 | 1995-08-28 | Permanent magnet permanent magnet magnetic circuit and its magnetic field adjustment method |
EP04077874A EP1515150A1 (en) | 1995-08-28 | 1996-08-27 | Opposed magnet-type magnetic circuit assembly with permanent magnets |
DE69633683T DE69633683T2 (en) | 1995-08-28 | 1996-08-27 | Magnetic circuit arrangement with opposing permanent magnets |
US08/703,450 US5864275A (en) | 1995-08-28 | 1996-08-27 | Opposed magnet-type magnetic circuit assembly with permanent magnets |
EP99402778A EP0985934B1 (en) | 1995-08-28 | 1996-08-27 | Opposed magnet-type magnetic circuit assembly with permanent magnets |
EP96401834A EP0760484B1 (en) | 1995-08-28 | 1996-08-27 | Opposed magnet-type magnetic circuit assembly with permanent magnets |
DE69613061T DE69613061T2 (en) | 1995-08-28 | 1996-08-27 | Magnetic circuit arrangement with opposing permanent magnets |
US09/206,291 US5963117A (en) | 1995-08-28 | 1998-12-07 | Opposed magnet-type magnetic circuit assembly with permanent magnets |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21854995A JP3151129B2 (en) | 1995-08-28 | 1995-08-28 | Permanent magnet permanent magnet magnetic circuit and its magnetic field adjustment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0956692A JPH0956692A (en) | 1997-03-04 |
JP3151129B2 true JP3151129B2 (en) | 2001-04-03 |
Family
ID=16721683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21854995A Expired - Fee Related JP3151129B2 (en) | 1995-08-28 | 1995-08-28 | Permanent magnet permanent magnet magnetic circuit and its magnetic field adjustment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3151129B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100373577B1 (en) * | 1997-12-26 | 2003-02-26 | 스미토모 도큐슈 긴조쿠 가부시키가이샤 | Mri magnetic field generator |
US6218838B1 (en) * | 1998-08-28 | 2001-04-17 | Picker International, Inc. | MRI magnet with high homogeneity, patient access, and low forces on the driver coils |
JP3040754B2 (en) * | 1998-10-26 | 2000-05-15 | ジーイー横河メディカルシステム株式会社 | MRI equipment |
US6448772B1 (en) | 2000-10-06 | 2002-09-10 | Sumitomo Special Metals Co., Ltd. | Magnetic field adjusting apparatus, magnetic field adjusting method and recording medium |
JP2005168692A (en) | 2003-12-10 | 2005-06-30 | Shin Etsu Chem Co Ltd | Opposed permanent magnet type magnetic circuit and method for adjusting its magnetic field |
-
1995
- 1995-08-28 JP JP21854995A patent/JP3151129B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0956692A (en) | 1997-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0760484B1 (en) | Opposed magnet-type magnetic circuit assembly with permanent magnets | |
US6147578A (en) | Method for designing open magnets and open magnetic apparatus for use in MRI/MRT probes | |
JP2839114B2 (en) | Permanent magnet for nuclear magnetic resonance imaging equipment | |
EP0619499A1 (en) | Improvements in or relating to MRI magnets | |
US6275128B1 (en) | MRI magnetic field generator | |
JPH0587962B2 (en) | ||
US20110248715A1 (en) | Compact Inhomogeneous Permanent Magnetic Field Generator for Magnetic Resonance Imaging | |
JP2005103266A (en) | Permanent magnet assembly with movable permanent body for adjusting main magnetic field | |
EP0982598B1 (en) | Magnetic resonance system with shim rings | |
JP4639948B2 (en) | Magnet apparatus and magnetic resonance imaging apparatus using the same | |
US6498488B2 (en) | Magnetic resonance imaging apparatus | |
JP3151129B2 (en) | Permanent magnet permanent magnet magnetic circuit and its magnetic field adjustment method | |
JP3194699B2 (en) | Permanent magnet magnetic circuit | |
JPH08335511A (en) | Permanent magnet magnetic circuit | |
JP2764458B2 (en) | Magnetic field generator for MRI | |
US6351125B1 (en) | Method of homogenizing magnetic fields | |
JP2005237501A (en) | Magnetic circuit and magnetic field adjustment method therefor | |
JP4139767B2 (en) | Permanent magnet facing magnetic circuit | |
US6933820B2 (en) | Magnetic circuit with opposing permanent magnets and method for adjusting magnetic field thereof | |
JP4783556B2 (en) | Method and apparatus for adjusting the central magnetic field of a magnetic field generator for MRI | |
JPH1097917A (en) | Superconductor magnet device | |
JPH08243087A (en) | Opposite magnet type permanent magnet magnetic circuit | |
JPH01283905A (en) | Method for deviating uniform magnetic field for mri apparatus and magnetostatic field generating apparatus using the method | |
JPH0422337A (en) | Magnetic field generating device | |
JPH0479935A (en) | Magnetic field generater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090119 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090119 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100119 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100119 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100119 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110119 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120119 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |