JP2005237501A - Magnetic circuit and magnetic field adjustment method therefor - Google Patents

Magnetic circuit and magnetic field adjustment method therefor Download PDF

Info

Publication number
JP2005237501A
JP2005237501A JP2004048923A JP2004048923A JP2005237501A JP 2005237501 A JP2005237501 A JP 2005237501A JP 2004048923 A JP2004048923 A JP 2004048923A JP 2004048923 A JP2004048923 A JP 2004048923A JP 2005237501 A JP2005237501 A JP 2005237501A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic circuit
yoke
permanent magnet
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004048923A
Other languages
Japanese (ja)
Inventor
Sukehito Doi
祐仁 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004048923A priority Critical patent/JP2005237501A/en
Publication of JP2005237501A publication Critical patent/JP2005237501A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To further improve a uniformity in the magnetic field in a magnetic circuit with counter permanent magnets. <P>SOLUTION: The magnetic circuit 1 with counter permanent magnets comprises a pair of permanent magnets 2 which are made to face each other isolated with a clearance and magnetized across the thickness thereof, a yoke 3 which is disposed outside the permanent magnets and the clearance and magnetically linked to the permanent magnets and a pair of magnetic pole pieces 4 which are disposed on the surface sides facing each other of the permanent magnets and each have a peripheral protrusion in the direction of facing each other. It also comprises an added magnetic body 6 provided at the upper part of the magnetic circuit. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、永久磁石型磁気回路および磁界調整方法に関するものである。   The present invention relates to a permanent magnet type magnetic circuit and a magnetic field adjustment method.

磁気共鳴イメージング装置(以下、MRIとも記す)向けの永久磁石を用いた磁場発生装置は希土類磁石を用いた磁石対向型磁気回路が主流となっている。図4に、従来の永久磁石対向型磁気回路の模式的な正面図(a)、平面図(b)、および側面図(c)を示す。図4に例示するように、磁石対向型磁気回路101では、磁石102からの磁束を通すための継鉄103と磁石102、そして空隙側に均一な磁界を発生させるために一般に磁石表面に軟鉄など軟質磁性体からなる磁極片104が設けてある。   Magnetic field generating apparatuses using permanent magnets for magnetic resonance imaging apparatuses (hereinafter also referred to as MRI) are mainly magnet facing magnetic circuits using rare earth magnets. FIG. 4 shows a schematic front view (a), plan view (b), and side view (c) of a conventional permanent magnet facing magnetic circuit. As illustrated in FIG. 4, in the magnet facing magnetic circuit 101, the yoke 103 and the magnet 102 for passing the magnetic flux from the magnet 102, and generally soft iron or the like on the magnet surface to generate a uniform magnetic field on the air gap side. A pole piece 104 made of a soft magnetic material is provided.

この永久磁石対向型磁気回路は、空隙を上下の永久磁石によって挟み、空隙内に磁界を発生させることで、超伝導のソレノイドコイル型に比べ、開口部が広く被験者の受ける閉塞感が緩和されるという特長を持つ。しかしながら、磁石が上下に分かれているため、空隙内の磁界に上下方向の不均一が発生し易いという問題点があった。このような上下における磁場の不均一の補正方法としては、特許文献1に記載のように磁性体による位置調整機構を設けて上下の磁石それぞれを調整する方法が用いられている。しかしながら、このような機構による補正量にも限界があるため、上下方向における磁場の不均一はできるだけ無いほうが好ましい。よって、磁石対向型磁気回路は一般に上下対称形となっている。
特許第3113515号
In this permanent magnet facing type magnetic circuit, a gap is sandwiched between upper and lower permanent magnets, and a magnetic field is generated in the gap, so that the subject's feeling of blockage that the subject has a wider opening is reduced compared to a superconducting solenoid coil type. It has the feature. However, since the magnets are divided into upper and lower parts, there has been a problem that non-uniformity in the vertical direction is likely to occur in the magnetic field in the gap. As a method for correcting the non-uniformity of the magnetic field in the upper and lower directions, a method of adjusting the upper and lower magnets by providing a position adjusting mechanism using a magnetic material as described in Patent Document 1 is used. However, since there is a limit to the amount of correction by such a mechanism, it is preferable that there is as little magnetic field non-uniformity as possible in the vertical direction. Therefore, the magnet-facing magnetic circuit is generally vertically symmetric.
Japanese Patent No. 3131515

一方、磁気回路の台座は一般に十分な強度を持ち、安価な鉄が使用されている。しかしながら、台座が鉄であるために下の磁石の方が、磁気効率が良くなり、これも空隙内の磁界の上下方向における不均一が発生する一因となっていた。さらに、一般に部屋の温度は、磁気回路の下部の方が低く、上の方が高い。一般に永久磁石は温度が高くなると、磁束密度が小さくなり発生する磁界が小さくなる。この温度による問題も、磁気回路下側の磁石からの磁界を大きくする一因となっていた。   On the other hand, the base of the magnetic circuit generally has sufficient strength and inexpensive iron is used. However, since the pedestal is made of iron, the lower magnet has a higher magnetic efficiency, which is also a factor in causing non-uniformity in the vertical direction of the magnetic field in the gap. Furthermore, the room temperature is generally lower in the lower part of the magnetic circuit and higher in the upper part. In general, as the temperature of a permanent magnet increases, the magnetic flux density decreases and the generated magnetic field decreases. This temperature problem has also contributed to increasing the magnetic field from the magnet below the magnetic circuit.

本発明は、永久磁石対向型磁気回路において、磁場均一性をより向上させることを目的とする。   An object of the present invention is to further improve magnetic field uniformity in a permanent magnet facing magnetic circuit.

上記の問題は、磁気回路の下側には鉄等からなる台座があることによる磁石の磁気効率の違いと、磁気回路の上下間の温度の違いとによって発生し、何れの要因によっても磁気回路の下側の磁界が強くなっていた。そこで、本発明では上側の磁石の磁気効率を高めることで、下側の磁界が高くなることに対応できる磁気回路を提案するものである。   The above problem occurs due to the difference in magnetic efficiency of the magnet due to the base made of iron etc. under the magnetic circuit and the difference in temperature between the upper and lower sides of the magnetic circuit. The lower magnetic field was stronger. Therefore, the present invention proposes a magnetic circuit that can cope with an increase in the lower magnetic field by increasing the magnetic efficiency of the upper magnet.

すなわち、本発明の1の側面によると、空隙を隔てて対向し、厚み方向に磁化された1対の永久磁石と、該永久磁石および該空隙の外側に設けられ、該永久磁石と磁気的に結合する継鉄と、該永久磁石の対向する面側の夫々に設けられ、対向する向きに周辺突起部を有する1対の磁極片とを含む永久磁石対向型磁気回路であって、該磁気回路の上部に設けられた付加磁性体をさらに含む永久磁石対向型磁気回路が提供される。   That is, according to one aspect of the present invention, a pair of permanent magnets opposed to each other with a gap and magnetized in the thickness direction, the permanent magnet and the outside of the gap are provided, and the permanent magnet is magnetically A permanent magnet facing magnetic circuit comprising a yoke to be coupled and a pair of magnetic pole pieces provided on opposite surfaces of the permanent magnet and having peripheral protrusions in the facing direction, There is provided a permanent magnet-facing magnetic circuit further including an additional magnetic body provided on the top of the permanent magnet.

また、本発明の別の側面によると、空隙を隔てて対向し、厚み方向に磁化された1対の永久磁石と、該永久磁石および該空隙の外側に設けられ、該永久磁石と磁気的に結合する継鉄と、該永久磁石の対向する面側の夫々に設けられ、対向する向きに周辺突起部を有する1対の磁極片とを含む永久磁石対向型磁気回路の上部に付加磁性体を設けて磁界を調整する磁気回路磁界調整方法が提供される。   According to another aspect of the present invention, a pair of permanent magnets opposed to each other with a gap therebetween and magnetized in the thickness direction, the permanent magnets and the outer side of the gap, and magnetically coupled to the permanent magnets An additional magnetic body is provided on the upper part of the permanent magnet facing magnetic circuit including a yoke to be coupled and a pair of magnetic pole pieces provided on each of the facing surfaces of the permanent magnet and having peripheral protrusions in the facing direction. Provided is a magnetic circuit magnetic field adjustment method for providing and adjusting a magnetic field.

以下に詳細に説明するように、本発明によると、磁気回路の上部と下部との磁気効率の均衡がとれ、磁場均一性がより向上した永久磁石対向型磁気回路が提供される。   As will be described in detail below, according to the present invention, there is provided a permanent magnet facing magnetic circuit in which the magnetic efficiency of the upper and lower portions of the magnetic circuit is balanced and the magnetic field uniformity is further improved.

以下に、本発明の実施の形態を、添付図面を参照しながら説明する。もっとも、以下に説明する実施の形態は本発明を限定するものではない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. However, the embodiments described below do not limit the present invention.

図1に、本発明の1の実施態様にかかる永久磁石対向型磁気回路の模式的な正面図(a)、平面図(b)、および側面図(c)を示す。図1に示すように、本発明にかかる永久磁石対向型磁気回路1は、空隙を隔てて対向し、厚み方向に磁化された1対の永久磁石2と、該永久磁石および該空隙の外側に設けられ、該永久磁石と磁気的に結合する継鉄3と、該永久磁石の対向する面側の夫々に設けられ、対向する向きに周辺突起部を有する1対の磁極片4と、該磁気回路の上部に設けられた付加磁性体6とを含む。説明の便宜のため、永久磁石対向型磁気回路の台座および付加磁性体を除く部分のうち、上部と下部とが対称である態様について説明する。ただし、上下非対称であっても構成が同じであれば本発明を適用できる。   FIG. 1 shows a schematic front view (a), a plan view (b), and a side view (c) of a permanent magnet facing magnetic circuit according to one embodiment of the present invention. As shown in FIG. 1, a permanent magnet-facing magnetic circuit 1 according to the present invention is opposed to a pair of permanent magnets 2 which are opposed to each other with a gap therebetween and are magnetized in the thickness direction. A yoke 3 magnetically coupled to the permanent magnet, a pair of magnetic pole pieces 4 provided on opposite sides of the permanent magnet and having peripheral protrusions in the facing direction, and the magnetic And an additional magnetic body 6 provided in the upper part of the circuit. For convenience of explanation, an aspect in which the upper part and the lower part of the part excluding the base and the additional magnetic body of the permanent magnet facing magnetic circuit are symmetrical will be described. However, the present invention can be applied if the configuration is the same even if it is asymmetrical in the vertical direction.

永久磁石2は、従来のものと同様とすることができるため、詳細な説明は省略する。厚み方向に磁化された1対の永久磁石が、空隙を隔てて対向し、空隙に主磁場を形成する。特にMRIに用いられる磁気回路の場合、一般に、主磁場は、0.1T以上の磁場強度を有する。特に限定されるものではないが、永久磁石としては、フェライト、アルニコ、希土類磁石等の焼結、ボンド磁石を用いることでき、エネルギー積の高いNd−Fe−B系、Sm−Co系、Sm−Fe−N系希土類焼結磁石を用いると、磁石使用量が少なくてすみ、装置の小型化が可能となるため好ましい。永久磁石の形状は、円状、四角形状等であり、特に限定されるものではないが、磁極片と同様な形状がよい。磁化の方向は、互いに向き合う永久磁石の面に実質的に垂直な方向(厚さ方向)で、一般に同一の向きである。特にMRIに用いられる磁気回路の場合、一般に、磁気回路の主磁場を形成する永久磁石は、1T以上の残留磁束密度をもつ磁石材料を使用して構成されている。   Since the permanent magnet 2 can be the same as the conventional one, a detailed description is omitted. A pair of permanent magnets magnetized in the thickness direction face each other with a gap therebetween, and form a main magnetic field in the gap. In particular, in the case of a magnetic circuit used for MRI, the main magnetic field generally has a magnetic field strength of 0.1 T or more. Although not particularly limited, sintered permanent magnets such as ferrite, alnico, and rare earth magnets and bonded magnets can be used as permanent magnets, and Nd—Fe—B, Sm—Co, and Sm— with high energy products. It is preferable to use an Fe—N rare earth sintered magnet because the amount of magnet used is small and the apparatus can be miniaturized. The shape of the permanent magnet is a circular shape, a quadrangular shape, or the like, and is not particularly limited, but a shape similar to that of the pole piece is preferable. The direction of magnetization is a direction (thickness direction) substantially perpendicular to the surfaces of the permanent magnets facing each other, and is generally the same direction. In particular, in the case of a magnetic circuit used for MRI, a permanent magnet that forms the main magnetic field of the magnetic circuit is generally configured using a magnet material having a residual magnetic flux density of 1T or more.

継鉄3は、従来のものと同様とすることができるため、詳細な説明は省略する。継鉄が、永久磁石間の空隙の外側に設けられ、永久磁石を磁気的に結合する。これにより閉磁路が形成される。継鉄の形状は、特に限定されるものではなく、任意の形状にすることができ、例えば、C型、H型、円筒状、ロ型、二本柱型とすることができる。本発明は、特にC型の磁気回路に適用すると好ましい。C型の磁気回路は、比較的構造的に強度が低く、開口部の開閉方向の振動が発生する問題があるが、本発明によると、以下に詳細に説明するように、磁気回路の強度を向上させることもできるからである。より具体的には、実質的に平行な一対の板状継鉄を柱状継鉄で支持し、この板状継鉄の対向する面に永久磁石を設けることができる。   Since the yoke 3 can be the same as the conventional one, a detailed description is omitted. A yoke is provided outside the gap between the permanent magnets to magnetically couple the permanent magnets. Thereby, a closed magnetic circuit is formed. The shape of the yoke is not particularly limited, and can be any shape, for example, a C shape, an H shape, a cylindrical shape, a round shape, or a two-pillar shape. The present invention is particularly preferably applied to a C-type magnetic circuit. The C-type magnetic circuit is relatively structurally low in strength and has a problem that vibration in the opening / closing direction of the opening is generated. This is because it can be improved. More specifically, a pair of substantially parallel plate yokes can be supported by columnar yokes, and permanent magnets can be provided on opposing surfaces of the plate yokes.

磁極片4は、従来のものと同様とすることができるため、詳細な説明は省略する。対向する向きに周辺突起部を有する1対の磁極片が、該永久磁石の対向する面側の夫々に設けられる。これにより、磁気回路の磁場の均一度が向上する。すなわち、空隙の中心部に球または楕円状の空間(評価空間とも記す)を仮想的に設け、この評価空間内の磁場分布により磁気回路の磁場の均一度を評価した場合、磁極片が単純な円盤形状の時、評価空間の赤道部の磁場強度は、極部に比較して低くなる。一方で、周囲に周辺突起部を設けた磁極片を使用した場合、評価空間の赤道部と周辺突起部の物理的距離が近くなり、赤道部の磁場強度が向上するため、評価空間全体の磁場均一度が向上する。また、さらに磁場均一度を向上させるため、磁極片の底部に周状の小さな突起(周辺突起部より段差の小さいもの)を複数段設けることもできる。   Since the pole piece 4 can be the same as the conventional one, a detailed description is omitted. A pair of magnetic pole pieces having peripheral protrusions in opposing directions are provided on each of the opposing surface sides of the permanent magnet. Thereby, the uniformity of the magnetic field of a magnetic circuit improves. In other words, when a spherical or elliptical space (also referred to as an evaluation space) is virtually provided at the center of the gap, and the magnetic field uniformity in the evaluation space is evaluated, the magnetic pole piece is simple. In the case of a disk shape, the magnetic field intensity at the equator of the evaluation space is lower than that at the pole. On the other hand, when using a pole piece with peripheral protrusions around it, the physical distance between the equator and peripheral protrusions in the evaluation space is close and the magnetic field strength in the equator is improved. Uniformity is improved. Further, in order to further improve the magnetic field uniformity, a plurality of small circumferential projections (those having steps smaller than the peripheral projections) can be provided at the bottom of the pole piece.

一般に、磁極片の空隙側の凹部には、対向する磁極片の空隙側に傾斜磁場を発生させるために一対の傾斜磁場コイル(図示せず)を設けることができる。この傾斜磁場コイルにより、磁極片空隙側の磁場均一空間に対して意図的に磁場の均一性を線形に乱すことができる。このとき、不均一磁場を含むNMR信号を受信すれば、信号の画像化の際に空間情報を付随することができる。   In general, a pair of gradient magnetic field coils (not shown) can be provided in the concave portion on the air gap side of the magnetic pole piece in order to generate a gradient magnetic field on the air gap side of the opposing magnetic pole piece. By this gradient magnetic field coil, the uniformity of the magnetic field can be intentionally disturbed linearly with respect to the magnetic field uniform space on the magnetic pole piece gap side. At this time, if an NMR signal including an inhomogeneous magnetic field is received, spatial information can be attached when the signal is imaged.

さらに、本発明にかかる磁気回路は、該磁気回路を支持するための台座5を含んでもよい。すなわち、本発明にかかる磁気回路は、継鉄の下方に設けられた台座を含んでもよい。特に限定されるものではないが、台座に使用する材料としては、鉄等の磁性材料、アルミニウム、真鍮、非磁性のステンレス等の非磁性材料が使用できる。また、特に限定されるものではないが、台座の形状は、角柱、円柱等の任意の脚状の台座とすることができる。また、台座の配置は、それぞれの台座に磁気回路の重量が均等にかかるように配置すると好ましい。具体的には、3点支持、4点支持などにより、磁気回路を固定させることができる。例えば、C型の磁気回路を3点支持する場合、図1に示すように、底面の板状継鉄の開口端と柱状継鉄の下方の2隅とに台座を設置することができる。また、例えば、C型の磁気回路を4点支持する場合(図示せず)、底面の板状継鉄の4隅に台座を設置することができる。なお、台座は、磁気回路における下部の継鉄に、ボルト等で直接固定することができる。   Furthermore, the magnetic circuit according to the present invention may include a pedestal 5 for supporting the magnetic circuit. That is, the magnetic circuit according to the present invention may include a pedestal provided below the yoke. Although it does not specifically limit, As a material used for a base, nonmagnetic materials, such as magnetic materials, such as iron, aluminum, brass, and nonmagnetic stainless steel, can be used. Further, although not particularly limited, the shape of the pedestal can be an arbitrary leg-shaped pedestal such as a prism or cylinder. In addition, it is preferable that the pedestals be arranged so that the weight of the magnetic circuit is equally applied to each pedestal. Specifically, the magnetic circuit can be fixed by three-point support, four-point support, or the like. For example, when three points of a C-shaped magnetic circuit are supported, as shown in FIG. 1, pedestals can be installed at the open end of the plate-shaped yoke on the bottom surface and at the two corners below the columnar yoke. Further, for example, when four C-shaped magnetic circuits are supported (not shown), pedestals can be installed at the four corners of the plate-like yoke on the bottom surface. The pedestal can be directly fixed to a lower yoke in the magnetic circuit with a bolt or the like.

さらに、本発明にかかる磁気回路は、該磁気回路の上部に設けられた付加磁性体6を含む。本発明者らは、付加磁性体を設けることで、磁気回路の上部と下部との磁気効率の均衡をとり、磁場均一性をより向上することができることを見出した。また、本発明の付加磁性体を磁気回路の上部に強固に取り付けることで、構造上の補強材としての効果も同時に得られる。   Furthermore, the magnetic circuit according to the present invention includes an additional magnetic body 6 provided on the magnetic circuit. The present inventors have found that by providing an additional magnetic body, the magnetic efficiency of the upper and lower portions of the magnetic circuit can be balanced and the magnetic field uniformity can be further improved. Further, by firmly attaching the additional magnetic body of the present invention to the upper part of the magnetic circuit, an effect as a structural reinforcing material can be obtained at the same time.

従来の磁気回路にあっては、磁気回路の下側の磁界を強くする外部要因として、台座等の磁性体や室温の温度分布がある一方で、上側の磁界を高くする要因が無い。一方で、本発明にかかる磁気回路にあっては、磁気回路の上部に付加磁性体を設け、磁気回路上側の磁気効率をあらかじめ上げることで、磁気回路の上部と下部との磁気効率の均衡をとり、磁場均一性をより向上することができると考えられる。さらに、本発明にあっては、磁気回路の上部に付加磁性体を設けることで、磁気回路の強度を上げることができる。すなわち、磁束の集中する継鉄柱部は構造上応力の集中するところであり、特にC型の磁気回路の場合、開口部の開閉方向の振動が発生する問題がある。しかしながら、本発明によると、付加磁性体を磁気回路の補強に用いることにより、磁気回路の強度を上げ、振動を抑える効果も得られる。   In the conventional magnetic circuit, there are magnetic factors such as a pedestal and temperature distribution at room temperature as external factors that strengthen the magnetic field on the lower side of the magnetic circuit, while there are no factors that increase the upper magnetic field. On the other hand, in the magnetic circuit according to the present invention, an additional magnetic body is provided on the upper part of the magnetic circuit, and the magnetic efficiency on the upper side of the magnetic circuit is balanced by increasing the magnetic efficiency on the upper side of the magnetic circuit in advance. Therefore, it is considered that the magnetic field uniformity can be further improved. Furthermore, in the present invention, the strength of the magnetic circuit can be increased by providing the additional magnetic body on the top of the magnetic circuit. That is, the yoke pole portion where the magnetic flux is concentrated is where the stress is concentrated due to the structure. In particular, in the case of a C-type magnetic circuit, there is a problem that vibration in the opening / closing direction of the opening occurs. However, according to the present invention, by using the additional magnetic material for reinforcing the magnetic circuit, it is possible to increase the strength of the magnetic circuit and to suppress vibrations.

特に限定されるものではないが、付加磁性体に使用する材料として、好ましくは、軟鉄、中でも構造用圧延鋼や炭素鋼、鋳鋼、鋳鉄、純鉄や電磁軟鉄等の鉄材、その中でもさらに好ましくは磁束密度1.6〜2.3Tの軟鉄などの安価な鉄材が使用できる。また、付加磁性体の磁束密度および比透磁率はより高いほうが望ましい。その理由は、付加磁性体を取り付けてより効果のあるところは、磁束の継鉄の集中する部分であり、継鉄からの漏洩磁束が発生して磁気効率が落ちる部分であるためである。付加磁性体の磁束密度が高いほうがより多くの磁束を付加磁性体中に流すことができ、また比透磁率が高いほうがより磁束を付加磁性体の方に誘導できるため、漏洩磁束を減らして磁気効率を上げることができるためである。特に限定されるものではないが、付加磁性体の飽和磁束密度は、好ましくは1.6T以上、さらに好ましくは1.6〜2.3Tである。これは、一般に継鉄として使用される材料の飽和磁束密度の範囲がこの程度であり、付加磁性体としては継鉄の材料同等またはそれ以上のものが望ましいためである。また、特に限定されるものではないが、付加磁性体の最大比透磁率は、好ましくは1000以上、さらに好ましくは1000〜12000である。これもまた、一般に継鉄として使用される材料の最大比透磁率の範囲がこの程度であり、付加磁性体としては継鉄の材料同等またはそれ以上のものが望ましいためである。   Although it is not particularly limited, the material used for the additional magnetic body is preferably soft iron, particularly steel such as structural rolled steel or carbon steel, cast steel, cast iron, pure iron or electromagnetic soft iron, and more preferably among them. An inexpensive iron material such as soft iron having a magnetic flux density of 1.6 to 2.3 T can be used. Further, it is desirable that the magnetic flux density and relative permeability of the additional magnetic material be higher. The reason for this is that the place where the additional magnetic body is attached is more effective in the portion where the magnetic flux yoke is concentrated, and the magnetic flux is leaked from the yoke and the magnetic efficiency is lowered. The higher the magnetic flux density of the additional magnetic material, the more magnetic flux can flow in the additional magnetic material, and the higher the relative permeability, the more the magnetic flux can be guided to the additional magnetic material, so the leakage magnetic flux can be reduced and magnetism can be reduced. This is because the efficiency can be increased. Although not particularly limited, the saturation magnetic flux density of the additional magnetic body is preferably 1.6 T or more, and more preferably 1.6 to 2.3 T. This is because the range of the saturation magnetic flux density of a material generally used as a yoke is about this level, and a material equivalent to or higher than the material of the yoke is desirable as the additional magnetic body. Moreover, although it does not specifically limit, The maximum relative magnetic permeability of an additional magnetic body becomes like this. Preferably it is 1000 or more, More preferably, it is 1000-12000. This is also because the range of the maximum relative permeability of a material generally used as a yoke is about this level, and the additional magnetic material is preferably equivalent to or more than the material of the yoke.

また、付加磁性体の形状は、直方体、立方体、円筒、円柱等さまざまな形状のものから選択することができる。なかでも立方体、直方体は必要に応じて付加磁性体を組み合わせることで、付加する磁性体の量を好適に調整できるため好ましい。磁性体の大きさは、調整が必要な割合に応じて、適宜設定されるべきものである。特に限定されるものではないが、台座が鉄等の磁性材からなる場合、付加磁性体として、台座と同程度またはそれ以上の重量の磁性材を用いることが望ましい。これにより、上下の磁性材の不均衡を解消できるためである。   The shape of the additional magnetic body can be selected from various shapes such as a rectangular parallelepiped, a cube, a cylinder, and a column. Among these, a cube and a rectangular parallelepiped are preferable because the amount of magnetic material to be added can be suitably adjusted by combining additional magnetic materials as necessary. The magnitude | size of a magnetic body should be suitably set according to the ratio which needs adjustment. Although not particularly limited, when the pedestal is made of a magnetic material such as iron, it is desirable to use a magnetic material having a weight equivalent to or higher than that of the pedestal as the additional magnetic body. This is because the imbalance between the upper and lower magnetic materials can be eliminated.

なお、付加磁性体は、磁気回路の上部に設ける。ここで、磁気回路の上部は、磁気回路のうち、空隙中心より上方の部分をいうものとする。これにより、磁気回路の上部と下部との磁気効率の均衡をとり、磁場均一性をより向上させることができる。ここで、付加磁性体は、磁気回路の上部により多くの重量を設けていれば、磁気回路の下部にも設けることもできる。なお、特に限定されるものではないが、付加磁性体は、継鉄にボルト等で直接固定することができる。   The additional magnetic body is provided on the top of the magnetic circuit. Here, the upper part of the magnetic circuit means a part above the center of the air gap in the magnetic circuit. Thereby, it is possible to balance the magnetic efficiency between the upper part and the lower part of the magnetic circuit and further improve the magnetic field uniformity. Here, the additional magnetic body can also be provided in the lower part of the magnetic circuit as long as the additional magnetic body is provided with a larger weight in the upper part of the magnetic circuit. Although not particularly limited, the additional magnetic body can be directly fixed to the yoke with a bolt or the like.

より具体的には、継鉄が、1対の永久磁石をそれぞれ有する上部継鉄および下部継鉄と、上部継鉄および下部継鉄を磁気的に結合する柱状継鉄とを含む磁気回路において、付加磁性体は、上部継鉄上およびその近傍に、すなわち、柱状継鉄の側部上方および/または上部継鉄上に設けることが好ましい。ここで、柱状継鉄の側部上方は、柱状継鉄の側部のうち、対向する永久磁石のそれぞれに等距離の面より上方の部分をいうものとする。   More specifically, in the magnetic circuit in which the yoke includes an upper yoke and a lower yoke each having a pair of permanent magnets, and a columnar yoke that magnetically couples the upper and lower yokes, The additional magnetic body is preferably provided on and near the upper yoke, that is, above the side of the columnar yoke and / or on the upper yoke. Here, the upper side portion of the columnar yoke refers to a portion of the side portion of the columnar yoke that is above the surface equidistant to each of the opposing permanent magnets.

また、付加磁性体は、磁気回路の上部に設ければよいが、図1〜図3に示すように、磁束が集中する上部継鉄と柱状継鉄との継ぎ目付近に設けることがより望ましい。磁束が集中する継ぎ目付近に付加磁性体を配置することで、さらに漏洩磁界を低減することができるためである。より具体的には、付加磁性体を、上部継鉄と柱状継鉄との継ぎ目の少なくとも一部をまたぐように取り付けると好ましい。また、付加磁性体を、上部継鉄のうち、柱状継鉄の真上に相当する部分の少なくとも一部を覆うように取り付けることもできる。なお、付加磁性体を取り付ける位置は、対向する永久磁石間の空隙、すなわち均一空間に対して、継鉄の外側が望ましい。継鉄内側に付加磁性体を設けた場合、付加磁性体の位置が均一空間に近くなるため、磁場均一度に悪い影響を及ぼしかねないためである。また、用いる付加磁性体の数は、1つとしてもよいし、複数としてもよい。これは、磁場調整の必要性に応じて、適宜設定されるべきものである。   The additional magnetic body may be provided in the upper part of the magnetic circuit. However, as shown in FIGS. 1 to 3, it is more preferable to provide the additional magnetic body in the vicinity of the joint between the upper yoke and the columnar yoke where the magnetic flux is concentrated. This is because the leakage magnetic field can be further reduced by arranging the additional magnetic body in the vicinity of the joint where the magnetic flux is concentrated. More specifically, the additional magnetic body is preferably attached so as to straddle at least a part of the joint between the upper yoke and the columnar yoke. Moreover, an additional magnetic body can also be attached so that at least one part of the part corresponded just above a columnar yoke among upper yokes may be covered. In addition, as for the position which attaches an additional magnetic body, the outer side of a yoke is desirable with respect to the space | gap between opposing permanent magnets, ie, uniform space. This is because when the additional magnetic body is provided inside the yoke, the position of the additional magnetic body is close to a uniform space, which may adversely affect the magnetic field uniformity. Further, the number of additional magnetic bodies to be used may be one or plural. This should be set as appropriate according to the necessity of magnetic field adjustment.

より具体的には、図1に示すように、1対の永久磁石をそれぞれ有する板状の上部継鉄および下部継鉄と、上部継鉄および下部継鉄を磁気的に結合する板状の柱状継鉄とを含むC型磁気回路において、直方体の付加磁性体6の複数を、それぞれの一端が、上部継鉄の柱状継鉄と結合している端に達し、これにより、それぞれの一部が、上部継鉄のうち、柱状継鉄の真上に相当する部分の一部を覆い、さらに、それぞれの長手方向が、上部継鉄の柱状継鉄と結合している端から開口部側へと向かうように配置することができる。このような態様は、以下の点で好ましい。すなわち、磁束の集中する上部継鉄と柱状継鉄の継ぎ目付近に確実にかかるようにする一方、磁束の集中の緩和する開口部側には付加磁性体が及ばないようにするためである。さらに加工の容易な形状であり安価に製造できる。   More specifically, as shown in FIG. 1, plate-like upper and lower yokes each having a pair of permanent magnets, and plate-like columnar magnetically coupling the upper and lower yokes. In a C-type magnetic circuit including a yoke, a plurality of rectangular parallelepiped additional magnetic bodies 6 each reach one end of which is connected to the columnar yoke of the upper yoke. The upper yoke covers a part of the portion corresponding to the top of the columnar yoke, and the longitudinal direction of each of the upper yokes extends from the end connected to the upper yoke to the opening side. It can be arranged to face. Such an aspect is preferable in the following points. That is, it is to ensure that the magnetic flux is concentrated near the joint between the upper yoke and the columnar yoke, while the additional magnetic material does not reach the opening side where the magnetic flux concentration is reduced. Furthermore, the shape is easy to process and can be manufactured at low cost.

図2に、本発明の他の実施態様にかかる永久磁石対向型磁気回路の模式的な正面図(a)、平面図(b)、および側面図(c)を示す。すなわち、図2に示すように、1対の永久磁石をそれぞれ有する板状の上部継鉄および下部継鉄と、上部継鉄および下部継鉄を磁気的に結合する板状の柱状継鉄とを含むC型磁気回路において、直方体の付加磁性体6の1つを、その一端が、上部継鉄の柱状継鉄と結合している端に達し、これにより、その一部が、上部継鉄のうち、柱状継鉄の真上に相当する部分の全域およびその他の部分の一部を覆うように配置することができる。このような態様は、以下の点で好ましい。すなわち、磁束の集中する継ぎ目のほぼ全面にかかっており、磁気効率を上げる効果が高い。さらに安価で入手可能な材料(板材)を使用できるためである。   FIG. 2 shows a schematic front view (a), a plan view (b), and a side view (c) of a permanent magnet facing magnetic circuit according to another embodiment of the present invention. That is, as shown in FIG. 2, plate-like upper and lower yokes each having a pair of permanent magnets, and plate-like columnar yokes that magnetically couple the upper and lower yokes. In the C-type magnetic circuit including one of the rectangular parallelepiped additional magnetic bodies 6, one end reaches the end where it is connected to the columnar yoke of the upper yoke. Among these, it can arrange | position so that the whole region of the part corresponded just above a columnar yoke and a part of other part may be covered. Such an aspect is preferable in the following points. That is, it covers almost the entire seam where the magnetic flux is concentrated, and the effect of increasing the magnetic efficiency is high. This is because a material (plate material) that can be obtained at low cost can be used.

図3に、本発明の他の実施態様にかかる永久磁石対向型磁気回路の模式的な正面図(a)、平面図(b)、および側面図(c)を示す。すなわち、図3に示すように、1対の永久磁石をそれぞれ有する板状の上部継鉄および下部継鉄と、上部継鉄および下部継鉄を磁気的に結合する板状の柱状継鉄とを含むC型磁気回路において、L字型の付加磁性体6の複数を、上部継鉄と柱状継鉄との継ぎ目の一部をまたぎ、その一部が、柱状継鉄の真上に相当する部分の一部およびその他の部分の一部を覆うように配置することができる。このような態様は、以下の点で好ましい。すなわち、上部継鉄のみならず柱状継鉄にもかかっており、さらに補強効果も期待できるためである。   FIG. 3 shows a schematic front view (a), a plan view (b), and a side view (c) of a permanent magnet facing magnetic circuit according to another embodiment of the present invention. That is, as shown in FIG. 3, plate-like upper and lower yokes each having a pair of permanent magnets, and plate-like columnar yokes that magnetically couple the upper and lower yokes. In a C-type magnetic circuit including a portion of a plurality of L-shaped additional magnetic bodies 6 over a part of the joint of the upper yoke and the columnar yoke, a part of which corresponds to the portion directly above the columnar yoke It can arrange | position so that a part of other part and a part of other part may be covered. Such an aspect is preferable in the following points. That is, it is applied not only to the upper yoke but also to the columnar yoke, and further a reinforcing effect can be expected.

以下に、本発明の実施例を、添付図面を参照しながら説明する。もっとも、以下に説明する実施例は本発明を限定するものではない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. However, the embodiments described below do not limit the present invention.

実施例にかかる磁気回路として、図1に示したような、C型の磁気回路を製造した。磁気回路は、中心磁場強度0.2T、Gap380mmとした。さらに、磁気回路に、断面が100mm×800mmであり、軟鉄製で、磁束密度が1.8T、比透磁率が2100である付加磁性体を2本設けた。これらの付加磁性体6は、それぞれの一端が、上部継鉄の柱状継鉄と結合している端に達し、これにより、それぞれの一部が、上部継鉄のうち、柱状継鉄の真上に相当する部分の一部を覆い、さらに、それぞれの長手方向が、上部継鉄の柱状継鉄と結合している端から開口部側へと向かうように配置した。これらの付加磁性体は、ボルトで上側継鉄に取り付けた。また、比較例にかかる磁気回路として、付加磁性体を設けない以外は、上記実施例にかかる磁気回路を同様とした磁気回路を製造した。   As a magnetic circuit according to the example, a C-type magnetic circuit as shown in FIG. 1 was manufactured. The magnetic circuit had a central magnetic field strength of 0.2 T and a gap of 380 mm. Further, two additional magnetic bodies having a cross section of 100 mm × 800 mm, made of soft iron, having a magnetic flux density of 1.8 T, and a relative permeability of 2100 were provided in the magnetic circuit. Each of these additional magnetic bodies 6 reaches an end where one end of the additional magnetic body 6 is coupled to the columnar yoke of the upper yoke, so that each part is directly above the columnar yoke of the upper yoke. A part of the portion corresponding to is covered, and the respective longitudinal directions are arranged so as to go from the end connected to the columnar yoke of the upper yoke to the opening side. These additional magnetic bodies were attached to the upper yoke with bolts. Further, as a magnetic circuit according to the comparative example, a magnetic circuit similar to the magnetic circuit according to the above example was manufactured except that no additional magnetic material was provided.

実施例および比較例にかかる磁気回路を、実際に磁気回路が使用される環境におき、付加磁性体と磁場均一性との関係について、以下のように試験した。この際、室温の温度分布は、エアコンで空調した状態で床から20cmで20.3℃,床から150cmで21.5℃であった。実施例および比較例にかかる磁気回路のそれぞれについて、均一度をNMRテスラメーターにより測定した。均一度は以下のように測定した。すなわち、各磁気回路の永久磁石間のφ350mmの球の表面上の134点における磁場強度をNMRテスラメーターを用いて測定し、その最大値と最小値の差から均一度を求めた。   The magnetic circuit according to the example and the comparative example was placed in an environment where the magnetic circuit was actually used, and the relationship between the additional magnetic material and the magnetic field uniformity was tested as follows. At this time, the temperature distribution at room temperature was 20.3 ° C. at 20 cm from the floor and 21.5 ° C. at 150 cm from the floor in the air-conditioned state. About each of the magnetic circuit concerning an Example and a comparative example, the uniformity was measured with the NMR tesla meter. The uniformity was measured as follows. That is, the magnetic field intensity at 134 points on the surface of a sphere having a diameter of 350 mm between the permanent magnets of each magnetic circuit was measured using an NMR teslameter, and the uniformity was obtained from the difference between the maximum value and the minimum value.

付加磁性体の無い比較例にかかる磁気回路にあっては、磁場の均一度は347ppmとなっていた。これは、床の鉄筋等の効果や、温度の上下での差によるものと考えられる。一方で、付加磁性体を設けた実施例にかかる磁気回路にあっては、磁場の均一度は93ppmとすることができた。この結果から、本発明によると、付加磁性体により上下不均一を補正できたことが分かる。   In the magnetic circuit according to the comparative example having no additional magnetic material, the uniformity of the magnetic field was 347 ppm. This is considered to be due to the effect of the reinforcing bars on the floor and the difference between the upper and lower temperatures. On the other hand, in the magnetic circuit according to the example provided with the additional magnetic material, the uniformity of the magnetic field could be 93 ppm. From this result, it can be seen that according to the present invention, vertical non-uniformity can be corrected by the additional magnetic material.

本発明の1の実施態様にかかる永久磁石対向型磁気回路の模式的な正面図(a)、平面図(b)、および側面図(c)を示す。FIG. 1 shows a schematic front view (a), a plan view (b), and a side view (c) of a permanent magnet facing magnetic circuit according to one embodiment of the present invention. 本発明の他の実施態様にかかる永久磁石対向型磁気回路の模式的な正面図(a)、平面図(b)、および側面図(c)を示す。The typical front view (a), plan view (b), and side view (c) of the permanent magnet opposing magnetic circuit according to another embodiment of the present invention are shown. 本発明の他の実施態様にかかる永久磁石対向型磁気回路の模式的な正面図(a)、平面図(b)、および側面図(c)を示す。The typical front view (a), plan view (b), and side view (c) of the permanent magnet opposing magnetic circuit according to another embodiment of the present invention are shown. 従来の永久磁石対向型磁気回路の模式的な正面図(a)、平面図(b)、および側面図(c)を示す。The typical front view (a) of the conventional permanent magnet opposing type | mold magnetic circuit, the top view (b), and the side view (c) are shown.

符号の説明Explanation of symbols

1、101:永久磁石対向型磁気回路
2、102:永久磁石
3、103:継鉄
4、104:磁極片
5、105:台座
6:付加磁性体
DESCRIPTION OF SYMBOLS 1,101: Permanent magnet opposing magnetic circuit 2, 102: Permanent magnet 3, 103: yoke 4, 104: Magnetic pole piece 5, 105: Base 6: Additional magnetic body

Claims (3)

空隙を隔てて対向し、厚み方向に磁化された1対の永久磁石と、
該永久磁石および該空隙の外側に設けられ、該永久磁石と磁気的に結合する継鉄と、
該永久磁石の対向する面側の夫々に設けられ、対向する向きに周辺突起部を有する1対の磁極片と
を含む永久磁石対向型磁気回路であって、
該磁気回路の上部に設けられた付加磁性体をさらに含む永久磁石対向型磁気回路。
A pair of permanent magnets opposed across a gap and magnetized in the thickness direction;
A yoke provided outside the permanent magnet and the air gap, and magnetically coupled to the permanent magnet;
A permanent magnet-facing magnetic circuit including a pair of magnetic pole pieces provided on each of facing surfaces of the permanent magnet and having peripheral protrusions in the facing direction,
A permanent magnet facing magnetic circuit further comprising an additional magnetic body provided on the magnetic circuit.
前記継鉄が、前記1対の永久磁石をそれぞれ有する上部継鉄および下部継鉄と、該上部継鉄および該下部継鉄を磁気的に結合する柱状継鉄とを含み、前記付加磁性体が、該柱状継鉄の側部上方および/または該上部継鉄上に設けられた請求項1に記載の磁気回路。   The yoke includes an upper yoke and a lower yoke each having the pair of permanent magnets, and a columnar yoke that magnetically couples the upper yoke and the lower yoke. The magnetic circuit according to claim 1, wherein the magnetic circuit is provided above a side portion of the columnar yoke and / or on the upper yoke. 空隙を隔てて対向し、厚み方向に磁化された1対の永久磁石と、
該永久磁石および該空隙の外側に設けられ、該永久磁石と磁気的に結合する継鉄と、
該永久磁石の対向する面側の夫々に設けられ、対向する向きに周辺突起部を有する1対の磁極片と
を含む永久磁石対向型磁気回路の上部に付加磁性体を設けて磁界を調整する磁気回路磁界調整方法。
A pair of permanent magnets opposed across a gap and magnetized in the thickness direction;
A yoke provided outside the permanent magnet and the air gap, and magnetically coupled to the permanent magnet;
A magnetic field is adjusted by providing an additional magnetic body on top of the permanent magnet facing magnetic circuit provided on each of the facing surfaces of the permanent magnet and including a pair of magnetic pole pieces having peripheral protrusions in the facing direction. Magnetic circuit magnetic field adjustment method.
JP2004048923A 2004-02-25 2004-02-25 Magnetic circuit and magnetic field adjustment method therefor Pending JP2005237501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048923A JP2005237501A (en) 2004-02-25 2004-02-25 Magnetic circuit and magnetic field adjustment method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004048923A JP2005237501A (en) 2004-02-25 2004-02-25 Magnetic circuit and magnetic field adjustment method therefor

Publications (1)

Publication Number Publication Date
JP2005237501A true JP2005237501A (en) 2005-09-08

Family

ID=35019868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048923A Pending JP2005237501A (en) 2004-02-25 2004-02-25 Magnetic circuit and magnetic field adjustment method therefor

Country Status (1)

Country Link
JP (1) JP2005237501A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243966A (en) * 2008-03-28 2009-10-22 Hitachi Metals Ltd Radiation detection unit and pet/mri integral apparatus having it
CN108696981A (en) * 2018-05-31 2018-10-23 北京鑫智能技术股份有限公司 A kind of α magnet for irradiation accelerator
JP2020127750A (en) * 2014-09-05 2020-08-27 ハイパーファイン リサーチ,インコーポレイテッド Ferromagnetic augmentation for magnetic resonance imaging
CN111707690A (en) * 2020-07-22 2020-09-25 中国工程物理研究院核物理与化学研究所 Precession magnetic field generating device for spin echo small-angle neutron scattering spectrometer
US11366188B2 (en) 2016-11-22 2022-06-21 Hyperfine Operations, Inc. Portable magnetic resonance imaging methods and apparatus
US11841408B2 (en) 2016-11-22 2023-12-12 Hyperfine Operations, Inc. Electromagnetic shielding for magnetic resonance imaging methods and apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243966A (en) * 2008-03-28 2009-10-22 Hitachi Metals Ltd Radiation detection unit and pet/mri integral apparatus having it
JP2020127750A (en) * 2014-09-05 2020-08-27 ハイパーファイン リサーチ,インコーポレイテッド Ferromagnetic augmentation for magnetic resonance imaging
US11397233B2 (en) 2014-09-05 2022-07-26 Hyperfine Operations, Inc. Ferromagnetic augmentation for magnetic resonance imaging
US11366188B2 (en) 2016-11-22 2022-06-21 Hyperfine Operations, Inc. Portable magnetic resonance imaging methods and apparatus
US11841408B2 (en) 2016-11-22 2023-12-12 Hyperfine Operations, Inc. Electromagnetic shielding for magnetic resonance imaging methods and apparatus
CN108696981A (en) * 2018-05-31 2018-10-23 北京鑫智能技术股份有限公司 A kind of α magnet for irradiation accelerator
CN111707690A (en) * 2020-07-22 2020-09-25 中国工程物理研究院核物理与化学研究所 Precession magnetic field generating device for spin echo small-angle neutron scattering spectrometer
CN111707690B (en) * 2020-07-22 2022-10-28 中国工程物理研究院核物理与化学研究所 Precession magnetic field generating device for spin echo small-angle neutron scattering spectrometer

Similar Documents

Publication Publication Date Title
US6333630B1 (en) Magnetic field generating apparatus for magnetic resonance imaging system
US9222998B2 (en) Compact inhomogeneous permanent magnetic field generator for magnetic resonance imaging
DE602005012265D1 (en) MAGNETIC RESONANCE IMAGING SYSTEM WITH IRON SUPPORTED MAGNETIC FIELD GRADIENT SYSTEM
US6218838B1 (en) MRI magnet with high homogeneity, patient access, and low forces on the driver coils
JP4639948B2 (en) Magnet apparatus and magnetic resonance imaging apparatus using the same
US6498488B2 (en) Magnetic resonance imaging apparatus
JP4541092B2 (en) Superconducting magnet device of magnetic resonance imaging system
WO2001019242A1 (en) Open-type magnet device for mri
JP2005237501A (en) Magnetic circuit and magnetic field adjustment method therefor
US5825187A (en) Magnetic circuit system with opposite permanent magnets
EP0764853B1 (en) Magnet assembly in MRI instrument
JP2006006936A (en) Magnetic field generating device and shimming method therefor
JP4139767B2 (en) Permanent magnet facing magnetic circuit
JP3151129B2 (en) Permanent magnet permanent magnet magnetic circuit and its magnetic field adjustment method
JPS62139304A (en) Magnetic circuit with excellent uniformity of magnetic field
CN113009394B (en) Static magnetic field generating device
US6933820B2 (en) Magnetic circuit with opposing permanent magnets and method for adjusting magnetic field thereof
US6937018B2 (en) Systems and methods for fabricating pole pieces for magnetic resonance imaging systems
JP2005237500A (en) Magnetic circuit and magnetic circuit support method
JP3059596B2 (en) Magnetic field generator for MRI
JP2002102205A (en) Magnetic resonace imaging apparatus
JP2000357608A (en) Magnetic field generator
JPH02184003A (en) Magnetic field generator for mri
JPH05291026A (en) Magnetic field generating device for mri
JP2005087229A (en) Split type magnet and nuclear magnetic resonance imaging device