JPH095503A - Optical imaging device - Google Patents

Optical imaging device

Info

Publication number
JPH095503A
JPH095503A JP18075795A JP18075795A JPH095503A JP H095503 A JPH095503 A JP H095503A JP 18075795 A JP18075795 A JP 18075795A JP 18075795 A JP18075795 A JP 18075795A JP H095503 A JPH095503 A JP H095503A
Authority
JP
Japan
Prior art keywords
panel
optical
reflection
scattered light
optical image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18075795A
Other languages
Japanese (ja)
Inventor
Makoto Otsubo
誠 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Texeng Co Ltd
Original Assignee
Nittetsu Elex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Elex Co Ltd filed Critical Nittetsu Elex Co Ltd
Priority to JP18075795A priority Critical patent/JPH095503A/en
Priority to AU61384/96A priority patent/AU6138496A/en
Priority to PCT/JP1996/001739 priority patent/WO1997001116A1/en
Publication of JPH095503A publication Critical patent/JPH095503A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/006Systems in which light light is reflected on a plurality of parallel surfaces, e.g. louvre mirrors, total internal reflection [TIR] lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE: To make it possible to easily form the unmagnified image of an object in a position where an observer is able to touch an opaque or translucent panel by arranging many reflection elements having reflection surfaces orthogonal with a panel surface on the panel. CONSTITUTION: This optical imaging device is constituted by arranging the many reflection elements 12 having the reflection surfaces 13 on the opaque panel 11. The reflection elements 12 consist of columns made of transparent plastic or glass and are formed by coating the outer flanks of these columns with metal, such as aluminum, to a mirror finished surface form in such a manner that the whole of the inner flanks of the columns constitute the reflection surface to reflect incident scattering light. The reflection surfaces of the many reflection elements 12 are arranged within the panel 11 in such a manner that the reflection surfaces intersect orthogonally with the plane of the panel 11 at nearly equal intervals and that the scale of integration is nearly maximized. A surplus scattered light may be not reflected by forming the reflection surface only in a specific range of the inner flanks of the columns in the case the position of the objects is fixed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は対象物からの散乱光を収
斂させて、該対象物の光学像を結像させる光学結像装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical image forming apparatus which converges scattered light from an object to form an optical image of the object.

【0002】[0002]

【従来の技術】対象物の表面から発する散乱光を反射、
屈折、遮蔽等により制御して光学像を結像させる装置と
しては、鏡等を利用して対象物からの散乱光を反射さ
せ、対象物の鏡像を得る装置、凸レンズの光学系を用
いる装置、多数のピンホールを介してパネル上の多数
の小画像からの光を収斂させ、対象物の光学像を得る装
置等が知られている。以下、これらの原理を図7に基づ
いて説明すると、鏡50による光学系では、図7
(a)に示すように、鏡50の面を対称面とする鏡面対
称の位置に対象物51の虚像52を見ることができる。
即ち、対象物51からの散乱光53は鏡面でその入射角
度に等しい反射角度で反射されるので、対象物51に対
して鏡面対称の位置に対象物51が存在するように見え
る。また、凸レンズ54を利用した光学系では、図7
(b)に示すように対象物55からの散乱光56を結像
させて、その実像57を得ることができ、結像位置、及
び光学像の倍率は使用するレンズの焦点距離、及び対象
物とレンズ間の距離によって定まる。そして、多数の
ピンホール58を介して予め記録された多数の小画像か
らの散乱光59を収斂させて光学像60を得る方法にお
いては、図7(c)に示すように、観察者が実際に手を
触れることのできるピンホールパネル61の前方位置に
実像である光学像60を結像させることができる。即
ち、多数の小画像が記録された画像表示パネル62を、
多数のピンホール58が配置されたピンホールパネル6
1の背後に設置し、画像表示パネル62の後方から光を
照射することにより、前記多数のピンホール58を介し
て対象物の光学像60が再生される。
2. Description of the Related Art Reflecting scattered light emitted from the surface of an object,
As a device for forming an optical image by controlling by refraction, blocking, etc., a device that obtains a mirror image of the target by reflecting scattered light from the target using a mirror or the like, a device that uses an optical system of a convex lens, 2. Description of the Related Art There are known devices that converge light from a large number of small images on a panel through a large number of pinholes to obtain an optical image of an object. Hereinafter, these principles will be described with reference to FIG.
As shown in (a), the virtual image 52 of the object 51 can be seen at a mirror symmetric position with the plane of the mirror 50 as the plane of symmetry.
That is, the scattered light 53 from the target object 51 is reflected by the mirror surface at a reflection angle equal to the incident angle thereof, so that the target object 51 appears to exist at a position symmetrical with respect to the target object 51. In addition, in the optical system using the convex lens 54, as shown in FIG.
As shown in (b), the scattered light 56 from the object 55 can be imaged to obtain a real image 57 thereof, and the imaging position and the magnification of the optical image are the focal length of the lens used and the object. And the distance between the lenses. Then, in the method of converging scattered light 59 from a large number of small images recorded in advance via a large number of pinholes 58 to obtain an optical image 60, as shown in FIG. The optical image 60, which is a real image, can be formed at a position in front of the pinhole panel 61 that can be touched with. That is, the image display panel 62 on which a large number of small images are recorded is
Pinhole panel 6 in which a large number of pinholes 58 are arranged
The optical image 60 of the target object is reproduced through the large number of pinholes 58 by irradiating light from behind the image display panel 62.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記
鏡50を利用して鏡像を得る装置では、出現する光学像
が虚像52となるため、観察者が実際に光学像に手を触
れて行うようなシミュレーション操作等を行うことは不
可能である。さらに、前記凸レンズを使用する光学系
では、実像57の歪み、及び倍率がレンズと対象物間の
距離によって変化するため、得られる光学像の歪みや大
きさが定まらず、また、対象物55と得られる実像57
の左右の位置関係が反転しているという問題があった。
また、前記多数のピンホール58を用いる光学系で
は、予め多数の小画像を記録しておく必要があり、光学
像を結像させるために多大の労力を必要とすると共に、
特に動いている対象物の光学像を処理する場合には膨大
な情報量を必要とするため、データ処理が困難になると
いう問題点があった。
However, in the apparatus for obtaining a mirror image using the mirror 50, the appearing optical image is the virtual image 52, so that the observer actually touches the optical image. It is impossible to perform simulation operations. Further, in the optical system using the convex lens, the distortion and the magnification of the real image 57 change depending on the distance between the lens and the object, so that the distortion and size of the obtained optical image are not fixed, and the object 55 and Real image 57 obtained
There was a problem that the left-right positional relationship was reversed.
Further, in the optical system using the large number of pinholes 58, it is necessary to record a large number of small images in advance, which requires a great deal of labor to form an optical image, and
In particular, when processing an optical image of a moving object, a huge amount of information is required, which makes data processing difficult.

【0004】本発明はこのような事情に鑑みてなされた
もので、観察者が手を触れることのできる位置に、対象
物の等倍の実像を簡便に結像させることができる光学結
像装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an optical image forming apparatus capable of easily forming a real image of the same size of an object at a position where an observer can touch it. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】前記目的に沿う請求項1
記載の光学結像装置は、対象物からの散乱光を収斂させ
て対象物の光学像を結像させる光学結像装置であって、
不透光性又は透光性のパネルに、該パネル面に直交する
反射面を有する反射素子が多数配置されて構成されてい
る。請求項2記載の光学結像装置は、請求項1記載の光
学結像装置において、反射素子が、透明な円柱又は円筒
からなり、その内側面の一部又は全部、もしくは外側面
の一部又は全部が前記反射面を形成して構成されてい
る。前記パネル面に直交する反射面を有する反射素子と
は、パネルの表側から入射する散乱光をその入射角度と
等しい角度でパネル面の裏側に方向を変えて反射させる
機能を有する光学素子をいう。このような光学素子に
は、光学的な反射現象を利用するものの他に、光ファイ
バー通信技術において使用されているような屈折率の変
化の勾配を利用して光の進行方向を制御するセルフォッ
クマイクロレンズ等が含まれる。
According to the present invention, there is provided a semiconductor device comprising:
The optical imaging device described is an optical imaging device that converges scattered light from an object to form an optical image of the object,
A large number of reflective elements having a reflective surface orthogonal to the panel surface are arranged on a non-translucent or translucent panel. The optical imaging device according to claim 2 is the optical imaging device according to claim 1, wherein the reflective element is a transparent cylinder or a cylinder, and a part or all of the inner surface or a part of the outer surface or All are formed by forming the reflecting surface. The reflection element having a reflection surface orthogonal to the panel surface means an optical element having a function of changing the direction of the scattered light incident from the front side of the panel to the back side of the panel surface at an angle equal to the incident angle. In addition to the optical reflection phenomenon, such an optical element uses a Selfoc micro that controls the traveling direction of light by utilizing the gradient of the change in the refractive index as used in optical fiber communication technology. A lens etc. are included.

【0006】[0006]

【作用】請求項1及び2記載の光学結像装置において
は、不透光性又は透光性のパネルに、該パネル面に直交
する反射面を有する反射素子が多数配置されているの
で、パネルの厚みの中心面を鏡面対象の基準面として、
対象物と鏡面対象の位置に対象物の実像を結像させるこ
とができる。特に、請求項2記載の光学結像装置におい
ては、反射素子が、透明な円柱又は円筒からなり、その
内側面の一部又は全部、もしくは外側面の一部又は全部
が前記反射面を形成しているので、立体光学像を結像さ
せる散乱光の集光度を高めることができ、明るくて、歪
みの少ない対象物の立体光学像が得られると共に、装置
の製作が容易である。
In the optical image forming apparatus according to the present invention, a large number of reflecting elements having a reflecting surface orthogonal to the panel surface are arranged on the non-light-transmitting or light-transmitting panel. The center plane of the thickness of the
A real image of the object can be formed at the positions of the object and the mirror surface object. Particularly, in the optical image forming apparatus according to claim 2, the reflecting element is made of a transparent cylinder or a cylinder, and a part or all of the inner surface or a part or all of the outer surface forms the reflecting surface. Therefore, the degree of condensing of scattered light for forming a stereoscopic optical image can be enhanced, a stereoscopic optical image of an object that is bright and has little distortion can be obtained, and the device can be easily manufactured.

【0007】[0007]

【実施例】続いて、添付した図面を参照しつつ、本発明
を具体化した実施例につき説明し、本発明の理解に供す
る。ここに図1は本発明の第1の実施例に係る光学結像
装置の斜視図、図2は同光学結像装置を側面からみた断
面図、図3は本発明の第2の実施例に係る光学結像装置
を側面からみた断面図、図4は本発明の第3の実施例に
係る光学結像装置の斜視図、図5は複数の光学結像装置
を組み合わせた光学装置の説明図、図6は光学結像装置
を適用した光学系の説明図である。
Embodiments of the present invention will now be described with reference to the accompanying drawings to provide an understanding of the present invention. 1 is a perspective view of an optical image forming apparatus according to a first embodiment of the present invention, FIG. 2 is a sectional view of the same optical image forming apparatus as seen from the side, and FIG. 3 is a second embodiment of the present invention. FIG. 4 is a cross-sectional view of the optical image forming apparatus as seen from the side, FIG. 4 is a perspective view of the optical image forming apparatus according to the third embodiment of the present invention, and FIG. 5 is an explanatory diagram of an optical apparatus combining a plurality of optical image forming apparatuses. FIG. 6 is an explanatory diagram of an optical system to which the optical image forming device is applied.

【0008】本発明の第1の実施例に係る光学結像装置
10は、図1及び図2に示すように、不透光性のパネル
11に反射面13を有する反射素子12が多数配置され
て構成されている。前記不透光性のパネル11は、プラ
スチック、ガラス、木質材、紙パルプ材又は金属等の不
透光性の薄板材(縦横:200mm、厚み:0.5m
m)からなる。前記反射素子12は、透明なプラスチッ
ク、又はガラス製の円柱(直径:0.3mm、高さ:
0.5mm)からなり、該円柱の内側面の全部が入射す
る散乱光を反射する反射面13となるように、該円柱の
外側面にアルミニウム等の金属が鏡面状にコーティング
されている。そして、それら多数の反射素子12の反射
面13がパネル11の面に直交するように、ほぼ等間隔
で、かつ、集積度がほぼ最大となるようにパネル11内
に配置されている。なお、対象物の位置が固定している
場合には、前記円柱の内側面の特定範囲だけを反射面と
することにより、余分な散乱光が反射されないようにす
ることもできる。ここで、光学結像装置10は、例えば
光ファイバー又はプラスチックからなる透明ロッドの外
側面をアルミニウム等の金属で鏡面状にコーティングす
るか、あるいは、光ファイバーをコーティングすること
なく多数束ね、かつ必要に応じて該光ファイバーの周囲
に着色したプラスチック等を充填して光ファイバーの集
合体を形成し、該集合体を光ファイバーの長さ方向に対
して直角に0.5mmの厚みに薄く切断することにより
形成することもできる。
As shown in FIGS. 1 and 2, the optical image forming apparatus 10 according to the first embodiment of the present invention has a large number of reflecting elements 12 each having a reflecting surface 13 arranged on an opaque panel 11. Is configured. The non-translucent panel 11 is a non-translucent thin plate material (length: width: 200 mm, thickness: 0.5 m) such as plastic, glass, wood material, paper pulp material or metal.
m). The reflective element 12 is a cylinder made of transparent plastic or glass (diameter: 0.3 mm, height:
0.5 mm), and the outer surface of the cylinder is mirror-coated with metal such as aluminum so that the entire inner surface of the cylinder serves as a reflecting surface 13 that reflects incident scattered light. Then, the reflection surfaces 13 of the large number of reflection elements 12 are arranged in the panel 11 so as to be orthogonal to the surface of the panel 11 at substantially equal intervals and to have a maximum degree of integration. When the position of the target object is fixed, it is possible to prevent the excessive scattered light from being reflected by setting only a specific range of the inner surface of the cylinder as the reflecting surface. Here, the optical image forming apparatus 10 may be configured such that the outer surface of a transparent rod made of, for example, an optical fiber or a plastic is mirror-coated with a metal such as aluminum, or a large number of optical fibers are bundled without coating, and as necessary. Alternatively, a colored plastic or the like may be filled around the optical fiber to form an optical fiber assembly, and the assembly may be thinly cut at a thickness of 0.5 mm at right angles to the length direction of the optical fiber. it can.

【0009】以下、図2に基づいて光学結像装置10の
作用を説明する。対象物14上の1点Pから発する散乱
光16は、パネル11内に多数配置されている反射素子
12の各反射面13で反射されてP´に収斂し、対象物
14上の各点に対応して結像するこれらの点の集合によ
り光学像15が形成される。このとき、点PとP´とは
パネル11の中心面11aを対称面とする鏡面対称の関
係にある。即ち、線分P−P´とパネル11の中心面1
1aとの交点をOとするとPO=P´Oであり、線分P
−P´はパネル11に直交する。従って、パネル11に
対し、光学像15側から光学像15を見た場合、光学像
15は、対称物14の凹凸が反転した実像、即ちシュー
ドスコピック(pseudoscopic)像となる。
また、光学結像装置10においては、レンズ等の光学系
と異なり特異な屈折現象が介在しないので歪みの少ない
光学像が得られると共に、光の波長の相違による収差を
生じることがない。さらに、光学像15は鏡による虚像
とは異なり、散乱光が収斂して形成されるので、結像位
置に実際に物を置いてシミュレーションを行う等が可能
となる。
The operation of the optical image forming apparatus 10 will be described below with reference to FIG. The scattered light 16 emitted from one point P on the object 14 is reflected by each reflecting surface 13 of the reflecting elements 12 arranged in the panel 11 and converges to P ′, and is scattered on each point on the object 14. An optical image 15 is formed by the set of these correspondingly imaged points. At this time, the points P and P'have a mirror-symmetrical relationship with the center plane 11a of the panel 11 as a plane of symmetry. That is, the line segment P-P 'and the center plane 1 of the panel 11
If the intersection with 1a is O, PO = P'O and the line segment P
-P 'is orthogonal to the panel 11. Therefore, when the optical image 15 is viewed from the optical image 15 side with respect to the panel 11, the optical image 15 is a real image in which the irregularities of the symmetrical object 14 are reversed, that is, a pseudoscopic image.
Further, unlike the optical system such as a lens, in the optical imaging apparatus 10, a peculiar refraction phenomenon does not intervene, so that an optical image with less distortion can be obtained and aberration due to a difference in light wavelength does not occur. Further, unlike the virtual image formed by the mirror, the optical image 15 is formed by converging scattered light, so that it is possible to actually place an object at the image forming position for simulation.

【0010】なお、前記反射現象を利用した反射素子1
2の代わりにセルフォックマイクロレンズを使用し、光
の屈折現象を利用した光学結像装置を作成することもで
きる。セルフォックマイクロレンズとは、集光機能を有
し、光の屈折率が中心から周縁部に向かってほぼ放物線
状に減少していく円柱等の光学素子である。そして該円
柱の寸法を特定値に設定することにより、一端側から入
射する光を該円柱の他端側に透過させ、かつその入射方
向と逆方向に反転させる機能が得られる。従って、これ
らをパネル内に多数配置することにより前記反射素子1
2と同様の効果を得ることができる。
The reflection element 1 utilizing the above-mentioned reflection phenomenon
It is also possible to use a SELFOC microlens instead of 2, and to make an optical imaging device utilizing the refraction phenomenon of light. The SELFOC microlens is an optical element having a condensing function, such as a cylinder, in which the refractive index of light decreases in a parabolic shape from the center toward the peripheral portion. By setting the dimension of the cylinder to a specific value, it is possible to obtain the function of transmitting the light incident from one end side to the other end side of the cylinder and reversing it in the direction opposite to the incident direction. Therefore, by arranging a large number of these in the panel, the reflective element 1
The same effect as that of 2 can be obtained.

【0011】続いて、本発明の第2の実施例に係る光学
結像装置20について説明する。図3に示すように、本
発明の第2の実施例に係る光学結像装置20は、透光性
のパネル21内に反射面23を有する反射素子22が多
数配置されて構成されている。前記透光性のパネル21
は、プラスチック、ガラス等の透光性の薄板材(縦横:
200mm、厚み:0.5mm)からなっている。前記
反射素子22は、透明なプラスチック、又はガラス製の
円柱(直径:0.3mm、高さ:0.5mm)からな
り、該円柱の内側面及び/又は外側面が散乱光の反射面
23となるように、該円柱の外側面にアルミニウム等の
金属が鏡面状にコーティングされている。そして、それ
ら多数の反射素子22の反射面23がパネル21の面に
対して直交するように、ほぼ等間隔で、かつ、反射素子
22の集積度がほぼ最大となるようにパネル21内に配
置されている。
Next, an optical image forming apparatus 20 according to the second embodiment of the present invention will be described. As shown in FIG. 3, an optical imaging device 20 according to the second embodiment of the present invention is configured by arranging a large number of reflective elements 22 having a reflective surface 23 inside a translucent panel 21. The translucent panel 21
Is a light-transmitting thin plate material such as plastic or glass (vertical and horizontal:
200 mm, thickness: 0.5 mm). The reflection element 22 is made of a transparent plastic or glass cylinder (diameter: 0.3 mm, height: 0.5 mm), and the inner surface and / or outer surface of the cylinder serves as a reflection surface 23 for scattered light. As described above, the outer surface of the cylinder is mirror-coated with a metal such as aluminum. The reflective surfaces 23 of the large number of reflective elements 22 are arranged in the panel 21 at substantially equal intervals so that the reflective surfaces 22 of the reflective elements 22 are orthogonal to the surface of the panel 21, and the integration degree of the reflective elements 22 is substantially maximum. Has been done.

【0012】以下、図3に基づいて光学結像装置20の
作用を説明すると、前述のように対象物24上の1点P
から発する散乱光26がパネル21内に多数配置されて
いる反射素子22の各内側面及び外側面の反射面23で
反射されてP´に収斂し、対象物24上の各点に対応し
て結像するこれらの点の集合により光学像25が形成さ
れる。この場合、散乱光が反射素子21の反射面23の
外側及び内側の両面で反射されるので、対象物上のP点
から発する散乱光の内でP´点に収斂する散乱光の比率
が高くなり、より明るい光学像25が得られる。
The operation of the optical image forming apparatus 20 will be described below with reference to FIG.
The scattered light 26 emitted from is reflected by each of the inner and outer reflection surfaces 23 of the reflective element 22 arranged in the panel 21 and converges on P ′, corresponding to each point on the object 24. An optical image 25 is formed by the set of these imaged points. In this case, since the scattered light is reflected by both the outside and the inside of the reflecting surface 23 of the reflecting element 21, the ratio of the scattered light converged at the point P'in the scattered light emitted from the point P on the object is high. And a brighter optical image 25 is obtained.

【0013】また、本発明の第3の実施例に係る光学結
像装置27は、図4に示すように縦横5mmである四角
柱状のガラスロッド28の側面部をアルミニウム等の金
属を蒸着して反射面29を形成し、これらの四角柱を接
着剤等により接合するか、あるいは機械的に隙間無く積
み重ねてできる集合体を5mmの厚さに薄く切断して製
作することもできる。従って、装置を簡単に製作するこ
とができると共に、パネル内に不透光部等の無駄な空間
が少なくなるので、収斂する散乱光の光量比率をさらに
向上させることができる。
Further, as shown in FIG. 4, the optical image forming apparatus 27 according to the third embodiment of the present invention is formed by vapor-depositing a metal such as aluminum on the side surface of a square rod glass rod 28 having a length and width of 5 mm. It is also possible to form the reflecting surface 29 and join these quadrangular prisms with an adhesive or the like, or to fabricate an assembly that can be mechanically stacked without a gap into thin pieces of 5 mm. Therefore, the device can be easily manufactured, and the wasted space such as the opaque portion is reduced in the panel, so that the light amount ratio of the converged scattered light can be further improved.

【0014】次に、前記の第1〜3の実施例に係る光学
結像装置を組み合わせて用いる第1の応用例を以下に説
明する。図5に示すように、2つの光学結像装置30、
31が互いに約90度の角度をもって配置されており、
光学結像装置30の手前には男性Aが、光学結像装置3
1の手前には女性Bが立っている場合、両者のシュード
スコピック立体像A´、B´が2つの光学結像装置3
0、31に挟まれる空間内に結像し、さらに両者のシュ
ードスコピック立体像からの散乱光がそれぞれ反対側の
光学結像装置31、30を介して収斂することにより、
男性Aの傍らに女性Bの立体像B″が、また女性Bの傍
らに男性Aの立体像A″が結像する。この場合、互いに
直接的に体に触れることなく、コミュニケーションがで
きる。また、第1、2の光学結像装置30、31を介し
て立体像を結像させるために、シュードスコピック立体
像A´、B´がさらに反転されて、凹凸が正常で歪みの
少ない男性A、女性Bの等身大の立体像が得られると共
に、反射されずに第1の光学結像装置30を透過した収
斂に寄与しない散乱光が、続く第2の光学結像装置31
を介することによって取り除かれるので、最終的に結像
する立体像A″、B″の鮮明度が高くなる。また、直接
的には計測不可能な、例えば高温の対象物の形状、寸法
等を非接触で計測すること等が可能となる。
Next, a first application example in which the optical image forming apparatus according to the first to third embodiments is used in combination will be described below. As shown in FIG. 5, two optical imaging devices 30,
31 are arranged at an angle of about 90 degrees to each other,
In front of the optical imaging device 30, the male A is
When a woman B stands in front of 1, the pseudoscopic stereoscopic images A ′ and B ′ of both are two optical imaging devices 3
By forming an image in the space sandwiched between 0 and 31 and further converging scattered light from both pseudoscopic stereoscopic images via the optical image forming devices 31 and 30 on the opposite sides,
A stereoscopic image B ″ of the female B is formed beside the male A, and a stereoscopic image A ″ of the male A is formed beside the female B. In this case, they can communicate without directly touching each other. In addition, in order to form a stereoscopic image through the first and second optical imaging devices 30 and 31, the pseudoscopic stereoscopic images A ′ and B ′ are further inverted, and the male and female are normal and have less distortion. A life-size stereoscopic image of A and a woman B is obtained, and scattered light that has not been reflected and transmitted through the first optical imaging device 30 and does not contribute to the convergence is followed by the second optical imaging device 31.
Since the three-dimensional images A ″ and B ″ are finally formed, the sharpness is increased. In addition, it is possible to measure the shape, size, etc. of a high-temperature object that cannot be measured directly without contact.

【0015】図6は、前記第1〜3の実施例に係る光学
結像装置を複数の凸レンズと組み合わせて用いる第2の
応用例の説明図である。この光学系40は第1、第2の
光学結像装置41、42、及び第1、2の凸レンズ4
3、44とが図6に示すように配置されて構成されてお
り、対象物からの散乱光45を第1の凸レンズ43、第
1の光学結像装置41、第2の凸レンズ44、第2の光
学結像装置42の順に透過させることにより、対象物の
立体像を第2の光学結像装置42の後方に結像させるも
のである。ここで、長さの等しい2つの対象物C、Dが
光学系40の第1の凸レンズ43の前方に距離を隔てて
配置されている場合について更に詳細に説明する。な
お、以下の説明において後方とは散乱光45の進行方向
をいい、前方とはその逆方向をいうものとする。
FIG. 6 is an explanatory diagram of a second application example in which the optical image forming apparatus according to the first to third embodiments is used in combination with a plurality of convex lenses. The optical system 40 includes first and second optical image forming devices 41 and 42, and first and second convex lenses 4.
3, 44 are arranged as shown in FIG. 6, and the scattered light 45 from the object is reflected by the first convex lens 43, the first optical imaging device 41, the second convex lens 44, and the second convex lens 44. The three-dimensional image of the object is formed behind the second optical image forming device 42 by transmitting light through the optical image forming device 42 in this order. Here, the case where two objects C and D having the same length are arranged in front of the first convex lens 43 of the optical system 40 with a distance therebetween will be described in more detail. In the following description, the rear means the traveling direction of the scattered light 45, and the front means the opposite direction.

【0016】先ず、対象物C、Dからの散乱光45が第
1の凸レンズ43を透過することにより、上下が反転
し、かつ、第1の凸レンズ43との距離に応じた比率で
縮小された対象物C、Dの実像C´、D´が距離を隔て
て結像する。実像C´、D´は第1の凸レンズ43によ
る屈折現象を利用したものであるため、必然的に屈折に
よる光学的歪みを有する光学像となる。次に、前記実像
C´、D´からの散乱光が第1の光学結像装置41を介
して収斂し、前記実像C´、D´と鏡面対称の位置関係
にあり、光学的歪みの付加されない実像C″、D″が得
られる。即ち、実像C´、D´と実像C″、D″とは互
いに等倍であり、かつ上下の対称関係は保持されるが、
凹凸が反転した関係にあり、光学的な歪みの程度は両者
同等となる。そして、実像C″、D″を光源とし、第2
の凸レンズ44により実像Cn 、Dn を結像させ、さら
に第2の光学結像装置42を介することにより、その後
方に立体像Cf 、Df が得られる。この光学系において
は、第1、第2の凸レンズ43、44及び第1、第2の
光学結像装置41、42の位置関係により、立体像
f 、Df の結像位置を任意に調整することができると
共に、凸レンズのみからなる光学系に較べて光学的歪み
が少ない立体像Cf 、Df を得ることができる。また、
第1、第2の光学結像装置41、42を直列に配置する
ことにより、立体像の結像に寄与しない、即ち、反射素
子により反射されずに反射素子中を透過する散乱光ある
いは反射素子の反射面で2回以上反射される散乱光が除
かれて、より鮮明な立体像Cf 、Df を得ることができ
る。
First, the scattered light 45 from the objects C and D is transmitted up through the first convex lens 43 to be inverted upside down and reduced at a ratio according to the distance from the first convex lens 43. Real images C ′ and D ′ of the objects C and D are imaged at a distance. Since the real images C'and D'use the refraction phenomenon of the first convex lens 43, they are inevitably optical images having optical distortion due to refraction. Next, the scattered light from the real images C ′ and D ′ is converged through the first optical imaging device 41, has a mirror-symmetrical positional relationship with the real images C ′ and D ′, and adds optical distortion. The unrealized real images C ″ and D ″ are obtained. That is, although the real images C ′ and D ′ and the real images C ″ and D ″ are of the same size and the upper and lower symmetric relationships are maintained,
The concavities and convexities are reversed, and the degree of optical distortion is the same for both. Then, using the real images C ″ and D ″ as light sources,
By projecting the real images C n and D n by the convex lens 44 and further passing through the second optical imaging device 42, the stereoscopic images C f and D f are obtained behind them. In this optical system, the image forming positions of the stereoscopic images C f and D f are arbitrarily adjusted by the positional relationship between the first and second convex lenses 43 and 44 and the first and second optical image forming devices 41 and 42. In addition to that, it is possible to obtain the stereoscopic images C f and D f with less optical distortion as compared with the optical system including only the convex lens. Also,
By arranging the first and second optical imaging devices 41 and 42 in series, scattered light or a reflection element that does not contribute to the formation of a stereoscopic image, that is, is transmitted through the reflection element without being reflected by the reflection element. The scattered light reflected twice or more by the reflecting surface of is removed, and clearer stereoscopic images C f and D f can be obtained.

【0017】以上、本発明の実施例を説明したが、本発
明はこれらの実施例に限定されるものではなく、要旨を
逸脱しない条件の変更等は全て本発明の適用範囲であ
る。例えば、本実施例においては、透明な円柱の側面が
反射面であるような反射素子を使用したが、断面が三角
形、五角形あるいは六角形等の多角形となる多角柱状体
として、その側面を反射面としても同様の効果を得るこ
とができ、また、中空の多角柱を使用してもよい。な
お、多角柱状の反射素子を使用する場合、パネル内に配
置される反射素子の密度を増加させて、散乱光の利用効
率をより高めることができる。
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and changes in conditions and the like without departing from the gist are all within the scope of the present invention. For example, in the present embodiment, a reflective element in which the side surface of a transparent cylinder is a reflective surface was used, but a polygonal columnar body having a polygonal cross section such as a triangle, a pentagon or a hexagon is used, and the side surface is reflected. The same effect can be obtained as the surface, and a hollow polygonal column may be used. When a polygonal prism-shaped reflective element is used, the density of the reflective elements arranged in the panel can be increased to further improve the utilization efficiency of scattered light.

【0018】[0018]

【発明の効果】請求項1及び2記載の光学結像装置にお
いては、対象物からの散乱光をパネル面と直交する反射
面で反射させて対象物の光学像を結像させるので、パネ
ルの厚みの中心面を鏡面対象の基準面として、対象物の
鏡面対象となる位置に歪みの少ない対象物の実像を結像
させることができる。従って、この光学結像装置を光学
系の一部として凸レンズ等の他の光学装置と組み合わせ
たり、あるいは複数の前記光学結像装置を組み合わせて
用いる等の応用が可能であり、光学像を用いてシミュレ
ーション等を行うバーチャルリアリティ分野への適用等
が容易になる。特に、請求項2記載の光学結像装置にお
いては、反射素子が、透明な円柱又は円筒からなって、
その内側面の一部又は全部、もしくは外側面の一部又は
全部が前記反射面を形成してなるので、対象物からの散
乱光の集光度を高めることができ、その結果、より鮮明
な像を得ることができると共に、装置を簡単に製作する
ことができる。
In the optical image forming apparatus according to the first and second aspects of the present invention, since the scattered light from the object is reflected by the reflecting surface orthogonal to the panel surface to form an optical image of the object, By using the center plane of the thickness as a reference plane of the mirror surface target, it is possible to form a real image of the target object with less distortion at the position where the target becomes the mirror surface target. Therefore, it is possible to combine this optical image forming device with another optical device such as a convex lens as a part of an optical system, or to use a plurality of the optical image forming devices in combination. It becomes easy to apply to the field of virtual reality where simulations are performed. Particularly, in the optical image forming apparatus according to claim 2, the reflecting element is formed of a transparent cylinder or a cylinder,
Since a part or all of the inner side surface or a part or all of the outer side surface forms the reflecting surface, it is possible to enhance the concentration of scattered light from the object, and as a result, a clearer image. And the device can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係る光学結像装置の斜
視図である。
FIG. 1 is a perspective view of an optical image forming apparatus according to a first embodiment of the present invention.

【図2】同光学結像装置を側面からみた断面図である。FIG. 2 is a cross-sectional view of the same optical imaging apparatus as seen from a side surface.

【図3】本発明の第2の実施例に係る光学結像装置を側
面からみた断面図である。
FIG. 3 is a side sectional view of an optical image forming apparatus according to a second embodiment of the present invention.

【図4】本発明の第3の実施例に係る光学結像装置の斜
視図である。
FIG. 4 is a perspective view of an optical imaging device according to a third embodiment of the present invention.

【図5】複数の光学結像装置を組み合わせた光学装置の
説明図である。
FIG. 5 is an explanatory diagram of an optical device in which a plurality of optical imaging devices are combined.

【図6】光学結像装置を適用した光学系の説明図であ
る。
FIG. 6 is an explanatory diagram of an optical system to which an optical imaging device is applied.

【図7】従来例に係る光学装置の説明図である。FIG. 7 is an explanatory diagram of an optical device according to a conventional example.

【符号の説明】[Explanation of symbols]

10 光学結像装置 11 パネル 11a 中心面 12 反射素子 13 反射面 14 対象物 15 光学像 16 散乱光 20 光学結像装置 21 パネル 22 反射素子 23 反射面 24 対象物 25 光学像 26 散乱光 27 光学結像装置 28 ガラスロッド(反射素子) 29 反射面 30 第1の光学結像装置 31 第2の光学結像装置 40 光学系 41 第1の光学結像装置 42 第2の光学結像装置 43 第1の凸レンズ 44 第2の凸レンズ 45 散乱光 10 optical imaging device 11 panel 11a center plane 12 reflective element 13 reflective surface 14 object 15 optical image 16 scattered light 20 optical imaging device 21 panel 22 reflective element 23 reflective surface 24 object 25 optical image 26 scattered light 27 optical coupling Image device 28 Glass rod (reflection element) 29 Reflective surface 30 First optical imaging device 31 Second optical imaging device 40 Optical system 41 First optical imaging device 42 Second optical imaging device 43 First Convex lens 44 second convex lens 45 scattered light

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 対象物からの散乱光を収斂させて対象物
の光学像を結像させる光学結像装置であって、 不透光性又は透光性のパネルに、該パネル面に直交する
反射面を有する反射素子が多数配置されていることを特
徴とする光学結像装置。
1. An optical imaging device for converging scattered light from an object to form an optical image of the object, which is orthogonal to the panel surface of an opaque or translucent panel. An optical imaging device, wherein a large number of reflecting elements having reflecting surfaces are arranged.
【請求項2】 前記反射素子が、透明な円柱又は円筒か
らなり、その内側面の一部又は全部、もしくは外側面の
一部又は全部が前記反射面を形成してなる請求項1記載
の光学結像装置。
2. The optical element according to claim 1, wherein the reflecting element is formed of a transparent cylinder or a cylinder, and a part or all of an inner surface thereof or a part or all of an outer surface thereof forms the reflecting surface. Imaging device.
JP18075795A 1995-06-23 1995-06-23 Optical imaging device Pending JPH095503A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18075795A JPH095503A (en) 1995-06-23 1995-06-23 Optical imaging device
AU61384/96A AU6138496A (en) 1995-06-23 1996-06-21 Optical image formation apparatus
PCT/JP1996/001739 WO1997001116A1 (en) 1995-06-23 1996-06-21 Optical image formation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18075795A JPH095503A (en) 1995-06-23 1995-06-23 Optical imaging device

Publications (1)

Publication Number Publication Date
JPH095503A true JPH095503A (en) 1997-01-10

Family

ID=16088792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18075795A Pending JPH095503A (en) 1995-06-23 1995-06-23 Optical imaging device

Country Status (3)

Country Link
JP (1) JPH095503A (en)
AU (1) AU6138496A (en)
WO (1) WO1997001116A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041616A1 (en) * 2006-10-02 2008-04-10 National Institute Of Information And Communications Technology Two-point image formation optical device
WO2009131128A1 (en) * 2008-04-22 2009-10-29 Fujishima Tomohiko Optical imaging device and optical imaging method using the same
WO2009136578A1 (en) * 2008-05-09 2009-11-12 パイオニア株式会社 Spatial image display apparatus
JP2009276698A (en) * 2008-05-16 2009-11-26 National Institute Of Information & Communication Technology Dihedral corner reflector array
JP2009276699A (en) * 2008-05-16 2009-11-26 National Institute Of Information & Communication Technology Dihedral corner reflector array
JP2011081300A (en) * 2009-10-09 2011-04-21 Pioneer Electronic Corp Method for manufacturing reflection type plane-symmetric imaging element
US8057043B2 (en) 2006-03-23 2011-11-15 National Institute Of Information And Communications Technology Imaging element and display with micro mirror array
JP2012128456A (en) * 2012-03-22 2012-07-05 Pioneer Electronic Corp Method of manufacturing reflective plane-symmetric imaging element
JP2012150502A (en) * 2012-03-22 2012-08-09 Pioneer Electronic Corp Method for manufacturing reflective plane-symmetric imaging element
WO2012165217A1 (en) * 2011-05-27 2012-12-06 シャープ株式会社 Optical element and optical system
JP2013238681A (en) * 2012-05-14 2013-11-28 Sharp Corp Display device and display method
WO2013175626A1 (en) * 2012-05-25 2013-11-28 パイオニア株式会社 Reflective plane-symmetrical image-formation element, spatial video image display device, and method for manufacturing reflective plane-symmetrical image-formation element
US8702252B2 (en) 2012-01-30 2014-04-22 Asukanet Company, Ltd. Optical imaging apparatus and optical imaging method using the same
US20150029585A1 (en) * 2012-02-14 2015-01-29 Sharp Kabushiki Kaisha Reflective imaging element and optical system
JP2015166845A (en) * 2014-02-13 2015-09-24 日本電気硝子株式会社 Optical image forming element and method of manufacturing the same
US9513486B2 (en) 2011-10-24 2016-12-06 Asukanet Company, Ltd. Optical imaging apparatus
US9523859B2 (en) 2012-02-28 2016-12-20 Asukanet Company, Ltd. Volumetric-image forming system and method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024677A1 (en) * 2012-08-10 2014-02-13 株式会社アスカネット Size-altering optical image forming device and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821702A (en) * 1981-07-31 1983-02-08 Ricoh Co Ltd Image-forming element using both side reflection band of minute width
JPS6125104A (en) * 1984-07-13 1986-02-04 Hitachi Ltd Compound lens
JPS63191182A (en) * 1987-02-04 1988-08-08 キヤノン株式会社 Image display member

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900618B2 (en) * 2006-03-23 2012-03-21 独立行政法人情報通信研究機構 Imaging element, display device
US8057043B2 (en) 2006-03-23 2011-11-15 National Institute Of Information And Communications Technology Imaging element and display with micro mirror array
WO2008041616A1 (en) * 2006-10-02 2008-04-10 National Institute Of Information And Communications Technology Two-point image formation optical device
JP4865088B2 (en) * 2008-04-22 2012-02-01 株式会社アスカネット Optical imaging method
WO2009131128A1 (en) * 2008-04-22 2009-10-29 Fujishima Tomohiko Optical imaging device and optical imaging method using the same
JP2013127625A (en) * 2008-04-22 2013-06-27 Askanet:Kk Optical imaging apparatus
JP2012155345A (en) * 2008-04-22 2012-08-16 Askanet:Kk Optical imaging device
JP2011175297A (en) * 2008-04-22 2011-09-08 Askanet:Kk Method of manufacturing light control panel for use in optical imaging device
JP2012014194A (en) * 2008-04-22 2012-01-19 Askanet:Kk Optical imaging device
US8867136B2 (en) 2008-05-09 2014-10-21 Pioneer Corporation Floating image display device
WO2009136578A1 (en) * 2008-05-09 2009-11-12 パイオニア株式会社 Spatial image display apparatus
JP2009276699A (en) * 2008-05-16 2009-11-26 National Institute Of Information & Communication Technology Dihedral corner reflector array
JP2009276698A (en) * 2008-05-16 2009-11-26 National Institute Of Information & Communication Technology Dihedral corner reflector array
JP2011081300A (en) * 2009-10-09 2011-04-21 Pioneer Electronic Corp Method for manufacturing reflection type plane-symmetric imaging element
WO2012165217A1 (en) * 2011-05-27 2012-12-06 シャープ株式会社 Optical element and optical system
US9513486B2 (en) 2011-10-24 2016-12-06 Asukanet Company, Ltd. Optical imaging apparatus
US8702252B2 (en) 2012-01-30 2014-04-22 Asukanet Company, Ltd. Optical imaging apparatus and optical imaging method using the same
US20150029585A1 (en) * 2012-02-14 2015-01-29 Sharp Kabushiki Kaisha Reflective imaging element and optical system
US9645403B2 (en) * 2012-02-14 2017-05-09 Sharp Kabushiki Kaisha Reflective imaging element and optical system
US9523859B2 (en) 2012-02-28 2016-12-20 Asukanet Company, Ltd. Volumetric-image forming system and method thereof
JP2012150502A (en) * 2012-03-22 2012-08-09 Pioneer Electronic Corp Method for manufacturing reflective plane-symmetric imaging element
JP2012128456A (en) * 2012-03-22 2012-07-05 Pioneer Electronic Corp Method of manufacturing reflective plane-symmetric imaging element
JP2013238681A (en) * 2012-05-14 2013-11-28 Sharp Corp Display device and display method
WO2013175626A1 (en) * 2012-05-25 2013-11-28 パイオニア株式会社 Reflective plane-symmetrical image-formation element, spatial video image display device, and method for manufacturing reflective plane-symmetrical image-formation element
JPWO2013175626A1 (en) * 2012-05-25 2016-01-12 パイオニア株式会社 Reflective plane-symmetric imaging element, spatial image display device, and manufacturing method of reflective plane-symmetric imaging element
JP2015166845A (en) * 2014-02-13 2015-09-24 日本電気硝子株式会社 Optical image forming element and method of manufacturing the same

Also Published As

Publication number Publication date
WO1997001116A1 (en) 1997-01-09
AU6138496A (en) 1997-01-22

Similar Documents

Publication Publication Date Title
JPH095503A (en) Optical imaging device
KR101136231B1 (en) Multi-viewpoint floating image display device
JP3526157B2 (en) Directional reflective screen and image display device
KR101067941B1 (en) Optical system
JP4900618B2 (en) Imaging element, display device
TWI312883B (en) Backlight module for 3d display device and method for displaying 3d images utilizing the same
JP5024712B2 (en) Multi-viewpoint aerial image display device
TWI572906B (en) Three-dimension light field construction apparatus
JP2010538313A (en) Realistic image display device with wide viewing angle
CN110262051B (en) Retroreflective stereoscopic display device based on directional light source
WO2015043098A1 (en) Multi-viewing angle naked-eye three-dimensional display system and display method therefor
CN103488036A (en) Holographic solid projection screen and projection method
CN113917701B (en) Projection light field stereoscopic display device
CN110286496B (en) Stereoscopic display device based on front directional light source
CN102590923B (en) Lens, hologram projection production system and method thereof
JP2002543447A (en) Image forming apparatus and biaxial retroreflective element
US20110235201A1 (en) Two-image-point imaging optical device
JP3647118B2 (en) Stereoscopic image display device
JP2002517779A (en) Floating image display
TW202246853A (en) Stereoscopic image display device
KR20000075465A (en) Apparatus for displaying an image suspended in space
Maekawa et al. Advances in passive imaging elements with micromirror array
CN211905753U (en) Optical lens
CN115236872A (en) Three-dimensional display system of pixel level accuse light
CN211905883U (en) Multi-viewpoint aerial imaging device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Effective date: 20060113

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20070116

Free format text: JAPANESE INTERMEDIATE CODE: A02