WO1997001116A1 - Optical image formation apparatus - Google Patents

Optical image formation apparatus Download PDF

Info

Publication number
WO1997001116A1
WO1997001116A1 PCT/JP1996/001739 JP9601739W WO9701116A1 WO 1997001116 A1 WO1997001116 A1 WO 1997001116A1 JP 9601739 W JP9601739 W JP 9601739W WO 9701116 A1 WO9701116 A1 WO 9701116A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
image
optical imaging
imaging device
panel
Prior art date
Application number
PCT/JP1996/001739
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Otsubo
Original Assignee
Nittetsu Elex Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Elex Co., Ltd. filed Critical Nittetsu Elex Co., Ltd.
Priority to AU61384/96A priority Critical patent/AU6138496A/en
Publication of WO1997001116A1 publication Critical patent/WO1997001116A1/en
Priority to US09/180,197 priority patent/US6100771A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/006Systems in which light light is reflected on a plurality of parallel surfaces, e.g. louvre mirrors, total internal reflection [TIR] lenses

Definitions

  • the present invention relates to an optical imaging device that forms an optical image of an object by converging scattered light from the object.
  • the device that forms an optical image by controlling the scattered light emitted from the surface of the object by reflection, refraction, shielding, etc . (1) Reflects the scattered light from the object using a mirror, etc., and mirrors the image of the object And (2) a device that uses a convex lens optical system, and (3) a device that converges light from a number of small images on a panel through a number of pinholes to obtain an optical image of an object.
  • the scattered light 56 from the object 55 can be imaged as shown in FIG. 7 (b), and the real image 57 can be obtained.
  • the position and the magnification of the optical image are determined by the focal length of the lens used and the distance between the object and the lens.
  • An optical image 60 as a real image can be formed at a position in front of the rule panel 61. That is, the image display panel 62 on which a number of small images are recorded is installed behind the pinhole panel 61 on which a number of pinholes 58 are arranged, and light is emitted from behind the image display panel 62. Thereby, the optical image 60 of the target object is reproduced through the large number of pinholes 58.
  • the optical image that appears is a virtual image 52, so that a simulation operation in which the observer actually touches the optical image is performed. It is impossible to do such things.
  • the present invention has been made in view of such circumstances, and provides an optical imaging device that can easily form a real image of the same size of an object at a position where an observer can touch the hand.
  • the purpose is to do. Disclosure of the invention
  • An optical imaging device that meets the above object is an optical imaging device that forms an optical image of an object by converging scattered light from the object, and is opaque or translucent.
  • the reflective element having a reflective surface orthogonal to the panel surface is an optical element having a function of changing the direction of reflected scattered light incident from the front side of the panel to the back side of the panel surface at an angle equal to the incident angle and reflecting the scattered light.
  • Such an optical element uses not only an optical reflection phenomenon but also a self-control element that controls the traveling direction of light by using a gradient of a change in refractive index as used in optical fiber communication technology. Including a micro lens.
  • the optical imaging device configured as described above, since a large number of reflecting elements having a reflecting surface orthogonal to the panel surface are arranged on the light-impermeable or light-transmitting panel, Using the center plane of the panel thickness as the mirror-symmetric reference plane, a real image of the object can be formed at a position mirror-symmetric with the object.
  • the reflective element may be formed of a transparent column or cylinder, and a part or all of an inner surface or a part or all of an outer surface may form the reflective surface.
  • FIG. 1 is a perspective view of an optical imaging device according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the optical imaging device viewed from a side
  • FIG. 3 is related to a second embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the optical imaging device as viewed from the side
  • FIG. 4 is a perspective view of the optical imaging device according to the third embodiment of the present invention
  • FIG. 5 is an explanatory diagram of an optical device combining a plurality of optical imaging devices
  • FIG. 6 is an explanatory diagram of an optical system to which an optical imaging device is applied
  • FIG. 7 is an explanatory diagram of an optical device according to a conventional example.
  • the optical imaging device 10 As shown in FIGS. 1 and 2, the optical imaging device 10 according to the first embodiment of the present invention has a large number of reflective elements 12 each having a reflective surface 13 on an opaque panel 11. It is arranged and configured.
  • the opaque panel 11 is made of an opaque thin plate (length and width: 20 O mm, thickness' .0.5 mm) such as plastic, glass, wood, paper pulp or metal. , Become.
  • the reflecting element 12 is made of a transparent plastic or glass cylinder (diameter: 0.3 mm, height: 0.5 mm), and the entire inner surface of the cylinder reflects the scattered light that enters.
  • the outer surface of the cylinder is mirror-coated with a metal such as aluminum so as to form a reflecting surface 13 which is formed.
  • the reflection surfaces 13 of the large number of reflection elements 12 are arranged in the panel 11 at substantially equal intervals so as to be orthogonal to the surface of the power panel 11 and at a maximum integration degree. I have.
  • the optical imaging device 10 may be, for example, an optical fiber or a transparent rod made of plastic, whose outer surface is mirror-coated with a metal such as aluminum, or a plurality of optical rods without coating the optical fiber.
  • the optical fiber is bundled and, if necessary, is filled with colored plastic or the like around the optical fiber to form an aggregate of the optical fiber, and the aggregate is perpendicular to the length direction of the optical fiber. It can also be formed by cutting thinly to a thickness of 0.5 mm.
  • the operation of the optical imaging device 10 will be described based on FIG.
  • the scattered light 16 emitted from P on the object 14 is reflected on each of the reflection surfaces 13 of the reflection elements 12 arranged in the panel 11, converges on P ′, and converges on P ′.
  • An optical image 15 is formed by a set of these points that form an image corresponding to each of the points. At this time, points P and P 'are the center plane 1 of panel 1 1
  • the optical image 15 is a real image in which the asperities of the symmetric object 14 are inverted, that is, a pseudoscopic (pseudoscopic) image.
  • the optical imaging device 10 does not involve a peculiar refraction phenomenon, so that an optical image with little distortion can be obtained, and no aberration due to a difference in the wavelength of light is generated.
  • the optical image 15 is formed by converging the scattered light, so that it is possible to perform a simulation by actually placing an object at the image forming position.
  • a self-occurring microlens is an optical element such as a cylinder that has a light-gathering function and whose refractive index of light decreases in a substantially parabolic manner from the center toward the periphery.
  • a function of transmitting light incident from one end to the other end of the cylinder and inverting the incident direction in the opposite direction is obtained. Therefore, by arranging a large number of these elements in the panel, the same effect as that of the reflective element 12 can be obtained.
  • the optical imaging device 20 is configured by arranging a large number of reflective elements 22 having a reflective surface 23 in a translucent panel 21. Have been.
  • the translucent panel 21 is made of a translucent thin plate material (length and width: 20 O mm, thickness: 0.5 mm) such as plastic or glass.
  • the reflecting element 22 is formed of a transparent plastic or glass cylinder (diameter: 0.3 mm, height: 0.5 mm), and the inner surface and / or the outer surface of the cylinder is scattered light.
  • the outer surface of the cylinder is mirror-coated with a metal such as aluminum so as to form the reflection surface 23.
  • the panels are arranged at substantially equal intervals so that the reflection surfaces 23 of the large number of reflection elements 22 are orthogonal to the surface of the panel 21 and at the maximum integration degree of the reflection elements 22. 2 are located in one.
  • the operation of the optical imaging device 20 will be described with reference to FIG. 3.
  • a large number of scattered lights 26 emitted from one point P on the object 24 are arranged in the panel 21.
  • An optical image is formed by a set of these points that are reflected by the inner and outer reflecting surfaces 23 of the reflecting element 22 and converge on P ′ and form an image corresponding to each point on the object 24. 25 is formed.
  • the scattered light is reflected on both the outer and inner surfaces of the reflecting surface 23 of the reflecting element 22, of the scattered light converging on the point P ′ among the scattered lights emitted from the point P on the object.
  • the ratio is higher and a brighter optical image 25 is obtained.
  • the optical imaging device 27 has a rectangular column-shaped glass opening 28 having a length and width of 5 mm, and a side surface portion formed of a metal such as aluminum.
  • a reflective surface 29 and glue these square pillars together It can also be manufactured by joining with an agent or the like, or by cutting the assembly that is mechanically stacked without gaps into thin pieces of 5 mm.
  • the device can be manufactured easily, and unnecessary space such as an opaque portion in the panel is reduced, so that the ratio of the amount of convergent scattered light can be further improved.
  • two optical imaging devices 30 and 31 are arranged at an angle of about 90 degrees with respect to each other, and a male A is located in front of the optical imaging device 30 with an optical imaging device. If a woman B is standing in front of 31, both pseudoscopic stereoscopic images A ′ and B ′ form an image in the space between the two optical imaging devices 30 and 31, and furthermore, The scattered light from the pseudoscopic stereoscopic image converges through the optical imaging devices 31 and 30 on the opposite sides, respectively, so that the stereoscopic image of the female B and the female B A three-dimensional image A "of the male A forms an image beside him. In this case, they can communicate without directly touching each other.
  • the pseudoscopic stereoscopic images A ′ and B ′ are further inverted so that the irregularities are normal.
  • a life-size stereoscopic image of male A and female B with little distortion can be obtained, and scattered light that has not been reflected and does not contribute to convergence that has passed through the first optical imaging device 30 is transmitted to the second optical imaging device. Since it is removed by passing through the imaging device 31, the sharpness of the finally formed stereoscopic images A ⁇ and B ⁇ increases.
  • FIG. 6 is an explanatory diagram of a second application example in which the optical imaging devices according to the first to third embodiments are used in combination with a plurality of convex lenses.
  • the optical system 40 is configured by arranging first and second optical imaging devices 41 and 42 and first and second convex lenses 43 and 44 as shown in FIG.
  • the scattered light 45 from the object is transmitted through the first convex lens 43, the first optical imaging device 41, the second convex lens 44, and the second optical imaging device 42 in this order.
  • a three-dimensional image of the object is formed behind the second optical imaging device 42.
  • scattered light 45 from the object (:, D is transmitted through the first convex lens 43, so that it is turned upside down and at a ratio corresponding to the distance from the first convex lens 43.
  • the real images C ′ and D ′ of the reduced objects C and D are formed at a distance from each other, and the real images C ′ and D ′ are inevitable because the refraction by the first convex lens 43 is used.
  • An optical image having optical distortion due to refraction is obtained.
  • the scattered light from the real image C ⁇ D ' converges via the first optical imaging device 41, and is in a mirror-symmetrical positional relationship with the real image C ⁇ ', and is a real image to which no optical distortion is added.
  • ⁇ , D is obtained. That is, the real images C ′, D ′ and the real images C ⁇ , D ⁇ ⁇ ⁇ are equal to each other, and the up-down symmetric relationship is maintained, but the relationship in which the unevenness is reversed is obtained. Yes, the degree of optical distortion is the same for both.
  • the real image (: ⁇ , D "is used as a light source, and the real image is formed by the second convex lens 44.
  • the real image is formed by the second convex lens 44.
  • the imaging positions of the three-dimensional images C f and D f are determined by the positional relationship between the first and second convex lenses 43 and 44 and the first and second optical imaging devices 41 and 42. Can be arbitrarily adjusted, and three-dimensional images C f and D f with less optical distortion can be obtained as compared with an optical system including only a convex lens.
  • first and second optical imaging devices 41 and 42 do not contribute to the formation of a three-dimensional image, that is, they are transmitted through the reflection element without being reflected by the reflection element.
  • scattered light scattered light reflected at least twice on the reflection surface of the reflection element is removed, and clearer stereoscopic images C f and D f can be obtained.
  • a reflecting element was used in which the side surface of a transparent cylinder was a reflecting surface, but the side surface was reflected as a polygonal column having a polygonal shape such as a triangle, a pentagon, or a hexagon.
  • the same effect can be obtained as the surface, and a hollow polygonal column may be used.
  • a polygonal reflective element the density of the reflective elements arranged in the panel can be increased, and the scattered light utilization efficiency can be further increased.
  • the optical imaging device since the scattered light from the object is reflected by a reflection surface orthogonal to the panel surface to form an optical image of the object, Using the center plane of the thickness of the flannel as a mirror-symmetric reference plane, a real image of the object with little distortion can be formed at the position where the object is mirror-symmetric. Therefore, it is possible to apply this optical imaging device to another optical device such as a convex lens as a part of an optical system, or to use a combination of a plurality of the optical imaging devices. This makes it easier to apply simulations to virtual reality fields.
  • the reflective element is made of a transparent column or cylinder, part or all of the inner surface or part or all of the outer surface forms the reflective surface. It is possible to increase the degree of collection of scattered light from an object, and as a result, a clearer image can be obtained and the device can be manufactured easily.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

An optical image formation apparatus which forms the optical image of an object by converging light scattered from the object. An opaque or clear panel is provided with a large number of reflectors having reflective surfaces perpendicular to its surface so that an object and its real image may be symmetrical with respect to the middle plane between the surfaces of the panel.

Description

明 細 書  Specification
光学結像装置  Optical imaging device
技術分野 Technical field
本発明は対象物からの散乱光を収斂させて、 該対象物の光学像を結像 させる光学結像装置に関する。 背景技術  The present invention relates to an optical imaging device that forms an optical image of an object by converging scattered light from the object. Background art
対象物の表面から発する散乱光を反射、 屈折、 遮蔽等により制御して 光学像を結像させる装置としては、 ①鏡等を利用して対象物からの散乱 光を反射させ、 対象物の鏡像を得る装置、 ②凸レンズの光学系を用いる 装置、 ③多数のピンホールを介してパネル上の多数の小画像からの光を 収斂させ、 対象物の光学像を得る装置等が知られている。  The device that forms an optical image by controlling the scattered light emitted from the surface of the object by reflection, refraction, shielding, etc .: (1) Reflects the scattered light from the object using a mirror, etc., and mirrors the image of the object And (2) a device that uses a convex lens optical system, and (3) a device that converges light from a number of small images on a panel through a number of pinholes to obtain an optical image of an object.
以下、 これらの原理を図 7に基づいて説明すると、 ①鏡 5 0による光 学系では、 図 7 ( a ) に示すように、 鏡 5 0の面を対称面とする鏡面対 称の位置に対象物 5 1の虚像 5 2を見ることができる。 即ち、 対象物 5 1からの散乱光 5 3は鏡面でその入射角度に等しい反射角度で反射され るので、 対象物 5 1に対して鏡面対称の位置に対象物 5 1が存在するよ うに見える。  Hereinafter, these principles will be described with reference to Fig. 7. (1) In an optical system using mirror 50, as shown in Fig. 7 (a), the mirror 50 A virtual image 52 of the object 51 can be seen. That is, since the scattered light 53 from the object 51 is reflected by the mirror surface at a reflection angle equal to the incident angle, it appears that the object 51 exists at a mirror-symmetric position with respect to the object 51. .
また、 ②凸レンズ 5 4を利用した光学系では、 図 7 ( b ) に示すよう に対象物 5 5からの散乱光 5 6を結像させて、 その実像 5 7を得ること ができ、 結像位置、 及び光学像の倍率は使用するレンズの焦点距離、 及 び対象物とレンズ間の距離によって定まる。  In the optical system using the convex lens 54, the scattered light 56 from the object 55 can be imaged as shown in FIG. 7 (b), and the real image 57 can be obtained. The position and the magnification of the optical image are determined by the focal length of the lens used and the distance between the object and the lens.
そして、 ③多数のピンホール 5 8を介して予め記録された多数の小画 像からの散乱光 5 9を収斂させて光学像 6 0を得る方法においては、 図 7 ( c ) に示すように、 観察者が実際に手を触れることのできるピンホ ールパネル 6 1の前方位置に実像である光学像 6 0を結像させることが できる。 即ち、 多数の小画像が記録された画像表示パネル 6 2を、 多数 のピンホール 5 8が配置されたピンホールパネル 6 1の背後に設置し、 画像表示パネル 6 2の後方から光を照射することにより、 前記多数のピ ンホール 5 8を介して対象物の光学像 6 0が再生される。 Then, ③ in the method of converging the scattered light 59 from a number of small images recorded in advance through a number of pinholes 58 to obtain an optical image 60, as shown in FIG. 7 (c). , A pinho that the observer can actually touch An optical image 60 as a real image can be formed at a position in front of the rule panel 61. That is, the image display panel 62 on which a number of small images are recorded is installed behind the pinhole panel 61 on which a number of pinholes 58 are arranged, and light is emitted from behind the image display panel 62. Thereby, the optical image 60 of the target object is reproduced through the large number of pinholes 58.
しかしながら、 前記①鏡 5 0を利用して鏡像を得る装置では、 出現す る光学像が虚像 5 2となるため、 観察者が実際に光学像に手を触れて行 うようなシミユレーション操作等を行うことは不可能である。  However, in the device that obtains a mirror image using the mirror 50, the optical image that appears is a virtual image 52, so that a simulation operation in which the observer actually touches the optical image is performed. It is impossible to do such things.
さらに、 前記②凸レンズを使用する光学系では、 実像 5 7の歪み、 及 び倍率がレンズと対象物間の距離によって変化するため、 得られる光学 像の歪みや大きさが定まらず、 また、 対象物 5 5と得られる実像 5 7の 左右の位置関係が反転しているという問題があつた。  Further, in the optical system using the ②-convex lens, since the distortion and the magnification of the real image 57 vary depending on the distance between the lens and the object, the distortion and size of the obtained optical image are not determined. There was a problem that the left-right positional relationship between the object 55 and the obtained real image 57 was reversed.
また、 前記③多数のピンホール 5 8を用いる光学系では、 予め多数の 小画像を記録しておく必要があり、 光学像を結像させるために多大の労 力を必要とすると共に、 特に動いている対象物の光学像を処理する場合 には膨大な情報量を必要とするため、 データ処理が困難になるという問 題点があった。  Also, in the optical system using a large number of pinholes 58, it is necessary to record a large number of small images in advance, which requires a great deal of labor to form an optical image, and is particularly difficult to operate. When processing an optical image of a target object, a huge amount of information is required, which makes data processing difficult.
本発明はこのような事情に鑑みてなされたもので、 観察者が手を触れ ることのできる位置に、 対象物の等倍の実像を簡便に結像させることが できる光学結像装置を提供することを目的とする。 発明の開示  The present invention has been made in view of such circumstances, and provides an optical imaging device that can easily form a real image of the same size of an object at a position where an observer can touch the hand. The purpose is to do. Disclosure of the invention
前記目的に沿う本発明に係る光学結像装置は、 対象物からの散乱光を 収斂させて対象物の光学像を結像させる光学結像装置であって、 不透光 性又は透光性のパネルに、 該パネル面に直交する反射面を有する反射素 子が多数配置されて構成されている。 ここで、 前記パネル面に直交する 反射面を有する反射素子とは、 パネルの表側から入射する散乱光をその 入射角度と等しい角度でパネル面の裏側に方向を変えて反射させる機能 を有する光学素子をいう。 このような光学素子には、 光学的な反射現象 を利用するものの他に、 光フアイバ一通信技術において使用されている ような屈折率の変化の勾配を利用して光の進行方向を制御するセルフォ ックマイクロレンズ等を含む。 An optical imaging device according to the present invention that meets the above object is an optical imaging device that forms an optical image of an object by converging scattered light from the object, and is opaque or translucent. A reflector having a reflective surface orthogonal to the panel surface; A large number of children are arranged. Here, the reflective element having a reflective surface orthogonal to the panel surface is an optical element having a function of changing the direction of reflected scattered light incident from the front side of the panel to the back side of the panel surface at an angle equal to the incident angle and reflecting the scattered light. Say. Such an optical element uses not only an optical reflection phenomenon but also a self-control element that controls the traveling direction of light by using a gradient of a change in refractive index as used in optical fiber communication technology. Including a micro lens.
以上のように構成した本発明に係る光学結像装置においては、 不透光 性又は透光性のパネルに、 該パネル面に直交する反射面を有する反射素 子が多数配置されているので、 パネルの厚みの中心面を鏡面対称の基準 面として、 対象物と鏡面対称の位置に対象物の実像を結像させることが できる。  In the optical imaging device according to the present invention configured as described above, since a large number of reflecting elements having a reflecting surface orthogonal to the panel surface are arranged on the light-impermeable or light-transmitting panel, Using the center plane of the panel thickness as the mirror-symmetric reference plane, a real image of the object can be formed at a position mirror-symmetric with the object.
ここで、 前記反射素子が、 透明な円柱又は円筒からなり、 その内側面 の一部又は全部、 もしくは外側面の一部又は全部が前記反射面を形成し てもよい。 このように反射素子を構成することによって、 立体光学像を 結像させる散乱光の集光度を高めることができ、 明るくて、 歪みの少な い対象物の立体光学像が得られると共に、 装置の製作が容易である。 図面の簡単な説明  Here, the reflective element may be formed of a transparent column or cylinder, and a part or all of an inner surface or a part or all of an outer surface may form the reflective surface. By configuring the reflective element in this way, it is possible to increase the degree of convergence of scattered light that forms a three-dimensional optical image, and obtain a bright, low-distortion three-dimensional optical image of the object and manufacture of the device. Is easy. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の第 1の実施例に係る光学結像装置の斜視図、 図 2は同 光学結像装置を側面からみた断面図、 図 3は本発明の第 2の実施例に係 る光学結像装置を側面からみた断面図、 図 4は本発明の第 3の実施例に 係る光学結像装置の斜視図、 図 5は複数の光学結像装置を組み合わせた 光学装置の説明図、 図 6は光学結像装置を適用した光学系の説明図、 図 7は従来例に係る光学装置の説明図である。 発明を実施するための最良の形態 FIG. 1 is a perspective view of an optical imaging device according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view of the optical imaging device viewed from a side, and FIG. 3 is related to a second embodiment of the present invention. FIG. 4 is a cross-sectional view of the optical imaging device as viewed from the side, FIG. 4 is a perspective view of the optical imaging device according to the third embodiment of the present invention, FIG. 5 is an explanatory diagram of an optical device combining a plurality of optical imaging devices, FIG. 6 is an explanatory diagram of an optical system to which an optical imaging device is applied, and FIG. 7 is an explanatory diagram of an optical device according to a conventional example. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第 1の実施例に係る光学結像装置 1 0は、 図 1及び図 2に示 すように、 不透光性のパネル 1 1に反射面 1 3を有する反射素子 1 2が 多数配置されて構成されている。  As shown in FIGS. 1 and 2, the optical imaging device 10 according to the first embodiment of the present invention has a large number of reflective elements 12 each having a reflective surface 13 on an opaque panel 11. It is arranged and configured.
前記不透光性のパネル 1 1は、 プラスチック、 ガラス、 木質材、 紙パ ルプ材又は金属等の不透光性の薄板材 (縦横: 2 0 O mm、 厚み '. 0 . 5 mm) 力、らなる。  The opaque panel 11 is made of an opaque thin plate (length and width: 20 O mm, thickness' .0.5 mm) such as plastic, glass, wood, paper pulp or metal. , Become.
前記反射素子 1 2は、 透明なプラスチック、 又はガラス製の円柱 (直 径: 0 . 3 mm、 高さ : 0 . 5 mm) からなり、 該円柱の内側面の全部 が入射する散乱光を反射する反射面 1 3となるように、 該円柱の外側面 にアルミニウム等の金属が鏡面状にコーティングされている。 そして、 それら多数の反射素子 1 2の反射面 1 3力パネル 1 1の面に直交するよ うに、 ほぼ等間隔で、 かつ、 集積度がほぼ最大となるようにパネル 1 1 内に配置されている。  The reflecting element 12 is made of a transparent plastic or glass cylinder (diameter: 0.3 mm, height: 0.5 mm), and the entire inner surface of the cylinder reflects the scattered light that enters. The outer surface of the cylinder is mirror-coated with a metal such as aluminum so as to form a reflecting surface 13 which is formed. The reflection surfaces 13 of the large number of reflection elements 12 are arranged in the panel 11 at substantially equal intervals so as to be orthogonal to the surface of the power panel 11 and at a maximum integration degree. I have.
なお、 対象物の位置が固定している場合には、 前記円柱の内側面の特 定範囲だけを反射面とすることにより、 余分な散乱光が反射されないよ うにすることもできる。  When the position of the object is fixed, only a specific range of the inner surface of the cylinder is used as a reflection surface, so that extra scattered light can be prevented from being reflected.
ここで、 光学結像装置 1 0は、 例えば光ファイバ一又はプラスチック からなる透明ロッドの外側面をアルミニウム等の金属で鏡面状にコーテ イングするか、 あるいは、 光ファイバ一をコーティングすることなく多 数束ね、 かつ必要に応じて該光ファイバ一の周囲に着色したプラスチッ ク等を充塡して光ファイバ一の集合体を形成し、 該集合体を光ファイバ —の長さ方向に対して直角に 0 . 5 mmの厚みに薄く切断することによ り形成することもできる。 以下、 図 2に基づいて光学結像装置 1 0の作用を説明する。 Here, the optical imaging device 10 may be, for example, an optical fiber or a transparent rod made of plastic, whose outer surface is mirror-coated with a metal such as aluminum, or a plurality of optical rods without coating the optical fiber. The optical fiber is bundled and, if necessary, is filled with colored plastic or the like around the optical fiber to form an aggregate of the optical fiber, and the aggregate is perpendicular to the length direction of the optical fiber. It can also be formed by cutting thinly to a thickness of 0.5 mm. Hereinafter, the operation of the optical imaging device 10 will be described based on FIG.
対象物 1 4上の Pから発する散乱光 1 6は、 パネル 1 1内に多数 配置されている反射素子 1 2の各反射面 1 3で反射されて P 'に収斂し 、 対象物 1 4上の各点に対応して結像するこれらの点の集合により光学 像 1 5が形成される。 このとき、 点 Pと P ' とはパネル 1 1の中心面 1 The scattered light 16 emitted from P on the object 14 is reflected on each of the reflection surfaces 13 of the reflection elements 12 arranged in the panel 11, converges on P ′, and converges on P ′. An optical image 15 is formed by a set of these points that form an image corresponding to each of the points. At this time, points P and P 'are the center plane 1 of panel 1 1
1 aを対称面とする鏡面対称の関係にある。 即ち、 線分 P— P ' とパネ ル 1 1の中心面 1 1 aとの交点を 0とすると P O = P ' 0であり、 線分 P— P 'はパネル 1 1に直交する。 従って、 パネル 1 1に対し、 光学像There is a mirror symmetry with 1a as the plane of symmetry. That is, assuming that the intersection point between the line segment P—P ′ and the center plane 11 a of the panel 11 is 0, P O = P′0, and the line segment P—P ′ is orthogonal to the panel 11. Therefore, the optical image for panel 11
1 5側から光学像 1 5を見た場合、 光学像 1 5は、 対称物 1 4の凹凸が 反転した実像、 即ちシュ一ドスコピック (p s e u d o s c o p i c ) 像となる。 When the optical image 15 is viewed from the 15 side, the optical image 15 is a real image in which the asperities of the symmetric object 14 are inverted, that is, a pseudoscopic (pseudoscopic) image.
また、 光学結像装置 1 0においては、 レンズ等の光学系と異なり特異 な屈折現象が介在しないので歪みの少ない光学像が得られると共に、 光 の波長の相違による収差を生じることがない。 さらに、 光学像 1 5は鏡 による虚像とは異なり、 散乱光が収斂して形成されるので、 結像位置に 実際に物を置いてシミュレーションを行う等が可能となる。  In addition, unlike the optical system such as a lens, the optical imaging device 10 does not involve a peculiar refraction phenomenon, so that an optical image with little distortion can be obtained, and no aberration due to a difference in the wavelength of light is generated. Furthermore, unlike the virtual image formed by the mirror, the optical image 15 is formed by converging the scattered light, so that it is possible to perform a simulation by actually placing an object at the image forming position.
なお、 前記反射現象を利用した反射素子 1 2の代わりにセルフオック マイクロレンズを使用し、 光の屈折現象を利用した光学結像装置を作成 することもできる。  It is also possible to use a self-occurring microlens in place of the reflection element 12 utilizing the reflection phenomenon, and create an optical imaging apparatus utilizing the light refraction phenomenon.
セルフオックマイクロレンズとは、 集光機能を有し、 光の屈折率が中 心から周縁部に向かってほぼ放物線状に減少していく円柱等の光学素子 である。 そして該円柱の寸法を特定値に設定することにより、 一端側か ら入射する光を該円柱の他端側に透過させ、 かつその入射方向と逆方向 に反転させる機能が得られる。 従って、 これらをパネル内に多数配置す ることにより前記反射素子 1 2と同様の効果を得ることができる。 続いて、 本発明の第 2の実施例に係る光学結像装置 2 0について説明 する。 A self-occurring microlens is an optical element such as a cylinder that has a light-gathering function and whose refractive index of light decreases in a substantially parabolic manner from the center toward the periphery. By setting the size of the cylinder to a specific value, a function of transmitting light incident from one end to the other end of the cylinder and inverting the incident direction in the opposite direction is obtained. Therefore, by arranging a large number of these elements in the panel, the same effect as that of the reflective element 12 can be obtained. Next, an optical imaging device 20 according to a second embodiment of the present invention will be described.
図 3に示すように、 本発明の第 2の実施例に係る光学結像装置 2 0は 、 透光性のパネル 2 1内に反射面 2 3を有する反射素子 2 2が多数配置 されて構成されている。  As shown in FIG. 3, the optical imaging device 20 according to the second embodiment of the present invention is configured by arranging a large number of reflective elements 22 having a reflective surface 23 in a translucent panel 21. Have been.
前記透光性のパネル 2 1は、 プラスチック、 ガラス等の透光性の薄板 材 (縦横: 2 0 O mm、 厚み: 0 . 5 mm) からなつている。  The translucent panel 21 is made of a translucent thin plate material (length and width: 20 O mm, thickness: 0.5 mm) such as plastic or glass.
前記反射素子 2 2は、 透明なプラスチック、 又はガラス製の円柱 (直 径: 0 . 3 mm、 高さ : 0 . 5 mm) からなり、 該円柱の内側面及び/ 又は外側面が散乱光の反射面 2 3となるように、 該円柱の外側面にアル ミニゥ厶等の金属が鏡面状にコーティングされている。 そして、 それら 多数の反射素子 2 2の反射面 2 3がパネル 2 1の面に対して直交するよ うに、 ほぼ等間隔で、 かつ、 反射素子 2 2の集積度がほぼ最大となるよ うにパネル 2 1内に配置されている。  The reflecting element 22 is formed of a transparent plastic or glass cylinder (diameter: 0.3 mm, height: 0.5 mm), and the inner surface and / or the outer surface of the cylinder is scattered light. The outer surface of the cylinder is mirror-coated with a metal such as aluminum so as to form the reflection surface 23. The panels are arranged at substantially equal intervals so that the reflection surfaces 23 of the large number of reflection elements 22 are orthogonal to the surface of the panel 21 and at the maximum integration degree of the reflection elements 22. 2 are located in one.
以下、 図 3に基づいて光学結像装置 2 0の作用を説明すると、 前述の ように対象物 2 4上の 1点 Pから発する散乱光 2 6がパネル 2 1内に多 数配置されている反射素子 2 2の各内側面及び外側面の反射面 2 3で反 射されて P 'に収斂し、 対象物 2 4上の各点に対応して結像するこれら の点の集合により光学像 2 5が形成される。 この場合、 散乱光が反射素 子 2 2の反射面 2 3の外側及び内側の両面で反射されるので、 対象物上 の P点から発する散乱光の内で P '点に収斂する散乱光の比率が高くな り、 より明るい光学像 2 5が得られる。  Hereinafter, the operation of the optical imaging device 20 will be described with reference to FIG. 3. As described above, a large number of scattered lights 26 emitted from one point P on the object 24 are arranged in the panel 21. An optical image is formed by a set of these points that are reflected by the inner and outer reflecting surfaces 23 of the reflecting element 22 and converge on P ′ and form an image corresponding to each point on the object 24. 25 is formed. In this case, since the scattered light is reflected on both the outer and inner surfaces of the reflecting surface 23 of the reflecting element 22, of the scattered light converging on the point P ′ among the scattered lights emitted from the point P on the object. The ratio is higher and a brighter optical image 25 is obtained.
また、 本発明の第 3の実施例に係る光学結像装置 2 7は、 図 4に示す ように縦横 5 mmである四角柱状のガラス口ッ ド 2 8の側面部をアルミ ニゥ厶等の金属を蒸着して反射面 2 9を形成し、 これらの四角柱を接着 剤等により接合するか、 あるいは機械的に隙間無く積み重ねてできる集 合体を 5 mmの厚さに薄く切断して製作することもできる。 In addition, as shown in FIG. 4, the optical imaging device 27 according to the third embodiment of the present invention has a rectangular column-shaped glass opening 28 having a length and width of 5 mm, and a side surface portion formed of a metal such as aluminum. To form a reflective surface 29 and glue these square pillars together It can also be manufactured by joining with an agent or the like, or by cutting the assembly that is mechanically stacked without gaps into thin pieces of 5 mm.
従って、 装置を簡単に製作することができると共に、 パネル内に不透 光部等の無駄な空間が少なくなるので、 収斂する散乱光の光量比率をさ らに向上させることができる。  Therefore, the device can be manufactured easily, and unnecessary space such as an opaque portion in the panel is reduced, so that the ratio of the amount of convergent scattered light can be further improved.
次に、 前記の第 1〜 3の実施例に係る光学結像装置を組み合わせて用 いる第 1の応用例を以下に説明する。  Next, a first application example using a combination of the optical imaging devices according to the first to third embodiments will be described below.
図 5に示すように、 2つの光学結像装置 3 0、 3 1が互いに約 9 0度 の角度をもって配置されており、 光学結像装置 3 0の手前には男性 Aが 、 光学結像装置 3 1の手前には女性 Bが立っている場合、 両者のシユー ドスコピック立体像 A '、 B 'が 2つの光学結像装置 3 0、 3 1に挟ま れる空間内に結像し、 さらに両者のシユードスコピック立体像からの散 乱光がそれぞれ反対側の光学結像装置 3 1、 3 0を介して収斂すること により、 男性 Aの傍らに女性 Bの立体像 B 力 \ また女性 Bの傍らに男 性 Aの立体像 A " が結像する。 この場合、 互いに直接的に体に触れるこ となく、 コミュニケーションができる。  As shown in FIG. 5, two optical imaging devices 30 and 31 are arranged at an angle of about 90 degrees with respect to each other, and a male A is located in front of the optical imaging device 30 with an optical imaging device. If a woman B is standing in front of 31, both pseudoscopic stereoscopic images A ′ and B ′ form an image in the space between the two optical imaging devices 30 and 31, and furthermore, The scattered light from the pseudoscopic stereoscopic image converges through the optical imaging devices 31 and 30 on the opposite sides, respectively, so that the stereoscopic image of the female B and the female B A three-dimensional image A "of the male A forms an image beside him. In this case, they can communicate without directly touching each other.
また、 第 1、 2の光学結像装置 3 0、 3 1を介して立体像を結像させ るために、 シユードスコピック立体像 A '、 B 'がさらに反転されて、 凹凸が正常で歪みの少ない男性 A、 女性 Bの等身大の立体像が得られる と共に、 反射されずに第 1の光学結像装置 3 0を透過した収斂に寄与し ない散乱光が、 続く第 2の光学結像装置 3 1を介することによって取り 除かれるので、 最終的に結像する立体像 A〃 、 B〃 の鮮明度が高くなる o  In addition, in order to form a stereoscopic image via the first and second optical imaging devices 30 and 31, the pseudoscopic stereoscopic images A ′ and B ′ are further inverted so that the irregularities are normal. A life-size stereoscopic image of male A and female B with little distortion can be obtained, and scattered light that has not been reflected and does not contribute to convergence that has passed through the first optical imaging device 30 is transmitted to the second optical imaging device. Since it is removed by passing through the imaging device 31, the sharpness of the finally formed stereoscopic images A〃 and B〃 increases.
また、 直接的には計測不可能な、 例えば高温の対象物の形状、 寸法等 を非接触で計測すること等が可能となる。 図 6は、 前記第 1〜 3の実施例に係る光学結像装置を複数の凸レンズ と組み合わせて用いる第 2の応用例の説明図である。 In addition, it is possible to measure the shape and dimensions of a high-temperature object that cannot be measured directly, for example, without contact. FIG. 6 is an explanatory diagram of a second application example in which the optical imaging devices according to the first to third embodiments are used in combination with a plurality of convex lenses.
この光学系 4 0は第 1、 第 2の光学結像装置 4 1、 4 2、 及び第 1、 2の凸レンズ 4 3、 4 4とが図 6に示すように配置されて構成されてお り、 対象物からの散乱光 4 5を第 1の凸レンズ 4 3、 第 1の光学結像装 置 4 1、 第 2の凸レンズ 4 4、 第 2の光学結像装置 4 2の順に透過させ ることにより、 対象物の立体像を第 2の光学結像装置 4 2の後方に結像 させるものである。  The optical system 40 is configured by arranging first and second optical imaging devices 41 and 42 and first and second convex lenses 43 and 44 as shown in FIG. The scattered light 45 from the object is transmitted through the first convex lens 43, the first optical imaging device 41, the second convex lens 44, and the second optical imaging device 42 in this order. Thus, a three-dimensional image of the object is formed behind the second optical imaging device 42.
ここで、 長さの等しい 2つの対象物 (:、 Dが光学系 4 0の第 1の凸レ ンズ 4 3の前方に距離を隔てて配置されている場合について更に詳細に 説明する。 なお、 以下の説明において後方とは散乱光 4 5の進行方向を いい、 前方とはその逆方向をいうものとする。  Here, a more detailed description will be given of a case where two objects (:, D having the same length are arranged at a distance in front of the first convex lens 43 of the optical system 40. In the following description, the rear refers to the traveling direction of the scattered light 45, and the forward refers to the opposite direction.
先ず、 対象物 (:、 Dからの散乱光 4 5が第 1の凸レンズ 4 3を透過す ることにより、 上下が反転し、 かつ、 第 1の凸レンズ 4 3との距離に応 じた比率で縮小された対象物 C、 Dの実像 C '、 D 'が距離を隔てて結 像する。 実像 C ' . D 'は第 1の凸レンズ 4 3による屈折現象を利用し たものであるため、 必然的に屈折による光学的歪みを有する光学像とな る。  First, scattered light 45 from the object (:, D is transmitted through the first convex lens 43, so that it is turned upside down and at a ratio corresponding to the distance from the first convex lens 43. The real images C ′ and D ′ of the reduced objects C and D are formed at a distance from each other, and the real images C ′ and D ′ are inevitable because the refraction by the first convex lens 43 is used. An optical image having optical distortion due to refraction is obtained.
次に、 前記実像 C \ D 'からの散乱光が第 1の光学結像装置 4 1を 介して収斂し、 前記実像 C Ό ' と鏡面対称の位置関係にあり、 光学 的歪みの付加されない実像 (:〃 、 D " が得られる。 即ち、 実像 C '、 D ' と実像 C〃 、 D〃 とは互いに等倍であり、 かつ上下の対称関係は保持 されるが、 凹凸が反転した関係にあり、 光学的な歪みの程度は両者同等 となる。  Next, the scattered light from the real image C \ D 'converges via the first optical imaging device 41, and is in a mirror-symmetrical positional relationship with the real image C 、', and is a real image to which no optical distortion is added. (: 〃, D "is obtained. That is, the real images C ′, D ′ and the real images C〃, D 互 い に are equal to each other, and the up-down symmetric relationship is maintained, but the relationship in which the unevenness is reversed is obtained. Yes, the degree of optical distortion is the same for both.
そして、 実像 (:〃 、 D " を光源とし、 第 2の凸レンズ 4 4により実像 C„ 、 D„ を結像させ、 さらに第 2の光学結像装置 4 2を介することに より、 その後方に立体像 C f 、 D f が得られる。 Then, the real image (: 〃, D "is used as a light source, and the real image is formed by the second convex lens 44. By imaging C „and D„ and further passing through the second optical imaging device 42, stereoscopic images C f and D f are obtained behind.
この光学系においては、 第 1、 第 2の凸レンズ 4 3、 4 4及び第 1、 第 2の光学結像装置 4 1、 4 2の位置関係により、 立体像 C f 、 D f の 結像位置を任意に調整することができると共に、 凸レンズのみからなる 光学系に較べて光学的歪みが少ない立体像 C f 、 D f を得ることができ る。 In this optical system, the imaging positions of the three-dimensional images C f and D f are determined by the positional relationship between the first and second convex lenses 43 and 44 and the first and second optical imaging devices 41 and 42. Can be arbitrarily adjusted, and three-dimensional images C f and D f with less optical distortion can be obtained as compared with an optical system including only a convex lens.
また、 第 1、 第 2の光学結像装置 4 1、 4 2を直列に配置することに より、 立体像の結像に寄与しない、 即ち、 反射素子により反射されずに 反射素子中を透過する散乱光あるレ、は反射素子の反射面で 2回以上反射 される散乱光が除かれて、 より鲜明な立体像 C f 、 D f を得ることがで きる。 Also, by arranging the first and second optical imaging devices 41 and 42 in series, they do not contribute to the formation of a three-dimensional image, that is, they are transmitted through the reflection element without being reflected by the reflection element. In the case of scattered light, scattered light reflected at least twice on the reflection surface of the reflection element is removed, and clearer stereoscopic images C f and D f can be obtained.
以上、 本発明の実施例を説明したが、 本発明はこれらの実施例に限定 されるものではなく、 要旨を逸脱しない条件の変更等は全て本発明の適 用範囲である。  As described above, the embodiments of the present invention have been described. However, the present invention is not limited to these embodiments, and all changes in conditions without departing from the gist are within the applicable range of the present invention.
例えば、 本実施例においては、 透明な円柱の側面が反射面であるよう な反射素子を使用したが、 断面が三角形、 五角形あるいは六角形等の多 角形となる多角柱状体として、 その側面を反射面としても同様の効果を 得ることができ、 また、 中空の多角柱を使用してもよい。 なお、 多角柱 状の反射素子を使用する場合、 パネル内に配置される反射素子の密度を 増加させて、 散乱光の利用効率をより高めることができる。 産業上の利用可能性  For example, in the present embodiment, a reflecting element was used in which the side surface of a transparent cylinder was a reflecting surface, but the side surface was reflected as a polygonal column having a polygonal shape such as a triangle, a pentagon, or a hexagon. The same effect can be obtained as the surface, and a hollow polygonal column may be used. In the case where a polygonal reflective element is used, the density of the reflective elements arranged in the panel can be increased, and the scattered light utilization efficiency can be further increased. Industrial applicability
本発明に係る光学結像装置においては、 対象物からの散乱光をパネル 面と直交する反射面で反射させて対象物の光学像を結像させるので、 パ ネルの厚みの中心面を鏡面対称の基準面として、 対象物の鏡面対称とな る位置に歪みの少ない対象物の実像を結像させることができる。 従って 、 この光学結像装置を光学系の一部として凸レンズ等の他の光学装置と 組み合わせたり、 あるいは複数の前記光学結像装置を組み合わせて用い る等の応用が可能であり、 光学像を用いてシミュレーシヨン等を行うバ —チヤルリァリティ分野への適用等が容易になる。 In the optical imaging device according to the present invention, since the scattered light from the object is reflected by a reflection surface orthogonal to the panel surface to form an optical image of the object, Using the center plane of the thickness of the flannel as a mirror-symmetric reference plane, a real image of the object with little distortion can be formed at the position where the object is mirror-symmetric. Therefore, it is possible to apply this optical imaging device to another optical device such as a convex lens as a part of an optical system, or to use a combination of a plurality of the optical imaging devices. This makes it easier to apply simulations to virtual reality fields.
そして、 特に反射素子を透明な円柱又は円筒から構成することによつ て、 その内側面の一部又は全部、 もしくは外側面の一部又は全部が前記 反射面を形成することになるので、 対象物からの散乱光の集光度を高め ることができ、 その結果、 より鮮明な像を得ることができると共に、 装 置を簡単に製作することができる。  In particular, since the reflective element is made of a transparent column or cylinder, part or all of the inner surface or part or all of the outer surface forms the reflective surface. It is possible to increase the degree of collection of scattered light from an object, and as a result, a clearer image can be obtained and the device can be manufactured easily.

Claims

請 求 の 範 囲 The scope of the claims
1 . 対象物からの散乱光を収斂させて対象物の光学像を結像させる光学 結像装置であって、 1. An optical imaging device that forms an optical image of an object by converging scattered light from the object,
不透光性又は透光性のパネルに、 該パネル面に直交する反射面を有す る反射素子が多数配置されていることを特徴とする光学結像装置。 An optical imaging apparatus comprising: a plurality of light-transmitting or light-transmitting panels each including a plurality of reflecting elements each having a reflecting surface perpendicular to the panel surface.
2 . 前記反射素子が、 透明な円柱又は円筒からなり、 その内側面の一部 又は全部が前記反射面を形成している請求項 1記載の光学結像装置。2. The optical imaging device according to claim 1, wherein the reflective element is formed of a transparent column or cylinder, and a part or all of an inner surface thereof forms the reflective surface.
3 . 前記反射素子が、 透明な円柱又は円筒からなり、 その外側面の一部 又は全部が前記反射面を形成している請求項 1記載の光学結像装置。 3. The optical imaging device according to claim 1, wherein the reflection element is formed of a transparent column or cylinder, and a part or all of an outer surface thereof forms the reflection surface.
PCT/JP1996/001739 1995-06-23 1996-06-21 Optical image formation apparatus WO1997001116A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU61384/96A AU6138496A (en) 1995-06-23 1996-06-21 Optical image formation apparatus
US09/180,197 US6100771A (en) 1996-06-21 1998-04-16 Multi-signal generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18075795A JPH095503A (en) 1995-06-23 1995-06-23 Optical imaging device
JP7/180757 1995-06-23

Publications (1)

Publication Number Publication Date
WO1997001116A1 true WO1997001116A1 (en) 1997-01-09

Family

ID=16088792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001739 WO1997001116A1 (en) 1995-06-23 1996-06-21 Optical image formation apparatus

Country Status (3)

Country Link
JP (1) JPH095503A (en)
AU (1) AU6138496A (en)
WO (1) WO1997001116A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024677A1 (en) * 2012-08-10 2014-02-13 株式会社アスカネット Size-altering optical image forming device and manufacturing method therefor

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116639A1 (en) 2006-03-23 2007-10-18 National Institute Of Information And Communications Technology Imageing element and display
KR101077679B1 (en) * 2006-10-02 2011-10-27 도쿠리츠 교세이 호진 죠호 츠신 켄큐 키코 Two-point image formation optical device
WO2009131128A1 (en) * 2008-04-22 2009-10-29 Fujishima Tomohiko Optical imaging device and optical imaging method using the same
WO2009136578A1 (en) * 2008-05-09 2009-11-12 パイオニア株式会社 Spatial image display apparatus
JP5057390B2 (en) * 2008-05-16 2012-10-24 独立行政法人情報通信研究機構 2-sided corner reflector array
JP2009276699A (en) * 2008-05-16 2009-11-26 National Institute Of Information & Communication Technology Dihedral corner reflector array
JP2011081300A (en) * 2009-10-09 2011-04-21 Pioneer Electronic Corp Method for manufacturing reflection type plane-symmetric imaging element
WO2012165217A1 (en) * 2011-05-27 2012-12-06 シャープ株式会社 Optical element and optical system
WO2013061619A1 (en) 2011-10-24 2013-05-02 株式会社アスカネット Optical image forming device
US8702252B2 (en) 2012-01-30 2014-04-22 Asukanet Company, Ltd. Optical imaging apparatus and optical imaging method using the same
JP5921243B2 (en) * 2012-02-14 2016-05-24 シャープ株式会社 Reflective imaging element and optical system
JP5646110B2 (en) 2012-02-28 2014-12-24 株式会社アスカネット Stereoscopic image forming system and method
JP2012128456A (en) * 2012-03-22 2012-07-05 Pioneer Electronic Corp Method of manufacturing reflective plane-symmetric imaging element
JP5318242B2 (en) * 2012-03-22 2013-10-16 パイオニア株式会社 Method for manufacturing a reflection-type plane-symmetric imaging element
JP5893503B2 (en) * 2012-05-14 2016-03-23 シャープ株式会社 Display device and display method
JP5860143B2 (en) * 2012-05-25 2016-02-16 パイオニア株式会社 Reflective plane-symmetric imaging element, spatial image display device, and manufacturing method of reflective plane-symmetric imaging element
JP2015166845A (en) * 2014-02-13 2015-09-24 日本電気硝子株式会社 Optical image forming element and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821702A (en) * 1981-07-31 1983-02-08 Ricoh Co Ltd Image-forming element using both side reflection band of minute width
JPS6125104A (en) * 1984-07-13 1986-02-04 Hitachi Ltd Compound lens
JPS63191182A (en) * 1987-02-04 1988-08-08 キヤノン株式会社 Image display member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821702A (en) * 1981-07-31 1983-02-08 Ricoh Co Ltd Image-forming element using both side reflection band of minute width
JPS6125104A (en) * 1984-07-13 1986-02-04 Hitachi Ltd Compound lens
JPS63191182A (en) * 1987-02-04 1988-08-08 キヤノン株式会社 Image display member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024677A1 (en) * 2012-08-10 2014-02-13 株式会社アスカネット Size-altering optical image forming device and manufacturing method therefor
JPWO2014024677A1 (en) * 2012-08-10 2016-07-25 株式会社アスカネット Magnification change type optical imaging apparatus and method for manufacturing the same

Also Published As

Publication number Publication date
AU6138496A (en) 1997-01-22
JPH095503A (en) 1997-01-10

Similar Documents

Publication Publication Date Title
WO1997001116A1 (en) Optical image formation apparatus
CN108885347B (en) Pupil expansion
JP5036898B2 (en) Optical imaging device
KR101067941B1 (en) Optical system
JP4900618B2 (en) Imaging element, display device
US10739607B2 (en) Light source module, sensing device and method for generating superposition structured patterns
JP7177475B2 (en) Display device and display method of aerial image
CN103488036B (en) Holographic three-dimensional projection screen and projecting method thereof
NL8503526A (en) TRANSPARENT PROJECTION SCREEN.
CN113917701B (en) Projection light field stereoscopic display device
CN110286496B (en) Stereoscopic display device based on front directional light source
JP2874208B2 (en) Image display device
JP2012008301A (en) Volume-scanning type 3d image display device
JP2002543447A (en) Image forming apparatus and biaxial retroreflective element
US20110235201A1 (en) Two-image-point imaging optical device
JP2002517779A (en) Floating image display
JP2001511915A (en) Airborne image display
KR101698779B1 (en) Micro Mirror Array and Manufacturing Method Thereof, and Floating Display including such a Micro Mirror Array
JPH05150368A (en) Reflection type screen
Fujii et al. Aerial imaging steganography method for aerial imaging by retro-reflection with dual acrylic ball
JP2023058520A (en) Projection device and projecting method
JP2000089227A5 (en)
CN211905753U (en) Optical lens
CN211905883U (en) Multi-viewpoint aerial imaging device
JP4503484B2 (en) Space floating image display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AU BB BG BR BY CA CN CZ EE FI GE HU IS KG KR KZ LK LR LT LV MD MG MN MX NO NZ PL RO RU SG SI SK TJ TM TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase