JPH0953171A - Production of magnetostriction thin film - Google Patents

Production of magnetostriction thin film

Info

Publication number
JPH0953171A
JPH0953171A JP20812795A JP20812795A JPH0953171A JP H0953171 A JPH0953171 A JP H0953171A JP 20812795 A JP20812795 A JP 20812795A JP 20812795 A JP20812795 A JP 20812795A JP H0953171 A JPH0953171 A JP H0953171A
Authority
JP
Japan
Prior art keywords
thin film
magnetostriction
magnetostrictive
substrate
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20812795A
Other languages
Japanese (ja)
Other versions
JP3785581B2 (en
Inventor
Hirohisa Uchida
裕久 内田
Yoshito Matsumura
義人 松村
Haruhisa Uchida
晴久 内田
Mitsuhiro Wada
充弘 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP20812795A priority Critical patent/JP3785581B2/en
Publication of JPH0953171A publication Critical patent/JPH0953171A/en
Application granted granted Critical
Publication of JP3785581B2 publication Critical patent/JP3785581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To optionally control the magnetic properties of a magnetostriction thin film by subjecting a magnetostriction thin film on a substrate to be grown in a vapor phase to heat treatment. SOLUTION: A magnetostriction material is grown in a phase on a substrate to produce a magnetostriction thin film. For example, as a film forming method, ion beam sputtering is used, an ion beam 2 is generated by an ion source 1, and a target 3 composed of a magnetostriction material is sputtered to film-form the magnetostriction material on a substrate 4. At this time, the magnetostriction thin film is subjected to heat treatment in the process or after the film forming. Thus, the magnetic properties of the magnetostriction material can optionally be controlled. As for the means of the heat treatment, thermal conduction or radiation may be executed, and furthermore, heating by accelerated high energy grains or electron beams may be executed. The heat treating temp. is preferably regulated to 200 to 1,300 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は磁歪薄膜の製造方法
に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a magnetostrictive thin film.

【0002】[0002]

【従来の技術】磁歪材料は磁気−応力の変換を可能に
し、かつ圧電材料と比較して降伏を起こしにくいため大
きな力と変位を生じさせる可能性を有している。このた
め、磁歪材料の薄膜は、周波数可変型の磁気表面弾性波
(Magnetic Surface Acousti
c Wave:M−SAW)フィルター素子や、アクチ
ュエータデバイスとしての利用が期待されている。
2. Description of the Related Art Magnetostrictive materials enable the conversion of magnetism into stress, and are less prone to yielding than piezoelectric materials, and therefore have the potential to generate large forces and displacements. For this reason, the thin film of the magnetostrictive material has a variable frequency surface acoustic wave (Magnetic Surface Acoustic Wave).
It is expected to be used as a c Wave: M-SAW) filter element or an actuator device.

【0003】しかし、所望のデバイスの要求に応じた特
性を得るためには、従来は組成を変化させて磁歪材料の
合金バルクを調製するという方法が採られており、特性
の制御性の点で問題があった。
However, in order to obtain the characteristics according to the requirements of a desired device, conventionally, a method of changing the composition to prepare an alloy bulk of a magnetostrictive material has been adopted, and in terms of the controllability of the characteristics. There was a problem.

【0004】[0004]

【発明が解決しようとする課題】本発明は任意の組成を
有する磁歪薄膜の磁歪特性を任意に制御できる製造方法
を提供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method capable of arbitrarily controlling the magnetostrictive characteristics of a magnetostrictive thin film having an arbitrary composition.

【0005】[0005]

【課題を解決するための手段】本発明の磁歪薄膜の製造
方法は、基板上に磁歪材料を気相成長させて磁歪薄膜を
製造するにあたり、磁歪薄膜を成膜中または成膜後に熱
処理を行うことにより、その磁歪特性を制御することを
特徴とするものである。
According to the method of manufacturing a magnetostrictive thin film of the present invention, when a magnetostrictive material is vapor-deposited on a substrate to manufacture a magnetostrictive thin film, a heat treatment is performed during or after film formation of the magnetostrictive thin film. Thus, the magnetostrictive characteristic is controlled.

【0006】[0006]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明において、磁歪材料としては種々の材料を
用いることができるが、特に大きな磁歪を示すRT2
(R:希土類元素、T:遷移金属元素)で表される希土
類−遷移金属系の合金を用いることが好ましい。磁歪材
料を気相成長させるには種々の方法を用いることがで
き、具体的にはプラズマフィラメント型イオンビームス
パッタリングなどのスパッタリング法、フラッシュ蒸着
などの蒸着法、イオンプレーティング法、プラズマCV
D法、ダイナミックミキシング法などが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below. In the present invention, various materials can be used as the magnetostrictive material, but RT 2 which exhibits a particularly large magnetostriction
It is preferable to use a rare earth-transition metal alloy represented by (R: rare earth element, T: transition metal element). Various methods can be used for vapor-phase growth of a magnetostrictive material. Specifically, a sputtering method such as plasma filament type ion beam sputtering, a vapor deposition method such as flash vapor deposition, an ion plating method, and a plasma CV method.
D method, dynamic mixing method, etc. are mentioned.

【0007】本発明において、基板としてはSiなどの
半導体単結晶基板、LiNbO3 などの酸化物単結晶基
板、ポリイミド(例えばカプトン)などのポリマーシー
トなどを用いることができる。
In the present invention, a semiconductor single crystal substrate such as Si, an oxide single crystal substrate such as LiNbO 3 or a polymer sheet such as polyimide (eg Kapton) can be used as the substrate.

【0008】本発明の原理を図1を参照して説明する。
なお、この図は成膜方法としてイオンビームスパッタリ
ングを用いた例を示している。本発明の方法では、イオ
ン源1によりイオンビーム2を発生させ磁歪材料からな
るターゲット3をスパッタリングして基板4上に磁歪材
料を成膜させるが、この成膜中または成膜後に磁歪薄膜
を熱処理する。熱処理の手段は、熱伝導、輻射でもよい
し、加速された高エネルギー粒子または電子線による加
熱でもよい。熱処理温度は200〜1300℃とするこ
とが好ましい。これは200℃未満では磁歪特性を十分
に制御することができず、逆に1300℃を超えると所
望の金属間化合物相を得ることができなくなるなどの問
題が生じるためである。また、磁歪薄膜が酸化されるの
を避けるために、10-1Pa以下の真空またはArなど
の不活性ガス雰囲気中で熱処理することが好ましい。こ
のような方法により、任意の組成を有する磁歪薄膜の磁
歪特性を制御することができ、具体的には例えば正磁歪
から負磁歪へと変化させることができる。
The principle of the present invention will be described with reference to FIG.
Note that this figure shows an example using ion beam sputtering as a film forming method. In the method of the present invention, the ion beam 2 is generated by the ion source 1 and the target 3 made of a magnetostrictive material is sputtered to form a magnetostrictive material on the substrate 4. During or after the film formation, the magnetostrictive thin film is heat-treated. To do. The heat treatment means may be heat conduction, radiation, or heating with accelerated high-energy particles or electron beams. The heat treatment temperature is preferably 200 to 1300 ° C. This is because if the temperature is lower than 200 ° C., the magnetostrictive properties cannot be sufficiently controlled, and if the temperature exceeds 1300 ° C., a desired intermetallic compound phase cannot be obtained. Further, in order to avoid the magnetostrictive thin film from being oxidized, it is preferable to perform heat treatment in a vacuum of 10 −1 Pa or less or in an inert gas atmosphere such as Ar. By such a method, the magnetostrictive characteristic of the magnetostrictive thin film having an arbitrary composition can be controlled, and specifically, for example, it can be changed from positive magnetostriction to negative magnetostriction.

【0009】[0009]

【実施例】以下、本発明を実施例に基づいて説明する。
図2に本実施例において用いたプラズマフィラメント型
イオンビームスパッタリング装置の概略的な構成図を示
す。図2の各部材は真空容器(図示せず)の内部に設置
されている。イオン源1はプラズマ発生器11とアーク
チャンバー12とからなっており、これらの内部にAr
ガスが供給されるが、アークチャンバー12内はプラズ
マ発生器11内よりも低圧に設定される。これらの部材
に対して図中矢印で示すように下向き方向に外部磁場B
が印加されている。プラズマ発生器11内に供給された
Arガスはタングステン製フィラメントからなるカソー
ド(熱陰極)13から生じる熱電子によりプラズマとな
り、第1アノード14および第2アノード15により引
かれてアークチャンバー12内に入る。この結果、アー
クチャンバー12内ではプラズマフィラメント16が発
生し、Arはイオン化される。生成したArイオンは第
3アノード17を通して抽出電極18により引き出され
る。イオン源1からのイオンビーム2は、その出射方向
に対して45度傾けて設けられた磁歪材料からなるター
ゲット3をスパッタリングし、ターゲット3の上方に設
けられた基板4に磁歪薄膜が成膜される。
EXAMPLES The present invention will be described below based on examples.
FIG. 2 shows a schematic configuration diagram of the plasma filament type ion beam sputtering apparatus used in this example. Each member in FIG. 2 is installed inside a vacuum container (not shown). The ion source 1 is composed of a plasma generator 11 and an arc chamber 12, inside of which an Ar
Although the gas is supplied, the pressure inside the arc chamber 12 is set to be lower than that inside the plasma generator 11. An external magnetic field B is applied to these members in a downward direction as shown by arrows in the figure.
Is applied. The Ar gas supplied into the plasma generator 11 becomes plasma by thermoelectrons generated from the cathode (hot cathode) 13 made of a tungsten filament and is drawn by the first anode 14 and the second anode 15 into the arc chamber 12. . As a result, the plasma filament 16 is generated in the arc chamber 12, and Ar is ionized. The generated Ar ions are extracted by the extraction electrode 18 through the third anode 17. The ion beam 2 from the ion source 1 sputters a target 3 made of a magnetostrictive material, which is provided at an angle of 45 degrees with respect to the emission direction, and a magnetostrictive thin film is formed on a substrate 4 provided above the target 3. It

【0010】本実施例では、ターゲット3を構成する磁
歪材料としてTb0.3 Dy0.7 Fe2 を用いて上記のよ
うにイオンビームスパッタリングにより基板上に成膜し
た。そして、基板4上に磁歪薄膜を成膜した直後に、加
熱処理を行った。加熱条件は、真空容器内圧力0.8×
10-6Pa、加熱温度450℃、加熱時間12時間とし
た。
In this example, Tb 0.3 Dy 0.7 Fe 2 was used as the magnetostrictive material forming the target 3 to form a film on the substrate by ion beam sputtering as described above. Then, immediately after the magnetostrictive thin film was formed on the substrate 4, the heat treatment was performed. The heating condition is a vacuum vessel pressure of 0.8 x
The temperature was 10 −6 Pa, the heating temperature was 450 ° C., and the heating time was 12 hours.

【0011】図3に得られた磁歪薄膜の磁歪特性を示
す。なお、この図には、熱処理を行っていない磁歪薄膜
の磁歪特性も示す。この図は薄膜に平行に印加した磁場
Hの大きさと磁歪薄膜の面内の磁歪量Δl/lとの関係
をしめすものである。
FIG. 3 shows the magnetostrictive characteristics of the magnetostrictive thin film obtained. The figure also shows the magnetostrictive characteristics of the magnetostrictive thin film that has not been heat-treated. This figure shows the relationship between the magnitude of the magnetic field H applied parallel to the thin film and the in-plane magnetostriction amount Δl / l of the magnetostrictive thin film.

【0012】これらの図からわかるように、熱処理を行
っていない磁歪薄膜が正磁歪を示すのに対し、熱処理を
行った磁歪薄膜は負磁歪を示している。また、処理温
度、処理時間などを適宜設定することにより、磁歪薄膜
の磁歪特性を広い範囲にわたって連続的に変化させるこ
とが可能である。したがって、この磁歪薄膜をマイクロ
アクチュエータに応用する場合、その用途に応じて所望
の最適な磁歪特性を得ることができる。さらに、磁歪特
性のヒステリシスは加熱処理後でも加熱処理前と同様に
非常に小さく、この磁歪薄膜を高周波対応のM−SAW
フィルター素子にも好適に応用できる。
As can be seen from these figures, the magnetostrictive thin film which has not been heat-treated exhibits positive magnetostriction, whereas the magnetostrictive thin film which has been heat-treated exhibits negative magnetostriction. Further, by appropriately setting the processing temperature, the processing time, etc., it is possible to continuously change the magnetostrictive characteristics of the magnetostrictive thin film over a wide range. Therefore, when this magnetostrictive thin film is applied to a microactuator, desired optimum magnetostrictive characteristics can be obtained according to the application. Further, the hysteresis of the magnetostrictive property is very small even after the heat treatment as in the case before the heat treatment, and this magnetostrictive thin film is used for high-frequency compatible M-SAW.
It can be suitably applied to a filter element.

【0013】[0013]

【発明の効果】以上詳述したように本発明の方法を用い
れば、任意の組成を有する磁歪薄膜の磁歪特性を任意に
制御でき、この磁歪薄膜をマイクロマシーンデバイス、
マイクロアクチュエータ、M−SAWフィルター素子と
して好適に応用できる。
As described in detail above, by using the method of the present invention, the magnetostrictive characteristics of a magnetostrictive thin film having an arbitrary composition can be arbitrarily controlled, and this magnetostrictive thin film can be used as a micromachine device,
It can be suitably applied as a microactuator and an M-SAW filter element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の原理を説明する図。FIG. 1 illustrates the principle of the method of the present invention.

【図2】本発明の実施例において用いられたプラズマフ
ィラメント型イオンビームスパッタリング装置の構成を
示す図。
FIG. 2 is a diagram showing a configuration of a plasma filament type ion beam sputtering apparatus used in an example of the present invention.

【図3】本発明の実施例において製造された磁歪薄膜の
磁歪特性を示す図。
FIG. 3 is a diagram showing the magnetostrictive characteristics of the magnetostrictive thin film manufactured in the example of the present invention.

【符号の説明】[Explanation of symbols]

1…イオン源、2…イオンビーム、3…ターゲット、4
…基板、11…プラズマ発生器、12…アークチャンバ
ー、13…カソード、14…第1アノード、15…第2
アノード、16…プラズマフィラメント、17…第3ア
ノード、18…抽出電極。
1 ... Ion source, 2 ... Ion beam, 3 ... Target, 4
... substrate, 11 ... plasma generator, 12 ... arc chamber, 13 ... cathode, 14 ... first anode, 15 ... second
Anode, 16 ... Plasma filament, 17 ... Third anode, 18 ... Extraction electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に磁歪材料を気相成長させて磁歪
薄膜を製造するにあたり、磁歪薄膜を成膜中または成膜
後に熱処理を行うことにより、その磁歪特性を制御する
ことを特徴とする磁歪薄膜の製造方法。
1. When a magnetostrictive material is vapor-deposited on a substrate to manufacture a magnetostrictive thin film, a heat treatment is performed during or after the magnetostrictive thin film is formed to control the magnetostrictive characteristics. Manufacturing method of magnetostrictive thin film.
JP20812795A 1995-08-15 1995-08-15 Method for producing magnetostrictive thin film Expired - Fee Related JP3785581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20812795A JP3785581B2 (en) 1995-08-15 1995-08-15 Method for producing magnetostrictive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20812795A JP3785581B2 (en) 1995-08-15 1995-08-15 Method for producing magnetostrictive thin film

Publications (2)

Publication Number Publication Date
JPH0953171A true JPH0953171A (en) 1997-02-25
JP3785581B2 JP3785581B2 (en) 2006-06-14

Family

ID=16551093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20812795A Expired - Fee Related JP3785581B2 (en) 1995-08-15 1995-08-15 Method for producing magnetostrictive thin film

Country Status (1)

Country Link
JP (1) JP3785581B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335027A (en) * 2001-05-08 2002-11-22 Fdk Corp Supermagnetostriction thin film element and method of manufacturing it
JP2020123629A (en) * 2019-01-29 2020-08-13 住友金属鉱山株式会社 Method of manufacturing vibration power generation device and method of manufacturing magnetostrictive component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335027A (en) * 2001-05-08 2002-11-22 Fdk Corp Supermagnetostriction thin film element and method of manufacturing it
JP2020123629A (en) * 2019-01-29 2020-08-13 住友金属鉱山株式会社 Method of manufacturing vibration power generation device and method of manufacturing magnetostrictive component

Also Published As

Publication number Publication date
JP3785581B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
CN102492924A (en) Autologous ion bombardment assisted electron beam evaporation device, and method for coating film by using same
JP3785581B2 (en) Method for producing magnetostrictive thin film
JP3785582B2 (en) Method for producing magnetostrictive thin film
JPH03122266A (en) Production of thin nitride film
JPS5850419B2 (en) Method for manufacturing piezoelectric thin film
JPH08260126A (en) Method for hardening surface of aluminum substrate under melting
JPS6247472A (en) Formation of cubic boron nitride film
JPH0254757A (en) Formation of thin polycrystalline film
JPH062939B2 (en) Thin film generation method
US4582728A (en) Process for preparing a titanium carbide film
JPH01168857A (en) Formation of titanium nitride film
JPH0243357A (en) Production of thin superconducting film
JPS58100672A (en) Method and device for formation of thin film
JPS6260871A (en) Vacuum chemical reactor
JPH11172426A (en) Film formation capable of regulating crystal orientation propety of thin film
JPS628409A (en) Formation of transparent conducting metal oxide film
Ishiwatari et al. The growth of boron films by physical vapour deposition
JPH1154432A (en) Method of forming thin silicon polycrystal film
JPS63206464A (en) Inline type composite surface treatment device
JP3389639B2 (en) Control method of internal stress of film
JPS6260857A (en) Formation of boride film of high-melting point, high-boiling point and high-hardness substance
JPH05209265A (en) Sputtering device
JPS6250458A (en) Formation of thin boron film
JPS5853066B2 (en) Hot cathode discharge type ion plating equipment
JPS62216228A (en) Growing method for film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees