JPH0953157A - High corrosion resistant martensitic stainless steel low in hardness in weld zone - Google Patents

High corrosion resistant martensitic stainless steel low in hardness in weld zone

Info

Publication number
JPH0953157A
JPH0953157A JP21063195A JP21063195A JPH0953157A JP H0953157 A JPH0953157 A JP H0953157A JP 21063195 A JP21063195 A JP 21063195A JP 21063195 A JP21063195 A JP 21063195A JP H0953157 A JPH0953157 A JP H0953157A
Authority
JP
Japan
Prior art keywords
less
stainless steel
hardness
martensitic stainless
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21063195A
Other languages
Japanese (ja)
Other versions
JP3422880B2 (en
Inventor
Hitoshi Asahi
均 朝日
Taro Muraki
太郎 村木
Hiroshi Tamehiro
博 為広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21063195A priority Critical patent/JP3422880B2/en
Publication of JPH0953157A publication Critical patent/JPH0953157A/en
Application granted granted Critical
Publication of JP3422880B2 publication Critical patent/JP3422880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a martensitic stainless steel having the hardness in the heat affected zone equal to that of the base metal and having excellent CO2 corrosion resistance. SOLUTION: This high corrosion resistant martensitic stainless steel is the one having a compsn. contg., by weight, <=0.005% C, 0.1 to 1.0% Mn, <=0.03% P, <=0.005% S, 1.5 to 5% Ni, 1 to 3% Cu and 9 to 13% Cr, also satisfying the relation of 40C+34N+Ni+0.3Cu-1.1Cr>=-10.5, moreover contg., at need, 0.5 to 2.0% Mo and one or >= two kinds among Ti, Zr, Ca and rare earth metals, and the balance substantially Fe and having a martensitic structure, and in which the hardness of the heat affected zone is low comparably to that of the base metal, or is the one obtd. by subjecting the same to tempering or two phase region tempering. Thus, the martensitic stainless steel excellent in the characteristics in the heat affected zone which is nearly impossible in the conventional steel and good in CO2 corrosion resistance can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は優れた耐CO2 耐食
特性を有する溶接部硬さの低いマルテンサイト系ステン
レス鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a martensitic stainless steel having excellent CO 2 corrosion resistance and low weld hardness.

【0002】[0002]

【従来の技術】近年、CO2 を多量に含むガスを生産す
るガス井が開発され、また、CO2 インジェクションが
広く行われるようになっている。このような環境では腐
食が激しいため、AISI420鋼に代表されるような
耐CO2 腐食特性に優れた13%Crマルテンサイト系
ステンレス鋼の油井管が使用されている。地表に出てか
らのラインパイプは溶接で継がれるために、溶接性を考
慮していない油井管に使用されるような材料は使用でき
ない。従って、止むなく更に高級な二相ステンレス鋼の
ラインパイプが使用されている。しかし、経済性の観点
からは13%Cr鋼程度の材料をラインパイプに適用す
ることが望まれている。
2. Description of the Related Art In recent years, a gas well for producing a gas containing a large amount of CO 2 has been developed, and CO 2 injection has been widely performed. Since corrosion is severe in such an environment, an oil country tubular good made of 13% Cr martensitic stainless steel excellent in CO 2 corrosion resistance as represented by AISI 420 steel is used. Since line pipes that have been exposed to the surface are welded together, materials such as those used for oil country tubular goods that do not take weldability into consideration cannot be used. Therefore, higher grade duplex stainless steel line pipes are used unavoidably. However, from the viewpoint of economy, it is desired to apply a material of about 13% Cr steel to the line pipe.

【0003】溶接性を向上させるためには一般にCを低
減することが必要であり、マルテンサイト系ステンレス
鋼でCを低減し溶接性を向上させた材料が、例えば特開
平4−99128号公報、特開平4−99127号公報
等挙げられている。しかし、これらの鋼も溶接部が硬
く、特性上問題が多い。何よりも、溶接熱影響部はその
硬さのために耐硫化物応力割れ性が十分でなく、二相ス
テンレス鋼の代わりに使える水準までは達していない。
そこで、ラインパイプの使用温度でのCO2 耐食性と母
材並の溶接部硬さが得られる鋼が必要とされている。
In order to improve weldability, it is generally necessary to reduce C, and a martensitic stainless steel material having reduced C and improved weldability is disclosed in, for example, Japanese Patent Laid-Open No. 4-99128. Japanese Patent Laid-Open No. 4-99127 and the like are mentioned. However, these steels also have hard welds and have many problems in terms of properties. Above all, the weld heat-affected zone does not have sufficient resistance to sulfide stress cracking due to its hardness, and has not reached the level at which it can be used in place of duplex stainless steel.
Therefore, there is a need for steel that can obtain CO 2 corrosion resistance at the operating temperature of the line pipe and a weld hardness comparable to that of the base metal.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記したよ
うな従来の問題を解決しようとするものであって、特定
の成分に調整することにより、良好な耐CO2 腐食特性
と母材相当の硬さおよび特性となる溶接熱影響部を有す
るマルテンサイト系ステンレス鋼を提供することを目的
とする。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned conventional problems, and by adjusting to specific components, good CO 2 corrosion resistance and equivalent base material can be obtained. It is an object of the present invention to provide a martensitic stainless steel having a weld heat affected zone having the hardness and properties of.

【0005】[0005]

【課題を解決するための手段】本発明者は多くの実験結
果から、耐CO2 腐食特性は、高Cr鋼にCuとNiを
特定の範囲で複合添加することで著しく向上することを
見いだした。図1は耐CO2 腐食特性におよぼす元素の
影響を調べたもので、2〜4%NiをベースとしCr,
Mo,Cuの量が変化したときの鋼の腐食速度を整理し
たものである。●はCu;1〜3%を含有する鋼、○は
Cuを含有しない鋼である。明らかにCuとNiを添加
した鋼はNiのみ添加した鋼よりも高い耐食性を有して
おり、Crを4%多く添加した場合と同等の耐食性が得
られる。後述するように、材料はマルテンサイト単相で
なければならない。しかしながら、Cr添加量を増せば
耐食性は向上するが、マルテンサイト単相になりにくく
なる。CuとNiの複合添加により耐食性を向上させれ
ばフェライト形成元素であるCrの添加量を低減でき、
しかもCuとNiはオーステナイト形成元素であるた
め、これらの元素の添加は、マルテンサイト単相化の点
からも有利である。
DISCLOSURE OF THE INVENTION From the results of many experiments, the present inventor has found that the CO 2 corrosion resistance is remarkably improved by the combined addition of Cu and Ni in a specific range to high Cr steel. . Fig. 1 shows the effect of elements on CO 2 corrosion resistance, which is based on 2 to 4% Ni for Cr,
This is a summary of the corrosion rates of steel when the amounts of Mo and Cu change. ● indicates steel containing Cu; 1 to 3%, and ○ indicates steel not containing Cu. Clearly, the steel containing Cu and Ni has higher corrosion resistance than the steel containing only Ni, and the same corrosion resistance as when adding 4% more Cr is obtained. As described below, the material must be martensite single phase. However, although the corrosion resistance is improved by increasing the amount of Cr added, it becomes difficult to form a martensite single phase. If the corrosion resistance is improved by the combined addition of Cu and Ni, the addition amount of Cr, which is a ferrite forming element, can be reduced,
Moreover, since Cu and Ni are austenite-forming elements, addition of these elements is advantageous from the viewpoint of martensite single-phase formation.

【0006】材料の熱間加工性、耐溶接割れ性、溶接熱
影響部の靭性等を考慮すると、組織はδフェライトを含
有しないマルテンサイト相(高温ではオーステナイト
相)でなければならず、そのためにはNi等のオーステ
ナイト形成元素の添加が必要である。このような組織を
有する鋼の溶接熱影響部は、溶接入熱に係わりなくマル
テンサイト変態するため、その部分の硬さはマルテンサ
イトの硬さとなり、高くなる。マルテンサイトの硬さは
C量で決まるため、硬さを低くするためにはこのような
元素の含有量を低減する必要がある。図2は再現熱サイ
クル試験で得た溶接熱影響部の硬さと母材の熱処理後の
硬さにおよぼすC量の影響を示している。C量をある水
準まで低減すると両者の硬さがほぼ同じになるとの知見
を得た。溶接熱影響部は高温に加熱されるため、一般に
は炭化物形成による固溶Cの低減は有効ではない。ま
た、このような極低Cでδフェライトが出現しない条件
を見いだすことも簡単ではない。そこで、このような極
低Cで且つδフェライトが出現しないような化学成分条
件を、系統的に実験を行い見いだした。これらの知見を
組み合わせることにより溶接熱影響部の硬さが低い耐食
性のよいマルテンサイト系ステンレス鋼を得ることがで
きることが分かった。
Considering the hot workability of the material, the resistance to weld cracking, the toughness of the weld heat affected zone, etc., the structure must be the martensite phase containing no δ ferrite (the austenite phase at high temperatures). Requires the addition of an austenite forming element such as Ni. The weld heat-affected zone of steel having such a structure undergoes martensite transformation irrespective of welding heat input, and therefore the hardness of that portion becomes higher than that of martensite. Since the hardness of martensite is determined by the C content, it is necessary to reduce the content of such elements in order to reduce the hardness. FIG. 2 shows the effect of the amount of C on the hardness of the weld heat affected zone obtained by the simulated heat cycle test and the hardness of the base metal after heat treatment. It was found that when the C content is reduced to a certain level, the hardnesses of the two become almost the same. Since the weld heat affected zone is heated to a high temperature, it is generally not effective to reduce the solid solution C by forming carbide. Further, it is not easy to find a condition where δ ferrite does not appear at such an extremely low C. Therefore, we have systematically conducted experiments to find such chemical composition conditions that the ultra low C content and δ ferrite do not appear. It was found that by combining these findings, it is possible to obtain a martensitic stainless steel having a low weld heat-affected zone hardness and good corrosion resistance.

【0007】本発明は以上の知見に基づいて構成したも
のであって、その要旨とするところは以下の通りであ
る。すなわち、重量%でC ;0.005%以下、
Si;0.50%以下、Mn;0.1〜1.0
%、 P ;0.03%以下、S ;0.00
5%以下、 Cr;8.2〜13%、Ni;
1.5〜5%、 Cu;1.0〜3.0
%、Al;0.06%以下、 N ;0.0
08%以下、また、必要に応じてMo;0.5〜2.0
%を含有し、それらの成分間に式Cr+1.6Mo≧9
を満足し、更に式40C+34N+Ni+0.3Cu−
1.1Cr−1.8Mo≧−10.5を満足する関係が
あり、更に、必要に応じてTi;0.005〜0.1
%、 Zr;0.01〜0.2%のうちの1種また
は2種、および/あるいはCa;0.001〜0.02
%、 REM;0.003〜0.4%のうちの1種ま
たは2種以上を含有してもよく、残部が実質的にFeか
らなるマルテンサイト組織を呈することを特徴とする溶
接部硬さの低い高耐食マルテンサイト系ステンレス鋼で
ある。またこの鋼をAc3 変態点以上の温度に加熱し、
必要に応じて、焼戻し、または二相域焼戻しを施しても
よい。
The present invention is constructed based on the above findings, and the gist thereof is as follows. That is, C in weight%; 0.005% or less,
Si; 0.50% or less, Mn; 0.1 to 1.0
%, P; 0.03% or less, S; 0.00
5% or less, Cr; 8.2 to 13%, Ni;
1.5-5%, Cu; 1.0-3.0
%, Al; 0.06% or less, N; 0.0
08% or less, and Mo as required; 0.5 to 2.0
%, And the formula Cr + 1.6Mo ≧ 9 between these components.
Which satisfies the formula 40C + 34N + Ni + 0.3Cu-
1.1Cr-1.8Mo ≧ -10.5, and Ti: 0.005-0.1 if necessary.
%, Zr; one or two of 0.01 to 0.2%, and / or Ca; 0.001 to 0.02
%, REM; 0.003 to 0.4% of one or two or more of them may be contained, and the weld zone hardness is characterized by exhibiting a martensitic structure in which the balance is substantially Fe. It is a high corrosion resistant martensitic stainless steel with a low corrosion resistance. Also, heating this steel to a temperature above the Ac 3 transformation point,
If necessary, tempering or two-phase region tempering may be performed.

【0008】[0008]

【発明の実施の形態】以下に本発明について詳細に説明
する。 C:強化に有効であり、且つ強力なオーステナイト形成
元素であって、δフェライト相の形成を抑制する効果が
ある。しかし、低C化により溶接熱影響部の靭性を高
め、更に図2で示したように溶接熱影響部の硬さを母材
並に低減させるためには0.005%以下に制限する必
要がある。下限は必ずしも明らかではないが0.001
%でもまだ有効である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. C: A strong austenite forming element which is effective for strengthening and has an effect of suppressing the formation of the δ ferrite phase. However, in order to increase the toughness of the weld heat affected zone by lowering C and further reduce the hardness of the weld heat affected zone to the level of the base metal as shown in FIG. 2, it is necessary to limit it to 0.005% or less. is there. The lower limit is not always clear, but 0.001
% Is still valid.

【0009】Si:製鋼上脱酸材として添加され残有し
ているもので、鋼の中に0.50%を超えて含有してい
ると靭性および耐硫化物応力割れ性を低下させるため、
0.50%以下とした。 Mn:粒界強度を低下させて腐食環境下での割れ抵抗性
を損なう元素である。しかし、MnSを形成してSの無
害化を進め、また、オーステナイト単相化に有効で、有
用な元素であるので、添加する。ただし、含有量が0.
1%未満では効果がなく、1.0%を超えると粒界強度
の低下が著しくなるので、Mnの含有量は0.1〜1.
0%とした。
Si: It is added as a deoxidizing agent on steelmaking and remains. If it is contained in the steel in an amount of more than 0.50%, toughness and sulfide stress cracking resistance are deteriorated.
0.50% or less. Mn: An element that lowers the grain boundary strength and impairs crack resistance in a corrosive environment. However, MnS is formed to promote detoxification of S, and is an effective element for austenite single-phase formation, so it is added, so it is added. However, if the content is 0.
If it is less than 1%, there is no effect, and if it exceeds 1.0%, the grain boundary strength is significantly reduced, so the Mn content is 0.1 to 1.
0%.

【0010】P:粒界に偏析して粒界強度を弱め、耐硫
化物応力割れ性、および低温靭性を低下させるので0.
03%以下とした。 S:硫化物系の介在物を形成し、熱間加工性、および延
靭性を低下させるため、その上限を0.005%とし
た。
P: Segregated at the grain boundaries to weaken the grain boundary strength and reduce the sulfide stress cracking resistance and low temperature toughness.
03% or less. S: The upper limit was made 0.005% in order to form sulfide-based inclusions and reduce hot workability and ductility.

【0011】Ni:強力なオーステナイト生成元素であ
るので、マルテンサイト組織の実現、熱間加工性の向上
に有用である。更に、低Cのマルテンサイト組織である
溶接熱影響部の靭性を高める役割がある。含有量が1.
5%未満では効果が十分でなく、また、5%を超えて含
有するとAc1 変態点が低くなりすぎ、調質が困難にな
るので、その限定範囲を1.5〜5%とした。また、C
uとの複合添加により耐食性を向上させる重要な役割が
あり、このためにも1.5%以上の添加が必要である。
Ni: A strong austenite-forming element, which is useful for realizing a martensitic structure and improving hot workability. Further, it has a role of increasing the toughness of the weld heat affected zone which is a low C martensitic structure. Content is 1.
If it is less than 5%, the effect is not sufficient, and if it exceeds 5%, the Ac 1 transformation point becomes too low and the tempering becomes difficult, so the limiting range was made 1.5 to 5%. Also, C
There is an important role to improve the corrosion resistance by the combined addition with u, and for this purpose too, addition of 1.5% or more is necessary.

【0012】Al:Siと同様に脱酸材として添加され
残有しているもので、含有量が0.06%を超えるとA
lNが多量に形成され、靭性が低下する。従って、含有
量の上限を0.06%とした。 N:鋼に不可避的に含有される元素であが、溶接熱影響
部の硬さを高めて靭性を劣化させるので、最大0.00
8%とした。
Similar to Al: Si, it is added as a deoxidizing agent and remains. If the content exceeds 0.06%, A
A large amount of 1N is formed and the toughness decreases. Therefore, the upper limit of the content is set to 0.06%. N: An element that is unavoidably contained in steel, but increases the hardness of the weld heat affected zone and deteriorates the toughness, so a maximum of 0.00
8%.

【0013】Mo:次項のCrと同様、耐CO2 腐食特
性を向上させ、更にSSC性を改善する効果を有するの
で必要に応じて添加する。含有量が0.5%未満では効
果がないので0.5%以上となるよう添加することとし
た。一方、多量に添加してもその効果が飽和し、且つ熱
間変形抵抗が増して熱間加工性が低下するので上限を2
%とした。
Mo: Similar to Cr in the next section, it has the effect of improving the CO 2 corrosion resistance and further improving the SSC property, so it is added if necessary. If the content is less than 0.5%, there is no effect, so the content was determined to be 0.5% or more. On the other hand, even if added in a large amount, the effect saturates, and the hot deformation resistance increases and the hot workability decreases, so the upper limit is 2
%.

【0014】Cr:耐CO2 腐食特性を向上させる最も
重要な元素である。Cr単独添加で含有量が9%未満の
ときには耐食性が十分ではなく、一方13%を超えると
δフェライト相が生成しやすくなる。従って、9〜13
%とした。また、上記のようにMoも同様な働きをし、
その寄与率は実験的に求めた結果Crの1.6倍であ
る。従ってCr単独ではなく、Moを含有する場合には
Cr+1.6Moを9%以上とし、Crの下限を8.2
%とした。
Cr: The most important element for improving the CO 2 corrosion resistance. If the content of Cr alone is less than 9%, the corrosion resistance is not sufficient, while if it exceeds 13%, the δ ferrite phase is likely to be formed. Therefore, 9 ~ 13
%. Also, as mentioned above, Mo also works in the same way,
The contribution rate is 1.6 times that of Cr as a result of experimental determination. Therefore, when Mo is contained instead of Cr alone, Cr + 1.6Mo is set to 9% or more, and the lower limit of Cr is 8.2.
%.

【0015】Cu:Niと共存して耐食性を高める効果
を有する。含有量が1.0%未満では効果が十分でな
く、一方3.0%を超えると熱間加工性を損なうため、
添加範囲を1.0〜3.0%とした。
Coexisting with Cu: Ni has the effect of enhancing corrosion resistance. If the content is less than 1.0%, the effect is not sufficient, while if it exceeds 3.0%, the hot workability is impaired.
The addition range was 1.0 to 3.0%.

【0016】以上述べたような成分範囲の鋼は、良好な
耐CO2 腐食特性を示す。しかし、Cr,Mo等のフェ
ライト生成元素の多い成分では、溶接熱影響部にフェラ
イト相が生成して靭性が劣化する。従って、フェライト
生成元素の含有量を制限する必要がある。従来の知見か
ら、C,N,Niはフェライト相の生成を抑制し、C
r,Moは促進する。各元素濃度を変化させた鋼を溶製
し実験的に各々の寄与率を決定した。その結果、下記式
の Ips=40C+34N+Ni−1.1Cr−1.8Mo
≧−10.5 を満足すればフェライト相は生成せず、マルテンサイト
単相となることが分かったので、C,N,Ni,Cr,
Moはこの関係を満足する必要がある。
The steel having the above-mentioned compositional range exhibits good CO 2 corrosion resistance. However, with a component containing a large amount of ferrite forming elements such as Cr and Mo, a ferrite phase is formed in the weld heat affected zone and the toughness deteriorates. Therefore, it is necessary to limit the content of the ferrite forming element. From the conventional knowledge, C, N and Ni suppress the generation of ferrite phase,
r and Mo accelerate. Steel with different element concentrations was melted and the contribution rate of each was determined experimentally. As a result, I ps = 40C + 34N + Ni-1.1Cr-1.8Mo of the following formula is obtained.
If ≧ -10.5 is satisfied, it was found that the ferrite phase was not generated and the single phase was martensite. Therefore, C, N, Ni, Cr,
Mo needs to satisfy this relationship.

【0017】Ti:TiNやTi酸化物として分散し、
溶接熱影響部の粒成長を抑制して、靭性の劣化を抑制す
る。少なすぎると効果がなく、過剰に添加するとTiC
が析出して靭性を却って劣化させる。従って、Tiを添
加する場合の添加量は、0.005〜0.1%とした。 Zr:耐硫化物応力割れ性に対して有害なPとの間で安
定な化合物を形成し、固溶Pを減少させて実質的な低P
化を図る効果を有する。少量では効果がなく、多すぎる
と粗大な酸化物を形成して却って靭性や耐硫化物応力割
れ性を低下させるので、0.01〜0.2%とした。
Ti: dispersed as TiN or Ti oxide,
Suppresses grain growth in the weld heat affected zone and suppresses deterioration of toughness. If it is too small, it has no effect.
Precipitates and rather deteriorates the toughness. Therefore, the addition amount of Ti is set to 0.005 to 0.1%. Zr: A stable compound is formed with P, which is harmful to sulfide stress cracking resistance, and solid solution P is reduced to substantially reduce P.
Has the effect of promoting A small amount has no effect, and an excessive amount causes formation of a coarse oxide to rather reduce toughness and sulfide stress cracking resistance, so the content was made 0.01 to 0.2%.

【0018】Ca,REM:介在物の形態を球状化させ
て無害化するのに有効な元素である。少なすぎるとその
効果がなく、多すぎると介在物を増加させて耐硫化物応
力割れ抵抗性を低下させるので各々0.001〜0.0
2%、0.003〜0.4%とした。
Ca, REM: An element effective for making the inclusions spherical and harmless. If it is too small, the effect will not be obtained, and if it is too large, inclusions will increase and the resistance to sulfide stress cracking will be reduced.
2% and 0.003-0.4%.

【0019】以上のような成分を有する鋼は、熱間加工
ままであり、あるいはAc3 変態点以上に再加熱した後
のマルテンサイト組織である。しかし、マルテンサイト
ままでは変形能が十分でない場合があるので、必要に応
じて焼戻し、または二相域焼戻しを行う。本発明のこの
ような低Cの鋼では焼戻しを行っても強度の変化は小さ
いが、残留応力が低減され、伸びも改善されて変形能が
高まる。二相域焼戻しを行うと、焼戻しマルテンサイト
とマルテンサイト、場合によっては更にオーステナイト
を含む混合組織となり、組織が微細となって靭性や伸び
が更に改善される。
The steel having the above components has a martensite structure after being hot-worked or after being reheated to the Ac 3 transformation point or higher. However, since the deformability may not be sufficient with martensite as it is, tempering or two-phase region tempering is performed as necessary. In the low C steel of the present invention, the strength change is small even if tempered, but the residual stress is reduced, the elongation is improved, and the deformability is increased. When two-phase region tempering is performed, a mixed structure containing tempered martensite and martensite, and in some cases further austenite is formed, and the structure becomes finer to further improve toughness and elongation.

【0020】[0020]

【実施例】表1に示す化学成分の鋼を溶製・鋳造した
後、モデル圧延機で継目無鋼管を製造し、必要に応じて
熱処理を施した。耐CO2 腐食特性は、40atm のCO
2 ガスと平衡状態にある100℃の人工海水中に試験片
を浸漬し、腐食減量から腐食速度を測定した。耐硫化物
応力割れ性は、1規定の酢酸と1mol/lの酢酸ナトリウ
ムを混合してpH;4.5に調整し、1%硫化水素+9
9%窒素ガスの混合ガスを飽和させた液中で平滑丸棒試
験片(平行部径6.4mm、平行部長さ25mm)に降伏強
度の80%に相当する引張応力を付与して破断時間を測
定した。その際、720時間まで試験を行い、破断しな
かったものが優れた耐硫化物応力割れ抵抗性を有してい
ると見なせる。また、入熱2kJ/mm相当の再現熱サイク
ル試験を行い、硬さおよびJIS4号シャルピー試験片
による遷移温度(vTrs)の測定を行った。表2に試
験結果を示す。
Example After melting and casting the steel having the chemical composition shown in Table 1, a seamless steel pipe was manufactured by a model rolling machine and heat-treated as required. CO 2 corrosion resistance is 40 atm CO
The test piece was immersed in artificial seawater at 100 ° C in equilibrium with the two gases, and the corrosion rate was measured from the corrosion weight loss. Resistance to sulfide stress cracking is adjusted by adjusting the pH to 4.5 by mixing 1N acetic acid and 1mol / l sodium acetate, and adding 1% hydrogen sulfide + 9
In a liquid saturated with a mixed gas of 9% nitrogen gas, a tensile stress equivalent to 80% of the yield strength was applied to a smooth round bar test piece (parallel part diameter 6.4 mm, parallel part length 25 mm) to give a breaking time. It was measured. At that time, the test was conducted up to 720 hours, and it can be considered that those which did not break had excellent resistance to sulfide stress cracking. In addition, a reproduction heat cycle test corresponding to a heat input of 2 kJ / mm was performed to measure hardness and transition temperature (vTrs) using a JIS No. 4 Charpy test piece. Table 2 shows the test results.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】以上のように本発明によれば、鋼成分を
特定し、鋼組織を特定したマルテンサイト系ステンレス
鋼は、溶接部硬さが母材と同等で且つ優れた耐CO2
食特性を有している。
As described above, according to the present invention, the martensitic stainless steel in which the steel composition is specified and the steel structure is specified has the same weld hardness as the base metal and excellent CO 2 corrosion resistance. It has characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】湿潤炭酸ガス環境での腐食速度におよぼすC
u,Ni複合添加の影響を示す図。
[Fig. 1] C on corrosion rate in wet carbon dioxide environment
The figure which shows the influence of u and Ni compound addition.

【図2】溶接熱影響部の硬さと焼戻し後の硬さにおよぼ
すC量の影響を示す図。
FIG. 2 is a diagram showing the effect of the amount of C on the hardness of the heat-affected zone of welding and the hardness after tempering.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC ;0.005%以下、S
i;0.50%以下、Mn;0.1〜1.0%、P ;
0.03%以下、S ;0.005%以下、Cr;9〜
13%、Ni;1.5〜5%、Cu;1.0〜3.0
%、Al;0.06%以下、N ;0.008%以下を
含有し、それらの成分間に式 40C+34N+Ni+0.3Cu−1.1Cr≧−1
0.5 を満足する関係があり、且つ残部が実質的にFeからな
るマルテンサイト組織を呈することを特徴とする溶接部
硬さの低い高耐食マルテンサイト系ステンレス鋼。
1. C by weight%; 0.005% or less; S
i; 0.50% or less, Mn; 0.1 to 1.0%, P;
0.03% or less, S; 0.005% or less, Cr; 9 to
13%, Ni; 1.5 to 5%, Cu; 1.0 to 3.0
%, Al: 0.06% or less, N: 0.008% or less, and the formula 40C + 34N + Ni + 0.3Cu-1.1Cr ≧ -1 between the components.
A highly corrosion-resistant martensitic stainless steel with a low weld hardness, which has a relationship of satisfying 0.5 and has a martensitic structure in which the balance is substantially Fe.
【請求項2】 重量%でC ;0.005%以下、S
i;0.50%以下、Mn;0.1〜1.0%、P ;
0.03%以下、S ;0.005%以下、Cr;8.
2〜13%、Mo;0.5〜2.0%、Ni;1.5〜
5%、Cu;1.0〜3.0%、Al;0.06%以
下、N ;0.008%以下を含有し、それらの成分間
に式 Cr+1.6Mo≧9 を満足し、更に式 40C+34N+Ni+0.3Cu−1.1Cr−1.
8Mo≧−10.5 を満足する関係があり、且つ残部が実質的にFeからな
るマルテンサイト組織を呈することを特徴とする溶接部
硬さの低い高耐食マルテンサイト系ステンレス鋼。
2. C by weight%; 0.005% or less; S
i; 0.50% or less, Mn; 0.1 to 1.0%, P;
0.03% or less, S 2; 0.005% or less, Cr;
2 to 13%, Mo; 0.5 to 2.0%, Ni; 1.5 to
5%, Cu: 1.0 to 3.0%, Al: 0.06% or less, N: 0.008% or less, satisfy the formula Cr + 1.6Mo ≧ 9 between these components, and further formula: 40C + 34N + Ni + 0.3Cu-1.1Cr-1.
A highly corrosion-resistant martensitic stainless steel having a low weld hardness, which has a relationship of satisfying 8Mo ≧ -10.5 and has a martensitic structure in which the balance is substantially Fe.
【請求項3】 請求項1または2記載の鋼で更に、重量
%でTi;0.005〜0.1%、 Zr;0.01〜0.2%のうちの1種または2種を含
有することを特徴とする溶接部硬さの低い高耐食マルテ
ンサイト系ステンレス鋼。
3. The steel according to claim 1 or 2, further comprising one or two of Ti; 0.005 to 0.1% and Zr; 0.01 to 0.2% by weight. High corrosion resistance martensitic stainless steel with low weld hardness.
【請求項4】 請求項1,2または3のいずれかに記載
の鋼で、更に、重量%でCa;0.001〜0.02
%、 REM;0.003〜0.4%のうちの1種または2種
以上を含有することを特徴とする溶接部硬さの低い高耐
食マルテンサイト系ステンレス鋼。
4. The steel according to claim 1, further comprising Ca in a weight percentage of 0.001 to 0.02.
%, REM; high corrosion-resistant martensitic stainless steel with low weld hardness, containing one or more of 0.003 to 0.4%.
【請求項5】 請求項1,2,3または4のいずれかに
記載の鋼をAc3 変態点以上の温度に加熱し、焼戻しま
たは二相域焼戻しを施したことを特徴とする溶接部硬さ
の低い高耐食マルテンサイト系ステンレス鋼。
5. A welded part hardened by heating the steel according to any one of claims 1, 2, 3 or 4 to a temperature not lower than the Ac 3 transformation point and tempering or two-phase region tempering. Highly corrosion resistant martensitic stainless steel with low hardness.
JP21063195A 1995-08-18 1995-08-18 High corrosion resistance martensitic stainless steel with low weld hardness Expired - Fee Related JP3422880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21063195A JP3422880B2 (en) 1995-08-18 1995-08-18 High corrosion resistance martensitic stainless steel with low weld hardness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21063195A JP3422880B2 (en) 1995-08-18 1995-08-18 High corrosion resistance martensitic stainless steel with low weld hardness

Publications (2)

Publication Number Publication Date
JPH0953157A true JPH0953157A (en) 1997-02-25
JP3422880B2 JP3422880B2 (en) 2003-06-30

Family

ID=16592524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21063195A Expired - Fee Related JP3422880B2 (en) 1995-08-18 1995-08-18 High corrosion resistance martensitic stainless steel with low weld hardness

Country Status (1)

Country Link
JP (1) JP3422880B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204343A (en) * 2002-03-28 2004-07-22 Jfe Steel Kk Stainless steel plate for welded structure having excellent intergranular corrosion resistance and workability
EP1717328A1 (en) * 2004-01-30 2006-11-02 JFE Steel Corporation Martensitic stainless steel tube
JP2010111930A (en) * 2008-11-07 2010-05-20 Jfe Steel Corp Cr-CONTAINING STEEL PIPE HAVING EXCELLENT HIGH PRESSURE CARBON DIOXIDE CORROSION RESISTANCE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204343A (en) * 2002-03-28 2004-07-22 Jfe Steel Kk Stainless steel plate for welded structure having excellent intergranular corrosion resistance and workability
EP1717328A1 (en) * 2004-01-30 2006-11-02 JFE Steel Corporation Martensitic stainless steel tube
EP1717328A4 (en) * 2004-01-30 2012-03-28 Jfe Steel Corp Martensitic stainless steel tube
JP2010111930A (en) * 2008-11-07 2010-05-20 Jfe Steel Corp Cr-CONTAINING STEEL PIPE HAVING EXCELLENT HIGH PRESSURE CARBON DIOXIDE CORROSION RESISTANCE

Also Published As

Publication number Publication date
JP3422880B2 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
EP0732418B1 (en) Highly corrosion-resistant martensitic stainless steel with excellent weldability and process for producing the same
JP3608743B2 (en) Martensitic stainless steel with excellent hot workability and resistance to sulfide stress cracking
JP2003193204A (en) Martensitic stainless steel
WO2005042793A1 (en) High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
JP2000192196A (en) Martensitic stainless steel for oil well
JP3303647B2 (en) Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance
JP5157030B2 (en) Manufacturing method of high strength line pipe steel with excellent HIC resistance
EP0738784B1 (en) High chromium martensitic steel pipe having excellent pitting resistance and method of manufacturing
JP3620319B2 (en) Martensitic stainless steel with excellent corrosion resistance and weldability
AU758316B2 (en) High Cr steel pipe for line pipe
JP3588380B2 (en) Method for producing martensitic stainless steel sheet for line pipe
JP3422880B2 (en) High corrosion resistance martensitic stainless steel with low weld hardness
JP3422877B2 (en) High corrosion resistance martensitic stainless steel with low weld hardness
JPH05156409A (en) High-strength martensite stainless steel having excellent sea water resistance and production thereof
JP3666388B2 (en) Martensitic stainless steel seamless pipe
JP2002339037A (en) High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor
JP3412926B2 (en) CO2 corrosion resistant and sulfide stress crack resistant martensitic stainless steel with excellent weldability
JP3705161B2 (en) High tensile steel plate
JPS61272316A (en) Manufacture of high tension steel having more than 100kgf/mm2 yield strength and superior in stress corrosion cracking resistance
JPH09256115A (en) Martensitic stainless steel, excellent in sour resistance and having superior weldability, and its production
JP4592173B2 (en) Martensitic stainless steel welded structure with excellent fire resistance
JP3565155B2 (en) High strength low alloy heat resistant steel
JPS637328A (en) Production of steel having excellent sulfide corrosion cracking resistance
JP2001234276A (en) Cr-Mo STEEL HAVING HIGH TOUGHNESS AND EXCELLENT IN REHEAT CRACKING RESISTANCE
JPH09227934A (en) Manufacture of martensitic stainless steel excellent in low temperature toughness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees