JPH0952191A - Solder alloy and solder paste - Google Patents

Solder alloy and solder paste

Info

Publication number
JPH0952191A
JPH0952191A JP22708395A JP22708395A JPH0952191A JP H0952191 A JPH0952191 A JP H0952191A JP 22708395 A JP22708395 A JP 22708395A JP 22708395 A JP22708395 A JP 22708395A JP H0952191 A JPH0952191 A JP H0952191A
Authority
JP
Japan
Prior art keywords
weight
solder
paste
alloy
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22708395A
Other languages
Japanese (ja)
Other versions
JP3597607B2 (en
Inventor
Yoshiaki Tanaka
嘉明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP22708395A priority Critical patent/JP3597607B2/en
Publication of JPH0952191A publication Critical patent/JPH0952191A/en
Application granted granted Critical
Publication of JP3597607B2 publication Critical patent/JP3597607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a solder alloy excellent in Ag erosion resistance and thermal fatigue resistance. SOLUTION: A solder has a composition consisting of, by weight, 50-70% Sn, 0.5-5.0% Ag or total quantity of Ag and In, 0.1-2.0% Bi, 0.03-0.3% Cu, 0.1-2.0% Sb and the balance Pb 0.002-0.5 pts.wt. P is added to 100 pts. wt. the composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明ははんだ合金及びその
はんだ合金の粉末を使用したペ−スト状はんだに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solder alloy and a paste-like solder using a powder of the solder alloy.

【0002】[0002]

【従来の技術】周知の通り、はんだ付け時、被はんだ付
け金属が溶融はんだに溶解し、はんだが凝固する際に、
はんだ成分のSnまたはPbと被はんだ付け金属との化
合物が析出する現象、すなわち、はんだ溶食の発生が避
けられず、所謂、Ag食われが発生することがある。例
えば、回路基板への電子部品の実装においては、Ag厚
膜電極等に対するはんだ付けの際に、Agが溶融はんだ
に溶出し、このAgとSnまたはPbとの化合物がはん
だ付け界面に析出することがある。この場合、Ag食わ
れにより、Ag厚膜電極の消失が懸念され、導通不良等
が招来される畏れがある。このためAg溶食防止はんだ
の組成が種々提案されている。
As is well known, when soldering, when the metal to be soldered is melted into molten solder and the solder is solidified,
A phenomenon in which a compound of Sn or Pb of a solder component and a metal to be soldered is deposited, that is, solder corrosion is unavoidable, and so-called Ag erosion may occur. For example, when mounting an electronic component on a circuit board, Ag is dissolved in molten solder during soldering to an Ag thick film electrode, etc., and the compound of Ag and Sn or Pb is deposited at the soldering interface. There is. In this case, there is a fear that Ag thick film electrode may disappear due to Ag erosion, leading to conduction failure and the like. Therefore, various compositions of Ag corrosion preventing solder have been proposed.

【0003】周知の通り、はんだ付け界面においては、
凝固はんだと被はんだ付け金属との熱膨張係数の差異に
基づく熱応力の発生が避けられず、特に、ヒ−トサイク
ルのもとでは、その応力が繰返し応力となり、はんだ付
け界面を疲労させる原因となる。このため耐疲労性改善
のためのはんだ組成が種々提案されている。特に、電子
部品を実装した回路板においては、通電のオン、オフに
よるヒ−トサイクルを受けるので、上記した耐Ag溶食
性のみならず高度の耐熱疲労性が要求される。
As is well known, at the soldering interface,
Occurrence of thermal stress due to the difference in coefficient of thermal expansion between the solidified solder and the metal to be soldered is unavoidable. Especially under heat cycle, the stress becomes repetitive stress and causes fatigue at the soldering interface. Becomes Therefore, various solder compositions have been proposed for improving fatigue resistance. In particular, a circuit board on which electronic components are mounted undergoes a heat cycle due to turning on and off of energization, so that not only the Ag corrosion resistance described above but also a high degree of thermal fatigue resistance is required.

【0004】上記Ag溶食の防止には、はんだにAg
を、はんだ付け温度下での飽和濃度に相当する量だけ添
加することが有効であり、耐Ag溶食はんだとして、S
n−PbはんだにAgを0.5〜5.0重量%添加した
組成が知られている。この場合、Ag単独の添加に代
え、Ag及びInを添加することの有効性も知られてい
る。しかしながら、AgまたはAg及びInの添加だけ
では耐熱疲労性の付与が不十分であり、耐Ag溶食性は
勿論のこと耐熱疲労性の改善を図るために、例えば、次
のような組成が提案されている。
In order to prevent the above Ag corrosion, Ag is added to the solder.
Is effective in adding an amount equivalent to the saturation concentration at the soldering temperature.
A composition is known in which 0.5 to 5.0% by weight of Ag is added to n-Pb solder. In this case, the effectiveness of adding Ag and In instead of adding Ag alone is also known. However, addition of Ag or Ag and In alone is not sufficient to impart heat fatigue resistance, and in order to improve not only Ag corrosion resistance but also heat fatigue resistance, for example, the following composition is proposed. ing.

【0005】(1)Sn:15〜65重量%,Ag:
0.5〜3.5重量%,Sb:0.5〜3.0重量%,
残部Pb(特開昭56−144893号公報)。 (2)Pb:10〜95重量%,Ag:0.01〜10
重量%,In:0.01〜10重量%,Sb:0.1〜
8重量%,残部Sn(特開平3−106591号公
報)。 (3)Pb:10〜95重量%,Ag:0.01〜10
重量%,In:0.01〜10重量%,Bi:0.1〜
8重量%,残部Sn(特開平3−106591号公
報)。 (4)Pb:20〜35重量%,Ag:0.05〜5重
量%,In:0.1〜5重量%,Sb:0.05〜1重
量%,Cu:0.05〜2重量%,残部Sn(特開平3
−106591号公報)。 (5)Pb:35〜50重量%,Ag:0.05〜5重
量%,In:0.1〜5重量%,Sb:0.05〜1重
量%,Cu:0.05〜2重量%,残部Sn(特開平3
−106591号公報)。 (6)Pb:10〜90重量%,Ag:0.05〜4.
0重量%,Sb:0.5〜5.0重量%,Cu:0.0
5〜3.0重量%,残部Sn(特公昭52−30377
号公報)。
(1) Sn: 15 to 65% by weight, Ag:
0.5-3.5% by weight, Sb: 0.5-3.0% by weight,
Remainder Pb (JP-A-56-144893). (2) Pb: 10 to 95% by weight, Ag: 0.01 to 10
%, In: 0.01 to 10% by weight, Sb: 0.1
8% by weight, balance Sn (JP-A-3-106591). (3) Pb: 10 to 95% by weight, Ag: 0.01 to 10
Wt%, In: 0.01 to 10 wt%, Bi: 0.1
8% by weight, balance Sn (JP-A-3-106591). (4) Pb: 20 to 35% by weight, Ag: 0.05 to 5% by weight, In: 0.1 to 5% by weight, Sb: 0.05 to 1% by weight, Cu: 0.05 to 2% by weight , Balance Sn (JP-A-3
-106591). (5) Pb: 35 to 50 wt%, Ag: 0.05 to 5 wt%, In: 0.1 to 5 wt%, Sb: 0.05 to 1 wt%, Cu: 0.05 to 2 wt% , Balance Sn (JP-A-3
-106591). (6) Pb: 10 to 90% by weight, Ag: 0.05 to 4.
0% by weight, Sb: 0.5 to 5.0% by weight, Cu: 0.0
5 to 3.0% by weight, balance Sn (Japanese Patent Publication No. 52-30377)
Issue).

【0006】[0006]

【発明が解決しようとする課題】これらのはんだ組成
は、Sn−PbはんだにAg,Bi,In,Sb,Cu
の3乃至4種を添加したものに該当し、Ag,Bi,I
n,Sb,Cuの全てを添加するものではない。Ag,
Bi,In,Sb,Cu等をSn−Pb系はんだの添加
材として使用することは公知であり(例えば、特開昭6
1−273292号公報の第1表)、上記(1)〜
(7)に例示したはんだ組成は、Ag,Bi,In,S
b,Cuの3乃至4種の選択とその添加量の限定により
耐Ag溶食性と耐熱疲労性の改善を図っている。何れの
組成においても、耐Ag溶食性の付与のためにAgまた
はAg及びInを添加している。
These solder compositions have a composition of Sn-Pb solder to Ag, Bi, In, Sb, Cu.
Of Ag, Bi, I
Not all of n, Sb, and Cu are added. Ag,
It is known to use Bi, In, Sb, Cu, etc. as an additive for Sn—Pb based solder (see, for example, Japanese Patent Laid-Open Publication No. Sho 6-62).
(Table 1 of JP-A-1-273292), the above (1) to
The solder composition illustrated in (7) is Ag, Bi, In, S.
By selecting 3 or 4 kinds of b and Cu and limiting the addition amount thereof, Ag corrosion resistance and thermal fatigue resistance are improved. In any composition, Ag or Ag and In are added to impart Ag corrosion resistance.

【0007】しかしながら、BiとSbとCuの三者を
共に添加しているものはない。Bi、Sb及びCu等に
おいては、はんだ自体の組織を緻密化して機械的強度を
増大させる点で耐熱疲労性の改善に寄与する。しかしな
がら、組織の緻密化ははんだの融点を上昇させ、融点上
昇のもとではAgの溶解飽和濃度が上昇するから、Ag
溶食が生じ易くなり、結局耐熱疲労性を保証できなくな
る。しかるに、耐熱疲労性は接合界面での安定な合金層
の形成による接合強度の増加やはんだ自体への伸び性の
付与によっても改善でき、本発明者の検討結果によれ
ば、BiとSbとCuの三者を共に特定の量で添加すれ
ば、はんだの機械的強度ののみならずこれらの点からも
耐熱疲労性性の改善が可能となり、Ag溶食を有効に防
止のうえ優れた耐熱疲労性を付与できることを知った。
However, none of them contain Bi, Sb, and Cu together. Bi, Sb, Cu, etc. contribute to the improvement of thermal fatigue resistance in that the structure of the solder itself is densified to increase the mechanical strength. However, densification of the structure raises the melting point of the solder, and when the melting point rises, the dissolved saturation concentration of Ag rises.
Corrosion is likely to occur, and eventually thermal fatigue resistance cannot be guaranteed. However, the thermal fatigue resistance can be improved also by increasing the bonding strength by forming a stable alloy layer at the bonding interface and imparting the elongation property to the solder itself, and according to the study result of the present inventor, Bi, Sb, Cu Addition of the above three together in a specific amount makes it possible to improve not only the mechanical strength of the solder but also the thermal fatigue resistance from these points, and it is possible to effectively prevent Ag corrosion and to provide excellent thermal fatigue resistance. I knew that I could add sex.

【0008】本発明の目的は、上記知見に基づき、耐A
g溶食性は勿論のこと耐熱疲労性に優れたはんだ合金を
提供することにある。
The object of the present invention is to improve anti-A
g It is to provide a solder alloy which is excellent not only in corrosion resistance but also in heat fatigue resistance.

【0009】[0009]

【課題を解決するための手段】本発明に係るはんだ合金
は、Snが50〜70重量%、AgまたはAg及びIn
の合計量が0.5〜5.0重量%、Biが0.1〜2.
0重量%、Cuが0.03〜0.3重量%、Sbが0.
1〜2.0重量%、残部がPbであることを特徴とする
構成であり、この構成の組成100重量部にPを0.0
02〜0.5重量部添加することもできる。本発明に係
るペ−スト状はんだは、このはんだ合金の粉末とペ−ス
ト状フラックスとからなる構成である。
The solder alloy according to the present invention contains 50 to 70% by weight of Sn, Ag or Ag and In.
Of 0.5 to 5.0% by weight and Bi of 0.1 to 2.
0% by weight, Cu 0.03 to 0.3% by weight, Sb 0.
1 to 2.0% by weight, and the balance is Pb, and 100 parts by weight of the composition has 0.05% P.
It is also possible to add 02 to 0.5 parts by weight. The paste solder according to the present invention is composed of this solder alloy powder and the paste flux.

【0010】本発明において、Sn−Pb系合金をベ−
スとする理由は、はんだ付けの基本的条件である濡れ性
を確保するためである。そのSnの量を50〜70重量
%とする理由は、液相線温度をフロ−法又はリフロ−法
に適したはんだ付け温度に設定するためであり、表面実
装部品を熱衝撃損傷の畏れなく安全にはんだ付けし、ま
た、Agの飽和溶解度の上昇を排除してAg溶食を効果
的に防止するのに有効な要件である。
In the present invention, a Sn--Pb alloy is used as a base.
The reason for using the solder is to ensure wettability, which is a basic condition for soldering. The reason for setting the amount of Sn to 50 to 70% by weight is to set the liquidus temperature to a soldering temperature suitable for the flow method or the reflow method, so that the surface mount component can be protected from thermal shock damage. It is an effective requirement for safe soldering and for effectively preventing Ag corrosion by eliminating the increase in saturation solubility of Ag.

【0011】Agを添加する理由は、前述したAg溶食
を防止するためであり、その添加量を0.5〜5.0重
量%とする理由は、0.5重量%未満ではその効果を満
足に達成し得ず、5.0重量%を越えると、液相温度が
高くなり過ぎ、Agの飽和溶解度が上昇して有効なAg
溶食防止を行い難く、また、上記適切なはんだ付け温度
の設定が困難になるためである。このAg単独添加に代
えAg及びInを使用するのは、Agの添加によりAg
3Snホイスカ−の発生が懸念されるためであり、この
場合、In添加量が5.0重量%を越えると、低温域で
の固相間変態のためにヒ−トサイクルによる組織の脆弱
化が惹起され、耐熱疲労性の保障が困難になる。
The reason for adding Ag is to prevent the above-mentioned Ag corrosion, and the reason for adding 0.5 to 5.0% by weight is that the effect is less than 0.5% by weight. If it cannot be satisfactorily achieved, and if it exceeds 5.0% by weight, the liquidus temperature becomes too high, and the saturated solubility of Ag increases, so that the effective Ag
This is because it is difficult to prevent corrosion, and it is difficult to set the appropriate soldering temperature. The reason for using Ag and In instead of adding Ag alone is that Ag is added by adding Ag.
3 Sn whiskers - is because the occurrence of is concerned, in this case, the In amount is more than 5.0 wt%, heat for solid phase transformation at low temperature range - weakening of tissue by preparative cycle Is caused, and it becomes difficult to guarantee heat fatigue resistance.

【0012】Biを添加する理由は、合金組織の緻密化
を促し、機械的強度を増大させるためであり、その添加
量を0.1〜2.0重量%とする理由は、0.1重量%
未満ではその効果を満足に達成し得ず、2.0重量%を
超えると、はんだ自体の粘性が低下し伸びが低下し脆く
なって耐熱疲労性の保証が困難になり、またはんだ表面
の光沢性が喪失されるに至るからである。
The reason for adding Bi is to promote the densification of the alloy structure and to increase the mechanical strength. The reason for adding Bi in the range of 0.1 to 2.0% by weight is 0.1% by weight. %
If it is less than 2.0% by weight, the effect cannot be satisfactorily achieved. If it exceeds 2.0% by weight, the viscosity of the solder itself is reduced, the elongation is reduced and the solder becomes brittle, and it becomes difficult to guarantee heat fatigue resistance. This is because the sex is lost.

【0013】Cuを添加する理由は、上記と同様機械的
強度を増大させるためであり、その添加量を0.03〜
0.3重量%とする理由は、0.03重量%未満ではそ
の効果を満足に達成し得ず、0.3重量%を超えると、
融点が高くなって前記適正なはんだ付け温度の設定等が
困難になり、また、はんだの機械的強度が低下し耐熱疲
労性の保証が困難になり、更には、はんだの流動性が低
下して作業性が悪くなるからである。
The reason for adding Cu is to increase the mechanical strength in the same manner as described above.
The reason why the content is 0.3% by weight is that the effect cannot be satisfactorily achieved when the content is less than 0.03% by weight,
The melting point becomes high and it becomes difficult to set the appropriate soldering temperature, etc., and the mechanical strength of the solder decreases, and it becomes difficult to guarantee the thermal fatigue resistance, and further, the fluidity of the solder decreases. This is because workability becomes poor.

【0014】Sbを添加する理由は、上記と同様機械的
強度を増大させるためとはんだの接合強度を増大させる
ためであり、その添加量を0.1〜2.0重量%とする
理由は、0.1重量%未満ではその効果を満足に達成し
得ず、2.0重量%を超えると、はんだ自体が硬く脆く
なって伸びが低下し、接合強度も低下して耐熱疲労性の
保証が困難になり、またはんだの流動性が低下して作業
性が悪くなるからである。
The reason for adding Sb is to increase the mechanical strength as well as to increase the joint strength of the solder, as described above. The reason for adding Sb is 0.1 to 2.0% by weight. If the amount is less than 0.1% by weight, the effect cannot be satisfactorily achieved. If the amount exceeds 2.0% by weight, the solder itself becomes hard and brittle, the elongation is reduced, the joint strength is reduced, and the guarantee of heat fatigue resistance is ensured. This is because it becomes difficult, or the fluidity of the dangling drops and the workability deteriorates.

【0015】上記Ag、Ag及びIn、Bi、Sb並び
にCuの添加理由や添加量との関連で述べた作用は、各
添加元素単独で奏する作用であり、これ以外に相乗作用
により耐熱疲労性性が向上されることは、次の実施例と
比較例との対比から、何れの元素を削除しても、耐熱疲
労性性が顕著に低下する事実より認識できる。
The action described in relation to the reason for adding Ag, Ag and In, Bi, Sb and Cu and the amount added is the action which is achieved by each additive element alone. From the comparison between the following examples and comparative examples, it can be recognized from the fact that the heat fatigue resistance remarkably deteriorates even if any element is deleted.

【0016】本発明において、Pを添加する理由は、酸
化防止及びCuやSbの添加による濡れ広がり性の低下
抑制にあり、その添加量を0.002〜0.5重量%と
する理由は、0.002重量%未満ではその効果を満足
に達成し得ず、0.5重量%を超えると、はんだ自体が
硬く脆くなって伸びが低下し耐熱疲労性の保証が困難に
なるからである。
In the present invention, the reason for adding P is to prevent oxidation and to suppress deterioration of wettability and spreadability due to addition of Cu or Sb. The reason for adding P to 0.002 to 0.5% by weight is as follows. If it is less than 0.002% by weight, the effect cannot be satisfactorily achieved, and if it exceeds 0.5% by weight, the solder itself becomes hard and brittle, the elongation decreases, and it becomes difficult to guarantee the thermal fatigue resistance.

【0017】[0017]

【発明の実施の形態】本発明に係るはんだ合金において
は、従来のはんだに較べて優れた耐熱疲労性性を呈す
る。なお、上記の添加元素以外に、JIS−Z−328
2に規定されたA級に属する範囲内の不純物を含んでい
ても、本発明の効果は影響されずに達成される。本発明
に係るはんだ合金はフロ−法による回路基板への電子部
品の実装に使用される。また、リフロ−法による回路基
板への電子部品の実装にも使用され、この場合は、電子
部品をペ−スト状はんだの粘着力で回路基板に仮固定
し、この回路基板を加熱炉に通しペ−スト状はんだをリ
フロ−させることによりはんだ付けを行っていく。本発
明に係るペ−スト状はんだにおいては、はんだ粉末85
〜95重量%、残部ペ−スト状フラックスの配合で使用
され、はんだ粉末のメッシュは250〜500とされ
る。ペ−スト状フラックスには、重合ロジン、水添ロジ
ン、天然ロジン、マレイン化ロジン等のロジンに活性
剤、例えば、シクロヘキシルアミンHBr、オクチルア
ミンHBr、マロン酸、コハク酸、安息香酸等を添加
し、これを溶剤でペ−スト化したものを使用できる。本
発明に係るはんだ合金においては、上記粉末状の外、棒
状、線状、リボン状、やに入りはんだの形態で使用する
こともできる。
BEST MODE FOR CARRYING OUT THE INVENTION The solder alloy according to the present invention exhibits excellent thermal fatigue resistance as compared with conventional solder. In addition to the above additive elements, JIS-Z-328
Even if the impurities within the range of Class A defined in 2 are included, the effect of the present invention is achieved without being affected. The solder alloy according to the present invention is used for mounting electronic components on a circuit board by a flow method. It is also used for mounting electronic components on circuit boards by the reflow method.In this case, the electronic components are temporarily fixed to the circuit board by the adhesive force of the paste-like solder, and this circuit board is passed through a heating furnace. Soldering is performed by reflowing the paste solder. In the paste solder according to the present invention, the solder powder 85
.About.95% by weight, the balance is used in a paste-like flux, and the solder powder mesh is set to 250 to 500. To the paste-like flux, an activator such as cyclohexylamine HBr, octylamine HBr, malonic acid, succinic acid, benzoic acid, etc. is added to rosin such as polymerized rosin, hydrogenated rosin, natural rosin, and maleated rosin. It is possible to use a paste prepared from this with a solvent. The solder alloy according to the present invention may be used in the form of the above-mentioned powdery, rod-shaped, linear, ribbon-shaped, or flux cored solder.

【0018】[0018]

【実施例】【Example】

〔実施例1〕はんだ合金の組成に、Sn:62重量%、
Ag:2.0重量%、Bi:0.6重量%、Cu:0.
06重量%、Sb:0.6重量%,残部Pbを使用し
た。ペ−スト状フラツクスには、重合ロジン:60重量
%、水素添加ヒマシ油:5重量%、シクロヘキシルアミ
ンHBr:1重量%、残部ブチルカルビト−ルを使用
し、400メッシュはんだ合金粉末90重量%とペ−ス
ト状フラツクス10重量%とを混合撹拌してペ−スト状
はんだを作成した。
[Example 1] In the composition of the solder alloy, Sn: 62% by weight,
Ag: 2.0 wt%, Bi: 0.6 wt%, Cu: 0.
06% by weight, Sb: 0.6% by weight, and the balance Pb was used. For the paste-like flux, polymerized rosin: 60% by weight, hydrogenated castor oil: 5% by weight, cyclohexylamine HBr: 1% by weight, balance butyl carbitol was used. A paste-like solder was prepared by mixing and stirring 10% by weight of the paste-like flux.

【0019】〔実施例2〕実施例1に対し、Ag:2.
0重量%に替えAg:1.0重量%及びIn:1.0重
量%を使用した以外、実施例1と同様にしてペ−スト状
はんだを作成した。 〔実施例3〕実施例1のはんだ合金組成100重量部に
Pを0.1重量部添加した合金組成を使用した以外、実
施例1と同様にしてペ−スト状はんだを作成した。 〔実施例4〕実施例2のはんだ合金組成100重量部に
Pを0.1重量部添加した合金組成を使用した以外、実
施例2と同様にしてペ−スト状はんだを作成した。
[Example 2] In comparison with Example 1, Ag: 2.
A paste-like solder was prepared in the same manner as in Example 1 except that Ag: 1.0% by weight and In: 1.0% by weight were used instead of 0% by weight. [Example 3] A paste-like solder was prepared in the same manner as in Example 1 except that an alloy composition obtained by adding 0.1 parts by weight of P to 100 parts by weight of the solder alloy composition of Example 1 was used. [Example 4] A paste-like solder was prepared in the same manner as in Example 2 except that an alloy composition obtained by adding 0.1 parts by weight of P to 100 parts by weight of the solder alloy composition of Example 2 was used.

【0020】〔比較例1〕実施例1に対し、はんだ合金
の組成に、Sn:62重量%、Ag:2.0重量%、残
部Pbを使用した以外、実施例1と同様にしてペ−スト
状はんだを作成した(実施例1に対し、Bi、Cu及び
Sbの省略)。 〔比較例2〕実施例1に対し、はんだ合金の組成に、S
n:62重量%、Ag:2.0重量%、Bi:0.6重
量%、残部Pbを使用し以外、実施例1と同様にしてペ
−スト状はんだを作成した(実施例1に対し、Cu及び
Sbの省略)。 〔比較例3〕実施例1に対し、はんだ合金の組成に、S
n:62重量%、Ag:2.0重量%、Cu:0.06
重量%、残部Pbを使用し以外、実施例1と同様にして
ペ−スト状はんだを作成した(実施例1に対し、Bi及
びSbの省略)。 〔比較例4〕実施例1に対し、はんだ合金の組成に、S
n:62重量%、Ag:2.0重量%、Sb:0.6重
量%、残部Pbを使用し以外、実施例1と同様にしてペ
−スト状はんだを作成した(実施例1に対し、Bi及び
Cuの省略)。 〔比較例5〕実施例1に対し、はんだ合金の組成に、S
n:62重量%、Ag:2.0重量%、Bi:0.6重
量%、Cu:0.06重量%、残部Pbを使用し以外、
実施例1と同様にしてペ−スト状はんだを作成した(実
施例1に対し、Sbの省略)。 〔比較例6〕実施例1に対し、はんだ合金の組成に、S
n:62重量%、Ag:2.0重量%、Bi:0.6重
量%、Sb:0.6重量%、残部Pbを使用し以外、実
施例1と同様にしてペ−スト状はんだを作成した(実施
例1に対し、Cuの省略)。 〔比較例7〕実施例1に対し、はんだ合金の組成に、S
n:62重量%、Ag:2.0重量%、Cu:0.06
重量%、Sb:0.6重量%、残部Pbを使用し以外、
実施例1と同様にしてペ−スト状はんだを作成した(実
施例1に対し、Biの省略)。上記何れの合金組成にお
いても、添加元素以外の不純物は、JIS−Z−328
2に規定のA級の範囲に属している。
Comparative Example 1 Compared to Example 1, the same procedure as in Example 1 was carried out except that the solder alloy composition was Sn: 62% by weight, Ag: 2.0% by weight, and the balance Pb. Stroke-shaped solder was created (Bi, Cu, and Sb were omitted from Example 1). [Comparative Example 2] In comparison with Example 1, the composition of the solder alloy is S
A paste-like solder was prepared in the same manner as in Example 1 except that n: 62% by weight, Ag: 2.0% by weight, Bi: 0.6% by weight, and the balance Pb was used (versus Example 1). , Cu and Sb omitted). [Comparative Example 3] Compared to Example 1, the composition of the solder alloy was changed to S.
n: 62% by weight, Ag: 2.0% by weight, Cu: 0.06
A paste-like solder was prepared in the same manner as in Example 1 except that the weight% and the balance Pb were used (Bi and Sb were omitted from Example 1). [Comparative Example 4] Compared to Example 1, the composition of the solder alloy was changed to S.
A paste-like solder was prepared in the same manner as in Example 1 except that n: 62% by weight, Ag: 2.0% by weight, Sb: 0.6% by weight, and the balance Pb was used (versus Example 1). , Bi and Cu omitted). [Comparative Example 5] In comparison with Example 1, the composition of the solder alloy was S
n: 62% by weight, Ag: 2.0% by weight, Bi: 0.6% by weight, Cu: 0.06% by weight, except that the balance Pb is used,
A paste solder was prepared in the same manner as in Example 1 (Sb is omitted from Example 1). [Comparative Example 6] Compared to Example 1, the composition of the solder alloy was changed to S.
n: 62% by weight, Ag: 2.0% by weight, Bi: 0.6% by weight, Sb: 0.6% by weight, and a paste solder was used in the same manner as in Example 1 except that the balance Pb was used. It was created (Cu is omitted as compared with Example 1). [Comparative Example 7] Compared to Example 1, the composition of the solder alloy was changed to S.
n: 62% by weight, Ag: 2.0% by weight, Cu: 0.06
% By weight, Sb: 0.6% by weight, except that the balance Pb is used,
A paste-like solder was prepared in the same manner as in Example 1 (Bi is omitted from Example 1). In any of the above alloy compositions, impurities other than the additive elements are contained in JIS-Z-328.
It belongs to the class A range specified in 2.

【0021】これらの実施例並びに比較例のペ−スト状
はんだを使用し、チップ抵抗をガラスエポキシ回路基板
にリフロ−法によりはんだ付けし、−40℃にて30
分、100℃にて30分を1サイクルとする熱衝撃試験
を500サイクルまで行い、その間100サイクルごと
にはんだ付けフィレットの外観を観察したところ、表の
通りであった。ただし、○ははんだ付けフィレットが正
常であることを、△は皺の発生があることを、×はクラ
ックが発生していることをそれぞれ示している。
Using the paste-like solders of these Examples and Comparative Examples, the chip resistors were soldered to the glass epoxy circuit board by the reflow method, and the solder was applied at -40 ° C. for 30 minutes.
Min., A thermal shock test at 100 ° C. for 30 minutes as one cycle was performed up to 500 cycles, and the appearance of the soldering fillet was observed every 100 cycles during that time, and the results are shown in the table. However, ◯ indicates that the soldering fillet is normal, Δ indicates that wrinkles are generated, and × indicates that cracks are generated.

【0022】[0022]

【表1】 [Table 1]

【0023】この表から明らかなように、本発明によれ
ば、はんだ付けフィレットの繰返し熱応力に対する耐久
性を飛躍的に向上できる。特に、本発明に対してSbを
省略した比較例5、同じくCuを省略した比較例6、同
じくBiを省略した比較例7に較べても格段の向上効果
が認められることから、BiとCuとBiとの予想外の
相乗作用が推測される。
As is clear from this table, according to the present invention, the durability of the soldering fillet against repeated thermal stress can be dramatically improved. Particularly, compared to Comparative Example 5 in which Sb was omitted, Comparative Example 6 in which Cu was omitted, and Comparative Example 7 in which Bi was also omitted, a significant improvement effect was recognized, and thus Bi and Cu were An unexpected synergy with Bi is speculated.

【0024】[0024]

【発明の効果】本発明によれば、耐熱衝撃試験に対して
著しく安定なはんだ付けを可能とするはんだ合金及びペ
−スト状はんだを提供でき、電子部品実装回路板の導通
信頼性や安定性を長期にわたって保証できる。
According to the present invention, it is possible to provide a solder alloy and a paste-like solder capable of remarkably stable soldering with respect to a thermal shock test, and to improve the continuity reliability and stability of electronic component mounting circuit boards. Can be guaranteed for a long time.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Snが50〜70重量%、AgまたはAg
及びInの合計量が0.5〜5.0重量%、Biが0.
1〜2.0重量%、Cuが0.03〜0.3重量%、S
bが0.1〜2.0重量%、残部がPbであることを特
徴とするはんだ合金。
1. Sn is 50 to 70% by weight, Ag or Ag.
And the total amount of In are 0.5 to 5.0% by weight, and Bi is 0.
1 to 2.0 wt%, Cu 0.03 to 0.3 wt%, S
A solder alloy characterized in that b is 0.1 to 2.0% by weight and the balance is Pb.
【請求項2】請求項1記載の組成100重量部にPが
0.002〜0.5重量部添加されているはんだ合金
2. A solder alloy in which 0.002 to 0.5 parts by weight of P is added to 100 parts by weight of the composition according to claim 1.
【請求項3】請求項1または2記載のはんだ合金の粉末
とペ−スト状フラックスとからなるペ−スト状はんだ。
3. A paste-like solder comprising the solder alloy powder according to claim 1 and a paste-like flux.
JP22708395A 1995-08-11 1995-08-11 Solder alloy and paste solder Expired - Fee Related JP3597607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22708395A JP3597607B2 (en) 1995-08-11 1995-08-11 Solder alloy and paste solder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22708395A JP3597607B2 (en) 1995-08-11 1995-08-11 Solder alloy and paste solder

Publications (2)

Publication Number Publication Date
JPH0952191A true JPH0952191A (en) 1997-02-25
JP3597607B2 JP3597607B2 (en) 2004-12-08

Family

ID=16855247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22708395A Expired - Fee Related JP3597607B2 (en) 1995-08-11 1995-08-11 Solder alloy and paste solder

Country Status (1)

Country Link
JP (1) JP3597607B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7097090B2 (en) * 2000-11-21 2006-08-29 Senju Metal Industry Co., Ltd. Solder ball
WO2011151894A1 (en) 2010-06-01 2011-12-08 千住金属工業株式会社 No-clean lead-free solder paste
CZ303793B6 (en) * 2001-07-09 2013-05-09 Quantum Chemical Technologies (S'pore) Pte Ltd. Lead-free solder, process for its preparation and method of soldering
CN104827198A (en) * 2015-04-28 2015-08-12 苏州永创达电子有限公司 Soldering tin paste
US11285569B2 (en) 2003-04-25 2022-03-29 Henkel Ag & Co. Kgaa Soldering material based on Sn Ag and Cu

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7097090B2 (en) * 2000-11-21 2006-08-29 Senju Metal Industry Co., Ltd. Solder ball
CZ303793B6 (en) * 2001-07-09 2013-05-09 Quantum Chemical Technologies (S'pore) Pte Ltd. Lead-free solder, process for its preparation and method of soldering
US11285569B2 (en) 2003-04-25 2022-03-29 Henkel Ag & Co. Kgaa Soldering material based on Sn Ag and Cu
WO2011151894A1 (en) 2010-06-01 2011-12-08 千住金属工業株式会社 No-clean lead-free solder paste
US9770786B2 (en) 2010-06-01 2017-09-26 Senju Metal Industry Co., Ltd. Lead-free solder paste
CN104827198A (en) * 2015-04-28 2015-08-12 苏州永创达电子有限公司 Soldering tin paste

Also Published As

Publication number Publication date
JP3597607B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
JP3220635B2 (en) Solder alloy and cream solder
JP4613823B2 (en) Solder paste and printed circuit board
JP5278616B2 (en) Bi-Sn high temperature solder alloy
JP2001058286A (en) Solder paste for joining chip part
US6648210B1 (en) Lead-free solder alloy powder paste use in PCB production
JP3684811B2 (en) Solder and soldered articles
JPH09327789A (en) Solder paste
JP3673021B2 (en) Lead-free solder for electronic component mounting
JP3643008B2 (en) Soldering method
JPH10146690A (en) Solder paste for soldering chip part
JP3597607B2 (en) Solder alloy and paste solder
EP1557235A1 (en) Lead-free solder and soldered article
KR20150111403A (en) A Pb FREE SOLDERING FLUX AND PASTE FOR ELECTRONIC COMPONENT, AND A SOLDERING METHOD USING THE SAME MATERIALS
JPH1131715A (en) Material and manufacturing method of electronic part electrode
JPH09277082A (en) Soldering paste
JPH1177367A (en) Solder composition
JP2002185130A (en) Electronic circuit device and electronic part
JP3423387B2 (en) Solder alloy for electronic components
JP5051633B2 (en) Solder alloy
JP3107483B2 (en) No to low lead content solder alloy
JP2000126890A (en) Soldering material
JP3254901B2 (en) Solder alloy
JP2019155465A (en) Solder paste for chip component joining
JP2007181851A (en) Cream solder and soldering method using the same
JP3254857B2 (en) Solder alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Effective date: 20040527

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040907

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040909

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees