JPH095135A - Thermal flowmeter and its measuring element - Google Patents

Thermal flowmeter and its measuring element

Info

Publication number
JPH095135A
JPH095135A JP7151316A JP15131695A JPH095135A JP H095135 A JPH095135 A JP H095135A JP 7151316 A JP7151316 A JP 7151316A JP 15131695 A JP15131695 A JP 15131695A JP H095135 A JPH095135 A JP H095135A
Authority
JP
Japan
Prior art keywords
resistance element
heat generating
heating
upstream
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7151316A
Other languages
Japanese (ja)
Inventor
Nobukatsu Arai
信勝 荒井
Takehiko Kowatari
武彦 小渡
Kaoru Uchiyama
内山  薫
Izumi Watanabe
渡辺  泉
Tadashi Isono
磯野  忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP7151316A priority Critical patent/JPH095135A/en
Publication of JPH095135A publication Critical patent/JPH095135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE: To provide a thermal flowmeter which uses a measuring element formed on one ceramic substrate, keeps the strength and the responsivity of the element, and prevent a measuring error even when the partial reverse flow of intake air is generated. CONSTITUTION: A heat generating resistance film 3 and a temperature compensating resistance film 4 are formed collectively on a stepped substrate. A wide heat nongenerating part 5c is formed in a heat generating resistance element, a slit is formed in its upstream, and the wide heat nongenerating part 5c is held by a stepped support member 15 so as to be exposed to a fluid. Thereby, a drop in the bending strength of a measuring element itself can be reduced even when the slit is formed, and transient responsivity with reference to a change in a flow velocity can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱式流量計およびその
測定素子に係り、特に内燃機関の吸気量検出に好適な熱
式空気流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal type flow meter and its measuring element, and more particularly to a thermal type air flow meter suitable for detecting the intake air amount of an internal combustion engine.

【0002】[0002]

【従来の技術】従来の熱式空気流量計は、特開昭59ー
151020号公報の第3図に示される様に、円柱型セ
ラミックの外表面に温度依存性の抵抗体を形成した各々
独立した発熱抵抗素子および温度補償抵抗素子を段違い
に配置したもの、また、特開平2ー67922号公報の
第2図に示される様に、薄板の電気絶縁性基板上に温度
依存性の抵抗膜を形成した各々独立な流速検出抵抗
体(:発熱抵抗素子)RSおよび吸気温度検出抵抗
体(:温度補償抵抗素子)RTをRTを上流側に且つ段
違いに配置しているものが知られている。すなわち、発
熱抵抗素子と温度補償抵抗素子を段違いに配置すること
は従来知られている。また、複数の素子を一枚の基板上
に形成することも知られている。
2. Description of the Related Art As shown in FIG. 3 of Japanese Unexamined Patent Publication No. 59-151020, a conventional thermal type air flow meter is constructed by forming a temperature-dependent resistor on the outer surface of a cylindrical ceramic. The heating resistance element and the temperature compensation resistance element are arranged in different stages, and as shown in FIG. 2 of JP-A-2-67922, a temperature-dependent resistance film is formed on a thin electrically insulating substrate. It is known that the formed flow velocity detecting resistor (: heat generating resistor element) RS and the intake air temperature detecting resistor (: temperature compensation resistor element) RT which are formed independently of each other are arranged on the upstream side in a staggered manner. That is, it is conventionally known that the heating resistance element and the temperature compensation resistance element are arranged in different stages. It is also known to form a plurality of elements on a single substrate.

【0003】特開平5ー126613号公報の図1に
は、一枚の電気絶縁性基板上に温度センサと補償抵抗と
加熱(および測定)抵抗を作って、且つ、温度センサよ
り補償抵抗を、補償抵抗より加熱抵抗を接触接続面(:
接続電極端子)に対し突き出した段付き形状に形成した
ものが記載されている。また、同図には補償抵抗と加熱
抵抗との間にスリットを設けることが開示されている。
FIG. 1 of JP-A-5-126613 discloses that a temperature sensor, a compensating resistor and a heating (and measuring) resistor are formed on one electrically insulating substrate, and the compensating resistor is provided by the temperature sensor. Contact the heating resistance from the compensation resistance with the contact surface (:
What is formed in a stepped shape protruding from the connection electrode terminal) is described. Further, the figure discloses that a slit is provided between the compensation resistor and the heating resistor.

【0004】また、特開平1ー185416号公報に
は、電気絶縁性基板上に気流の方向に並んだ各々一対の
発熱抵抗体および温度補償抵抗体を一枚の基板上に形成
した素子(同公報第4図)と、逆流検知が可能な回路
(同公報第3図)が開示されている。
Further, in Japanese Patent Application Laid-Open No. 1-185416, an element in which a pair of heating resistors and temperature compensating resistors, which are arranged in the direction of air flow on an electrically insulating substrate, are formed on one substrate ( (Fig. 4 of the publication) and a circuit capable of detecting backflow (Fig. 3 of the publication) are disclosed.

【0005】一方、特開平2ー232524号等には、
測定素子を主流路の中に収納した副流路に配し、その副
流路の上流側入口開口の全周に、上流側に突出する縁を
設けて凹部からなる空気流安定手段を設け、その凹部底
部に入口開口を位置させ、且つ主流路軸に対し偏心させ
た内燃機関用熱式空気流量計の構成が開示されている。
この構成は、内燃機関の吸入空気流の平均的な正方向の
流れを精度良く測定することを目的としており、機関か
らの逆流に対してはむしろ検知しずらいような副流路構
成であり、逆流を検知してこれを補正しようとする熱式
流量計には適当な副流路構成ではない。
On the other hand, Japanese Patent Laid-Open No. 232524/1990 discloses that
The measurement element is arranged in the sub-flow path housed in the main flow path, and the upstream side inlet opening of the sub-flow path is provided with an air flow stabilizing means consisting of a concave portion provided with an edge projecting to the upstream side, There is disclosed a structure of a thermal air flowmeter for an internal combustion engine in which an inlet opening is located at the bottom of the recess and is eccentric with respect to the main flow path axis.
This configuration is intended to accurately measure the average forward flow of the intake air flow of the internal combustion engine, and is a sub-flow passage configuration that is rather difficult to detect for reverse flow from the engine. However, the sub-flow path configuration is not suitable for a thermal type flow meter that detects a backflow and tries to correct it.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記特
開平5ー126613号公報に記載された技術は、補償
抵抗が設けられた基板部分が、測定抵抗(および加熱抵
抗)の上流側に部分的に重なって形成されている為、加
熱抵抗の非発熱部端部に気流が当りにくく、非発熱部は
冷却されにくい。従って、スリットを電極近くまで長く
する必要があり、特に、応答性向上には流れ方向に小さ
な幅で形成したい測定抵抗(発熱抵抗素子)部分の基板
長が長くなり、強度的に問題がある。さらには、補償抵
抗の基板部分で乱された流れが測定抵抗に当たるので、
ノイズの問題が生じる。
However, in the technique disclosed in the above-mentioned Japanese Patent Laid-Open No. 5-126613, the substrate portion provided with the compensation resistor is partially located upstream of the measurement resistor (and the heating resistor). Since they are formed so as to overlap with each other, it is difficult for the airflow to hit the end of the non-heating portion of the heating resistor, and the non-heating portion is hard to be cooled. Therefore, it is necessary to lengthen the slit close to the electrode, and in particular, in order to improve the response, the substrate length of the measurement resistance (heat-generating resistance element) portion desired to be formed with a small width in the flow direction becomes long, which is a problem in terms of strength. Furthermore, since the flow disturbed in the substrate part of the compensation resistance hits the measurement resistance,
The problem of noise arises.

【0007】また、特開平1ー185416号公報本開
示例の第4図の素子では、各一対の抵抗体が上下に形成
され、且つ両者の間には断熱用のスリットが設けられて
おり、素子としてのこの様な形状は、各一対の抵抗体が
上下に形成されている為、逆流検出補正に必要な応答性
を確保するには流れ方向に小さな幅で形成したい発熱抵
抗素子を実現するには、必然的に長手方向の長さが長く
なり、強度的に問題が発生する。これは中間のスリット
も強度を一層低下させる要因になる。
Further, in the element shown in FIG. 4 of the present disclosure example, each pair of resistors is vertically formed, and a heat insulating slit is provided between the resistors. Such a shape as an element realizes a heating resistor element that is desired to be formed with a small width in the flow direction in order to ensure the responsiveness required for backflow detection correction, since each pair of resistors is formed vertically. Inevitably, the length in the longitudinal direction becomes long, which causes a problem in strength. This also causes the slits in the middle to further reduce the strength.

【0008】本発明の目的は、発熱抵抗素子と温度補償
抵抗素子との間の熱絶縁を確実にし、各素子の流体流へ
の接触を良好にして高い応答性と出力精度を実現しつ
つ、強度を高くすることを目的とする。
An object of the present invention is to ensure thermal insulation between a heating resistance element and a temperature compensation resistance element, and to make good contact of each element with a fluid flow to realize high responsiveness and output accuracy. The purpose is to increase the strength.

【0009】[0009]

【課題を解決するための手段】上記目的は、薄板の電気
絶縁体基板と、その表面に膜状に形成された少なくとも
各一個の発熱抵抗素子と温度補償抵抗素子と、これら発
熱抵抗素子及び温度補償抵抗素子に対応して形成された
複数の電極と、前記発熱抵抗素子及び温度補償抵抗素子
と前記電極とを接続するリード部材と、前記発熱抵抗素
子と前記温度補償抵抗素子とが流れ方向に前記発熱抵抗
素子が突出するように段差をもって前記絶縁体基板上に
形成された測定素子とを備えた熱式流量計において、前
記発熱抵抗素子が形成された基板部と流れ方向に同幅の
基板部分と、前記温度補償抵抗素子膜が形成された基板
部分と流れ方向にほぼ同段に、スリットを介して少なく
とも上流側に幅広に形成された基板部分と、前記発熱抵
抗素子が形成された基板部と同幅の基板部分およびこれ
に連続する幅広に形成された基板部分を除き、前記スリ
ットの根本部を含むように収納する収納部材と、この収
納部材を熱不良導体部材で構成し保持部材と兼用するこ
とにより達成される。
The above object is to provide a thin electrical insulating substrate, at least one heating resistance element and a temperature compensation resistance element formed on the surface thereof in a film shape, and these heating resistance element and temperature. A plurality of electrodes formed corresponding to the compensation resistance element, a lead member connecting the heating resistance element and the temperature compensation resistance element to the electrode, and the heating resistance element and the temperature compensation resistance element in the flow direction. In a thermal type flow meter having a measuring element formed on the insulating substrate with a step so that the heating resistor element projects, a substrate having the same width in the flow direction as the substrate portion on which the heating resistor element is formed. A portion of the substrate on which the temperature compensating resistor element film is formed, and a substrate portion that is formed wide at least on the upstream side through a slit, and the heating resistor element are formed at substantially the same stage in the flow direction. An accommodating member for accommodating so as to include the root part of the slit except for a board portion having the same width as the board portion and a board portion formed continuously from the board portion, and holding the accommodating member by a heat-defective conductor member. It is achieved by also using as a member.

【0010】[0010]

【作用】本発明では、一体基板が段付きで、突出し長さ
の短い温度補償素子と幅広に形成された発熱抵抗素子の
非発熱部の間に熱絶縁のためのスリットが設けられ、発
熱抵抗膜が形成された基板部と同幅の非発熱部およびこ
れに連続する幅広に形成された非発熱部の少なくとも上
流側エッジ部分を、測定する流体流にさらすように形成
した段付き形状の短い長さで設けられているので、低流
速時においてもこの部分が良く冷却され、高流速時との
温度変化が小さくなる。即ち、発熱部から基板根本方向
への伝導熱量変化を小さくでき、温度分布を平衡させる
時間が短縮され、その結果、流速変動に対する過渡応答
性の向上が達成される。一方、スリット設けたことによ
る測定素子自身の折り曲げ強度の低下については、スリ
ットの根本まで収納し、この収納部材を熱不良導体部材
で構成し、支持構造と兼用したので、強度が増強され
る。
According to the present invention, the integrated substrate is stepped, and a slit for thermal insulation is provided between the temperature compensating element having a short protruding length and the non-heat generating portion of the heat generating resistor element formed to have a wide width. A short stepped shape formed so that at least the upstream edge portion of the non-heating portion having the same width as the substrate portion on which the film is formed and the wide non-heating portion continuous with the substrate portion are exposed to the fluid flow to be measured. Since it is provided with a length, this portion is well cooled even at the time of low flow velocity, and the temperature change at the time of high flow velocity becomes small. That is, it is possible to reduce the change in the amount of heat transferred from the heat generating portion toward the base of the substrate, and the time for equilibrating the temperature distribution is shortened. On the other hand, with respect to the decrease in bending strength of the measuring element itself due to the provision of the slit, the strength is increased because the root of the slit is housed and this housing member is made of a heat-defective conductor member and is also used as a support structure.

【0011】[0011]

【実施例】以下、本発明の実施例を図1により説明す
る。図1は、本発明の熱式流量計の測定素子の一実施例
の平面図である。発熱抵抗素子1は、基板5の発熱部5
aに形成された発熱抵抗素子膜3、発熱部5aと同幅の
形成され基板部が露出している非発熱部5b、および非
発熱部5b部分に段差をつけて形成された幅広の非発熱
部5cから成る。温度補償抵抗素子2は、被測定空気流
100に対して一番上流側の基板部分5dと素子膜4か
ら成る。これら発熱抵抗素子1及び温度補償抵抗素子2
は引出し電極膜10、11、12、13を介して接続端
子膜6、7、8、9に接続される。スリット14は、発
熱素子1と温度補償素子2を熱絶縁するため設けられて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a plan view of an embodiment of a measuring element of a thermal type flow meter of the present invention. The heat generating resistance element 1 includes the heat generating portion 5 of the substrate 5.
a heat-generating resistor element film 3 formed on a, a non-heat-generating portion 5b having the same width as the heat-generating portion 5a and exposing the substrate portion, and a wide non-heat-generating portion formed with a step on the non-heat-generating portion 5b. It consists of the part 5c. The temperature compensation resistance element 2 is composed of a substrate portion 5d on the most upstream side with respect to the measured airflow 100 and an element film 4. These heating resistance element 1 and temperature compensation resistance element 2
Is connected to the connection terminal films 6, 7, 8 and 9 through the lead electrode films 10, 11, 12 and 13. The slit 14 is provided to thermally insulate the heat generating element 1 and the temperature compensating element 2.

【0012】発熱抵抗素子1の発熱部5aは、この部分
に空気流が吹かれることにより抵抗値が変化し、この変
化を後段の演算装置(図示せず)が空気流量に変換し、
この空気流量に基づいて内燃機関の燃料噴射料を制御す
る。このため、制御精度を向上するためには、つまり、
内燃機関のレスポンスを向上するためには、発熱部5a
の温度変化が空気流量変化に遅れなく追従しなければな
らない。すなわち、発熱部5aを熱的に独立させること
が必要である。このため、本実施例では、発熱部5aと
同幅の形成され基板部が露出している非発熱部5bを有
し、この部分を冷却することにより発熱部5aが発生し
た熱が発熱抵抗素子1の全体に極力広がらぬようにして
いる。
The resistance value of the heat generating portion 5a of the heat generating resistance element 1 changes due to the air flow blown to this portion, and this change is converted into an air flow rate by a calculation device (not shown) in the subsequent stage,
The fuel injection charge of the internal combustion engine is controlled based on this air flow rate. Therefore, in order to improve the control accuracy, that is,
In order to improve the response of the internal combustion engine, the heat generating portion 5a
The temperature change must follow the air flow rate change without delay. That is, it is necessary to make the heat generating portion 5a thermally independent. Therefore, in this embodiment, the non-heat generating portion 5b having the same width as that of the heat generating portion 5a and having the exposed substrate portion is provided, and the heat generated by the heat generating portion 5a is generated by cooling this portion. I try not to spread the whole of 1 as much as possible.

【0013】他方、温度補償抵抗素子2は、発熱部5a
の出力を温度による誤差を補正するために設けられてい
るものであり、発熱部5aと熱的に接続していると発熱
部5aが発生した熱により正確な温度補償ができなくな
る。そこで、本実施例においては、スリット14及び幅
広の非発熱部5cを設けている。もし、スリット14が
存在しないとすると、発熱部5aの熱伝導が高くなり温
度補償に支障を来してしまう。さらに、幅広の非発熱部
5cの一部を後述するように支持体5で覆わずに空気流
中にさらす上流側エッジ部とすることにより、発熱部5
aからの熱を冷却し、温度補償抵抗素子2への熱的影響
を減少させている。
On the other hand, the temperature compensating resistance element 2 has a heating portion 5a.
Is provided to correct an error due to temperature, and if it is thermally connected to the heat generating portion 5a, the heat generated by the heat generating portion 5a cannot perform accurate temperature compensation. Therefore, in this embodiment, the slit 14 and the wide non-heat generating portion 5c are provided. If the slit 14 does not exist, the heat conduction of the heat generating part 5a becomes high, which hinders temperature compensation. Further, by making a part of the wide non-heat generating portion 5c an upstream side edge portion which is not covered with the support 5 and is exposed to the air flow as described later, the heat generating portion 5c is formed.
The heat from a is cooled, and the thermal influence on the temperature compensation resistance element 2 is reduced.

【0014】ところで、基板5はアルミナ等のセラミッ
クよりなり、応答速度を速めるために0.1mm前後の
極めて薄い板厚としている。抵抗膜3、4は白金薄膜等
よりなり、スパッタ、蒸着等の方法により0.002m
m(2ミクロン)以下の膜厚で一括して基板5上に着膜
された後、ホトエッチング等の方法によりパターン形成
される。端子電極6、7、8、9および引出し電極1
0、11、12、13は、電気抵抗を下げるため、白金
薄膜3、4より厚い白金ー銀合金等の厚膜を白金薄膜上
に印刷等の方法で形成する。また、図には示さないが、
抵抗膜3、4には、素子の保護のためにガラス等の保護
膜が形成されている。
By the way, the substrate 5 is made of ceramic such as alumina and has an extremely thin plate thickness of about 0.1 mm in order to increase the response speed. The resistance films 3 and 4 are made of a platinum thin film or the like and are 0.002 m by a method such as sputtering or vapor deposition.
After being collectively deposited on the substrate 5 with a film thickness of m (2 microns) or less, a pattern is formed by a method such as photoetching. Terminal electrodes 6, 7, 8, 9 and extraction electrode 1
In order to reduce the electric resistance, 0, 11, 12, and 13 form a thick film such as a platinum-silver alloy thicker than the platinum thin films 3 and 4 on the platinum thin film by a method such as printing. Although not shown in the figure,
A protective film such as glass is formed on the resistance films 3 and 4 to protect the elements.

【0015】このように基板5は極めて薄いので強度上
脆い。そこで、破線で輪郭を示した部分を、熱不良導体
部材で形成した基板5の支持体15で覆うようにした。
発熱抵抗素子1の発熱部5a、非発熱部5b部分と幅広
の非発熱部5c部分の上流端部および温度補償抵抗素子
2が、流れ100に対してさらされるよう、15a、1
5bとして図示した部分で段差をもって形成されてい
る。幅広の非発熱部5cは、熱的にはこの部分(非発熱
部5bと同幅として)をなくしてスリットとすることが
有利であるが、強度的に弱くなるので幅広としたもので
ある。熱的には前述したように、幅広の非発熱部5cの
一部を覆わずに露出させてエッジ部を形成することによ
り解決している。また、スリット14のつけ根は脆弱で
あるので、このスリット14のつけ根をも熱不良導体部
材で覆った。
Since the substrate 5 is extremely thin as described above, it is weak in strength. Therefore, the portion indicated by the broken line is covered with the support 15 of the substrate 5 formed of the heat-defective conductor member.
The heat-generating portion 5a of the heat-generating resistor element 1, the upstream end portions of the non-heat-generating portion 5b and the wide non-heat-generating portion 5c, and the temperature-compensating resistor element 2 are exposed to the flow 100 at 15a, 1a.
The portion shown as 5b is formed with a step. The wide non-heat generating portion 5c is advantageous in terms of heat to eliminate this portion (having the same width as the non-heat generating portion 5b) to form a slit, but it is wide because it is weak in strength. Thermally, as described above, the problem is solved by exposing a part of the wide non-heat generating portion 5c without covering it and forming an edge portion. Since the base of the slit 14 is fragile, the base of the slit 14 was also covered with the heat-defective conductor member.

【0016】この発熱抵抗素子1は、内燃機関の吸気系
のいずれかに固定しなければならない。しかし、前述し
たように基板5は弱いので、基板5を直接固定するので
はなく基板5を覆っている熱不良導体部材を支持部材と
して兼用した。
The heating resistance element 1 must be fixed to any of the intake systems of the internal combustion engine. However, since the substrate 5 is weak as described above, the heat-defective conductor member covering the substrate 5 is also used as a support member instead of directly fixing the substrate 5.

【0017】以上のように、本実施例では、空気流量検
出精度を維持しつつこれと相反する強度の問題も解決し
ている。
As described above, in this embodiment, the problem of strength contradictory to the air flow rate detection accuracy is solved while maintaining the air flow rate detection accuracy.

【0018】図2は、図1に示した測定素子を内燃機関
の空気流量計として構成した本発明の実施例の断面図で
ある。吸気90の主通路102を形成する流量計のボデ
ィ101とL字形副流路104を形成する通路部材10
3で流量計としての流路を形成している。発熱抵抗素子
1、および温度補償抵抗素子2は副通路104の流れに
並行な流路部分に回路ユニット106と一体化された支
持部材15を介して配置され、発熱素子1の非発熱幅広
基板の上流端部分5cと共に、副通路104に流入する
気流100にさらされるよう構成されている。107は
副通路104よりの流出流である。通路部材103に
は、副通路104の上流側開口には順流90に対し上流
側に向かう突出する縁が全周に設けられ、凹部からなる
空気流安定手段105が形成されている。
FIG. 2 is a sectional view of an embodiment of the present invention in which the measuring element shown in FIG. 1 is constructed as an air flow meter for an internal combustion engine. The body 101 of the flowmeter that forms the main passage 102 of the intake air 90 and the passage member 10 that forms the L-shaped sub passage 104.
3 forms a flow channel as a flow meter. The heat generating resistance element 1 and the temperature compensating resistance element 2 are arranged in a flow path portion parallel to the flow of the sub-passage 104 via a support member 15 integrated with the circuit unit 106, and the non-heat generating wide substrate of the heat generating element 1 is provided. It is configured to be exposed to the air flow 100 flowing into the sub passage 104 together with the upstream end portion 5c. 107 is an outflow flow from the sub-passage 104. In the passage member 103, an upstream edge of the sub-passage 104 is provided with a projecting edge toward the upstream side with respect to the forward flow 90 over the entire circumference, and an air flow stabilizing means 105 composed of a concave portion is formed.

【0019】図3は、本発明の熱式流量計の測定素子の
第二の実施例の平面図である。図1で示した実施例との
相違点を主に説明する。発熱抵抗素子1には、順流10
0に対して上流側抵抗膜3と下流側抵抗膜23の二個の
抵抗膜が近接して形成されている。また、温度補償抵抗
素子2にも、上流側抵抗膜4と下流側抵抗膜24の二個
の抵抗膜が形成されている。接続電極端子26〜31は
全部で6個設けられており、端子26と29は発熱抵抗
素子1と温度補償抵抗素子2の引出し電極が接続された
共通端子となっている。上流側抵抗膜3と下流側抵抗膜
23の温度は、通常の定温度型熱式流量計と同様に、各
々空気温度との差が空気流速に関係なく一定値になるよ
う各一個の発熱抵抗素子膜と温度補償抵抗素子膜とで独
立に作動する駆動回路により電気加熱される。矢印10
0に示される順方向に流れがある時は、上流側抵抗膜3
は下流側抵抗膜23に比べて流れによる冷却が大である
ので、駆動回路からの供給電流は上流側抵抗膜3の方が
下流側抵抗膜23の方より大となる。一方、矢印200
に示される逆流の場合、流れによる冷却は下流側抵抗膜
23の方が上流側抵抗膜3の方より大となり、駆動回路
からの供給電流は下流側抵抗膜23の方が上流側抵抗膜
3の方より大となる。従って、発熱抵抗膜3と23への
供給電流の差により、流れの方向を検知することができ
る。上流側抵抗膜3と下流側抵抗膜23のそれぞれの流
量に応じた出力を電圧比較器により、流れの方向を検知
すると共に、スイッチ回路により出力を切り替えて逆流
分を出力しない、さらには、逆流分を差し引く等の補正
が可能になる。但し、これを精度良く行うためには、発
熱抵抗素子に高い過渡応答性が必要である。高い過渡応
答性を実現するには、基板の熱容量すなわち板厚、流れ
方向の幅を極力小さくすること、支持部への熱移動量の
低減、流速による温度分布の変化の低減等が有効であ
る。しかし、基板の板厚、流れ方向の幅を小さくするこ
とは、素子の折り曲げ強度の低下という問題を生じる。
さらに、一枚の基板に発熱抵抗素子と温度補償素子を作
りこんだ場合、両者の熱絶縁は精度向上には必須で、こ
のために両者の間にスリットを設けるのが有効である。
しかし、このスリットも強度低下の原因になることは解
る。そこで、高い過渡応答性を得るよう、発熱抵抗素子
膜3、23を設ける基板部分5aの流れ方向の幅は小さ
くするが、スリットを設ける部分を幅広にする、即ち5
cの部分を設けることで強度低下がおさえられる。さら
に、支持部への熱移動量の低減、流速による温度分布の
変化の低減を計るには、発熱抵抗素子の非発熱部の低温
化と流速変化による温度変化の低減が有効である。この
ため、発熱抵抗素子膜3、23を設ける基板部分5aと
同幅の非発熱部分5bを強度のゆるす限り長くとり、こ
の部分と前記の幅広の非発熱部分5cを低流速時におい
ても有効に冷却してやることが重要である。そのため、
図1で説明したと同様に、15a、15bで示す支持部
材15の段差構造がとられている。
FIG. 3 is a plan view of a second embodiment of the measuring element of the thermal type flow meter of the present invention. Differences from the embodiment shown in FIG. 1 will be mainly described. The heating resistor element 1 has a forward flow of 10
Two resistance films of the upstream resistance film 3 and the downstream resistance film 23 are formed close to 0. Further, the temperature compensation resistance element 2 also has two resistance films, that is, the upstream resistance film 4 and the downstream resistance film 24. Six connection electrode terminals 26 to 31 are provided in total, and the terminals 26 and 29 are common terminals to which the extraction electrodes of the heating resistance element 1 and the temperature compensation resistance element 2 are connected. The temperature of the upstream resistance film 3 and the temperature of the downstream resistance film 23 are the same as those of a normal constant temperature type thermal flow meter, so that the difference between each temperature is a constant value regardless of the air flow velocity. The element film and the temperature compensating resistance element film are electrically heated by a drive circuit that operates independently. Arrow 10
When there is a flow in the forward direction indicated by 0, the upstream resistance film 3
Since the cooling due to the flow is larger than that of the downstream resistance film 23, the supply current from the drive circuit is larger in the upstream resistance film 3 than in the downstream resistance film 23. On the other hand, arrow 200
In the case of the reverse flow shown in FIG. 5, the cooling due to the flow is larger in the downstream resistance film 23 than in the upstream resistance film 3, and the supply current from the drive circuit is larger in the downstream resistance film 23 in the downstream resistance film 23. Will be larger than Therefore, the direction of the flow can be detected by the difference in the current supplied to the heating resistance films 3 and 23. The output according to the flow rate of each of the upstream resistance film 3 and the downstream resistance film 23 is detected by the voltage comparator in the direction of the flow, and the output is switched by the switch circuit so that the backflow component is not output. Correction such as subtraction of minutes becomes possible. However, in order to perform this accurately, the heating resistance element needs to have high transient response. In order to realize high transient response, it is effective to minimize the heat capacity of the substrate, that is, the plate thickness and the width in the flow direction, reduce the amount of heat transfer to the support, reduce the change in temperature distribution due to the flow velocity, etc. . However, reducing the plate thickness and the width in the flow direction of the substrate causes a problem of lowering the bending strength of the element.
Further, when the heat generating resistance element and the temperature compensating element are formed on one substrate, thermal insulation between them is indispensable for improving accuracy, and therefore it is effective to provide a slit between them.
However, it is understood that this slit also causes a decrease in strength. Therefore, in order to obtain a high transient response, the width of the substrate portion 5a on which the heating resistance element films 3 and 23 are provided in the flow direction is made small, but the portion at which the slit is provided is made wide, that is, 5
By providing the portion c, the strength reduction can be suppressed. Further, in order to reduce the amount of heat transfer to the support portion and the change in temperature distribution due to the flow velocity, it is effective to lower the temperature of the non-heat generating portion of the heating resistance element and reduce the temperature change due to the change in flow velocity. For this reason, the non-heating portion 5b having the same width as the substrate portion 5a on which the heating resistance element films 3 and 23 are provided is made as long as the strength allows, and this portion and the wide non-heating portion 5c are effectively used even at a low flow velocity. It is important to cool down. for that reason,
Similar to that described with reference to FIG. 1, the stepped structure of the support member 15 shown by 15a and 15b is adopted.

【0020】図4は、図3で示した実施例の少変形した
実施例の平面図である。発熱抵抗素子の幅広の非発熱部
分5c部分を、温度補償素子2の下端エッジより発熱抵
抗素子膜3、23側へ延長して形成したものである。こ
れにより、発熱抵抗素子の幅広の非発熱部分5c部分の
冷却がより十分に行える。
FIG. 4 is a plan view of a slightly modified embodiment of the embodiment shown in FIG. The wide non-heat generating portion 5c of the heating resistor element is formed by extending from the lower end edge of the temperature compensating element 2 to the heating resistor element films 3 and 23 side. Thereby, the wide non-heat generating portion 5c of the heat generating resistance element can be cooled more sufficiently.

【0021】図5は、図3で示した実施例をさらに改良
した実施例の平面図である。発熱抵抗素子1の幅広に形
成される非発熱部5c、5eが上下流方向にほぼ均等に
形成し、且つ、発熱部の抵抗膜3、23、接続電極端子
26、27、28、29までの引出し電極40、41、
42、43のパターンを含め、スリット14から下流の
発熱抵抗素子1が形成された基板部分が、2個の膜状発
熱抵抗膜3、23の分離部5fの中心に対し流れ方向に
ほぼ対称に形成されている。これにより、2個の発熱抵
抗素子3、23の電気的特性を均等にでき、逆流検出補
正の精度向上が成される。次に、もう一つの変更点につ
いて述べる。
FIG. 5 is a plan view of an embodiment obtained by further improving the embodiment shown in FIG. The non-heat generating portions 5c and 5e formed wide in the heat generating resistance element 1 are formed substantially uniformly in the upstream and downstream directions, and the resistance films 3 and 23 of the heat generating portion and the connection electrode terminals 26, 27, 28 and 29 are formed. Extraction electrodes 40, 41,
Including the patterns 42 and 43, the substrate portion on the downstream side of the slit 14 on which the heating resistance element 1 is formed is substantially symmetrical in the flow direction with respect to the center of the separation portion 5f of the two film heating resistance films 3 and 23. Has been formed. As a result, the electrical characteristics of the two heating resistance elements 3 and 23 can be made uniform, and the accuracy of backflow detection correction can be improved. Next, another change will be described.

【0022】基板5の大基板からの切出しは、レーザー
加工等の方法で行われる。段差やスリットの隅部でレー
ザーが、方向変更のため一時停止してその部分の温度が
上昇し、基板が損傷する割合が増大する。そこで、段差
の隅部16a、16bやスリット隅部17を円弧などの
曲線で形成して、レーザーの動きを連続したものにする
ことで損傷率を低減できる。
The substrate 5 is cut out from the large substrate by a method such as laser processing. At the corners of the step or slit, the laser temporarily stops due to the change of direction, the temperature of the part rises, and the rate of damage to the substrate increases. Therefore, the damage rate can be reduced by forming the corners 16a and 16b of the step and the slit corner 17 with curved lines such as arcs so that the laser movement is continuous.

【0023】図6は、図5で示した測定素子に対し、支
持部材18の形状を若干変えた実施例の平面図である。
発熱抵抗素子1に形成された上下流方向に均等な幅広の
非発熱部5c、5eの両方が測定する流れに曝される
様、支持部材18の18aのごとく、逆流を示す矢印2
00側にも段差を設けている。これにより、温度的な対
称性の点でも逆流検出補正の精度向上に有利となる。
FIG. 6 is a plan view of an embodiment in which the shape of the supporting member 18 is slightly changed from that of the measuring element shown in FIG.
As shown by 18a of the support member 18, an arrow 2 indicating a backflow so that both the non-heat generating portions 5c and 5e formed in the heating resistor element 1 and having a wide width in the upstream and downstream directions are exposed to the flow to be measured.
A step is also provided on the 00 side. This is also advantageous in improving the accuracy of backflow detection correction in terms of temperature symmetry.

【0024】図7は、図3または図5に示した測定素子
を内燃機関の空気流量計として構成した本発明の実施例
の断面図である。吸気90の主通路102を形成する流
量計のボディ101と副流路114を形成する通路部材
113で流量計としての流路を形成している。発熱抵抗
素子1、および温度補償抵抗素子2は副通路114の流
れに並行な流路部分に回路ユニット116と一体化され
た支持部材15を介して配置され、発熱素子1の非発熱
幅広基板の上流端部分5cと共に、副通路114に流入
する気流100に曝されるよう構成されている。117
は副通路114よりの流出流である。通路部材113に
は、副通路114の上流および下流側開口には各々順流
90の上、下流に対し全周に突出する縁が設けられ、凹
部からなる空気流安定手段115aおよび115bが形
成されている。矢印91は、機関からの逆流を示し、矢
印200は、その副通路114への侵入流れを示す。
FIG. 7 is a sectional view of an embodiment of the present invention in which the measuring element shown in FIG. 3 or 5 is constructed as an air flow meter of an internal combustion engine. The body 101 of the flowmeter that forms the main passage 102 of the intake air 90 and the passage member 113 that forms the sub-passage 114 form a flow passage as a flowmeter. The heat-generating resistance element 1 and the temperature-compensating resistance element 2 are arranged in a flow path portion parallel to the flow of the sub-passage 114 via a support member 15 integrated with the circuit unit 116. It is configured to be exposed to the airflow 100 flowing into the auxiliary passage 114 together with the upstream end portion 5c. 117
Is an outflow flow from the auxiliary passage 114. In the passage member 113, the upstream and downstream openings of the sub-passage 114 are provided with edges that project over the forward flow 90 and around the entire downstream, respectively, and air flow stabilizing means 115a and 115b formed of concave portions are formed. There is. An arrow 91 indicates a backflow from the engine, and an arrow 200 indicates an inflow flow into the sub passage 114.

【0025】図8は、図7の順流90側から見た正面図
である。各々図7に対応して、1は発熱抵抗素子、2は
温度補償抵抗素子、15は支持部材、101はボディ、
102は主通路、116は回路ユニットである。副通路
114は回路ユニット116側の壁面が円弧で形成さ
れ、入口部に空気流安定手段115aを備えている。下
流側空気流安定手段115bの正面形状も、上流側空気
流安定手段115aとほぼ同等の形状を有する。空気流
安定手段115aおよび115bにより正流側および逆
流側共に、流れの流速分布の影響が低減され、計測精度
の向上が達成される。
FIG. 8 is a front view seen from the forward flow 90 side in FIG. Corresponding to FIG. 7, 1 is a heating resistance element, 2 is a temperature compensation resistance element, 15 is a support member, 101 is a body,
102 is a main passage and 116 is a circuit unit. A wall surface of the sub passage 114 on the side of the circuit unit 116 is formed in an arc, and an air flow stabilizing means 115a is provided at an inlet portion thereof. The front shape of the downstream air flow stabilizing means 115b is also substantially the same as that of the upstream air flow stabilizing means 115a. By the air flow stabilizing means 115a and 115b, the influence of the flow velocity distribution of the flow is reduced on both the forward flow side and the reverse flow side, and the measurement accuracy is improved.

【0026】上記したこれら実施例によれば、スリット
設けることによる測定素子自身の折り曲げ強度の低下を
小さくでき、且つ発熱部から基板根本方向への伝導熱量
変化を小さくでき、温度分布を平衡させる時間が短縮さ
れ、その結果、流速変動に対する過渡応答性の向上が達
成される。これにより、逆流補正を良好に可能にする熱
式流量計が実現する。また、スリットから下流の発熱抵
抗素子が形成された基板部分を2個の膜状発熱抵抗パタ
ーンの分離部の中心に対し対称に形成することにより、
2個の発熱抵抗素子の電気的特性を均等にでき、また、
幅広に形成した発熱抵抗素子の非発熱部上下流端を流体
流にさらされるようにして温度的な対称性を得て逆流検
出補正の精度向上が達成される。また、発熱抵抗素子の
非発熱部の段差部分の内側隅部を連続する曲線で形成す
ることで、基板をレーザを用いて切り出す場合の欠損を
少なく出来、素子製造時の低コスト化と単体強度の向上
も実現する。一方、上流側および下流側開口の全周に突
出する縁を設けて凹部からなる空気流安定手段を形成し
た副流路に測定素子を配置することで流れの流速分布の
影響が低減され、逆流補正を含めた計測精度向上が達成
される。逆流による誤差は、機関によりまた条件により
異なるが、30〜100%にもなる。本実施例を適用し
た逆流補正により、誤差5%以下が実現する。
According to these embodiments described above, the decrease in the bending strength of the measuring element itself due to the provision of the slits can be reduced, the change in the amount of conduction heat from the heat generating portion toward the base of the substrate can be reduced, and the time for balancing the temperature distribution can be reduced. Is shortened, and as a result, improved transient responsiveness to flow velocity fluctuations is achieved. This realizes a thermal type flow meter that enables favorable backflow correction. Further, by forming the substrate portion on the downstream side of the slit, on which the heating resistance element is formed, symmetrically with respect to the center of the separation portion of the two film-shaped heating resistance patterns,
The electrical characteristics of the two heating resistance elements can be equalized, and
By exposing the upstream and downstream ends of the non-heat generating portion of the widely formed heat generating resistance element to the fluid flow, temperature symmetry is obtained to improve the accuracy of backflow detection correction. In addition, by forming the inner corner of the step portion of the non-heat generating portion of the heating resistor element with a continuous curve, it is possible to reduce defects when cutting the substrate using a laser, reduce the cost during element manufacturing, and reduce the strength of the unit. Will also be realized. On the other hand, the influence of the flow velocity distribution of the flow is reduced by arranging the measuring element in the sub-flow passage in which the air flow stabilizing means consisting of the concave portion is formed by providing the edges projecting all around the upstream and downstream openings, thereby reducing the back flow. Improvement of measurement accuracy including correction is achieved. The error due to backflow is as high as 30 to 100%, depending on the engine and the conditions. An error of 5% or less is realized by the backflow correction to which the present embodiment is applied.

【0027】[0027]

【発明の効果】応答性を向上させることにより強度の低
下を防止することができる。
By improving the responsiveness, it is possible to prevent the strength from decreasing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱式流量計の測定素子の第一の実施例
の平面図
FIG. 1 is a plan view of a first embodiment of a measuring element of a thermal type flow meter according to the present invention.

【図2】本発明の実施例による熱式流量計の断面図FIG. 2 is a sectional view of a thermal type flow meter according to an embodiment of the present invention.

【図3】本発明の熱式流量計の測定素子の第二の実施例
の平面図
FIG. 3 is a plan view of a second embodiment of the measuring element of the thermal type flow meter of the present invention.

【図4】本発明の熱式流量計の測定素子の第三の実施例
の平面図
FIG. 4 is a plan view of a third embodiment of the measuring element of the thermal type flow meter of the present invention.

【図5】本発明の熱式流量計の測定素子の第四の実施例
の平面図
FIG. 5 is a plan view of a fourth embodiment of the measuring element of the thermal type flow meter of the present invention.

【図6】本発明の熱式流量計の測定素子の第五の実施例
の平面図
FIG. 6 is a plan view of a fifth embodiment of the measuring element of the thermal type flow meter of the present invention.

【図7】本発明の実施例による熱式流量計の断面図FIG. 7 is a sectional view of a thermal type flow meter according to an embodiment of the present invention.

【図8】図7に示した本発明の実施例による熱式流量計
の正面図
FIG. 8 is a front view of the thermal type flow meter according to the embodiment of the present invention shown in FIG.

【符号の説明】[Explanation of symbols]

1…発熱抵抗素子、2…温度補償抵抗素子、3、4、2
3、24…抵抗膜、5…基板、5a…発熱抵抗膜が形成
された基板部分、5b…発熱抵抗膜が形成された基板部
分と同幅の発熱抵抗素子の非発熱部、5c,5e…発熱
抵抗膜が形成された基板部分より幅広の発熱抵抗素子の
非発熱部、6、7、8、9、26、27、28、29、
30、31…接続電極端子、14…スリット、15、1
8…支持部材、90、100…順流流れ、91、200
…逆流流れ、101…ボディ、102…主通路、10
4、114…副通路、105、115a,115b…空
気流安定手段、106…回路ユニット
1 ... Heating resistance element, 2 ... Temperature compensation resistance element, 3, 4, 2
3, 24 ... Resistive film, 5 ... Substrate, 5a ... Substrate portion on which the heat generating resistive film is formed, 5b ... Non-heat generating portion of the heat generating resistive element having the same width as the substrate portion on which the heat generating resistive film is formed, 5c, 5e ... The non-heat generating portion of the heat generating resistance element, which is wider than the substrate portion on which the heat generating resistance film is formed, 6, 7, 8, 9, 26, 27, 28, 29,
30, 31 ... Connection electrode terminals, 14 ... Slits, 15, 1
8 ... Support member, 90, 100 ... Forward flow, 91, 200
... Backflow, 101 ... Body, 102 ... Main passage, 10
4, 114 ... Sub passages, 105, 115a, 115b ... Air flow stabilizing means, 106 ... Circuit unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小渡 武彦 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 内山 薫 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 (72)発明者 渡辺 泉 茨城県ひたちなか市大字高場字鹿島谷津 2477番地3日立オートモティブエンジニア リング株式会社内 (72)発明者 磯野 忠 茨城県ひたちなか市大字高場字鹿島谷津 2477番地3日立オートモティブエンジニア リング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takehiko Owata 502 Jinritsucho, Tsuchiura-shi, Ibaraki Machinery Research Institute, Hiritsu Manufacturing Co., Ltd. (72) Inventor, Izumi Watanabe, Takata Ibaraki, Ibaraki Prefecture, Takaba 2477, Kashima Yatsu 3 Hitachi Automotive Engineering Co., Ltd. Address 3 Within Hitachi Automotive Engineering Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】薄板の電気絶縁体基板と、その表面に膜状
に形成された少なくとも各一個の発熱抵抗素子と温度補
償抵抗素子と、これら発熱抵抗素子及び温度補償抵抗素
子に対応して形成された複数の電極と、前記発熱抵抗素
子及び温度補償抵抗素子と前記電極とを接続するリード
部材と、前記発熱抵抗素子と前記温度補償抵抗素子とが
流れ方向に前記発熱抵抗素子が突出するように段差をも
って前記絶縁体基板上に形成された測定素子とを備えた
熱式流量計において、前記発熱抵抗素子が形成された基
板部と流れ方向に同幅の基板部分と、前記温度補償抵抗
素子膜が形成された基板部分と流れ方向にほぼ同段に、
スリットを介して少なくとも上流側に幅広に形成された
基板部分と、前記発熱抵抗素子が形成された基板部と同
幅の基板部分およびこれに連続する幅広に形成された基
板部分を除き、前記スリットの根本部を含むように収納
する収納部材と、この収納部材を熱不良導体部材で構成
し保持部材と兼用した熱式流量計。
1. A thin electrically insulating substrate, at least one heating resistance element and a temperature compensation resistance element formed on the surface thereof in a film shape, and formed corresponding to these heating resistance element and temperature compensation resistance element. A plurality of electrodes, a lead member for connecting the heating resistance element and the temperature compensation resistance element to the electrodes, and the heating resistance element and the temperature compensation resistance element so that the heating resistance element projects in the flow direction. In a thermal type flow meter having a measuring element formed on the insulating substrate with a step at the step, a substrate portion having the same width in the flow direction as the substrate portion on which the heating resistance element is formed, and the temperature compensation resistance element Substantially in the same flow direction as the substrate part where the film is formed,
Except for a substrate portion formed wide at least on the upstream side through a slit, a substrate portion having the same width as the substrate portion on which the heating resistance element is formed, and a substrate portion formed continuously wide to the slit, the slit A thermal type flow meter in which the housing member is housed so as to include the root part thereof, and the housing member is composed of a heat-defective conductor member and also serves as a holding member.
【請求項2】前記温度補償抵抗素子用膜状パターンと前
記発熱抵抗素子用膜状パターンが各々2個づつ近接して
形成され、一個の温度補償抵抗素子と一個の発熱抵抗素
子が一対となって独立して駆動される定温度型駆動回路
を有すると共に、流れに対して上下流に近接した2個の
発熱抵抗素子の出力の大きさを比較する比較回路等を有
し、逆流補正を可能にする請求項1に記載の熱式流量
計。
2. The temperature compensating resistance element film pattern and the heat generating resistance element film pattern are formed adjacent to each other by two pieces, and one temperature compensating resistance element and one heating resistance element are paired. In addition to having a constant temperature drive circuit that is driven independently, it also has a comparison circuit that compares the output sizes of two heating resistance elements that are close to upstream and downstream with respect to the flow, and backflow correction is possible. The thermal type flow meter according to claim 1.
【請求項3】前記発熱抵抗素子の非発熱部が上下流方向
に均等に幅広に形成され、且つ、発熱部の抵抗膜パター
ン、接続電極端子までの引出し電極のパターンを含め、
前記スリットから下流の発熱抵抗素子が形成された基板
部分が、前記2個の膜状発熱抵抗膜パターンの分離部の
中心に対しほぼ対称に形成されている請求項2に記載の
熱式流量計の測定素子。
3. A non-heat generating portion of the heat generating resistance element is formed to have a wide width in the upstream and downstream directions, and includes a resistance film pattern of the heat generating portion and a pattern of a lead electrode up to a connecting electrode terminal.
The thermal type flow meter according to claim 2, wherein the substrate portion on the downstream side of the slit, on which the heating resistance element is formed, is formed substantially symmetrically with respect to the center of the separation portion of the two film-shaped heating resistance film patterns. Measuring element.
【請求項4】前記幅広に形成された発熱抵抗素子の非発
熱部上下流端が測定する流体流に曝されるよう、上下流
に段が形成された形状の熱不良導体部材で保持した請求
項2又は請求項3に記載の測定素子を備えた熱式流量
計。
4. A heat-defective conductor member having steps formed upstream and downstream so that the upstream and downstream ends of the non-heat generating portion of the widened heating resistor element are exposed to the fluid flow to be measured. A thermal flow meter comprising the measuring element according to claim 2 or claim 3.
【請求項5】少なくとも、前記発熱抵抗素子の非発熱部
の段差部分の内側隅部が円弧などの連続する曲線で形成
されている請求項1に記載の熱式流量計の測定素子。
5. The measuring element for a thermal type flow meter according to claim 1, wherein at least the inner corner of the step portion of the non-heat generating portion of the heat generating resistor element is formed by a continuous curve such as an arc.
【請求項6】前記発熱抵抗素子の幅広に形成された非発
熱部の下端エッジが、前記温度補償抵抗素子の下端エッ
ジより少し突き出した3段形状とし、前記幅広の非発熱
部の下端エッジも測定する流体流に曝されるよう構成し
た請求項1に記載の熱式流量計。
6. A three-step shape in which a lower end edge of a wide non-heating portion of the heating resistor element is slightly projected from a lower end edge of the temperature compensation resistor element, and a lower end edge of the wide non-heating portion is also formed. The thermal flow meter according to claim 1, wherein the thermal flow meter is configured to be exposed to a fluid flow to be measured.
【請求項7】吸入空気を流通する主流路と、前記吸入空
気の一部を流通し、且つ内部に測定素子を備えて吸入空
気量を計測する主流路内に収納された副流路を有し、該
副流路の上流側および下流側開口の全周に突出する縁を
設けて凹部からなる空気流安定手段を形成し、該凹部の
底部に前記副流路の上下流開口を設けると共に、該上下
流開口を主流路軸に対し回路ユニット側に偏心して位置
させた請求項2に記載の熱式空気流量計。
7. A main flow path for circulating intake air, and a sub-flow path for circulating a part of the intake air and having a measuring element therein to measure the intake air amount. And forming an air flow stabilizing means consisting of a recess by providing rims projecting around the upstream and downstream openings of the sub-flow path, and providing the upstream and downstream openings of the sub-flow path at the bottom of the recess. The thermal air flow meter according to claim 2, wherein the upstream and downstream openings are eccentrically located on the circuit unit side with respect to the main flow path axis.
JP7151316A 1995-06-19 1995-06-19 Thermal flowmeter and its measuring element Pending JPH095135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7151316A JPH095135A (en) 1995-06-19 1995-06-19 Thermal flowmeter and its measuring element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7151316A JPH095135A (en) 1995-06-19 1995-06-19 Thermal flowmeter and its measuring element

Publications (1)

Publication Number Publication Date
JPH095135A true JPH095135A (en) 1997-01-10

Family

ID=15515981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7151316A Pending JPH095135A (en) 1995-06-19 1995-06-19 Thermal flowmeter and its measuring element

Country Status (1)

Country Link
JP (1) JPH095135A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037716A1 (en) * 2016-08-22 2018-03-01 日立オートモティブシステムズ株式会社 Physical quantity detecting device
WO2021193051A1 (en) * 2020-03-25 2021-09-30 ホルトプラン合同会社 Thermal flow direction sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037716A1 (en) * 2016-08-22 2018-03-01 日立オートモティブシステムズ株式会社 Physical quantity detecting device
JPWO2018037716A1 (en) * 2016-08-22 2019-02-21 日立オートモティブシステムズ株式会社 Physical quantity detection device
CN109642831A (en) * 2016-08-22 2019-04-16 日立汽车系统株式会社 Measuring physical
US11137292B2 (en) 2016-08-22 2021-10-05 Hitachi Automotive Systems, Ltd. Physical quantity detecting device
WO2021193051A1 (en) * 2020-03-25 2021-09-30 ホルトプラン合同会社 Thermal flow direction sensor
JP2021156623A (en) * 2020-03-25 2021-10-07 ホルトプラン合同会社 Thermal current direction sensor

Similar Documents

Publication Publication Date Title
US4912975A (en) Direct-heated flow measuring apparatus having improved response characteristics
US6190039B1 (en) Heated type sensor with auxiliary heater in bridge circuit for maintaining constant sensor temperature
KR960005639B1 (en) Apparatus for determining the mass flow of a flowing medium
JPH10197309A (en) Measuring element for thermal air flowmeter and thermal air flowmeter
US5717136A (en) Hot film type air flow quantity detecting apparatus applicable to vehicular internal combustion engine
US6508117B1 (en) Thermally balanced mass air flow sensor
JP3331814B2 (en) Thermal flow detector
JPS61194317A (en) Direct-heating type flow-rate sensor
JP3361708B2 (en) Measurement element for air flow measurement device and air flow measurement device provided with the same
US5060511A (en) Intake air quantity measuring apparatus
JPH095135A (en) Thermal flowmeter and its measuring element
US4761995A (en) Direct-heated flow measuring apparatus having improved sensitivity and response speed
JP3668921B2 (en) Flow detection element
KR0163637B1 (en) Thermal type air flow rate detector
JP3184402B2 (en) Thermal air flow detector
JP3174234B2 (en) Thermal air flow detector
JPH09304147A (en) Measuring element for thermal air flowmeter and thermal air flowmeter containing the same
JPH0843162A (en) Thermal air flow rate detector
JP3095322B2 (en) Thermal air flow detector
JP3663267B2 (en) Thermal air flow meter
JP2944890B2 (en) Thermal air flow detector
JPH07239258A (en) Thermal air flow rate detector
JP3133609B2 (en) Thermal air flow detector
JPH0854270A (en) Thermal type air flow rate detector
JPH04291115A (en) Hot-wire air flowmeter