JPH0949782A - Defect detector for color filter - Google Patents

Defect detector for color filter

Info

Publication number
JPH0949782A
JPH0949782A JP20197095A JP20197095A JPH0949782A JP H0949782 A JPH0949782 A JP H0949782A JP 20197095 A JP20197095 A JP 20197095A JP 20197095 A JP20197095 A JP 20197095A JP H0949782 A JPH0949782 A JP H0949782A
Authority
JP
Japan
Prior art keywords
image
color filter
threshold value
extracted
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20197095A
Other languages
Japanese (ja)
Inventor
Takashi Yamaharu
孝 山春
Tadashi Rokkaku
正 六角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20197095A priority Critical patent/JPH0949782A/en
Publication of JPH0949782A publication Critical patent/JPH0949782A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the detecting reliability of a white defect or hole defect and to enhance the detecting sensitivity by providing a light source, a color CCD area sensor and an image processor. SOLUTION: A light source 2 is disposed at the rear side of a color filter 1 to illuminate a light 3a toward the rear surface of the filter, and the light 3b passed through the filter 1 is received by a color CCD area sensor 5 via an imaging lens 4. The imaging signal 6 by the sensor 5 is input to an image processor 7, and image processed. An R component extraction image is obtained from the signal 6 of the sensor 6, and binarized to a binary threshold value TR. When white points exist on the entire R, G and B transmitted parts of the filter 1, the white point in the R transmitted part cannot be extracted, but the R component can be extracted by the white point in the G and B transmitted parts. In this case, the threshold value TR is set so as to exceed the spectral characteristics and the intensity level of the G transmitted part to become suitable binary threshold value, and only G and B white points can be extracted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば液晶表示用
のカラーフィルタ検査装置にて適用される欠陥検出装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect detection device applied in a color filter inspection device for liquid crystal display, for example.

【0002】[0002]

【従来の技術】従来、カラーフィルタのブラックマトリ
ックスのホール欠陥もしくは白点欠陥を検出する装置と
しては、被検査体であるカラーフィルタの裏面側に光源
より光を照射し、カラーフィルタの透過光をカラーフィ
ルタ前面側に配置したモノクロCCDエリアセンサ又は
CCDラインセンサにて受光し、この受光画像を画像処
理して欠陥を抽出するものがある。
2. Description of the Related Art Conventionally, as a device for detecting a hole defect or a white spot defect of a black matrix of a color filter, light is emitted from a light source to the back side of the color filter which is an object to be inspected and the transmitted light of the color filter is detected. There is a method in which a monochrome CCD area sensor or CCD line sensor arranged on the front side of the color filter receives light, and the received light image is subjected to image processing to extract defects.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
従来技術では、次のような問題を有する。 (1)モノクロCCDエリアセンサを用いる場合、白点
欠陥については、カラーフィルタの正常部を透過した光
と欠陥部を透過したモノクロ光とのコントラストを向上
させて白点欠陥を抽出しているが、白点欠陥検出のため
つまり画像処理に係る2値化のためのしきい値をR
(赤),G(緑),B(青)各々のカラーフィルタ分光
特性に合わせて、個別に適正化しにくく、このため白点
欠陥検出の信頼性や検出感度を高めるには限界が生じて
いる。
However, the above-mentioned prior art has the following problems. (1) When a monochrome CCD area sensor is used, with respect to white spot defects, white spot defects are extracted by improving the contrast between the light transmitted through the normal part of the color filter and the monochrome light transmitted through the defective parts. , R for the threshold value for white spot defect detection, that is, for binarization related to image processing.
(Red), G (green), B (blue) It is difficult to individually optimize according to the color filter spectral characteristics of each color filter, and therefore, there is a limit to increase the reliability and detection sensitivity of white spot defect detection. .

【0004】このことは、ブラックマトリックスのホー
ル欠陥検出についても同様で、カラーフィルタのR,
G,Bそれぞれに対しモノクロCCDエリアセンサの受
光感度が異なり、このためホール欠陥抽出のための画像
処理に係る2値化のしきい値はR,G,B各々にて異な
り、このためホール欠陥検出の信頼性や検出感度を高め
るには限界がある。
This also applies to the detection of hole defects in the black matrix.
The light receiving sensitivity of the monochrome CCD area sensor is different for each of G and B. Therefore, the threshold value of the binarization related to the image processing for extracting the hole defect is different for each of R, G, and B. There is a limit to increase detection reliability and detection sensitivity.

【0005】(2)また、CCDラインセンサを用いた
場合、受光感度が低く、このため検査速度を小さくせざ
るを得ない。
(2) Further, when the CCD line sensor is used, the light receiving sensitivity is low, and therefore the inspection speed must be reduced.

【0006】そこで、上述の問題に鑑み、欠陥検出の信
頼性や検出感度を高めることができると共にCCDライ
ンセンサを用いないで、検出速度を向上するようにした
カラーフィルタ欠陥検出装置の提供を目的とする。
In view of the above problems, therefore, it is an object of the present invention to provide a color filter defect detection device which can improve the reliability and detection sensitivity of defect detection and improve the detection speed without using a CCD line sensor. And

【0007】[0007]

【課題を解決するための手段】上述の目的を達成する本
発明は次の構成を特徴とする。 (1)被検査体であるカラーフィルタの片面側に設置さ
れた光源と、この光源による上記カラーフィルタの透過
光を受光するカラーCCDエリアセンサと、このセンサ
からの撮像信号のうちR成分抽出画像の2値化処理画像
とB成分抽出画像の2値化処理画像との画像積を得る画
像処理装置と、を有することを特徴とする。 (2)被検査体であるカラーフィルタの片面側に設置さ
れた光源と、この光源による上記カラーフィルタの透過
光を受光するカラーCCDエリアセンサと、このセンサ
からの撮像信号のうちR,G,BもしくはR,B各成分
抽出画像の各2値化処理画像の画像和を求めついでこの
画像和と基準ブラックマトリックス反転画像との画像積
を得る画像処理装置と、を有することを特徴とする。
The present invention, which achieves the above objects, has the following features. (1) A light source installed on one side of a color filter that is an object to be inspected, a color CCD area sensor that receives light transmitted through the color filter by the light source, and an R component extracted image of an image pickup signal from the sensor And an image processing apparatus that obtains an image product of the binarized image of B component extracted image and the binarized image of the B component extracted image. (2) A light source installed on one side of a color filter which is an object to be inspected, a color CCD area sensor for receiving the transmitted light of the color filter by the light source, and R, G, and An image processing device for obtaining the image sum of each binarized image of each of the B or R, B component extracted images and then obtaining the image product of this image sum and the reference black matrix inversion image.

【0008】カラーCCDエリアセンサにてR,B、又
はR,G,B成分光を抽出し、各フィルタの分光特性に
対して適正な2値化しきい値を設定することにより、得
られた2値化画像に対して画像積を求め、また画像和を
求めた後基準ブラックマトリックスとの画像積を求めた
ことにより、白点欠陥の感度と信頼性を高めることがで
き、またホール欠陥の感度と信頼性を高めることができ
る。
A color CCD area sensor extracts R, B, or R, G, B component light and sets an appropriate binarization threshold value for the spectral characteristic of each filter. By obtaining the image product for the binarized image, and then obtaining the image product with the reference black matrix after obtaining the image sum, it is possible to increase the sensitivity and reliability of the white spot defect and the sensitivity of the hole defect. And can increase reliability.

【0009】[0009]

【発明の実施の形態】ここで、発明の実施の形態につい
て述べる。図1は全体構成を示しており、被検査体であ
るカラーフィルタ1に対してその裏面側に光源2が配置
されてフィルタ裏面に向って光3aが照射され、このフ
ィルタ1を透過した光3bは、撮像レンズ4を介してカ
ラーCCDエリアセンサ5に受光される。このカラーC
CDエリアセンサ5による撮像信号6は画像処理装置7
に入力され画像処理が行なわれる。この場合、カラーフ
ィルタ1は、図1に示す矢印方向c,dもしくは図面に
垂直な方向にX,Yテーブル(図示省略)によって駆動
位置決めされる。
BEST MODE FOR CARRYING OUT THE INVENTION Here, embodiments of the present invention will be described. FIG. 1 shows the overall configuration. A light source 2 is arranged on the back surface side of a color filter 1 as an object to be inspected, light 3a is emitted toward the back surface of the filter, and light 3b transmitted through this filter 1 is shown. Is received by the color CCD area sensor 5 via the imaging lens 4. This color C
The image pickup signal 6 from the CD area sensor 5 is sent to the image processing device 7
Is input to and image processing is performed. In this case, the color filter 1 is driven and positioned by an X, Y table (not shown) in the arrow directions c, d shown in FIG. 1 or in the direction perpendicular to the drawing.

【0010】画像処理装置7での画像処理に当っては、
図2に示すカラーフィルタR,G,Bの分光特性を前提
としており、つまり、図2に示す2種類の分光特性でも
明らかな如く、BとRとは共通波長域がほとんどなく、
また、BとGもしくはGとRとは互いに共通波長域を有
して分光特性曲線の重なる部分が存在する。
In the image processing by the image processing device 7,
It is premised on the spectral characteristics of the color filters R, G, B shown in FIG. 2, that is, as is clear from the two types of spectral characteristics shown in FIG. 2, B and R have almost no common wavelength range,
Further, B and G or G and R have a common wavelength range with each other, and there is a portion where the spectral characteristic curves overlap.

【0011】画像処理プロセスを述べるに、図3(a)
は、カラーCCDセンサ5の撮像信号6からR成分抽出
画像を得て、2値化しきい値TR にて2値化処理をした
図を示しており、カラーフィルタ1のR,G,B透過部
の全部に白点が存在する場合、(a)上図の画像パター
ンの如くR透過部内の白点は抽出できないが、G,B各
透過部内の白点にてR成分が抽出できるのでe−e′部
の輝度レベルとしては(a)下図の如きパターンとな
る。この場合、しきい値TR としては、分光特性上R透
過部の輝度レベルを下回り、G透過部の輝度レベルを上
回るように設定することにより、適正な2値化しきい値
となってG,Bの白点のみが抽出できることになる。
The image processing process will be described with reference to FIG.
Shows a diagram in which an R component extracted image is obtained from the image pickup signal 6 of the color CCD sensor 5 and binarized by a binarization threshold value T R. R, G, B transmission of the color filter 1 is shown. When white spots exist in all the parts, (a) white spots in the R transmissive part cannot be extracted as in the image pattern in the above figure, but R components can be extracted in the white spots in the G and B transmissive parts. The luminance level of the −e ′ portion is (a) a pattern as shown in the figure below. In this case, the threshold value T R is set to be lower than the brightness level of the R transmissive portion and higher than the brightness level of the G transmissive portion in terms of spectral characteristics, so that an appropriate binarization threshold value is obtained. Only the white dots of B can be extracted.

【0012】図3(b)は、撮像信号6からB成分抽出
画像を得て、2値化しきい値TB にて2値化処理をした
図を示しており、(b)上図の画像パターンの如くG,
B透過部では白点は抽出できないがR透過部内の白点に
てB成分が抽出できるので、f−f′部の輝度レベルと
しては(b)下図の如きパターンとなる。この場合、2
値化しきい値TB としては、G透過部及びB透過部の輝
度レベルを下回るように設定する。なお、B成分抽出画
像ではしきい値TB を下げたとしても図2に示す分光特
性上R透過部の輝度レベルはほとんどゼロになる。
FIG. 3B shows a diagram in which the B component extracted image is obtained from the image pickup signal 6 and binarized by the binarization threshold value T B. FIG. G like the pattern
White points cannot be extracted in the B transmission part, but B components can be extracted in the white points in the R transmission part, so that the brightness level of the ff ′ part has a pattern as shown in the following diagram (b). In this case, 2
The threshold value T B is set to be lower than the brightness levels of the G transparent portion and the B transparent portion. In the B component extracted image, even if the threshold value T B is lowered, the luminance level of the R transmissive portion is almost zero due to the spectral characteristics shown in FIG.

【0013】このようにして、図3(a),(b)での
画像パターンのアンドを採ることにより白点欠陥のみを
図3(c)に示すように抽出することができる。
In this way, by taking the AND of the image patterns shown in FIGS. 3A and 3B, only the white spot defect can be extracted as shown in FIG. 3C.

【0014】こうして、白点欠陥の検出については、カ
ラーCCDエリアセンサとカラー画像処理を用いるの
で、R(赤),G(緑),B(青)フィルタの各々の分
光特性に応じた2値化しきい値の設定を適正化すること
ができ、該白点欠陥検出感度の信頼性が高まる。更に、
該カラー画像処理で画像積の演算を施して、R,G,B
の透過部に関係なく、すなわち、ブラックマトリックス
の開口部の形状とは無関係に該白点欠陥のみを明部とす
る2値化画像を得られる。その結果、該白点欠陥の有
無,サイズ等の良否判定が高速かつ容易となり、該カラ
ーフィルタの品質管理と歩留まり向上に寄与する。
As described above, since the color CCD area sensor and the color image processing are used for the detection of the white spot defect, the binary values corresponding to the spectral characteristics of the R (red), G (green) and B (blue) filters are used. It is possible to optimize the setting of the threshold for activation, and the reliability of the white spot defect detection sensitivity is improved. Furthermore,
An image product operation is performed in the color image processing to obtain R, G, B
Of the black matrix, that is, regardless of the shape of the opening of the black matrix, a binarized image having only the white spot defect as the bright portion can be obtained. As a result, it is possible to quickly and easily determine the presence or absence of the white spot defect, the size, and the like, which contributes to the quality control of the color filter and the yield improvement.

【0015】次に、ブラックマトリックス上におけるホ
ール欠陥の検出につき説明する。図1,図2については
同じであるので説明は省略する。図4では、ブラックマ
トリックスにおけるR,G,B部分すべてにホール欠陥
を有する場合、カラーCCDセンサ5の撮像信号6から
R,B成分抽出画像を得てしきい値にて2値化処理を行
なうことを示している。すなわち、図4(a)のR成分
抽出画像については、最上図の如くR透過部及びブラッ
クマトリックス部のホール欠陥のみを明部とし、G,B
透過部及びR,G,Bブラックマトリックス部を暗部と
した2値化画像パターンが得られる。これはR成分抽出
画像の2値化しきい値TR としてR透過部の輝度レベル
を下回りG透過部の輝度レベルを上回るように設定して
いるので、例えばf−f´やe−e´位置では中段図、
最下図の輝度レベルパターンとなることによる。
Next, detection of hole defects on the black matrix will be described. Since FIG. 1 and FIG. 2 are the same, description is omitted. In FIG. 4, when all the R, G, B parts in the black matrix have hole defects, the R, B component extracted image is obtained from the image pickup signal 6 of the color CCD sensor 5 and binarization processing is performed by the threshold value. It is shown that. That is, in the R component extracted image of FIG. 4A, only the hole defects of the R transmission part and the black matrix part are set as the bright part and G and B
A binarized image pattern in which the transparent portion and the R, G, B black matrix portion are dark portions is obtained. This is set as the binarization threshold value T R of the R component extracted image so as to be lower than the brightness level of the R transmission part and higher than the brightness level of the G transmission part. Then the middle diagram,
This is due to the brightness level pattern shown in the bottom diagram.

【0016】図4(b)のB成分抽出画像については、
最上図の如くG,B透過部及びこのブラックマトリック
ス部のホール欠陥のみを明部とし、R透過部及びR,
G,Bブラックマトリックス部を暗部とした2値化画像
パターンが得られる。これはB成分抽出画像の2値化し
きい値TB としてG,B透過部の輝度レベルを下回るよ
うに設定しているので、例えばh−h´やg−g´位置
では中段図、最下図の輝度レベルパターンとなることに
よる。また、このB成分抽出画像では図2に示す分光特
性によりR透過部の輝度レベルはほとんどゼロになる。
Regarding the B component extracted image of FIG. 4B,
As shown in the uppermost figure, only the hole defects of the G and B transmission parts and this black matrix part are the bright parts, and the R transmission part and R,
A binarized image pattern in which the G and B black matrix areas are dark areas is obtained. This is set as the binarization threshold value T B of the B component extracted image so as to be lower than the brightness level of the G and B transmission parts. This is because the brightness level pattern becomes. Further, in the B component extracted image, the luminance level of the R transmission part becomes almost zero due to the spectral characteristic shown in FIG.

【0017】このようにして、図4(a)と(b)の画
像和を求めることにより図4(c)に示す透過部とホー
ル欠陥とが明部となって得られることになる。
In this way, by obtaining the image sum of FIGS. 4A and 4B, the transmissive portion and the hole defect shown in FIG. 4C can be obtained as the bright portion.

【0018】つぎに、透過部とホール欠陥とを識別する
必要が生ずるが、図5に示す画像処理を行なう。図5で
は(a)にてホール欠陥のないブラックマトリックスの
基準パターンを示し、この(a)の基準パターンの暗部
を1画素相当収縮させた(b)を得た後、(c)にて明
暗反転画像パターンを得る。そして、図(c)の反転画
像パターンと図4(c)に示す画像パターン(d)との
アンド(画像積)を演算して図(e)に示すホール欠陥
画像を得る。
Next, although it becomes necessary to distinguish between the transparent portion and the hole defect, the image processing shown in FIG. 5 is performed. In FIG. 5, a reference pattern of a black matrix having no hole defect is shown in FIG. 5A, and a dark portion of the reference pattern in FIG. Get the reverse image pattern. Then, the AND (image product) of the reverse image pattern of FIG. 4C and the image pattern (d) of FIG. 4C is calculated to obtain the hole defect image shown in FIG.

【0019】なお、図4,図5ではR成分抽出画像とB
成分抽出画像とを用いているが、R,G,B各成分抽出
画像を用いる場合、R成分抽出画像に対してしきい値T
R が必要であり、B成分抽出画像に対してしきい値TB
が必要である外、図6に示すG成分抽出画像に対するし
きい値TG が必要となり、このしきい値TG はG透過部
の輝度レベルを下回り、R,B透過部の輝度レベルを上
回る設定を要する。この場合、図4(b)に示すB成分
抽出画像のしきい値TB はB透過部の輝度レベルを下回
り、G透過部の輝度レベルを上回るように設定される。
In FIGS. 4 and 5, the R component extracted image and the B component are shown.
The component extraction image is used, but when the R, G, and B component extraction images are used, the threshold value T for the R component extraction image is used.
R is required, and a threshold value T B for the B component extracted image
In addition to the above, a threshold value T G for the G component extracted image shown in FIG. 6 is required, and this threshold value T G is lower than the brightness level of the G transmission part and higher than the brightness levels of the R and B transmission parts. Requires setting. In this case, the threshold value T B of the B component extracted image shown in FIG. 4B is set to be lower than the brightness level of the B transmission part and higher than the brightness level of the G transmission part.

【0020】なお、上述の説明ではR成分とG,B成分
との区分け、R成分,G成分,B成分それぞれの区分
け、につき述べたが、R,G成分とB成分との区分けも
R ,TB のレベル設定により抽出することができる。
しかし分光特性上RとGとの共通波長域はGとBとの共
通波長域よりも狭いので、しきい値TR のレベル設定が
難しくなる。
[0020] Incidentally, R component and G in the above description, distinctions between the B component, R component, G component, B component, respectively segmentation have been described per, R, also divided between the G component and the B component T R , T B can be extracted by setting the level.
However, since the common wavelength range of R and G is narrower than the common wavelength range of G and B due to the spectral characteristics, it becomes difficult to set the level of the threshold value T R.

【0021】こうして、ブラックマトリックスのホール
欠陥検出については、ホール欠陥上のR,G,B各フィ
ルタの分光特性に応じた2値化しきい値の設定をカラー
画像処理により行なうため、ホール欠陥検出感度と信頼
性が高まる。更に、カラー画像処理にて画像和、画像積
等の演算を施して透過部に関係なくホール欠陥のみを明
部とした2値化画像を得る。この結果、ホール欠陥の有
無、サイズ等の良否判定が容易となり、カラーフィルタ
の品質管理と歩留り向上に寄与する。
As described above, in detecting hole defects in the black matrix, since the binarization threshold value is set by color image processing according to the spectral characteristics of the R, G, and B filters on the hole defects, the hole defect detection sensitivity. And reliability is increased. Further, the image sum, the image product, and the like are calculated by color image processing to obtain a binarized image in which only the hole defect is the bright part regardless of the transmissive part. As a result, it becomes easy to determine the presence or absence of hole defects and the quality of the size, which contributes to the quality control of the color filters and the improvement of the yield.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、白
色欠陥やホール欠陥の検出信頼性を向上させることがで
きると共に検出感度を高めることができ、CCDライン
センサを用いることなく検出速度の向上を図ることがで
きる。
As described above, according to the present invention, the detection reliability of white defects and hole defects can be improved and the detection sensitivity can be increased, and the detection speed can be improved without using a CCD line sensor. It is possible to improve.

【図面の簡単な説明】[Brief description of drawings]

【図1】欠陥検出装置の概略構成図。FIG. 1 is a schematic configuration diagram of a defect detection device.

【図2】カラーフィルタの分光特性図。FIG. 2 is a spectral characteristic diagram of a color filter.

【図3】白点欠陥の画像処理プロセスの説明図。FIG. 3 is an explanatory diagram of an image processing process of a white spot defect.

【図4】ホール欠陥の画像処理プロセス前半の説明図。FIG. 4 is an explanatory diagram of the first half of an image processing process of a hole defect.

【図5】ホール欠陥の画像処理プロセス後半の説明図。FIG. 5 is an explanatory diagram of the latter half of the image processing process of hole defects.

【図6】ホール欠陥の画像処理プロセスの変形例の説明
図。
FIG. 6 is an explanatory diagram of a modified example of the image processing process of hole defects.

【符号の説明】[Explanation of symbols]

1 カラーフィルタ 2 光源 5 カラーCCDエリアセンサ 6 撮像信号 7 画像処理装置 TR ,TB ,TG しきい値1 Color Filter 2 Light Source 5 Color CCD Area Sensor 6 Imaging Signal 7 Image Processing Device T R , T B , T G Threshold

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // G02B 5/20 101 G06F 15/62 400 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location // G02B 5/20 101 G06F 15/62 400

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被検査体であるカラーフィルタの片面側
に設置された光源と、この光源による上記カラーフィル
タの透過光を受光するカラーCCDエリアセンサと、こ
のセンサからの撮像信号のうちR成分抽出画像の2値化
処理画像とB成分抽出画像の2値化処理画像との画像積
を得る画像処理装置と、を有するカラーフィルタの欠陥
検出装置。
1. A light source installed on one side of a color filter, which is an object to be inspected, a color CCD area sensor for receiving transmitted light of the color filter by the light source, and an R component of an image pickup signal from the sensor. An image processing apparatus that obtains an image product of a binarized image of an extracted image and a binarized image of a B component extracted image.
【請求項2】 被検査体であるカラーフィルタの片面側
に設置された光源と、この光源による上記カラーフィル
タの透過光を受光するカラーCCDエリアセンサと、こ
のセンサからの撮像信号のうちR,G,BもしくはR,
B各成分抽出画像の各2値化処理画像の画像和を求めつ
いでこの画像和と基準ブラックマトリックス反転画像と
の画像積を得る画像処理装置と、を有するカラーフィル
タの欠陥検出装置。
2. A light source installed on one side of a color filter which is an object to be inspected, a color CCD area sensor for receiving the transmitted light of the color filter by the light source, and R, among the image pickup signals from the sensor, G, B or R,
B: A defect detecting device for a color filter, comprising: an image processing device that obtains an image sum of each binarized image of each component extracted image and then obtains an image product of this image sum and a reference black matrix inversion image.
JP20197095A 1995-08-08 1995-08-08 Defect detector for color filter Withdrawn JPH0949782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20197095A JPH0949782A (en) 1995-08-08 1995-08-08 Defect detector for color filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20197095A JPH0949782A (en) 1995-08-08 1995-08-08 Defect detector for color filter

Publications (1)

Publication Number Publication Date
JPH0949782A true JPH0949782A (en) 1997-02-18

Family

ID=16449787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20197095A Withdrawn JPH0949782A (en) 1995-08-08 1995-08-08 Defect detector for color filter

Country Status (1)

Country Link
JP (1) JPH0949782A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100801438B1 (en) * 2006-10-10 2008-02-11 주식회사 디이엔티 Apparatus for detecting of lcd panel and method thereof
KR100801439B1 (en) * 2006-10-11 2008-02-11 주식회사 디이엔티 Apparatus for detecting and repair of color filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100801438B1 (en) * 2006-10-10 2008-02-11 주식회사 디이엔티 Apparatus for detecting of lcd panel and method thereof
KR100801439B1 (en) * 2006-10-11 2008-02-11 주식회사 디이엔티 Apparatus for detecting and repair of color filter

Similar Documents

Publication Publication Date Title
JPH09329527A (en) Image processing method, and apparatus therefor
JPH07159337A (en) Fault inspection method for semiconductor element
US7668344B2 (en) Stain inspection method and apparatus
JP3695120B2 (en) Defect inspection method
JPH0949782A (en) Defect detector for color filter
JP2000162150A (en) Defect inspecting method and device for metal sample surface
JP3160743B2 (en) LCD panel defect inspection equipment
JPH04294204A (en) Apparatus for extracting defect in object surface
JP3047168B2 (en) Inspection method of chicken eggs
JPH07113758A (en) Binary calculating method in appearance inspection device
JPH0519938B2 (en)
JP3371168B2 (en) Defect inspection method
JPH07146253A (en) Tester for adhesive polarizing film
JP3433333B2 (en) Defect inspection method
JPH11281588A (en) Surface inspecting apparatus
JPH06148094A (en) Method for inspecting mixture of foreign matter of sheetlike product
JP3284463B2 (en) Bottle body defect detection method
JP2000163582A (en) Method and device for inspecting defect on metallic sample surface
JPH1185980A (en) Method and device for inspecting print quantity of printed metal plate
JP3308888B2 (en) Surface defect inspection method and surface defect inspection device
JP3506170B2 (en) Inspection apparatus and inspection method for semiconductor parts
JP2000055824A (en) Device for inspecting flaw in flat plate with hole
JP3243703B2 (en) Defect detection method for color filter for viewfinder
JPH0763695A (en) Outward-appearance inspection apparatus for sheetlike product
JP2001004550A (en) Apparatus for inspecting defect of color filter

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105