JPH0949010A - Production of continuous casting ferritic stainless steel slab having high equi-axial crystal ratio - Google Patents

Production of continuous casting ferritic stainless steel slab having high equi-axial crystal ratio

Info

Publication number
JPH0949010A
JPH0949010A JP22273995A JP22273995A JPH0949010A JP H0949010 A JPH0949010 A JP H0949010A JP 22273995 A JP22273995 A JP 22273995A JP 22273995 A JP22273995 A JP 22273995A JP H0949010 A JPH0949010 A JP H0949010A
Authority
JP
Japan
Prior art keywords
crystal ratio
equiaxed crystal
stainless steel
casting
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22273995A
Other languages
Japanese (ja)
Inventor
Mitoshi Hirayama
三十志 平山
Tadama Nakada
忠馬 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP22273995A priority Critical patent/JPH0949010A/en
Publication of JPH0949010A publication Critical patent/JPH0949010A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve ridging resistance property of a ferritic stainless steel by improving an equi-axial crystal ratio of a continuous casting ferritic stainless steel slab. SOLUTION: The continuous casting slab of the ferritic stainless steel is produced in the range of the ordinary casting temp. and casting speed decided with an equipment specification. At this time, Ti is added after deoxidizing the slab with Al at the step of adjusting the components before continuous casting, the continuous casting slab of the ferritic stainless steel having high equi-axial crystal ratio is produced by adjusting Al and Ti contents in the steel so that the ratio of Ti/Al becomes >=8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,鋼中成分を適正に
調整することによって等軸晶率の高いフエライト系ステ
ンレス鋼連鋳スラブを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a continuous casting slab of ferrite type stainless steel having a high equiaxed crystal ratio by appropriately adjusting the components in steel.

【0002】[0002]

【従来の技術】連続鋳造によって製造されたフェライト
系ステンレス鋼スラブは,その凝固過程で鋳片表面から
内部に向かって柱状晶が発達しやすく,中心部における
等軸晶帯が狭くなる傾向にある。柱状晶が発達した凝固
組織では,柱状晶に起因したバンド状粗大フェライト粒
が最終鋼板製品まで残留しやすく,このため該鋼板をプ
レス加工したさいに,圧延方向に沿ってリジングと呼ば
れる凹凸が生じ,著しく外観を損なうという問題があ
る。また,このリジングの凹凸が大きいと研磨除去しな
ければならず,そのため余分の工程が必要とされる。
2. Description of the Related Art Ferritic stainless steel slabs manufactured by continuous casting tend to develop columnar crystals from the surface of the slab to the inside during the solidification process, and the equiaxed zone in the center tends to narrow. . In the solidification structure in which columnar crystals have developed, band-shaped coarse ferrite grains due to columnar crystals tend to remain in the final steel sheet product. Therefore, when the steel sheet is pressed, irregularities called ridging occur along the rolling direction. , There is a problem that the appearance is significantly impaired. Further, if the unevenness of this ridging is large, it must be removed by polishing, and therefore an extra step is required.

【0003】フエライト系ステンレス鋼板のリジングの
問題についてはあらゆる面から改善がなされているが,
その基本的な要因である連続鋳造スラブにおける柱状晶
の成長を抑制すること,換言すれば,等軸晶帯を大きく
すること(等軸晶率を高くすること)が根本的な解決手
段となる。
Although the problem of ridging of ferrite type stainless steel sheets has been improved in all aspects,
Suppressing the growth of columnar crystals in the continuous casting slab, which is the basic factor, in other words, increasing the equiaxed crystal zone (increasing the equiaxed crystal ratio) is the fundamental solution. .

【0004】フエライト系ステンレス鋼連鋳スラブの等
軸晶率は鋳造条件に影響を受けることが知られており,
一般に鋳造温度が低いと,また鋳造速度が遅いと,等軸
晶率は高くなると言われている。
It is known that the equiaxed crystal ratio of a ferritic stainless steel continuous cast slab is affected by casting conditions.
It is generally said that the equiaxed crystal ratio increases when the casting temperature is low and the casting speed is slow.

【0005】この等軸晶率を高めるために,連続鋳造時
に電磁攪拌あるいは超音波振動などにより柱状晶を破壊
するといった試みや,出来るだけ低温で鋳込むことによ
って柱状晶の成長を抑制するといった対策が採られたこ
とがある。しかし,このような方法を用いてもリジング
の発生を完全に抑制できるとは限らず,この場合には熱
間圧延時のスラブ抽出温度や仕上圧延温度を下げて,金
属組織のランダム化を図ったり,2回冷延焼鈍や3回冷
延焼鈍により金属組織を均一微細化するといった方策が
採られてきた。
In order to increase the equiaxed crystal ratio, attempts are made to destroy the columnar crystals by electromagnetic stirring or ultrasonic vibration during continuous casting, and measures to suppress the growth of columnar crystals by casting at the lowest possible temperature. Has been taken. However, even if such a method is used, it is not always possible to completely suppress the occurrence of ridging, and in this case, the slab extraction temperature and finish rolling temperature during hot rolling are lowered to randomize the metal structure. Alternatively, measures have been taken to uniformly refine the metal structure by twice cold rolling annealing or three cold rolling annealing.

【0006】[0006]

【発明が解決しようとする課題】前記のように,鋳造条
件の制御や熱間圧延以降での金属組織制御といった対策
では操業に負荷が嵩む割りには,フエライト系ステンレ
ス鋼のリジングの問題を完全に解決できないと言うのが
実状である。そこで,本発明は,フエライト系ステンレ
ス鋼のリジング発生の基本的な要因である連続鋳造スラ
ブにおける柱状晶の成長を,鋼の成分調整の面から抑制
することを課題としたものである。
As described above, although measures such as control of casting conditions and metallographic control after hot rolling impose a heavy load on the operation, the problem of ridging of ferritic stainless steel is completely eliminated. The reality is that it cannot be solved. Therefore, the present invention has an object to suppress the growth of columnar crystals in a continuously cast slab, which is a basic factor in the occurrence of ridging of the ferrite stainless steel, from the viewpoint of adjusting the composition of the steel.

【0007】とくに,Ti含有フェライト系ステンレス
鋼はリジングが発生しやすい。したがって,Ti含有フ
ェライト系ステンレス鋼の連続鋳造スラブの等軸晶率を
高めることを主課題としたものである。
In particular, Ti-containing ferritic stainless steel tends to cause ridging. Therefore, the main problem is to increase the equiaxed crystal ratio of the continuously cast slab of Ti-containing ferritic stainless steel.

【0008】[0008]

【課題を解決するための手段】本発明によれば,設備の
仕様で決まる通常の鋳造温度の範囲と鋳造速度の範囲で
フエライト系ステンレス鋼の連鋳スラブを製造するさい
に,連鋳前の成分調整の段階でAl脱酸したうえでTi
を添加し,そのさい,鋼中のAlとTiの含有量がTi
/Alの比で8以上となるように,これらの元素の含有
量を調整することを特徴とする等軸晶率の高いフエライ
ト系ステンレス鋼連鋳スラブの製造方法を提供する。
According to the present invention, when a continuous casting slab of ferrite type stainless steel is manufactured within a normal casting temperature range and casting speed range determined by equipment specifications, before continuous casting After deoxidizing Al at the component adjustment stage, Ti
Was added, the content of Al and Ti in the steel was changed to Ti
Provided is a method for producing a continuous cast slab of ferrite type stainless steel having a high equiaxed crystal ratio, which is characterized by adjusting the contents of these elements so that the ratio of / Al is 8 or more.

【0009】さらに本発明によれば,設備の仕様で決ま
る通常の鋳造温度の範囲と鋳造速度の範囲でフエライト
系ステンレス鋼の連鋳スラブを製造するさいに,連鋳前
の成分調整の段階でSi脱酸したうえでTiを添加し,
そのさい,鋼中のTi含有量を0.01〜0.05%の範
囲となるように調整し,且つ下式(1) すなわちTi含有
量×(1560℃−鋳造温度)×100 ・・
(1)の式で算出される値が42以上となるように鋳造温
度を調整することを特徴とする,等軸晶率の高いフエラ
イト系ステンレス鋼連鋳スラブの製造方法を提供する。
ここで,鋳造温度はタンデイッシュ内の溶鋼温度であ
る。
Further, according to the present invention, when a continuous casting slab of a ferrite type stainless steel is manufactured within a range of a normal casting temperature and a range of casting speed determined by equipment specifications, at the stage of component adjustment before continuous casting. After deoxidizing Si, add Ti,
At that time, the Ti content in the steel is adjusted to be in the range of 0.01 to 0.05%, and the following formula (1), namely, the Ti content x (1560 ° C-casting temperature) x 100
A method for producing a continuous casting slab of ferrite type stainless steel having a high equiaxed crystal ratio, characterized in that the casting temperature is adjusted so that the value calculated by the formula (1) is 42 or more.
Here, the casting temperature is the temperature of molten steel in the tundish.

【0010】[0010]

【発明の実施の態様】Ti含有フエライト系ステンレス
鋼の連鋳スラブ製造のさい,Al脱酸した溶鋼にTiを
添加する場合には,鋼中のAlとTiの含有量がTi/
Al比で8以上となるように,これらの元素の含有量を
調整すると,等軸晶率60%以上のスラブとすることが
できることがわかった。とくに鋼中のAl含有量は0.
001〜0.040%の範囲,Ti含有量は0.10〜
1.00%の範囲でTi/Alの比を8以上とするのが
よい。AlとTi以外の他の成分は特に限定されない
が,C含有量が0.001〜0.030%の範囲のものを
対象としたときに,この作用が特に顕著である。
BEST MODE FOR CARRYING OUT THE INVENTION When Ti is added to molten steel deoxidized by Al during continuous casting slab production of Ti-containing ferrite type stainless steel, the content of Al and Ti in the steel is Ti /
It was found that by adjusting the contents of these elements so that the Al ratio is 8 or more, a slab having an equiaxed crystal ratio of 60% or more can be obtained. In particular, the Al content in steel is 0.
001 to 0.040%, Ti content is 0.10
The Ti / Al ratio is preferably 8 or more in the range of 1.00%. Other components than Al and Ti are not particularly limited, but this effect is particularly remarkable when the C content is in the range of 0.001 to 0.030%.

【0011】また,Al脱酸を行わずにTi含有フエラ
イト系ステンレス鋼を製造する場合には,連鋳前の成分
調整の段階でSi脱酸したうえでTiを添加し,そのさ
い,鋼中のTi含有量を0.01〜0.05%の範囲とな
るように調整し,且つ前記の(1) 式で算出される値が4
2以上,好ましくは80以上となるように鋳造温度を調
整すると,得られるスラブの等軸晶率を60%以上に高
めることができることがわかった。この場合,Si含有
量は0.75%以下とするのがよく,C含有量は0.12
%以下であればよい。
When a Ti-containing ferrite stainless steel is produced without deoxidizing Al, Si is deoxidized at the stage of adjusting the components before continuous casting, and then Ti is added. The Ti content of was adjusted to be in the range of 0.01 to 0.05%, and the value calculated by the above formula (1) was 4
It was found that the equiaxed crystal ratio of the obtained slab can be increased to 60% or more by adjusting the casting temperature so as to be 2 or more, preferably 80 or more. In this case, the Si content should be 0.75% or less, and the C content should be 0.12%.
% Or less.

【0012】Al脱酸する前者の場合およびSi脱酸す
る後者の場合のいずれにおいても,本発明で課題とする
連鋳スラブの柱状晶の抑制(等軸晶の増加)は,リジン
グが問題とするフエライト系ステンレス鋼において有効
であり,Ti含有フエライト系ステンレス鋼であれば各
様の成分組成を問わず本発明法を適用可能である。
In both the former case of deoxidizing Al and the latter case of deoxidizing Si, the suppression of columnar crystals of the continuous casting slab (increased equiaxed crystal), which is the subject of the present invention, causes ridging. The method of the present invention can be applied to any ferrite composition stainless steel, and any Ti / ferrite composition stainless steel composition can be used.

【0013】これら鋼のうち,代表的な成分組成を有す
るものを挙げると,前者のAl脱酸を行なう場合には,
重量%で,C:0.001〜0.030%,Si:1.0
0%以下,Mn:1.00%以下,Cr:10.50〜2
0.00%,Mo:2.20%以下,Ti:0.10〜1.
00%,Al:0.001〜0.040%,残部が不可避
不純物およびFeよりなるフエライト系ステンレス鋼が
挙げられる。この鋼はTi含有量が比較的高いフェライ
ト単相鋼である。以下,この鋼を「低C高TiのAl脱
酸鋼」と呼ぶことにする。
Among these steels, those having a typical composition are given as follows:
% By weight, C: 0.001 to 0.030%, Si: 1.0
0% or less, Mn: 1.00% or less, Cr: 10.50-2
0.00%, Mo: 2.20% or less, Ti: 0.10-1.
Ferrite-based stainless steels including 00%, Al: 0.001 to 0.040%, the balance being unavoidable impurities and Fe. This steel is a ferritic single phase steel with a relatively high Ti content. Hereinafter, this steel will be referred to as "low C, high Ti Al deoxidized steel".

【0014】この低C高TiのAl脱酸鋼のフエライト
単相鋼において,Cは耐食性を考慮した場合に低い方が
望ましいので0.030%以下とし,Siは強度を上げ
るが,多すぎると加工性の劣化を招くので1.00%以
下とし,Mnは多すぎると非金属介在物生成を助長し,
加工性を劣化させるので1.00%以下とし,Crは耐
食性の点から高い方が望ましいが経済性との兼ね合いで
10.50〜20.00%とし,Moは耐食性を向上させ
るが,高価であるため経済性を考慮して2.20%以下
とし,TiはC,Nを固定して耐食性を向上させるが,
多すぎると表面きずの発生が懸念されるため0.10〜
1.00%としている。
In the low C high Ti Al deoxidized steel ferrite single phase steel, it is preferable that C is low in consideration of corrosion resistance, so it is set to 0.030% or less, and Si increases the strength, but if too much, Since it causes deterioration of workability, it is set to 1.00% or less, and if Mn is too much, it promotes the formation of non-metallic inclusions.
Since it deteriorates the workability, it should be 1.00% or less, and Cr is preferably high from the viewpoint of corrosion resistance, but it is 10.50 to 20.00% in consideration of economic efficiency. Mo improves corrosion resistance, but it is expensive. Therefore, considering economic efficiency, it is set to 2.20% or less, and Ti fixes C and N to improve corrosion resistance.
If it is too large, there is a concern that surface flaws will occur.
It is 1.00%.

【0015】後者のSi脱酸を行なう場合の代表的な成
分組成のものを挙げると,重量%でC:0.12%以
下,Si:0.75%以下,Mn:1.0%以下,Cr:
16.00〜18.00%,Ti:0.01〜0.05%,
残部不可避不純物およびFeからなるフェライト系ステ
ンレス鋼が挙げられる。この鋼はSUS430に微量の
Tiを添加した関係にある。この鋼の場合には,Si脱
酸した状態では鋼中酸素濃度が比較的高いためにTi量
が多いとTiO2が生成し,表面きずの発生が懸念され
るのでTi含有量は0.01〜0.05としている。以下
この鋼を「低TiのSi脱酸鋼」と呼ぶことにする。こ
の低Tiの原則Si脱酸の鋼の場合にも多少のAlは含
有してくる。ただし,その量は特別のことがない限り
0.02%以下である。
In the latter case, the typical composition of components for deoxidizing Si is as follows: C: 0.12% or less by weight, Si: 0.75% or less, Mn: 1.0% or less, Cr:
16.00-18.00%, Ti: 0.01-0.05%,
A ferritic stainless steel composed of the balance unavoidable impurities and Fe can be mentioned. This steel has a relationship in which a trace amount of Ti is added to SUS430. In the case of this steel, since the oxygen concentration in the steel is relatively high when Si is deoxidized, TiO 2 is generated when the Ti content is large, and there is a concern that surface flaws may occur, so the Ti content is 0.01%. It is set to ~ 0.05. Hereinafter, this steel will be referred to as "low Ti Si deoxidized steel". Even in the case of this low Ti Ti deoxidizing steel, some Al is contained. However, the amount is 0.02% or less unless otherwise specified.

【0016】本発明者らは,前記の「低C高TiのAl
脱酸鋼」と「低TiのSi脱酸鋼」のTi含有フェライ
ト系ステンレス鋼の連鋳スラブについて,その等軸晶率
に及ぼす各種因子について広汎に調査研究し,その結
果,次のような知見を得た。
The inventors of the present invention have described the above "low C high Ti Al
We have extensively investigated various factors affecting the equiaxed crystal ratio of continuously cast slabs of Ti-containing ferritic stainless steels such as "deoxidized steel" and "low Ti Si deoxidized steel". I got the knowledge.

【0017】〔低C高TiのAl脱酸鋼の等軸晶率に及
ぼす因子〕供試材料として,重量%で,C:0.001
〜0.030%,Si:1.00%以下,Mn:1.00
%以下,Cr:10.50〜20.00%,Mo:2.2
0%以下,Ti:0.10〜1.00%,その他不可避不
純物およびFeからなるフェライト系ステンレス鋼を使
用し,AlおよびTi量を変化させて連続鋳造スラブを
製造し,このスラブからサンプルを採取して等軸晶率を
測定し,等軸晶率におよぼす成分の影響を調査した。
[Factors Affecting Equiaxed Crystal Ratio of Low C, High Ti Al Deoxidized Steel] As a test material, C: 0.001 by weight%
~ 0.030%, Si: 1.00% or less, Mn: 1.00
% Or less, Cr: 10.50 to 20.00%, Mo: 2.2
0% or less, Ti: 0.10 to 1.00%, other unavoidable impurities, and ferritic stainless steel consisting of Fe are used to produce continuously cast slabs with varying amounts of Al and Ti. Samples are produced from this slab. The samples were sampled to measure the equiaxed crystal ratio, and the effects of the components on the equiaxed crystal ratio were investigated.

【0018】その結果,Alが低いほど,またTiが高
いほど連続鋳造スラブの等軸晶率が高くなること,すな
わちTi/Alが大きいほど等軸晶率が高くなることが
確認された。
As a result, it was confirmed that the lower the Al content and the higher the Ti content, the higher the equiaxed crystal ratio of the continuously cast slab, that is, the larger the Ti / Al ratio, the higher the equiaxed crystal content.

【0019】また,この結果をもとに,等軸晶率におよ
ぼすその他要因の影響を知るべく,等軸晶率と鋳造温
度,鋳造速度,O量,N量,Ti量,Al量の間で重回
帰分析を行い以下の回帰式(2) および(3) を得た。
Further, based on this result, in order to know the influence of other factors on the equiaxed crystal ratio, the equiaxed crystal ratio was changed between the casting temperature, the casting speed, the O content, the N content, the Ti content and the Al content. The following regression equations (2) and (3) were obtained by performing multiple regression analysis with.

【0020】 Y(等軸晶率)=449.1+29.5×Ti(%)−118.5×Al(%) +4.13×(Ti/Al)−571.0×N(%)−0.26 ×鋳造温度(℃)−36.15×鋳造速度(m/min) +0.129×O(ppm) ・・(2)Y (equiaxed crystal ratio) = 449.1 + 29.5 × Ti (%)-118.5 × Al (%) + 4.13 × (Ti / Al) −571.0 × N (%)-0 .26 x casting temperature (° C) -36.15 x casting speed (m / min) +0.129 x O (ppm) ··· (2)

【0021】 Y(等軸晶率)=449.1+Ti×(29.5+4.13/Al) −118.5×Al(%)−571.0×N(%)−0.26× 鋳造温度(℃)−36.15×鋳造温度(m/min) +0.129×O(ppm) ・・(3) ただし,これらの回帰式は,観測数29,重相関係数R
=0.908で得たものである。
Y (equiaxed crystal ratio) = 449.1 + Ti × (29.5 + 4.13 / Al) -118.5 × Al (%) −571.0 × N (%) − 0.26 × casting temperature ( ℃) -36.15 x casting temperature (m / min) +0.129 x O (ppm) ··· (3) However, these regression equations are 29 observations, multiple correlation coefficient R
= 0.908.

【0022】この重回帰式より,Al,N,鋳造温度,
鋳造速度は,その値が低いほど等軸晶率は高くなり,T
iとOはその値が高いほど等軸晶率は高くなることが判
明した。しかし,O,N,鋳造温度,鋳造速度は偏相関
係数(t値)の絶対値が小さいので,等軸晶率に対して
さほどの影響を及ぼしていない。
From this multiple regression equation, Al, N, casting temperature,
The lower the value, the higher the equiaxed crystal ratio,
It was found that the higher the values of i and O, the higher the equiaxed crystal ratio. However, since the absolute value of the partial correlation coefficient (t value) of O, N, the casting temperature, and the casting speed is small, it does not affect the equiaxed crystal ratio so much.

【0023】この重回帰分析から得られた分析結果を表
1に総括して示した。また,表1の各因子(X値)のう
ち,とくにYに対する影響の大きいX値1(Ti量),
X値2(Al量)およびX値3(Ti/Al)の各々の
観測値グラフを図1,図2および図3に示した。なお,
これらの試験において,等軸晶率の測定は,連鋳スラブ
の断面を切出し,断面を鏡面研磨し,王水でエッチング
したうえ,表面に現れたマクロ組織の柱状晶帯の比率を
求めたものである。この比率は,図4に図解したよう
に,等軸晶帯の幅を3点測定し,その幅の比率を図中の
式を用いて単純平均したものである。
The analytical results obtained from this multiple regression analysis are summarized in Table 1. Among the factors (X values) in Table 1, the X value 1 (Ti amount) that has a particularly large effect on Y,
The observed value graphs of the X value 2 (Al amount) and the X value 3 (Ti / Al) are shown in FIGS. 1, 2 and 3. In addition,
In these tests, the equiaxed crystal ratio was measured by cutting out the cross-section of the continuous cast slab, polishing the cross-section, etching with aqua regia, and then determining the ratio of the columnar crystal zones of the macrostructure that appeared on the surface. Is. As illustrated in FIG. 4, this ratio is obtained by measuring the width of the equiaxed zone at three points and simply averaging the ratio of the widths using the formula in the figure.

【0024】[0024]

【表1】 [Table 1]

【0025】これらの結果から,Y(等軸晶率)は特に
Ti/Alで良好に整理でき,このTi/Alの増加と
ともにYは向上することがわかる(図3)。等軸晶率が
60%以上であればリジングが軽減できることから,図
3より等軸晶率60%以上となるTi/Alは,約8の
付近に存在することがわかる。
From these results, it is understood that Y (equiaxed crystal ratio) can be satisfactorily organized especially with Ti / Al, and Y increases with the increase of Ti / Al (FIG. 3). Since ridging can be reduced if the equiaxed crystal ratio is 60% or more, it is understood from FIG. 3 that Ti / Al having the equiaxed crystal ratio of 60% or more exists in the vicinity of about 8.

【0026】しかし,図2に見られるように,Al量が
多くなるとYの低下が著しい。例えばAl量が0.05
%以上となると,Yは30%以下に低下してしまう。し
かしAl量が0.04%以下であれば,Yは60%以上
を確保できる。したがって,Al量が0.04%以下で
且つTi/Alが8以上であれば60%以上の高い等軸
晶率を確保できる。
However, as can be seen in FIG. 2, the decrease in Y is remarkable when the amount of Al increases. For example, the amount of Al is 0.05
If it is more than%, Y will drop to 30% or less. However, if the Al amount is 0.04% or less, Y can be secured to be 60% or more. Therefore, if the Al amount is 0.04% or less and Ti / Al is 8 or more, a high equiaxed crystal ratio of 60% or more can be secured.

【0027】次に「低TiのSi脱酸鋼」の等軸晶率に
及ぼす各因子の影響を調べた結果を説明する。
Next, the result of examining the influence of each factor on the equiaxed crystal ratio of "low Ti Si deoxidized steel" will be described.

【0028】〔低TiのSi脱酸鋼の等軸晶率に及ぼす
因子〕供試材として,重量%で,C:0.12%以下,
Si:0.75%以下,Mn:1.00%以下,Cr:1
6.00〜18.00%,その他不可避不純物およびFe
からなるフェライト系ステンレス鋼を使用し,真空脱ガ
ス処理時にシリコン脱酸した後,Ti:0.01〜0.0
5を添加して連続鋳造した。そのさい鋳造温度も変化さ
せた。各スラブからサンプルを採取し,等軸晶率におよ
ぼすTi量と鋳造温度の相互作用を調べた。
[Factors Affecting Equiaxed Crystal Ratio of Low-Ti Si-Deoxidized Steel] As a test material, in% by weight, C: 0.12% or less,
Si: 0.75% or less, Mn: 1.00% or less, Cr: 1
6.00 to 18.00%, other unavoidable impurities and Fe
After deoxidizing silicon during vacuum degassing, using ferritic stainless steel consisting of Ti: 0.01 to 0.0
5 was added and continuous casting was performed. At that time, the casting temperature was also changed. A sample was taken from each slab and the interaction between the amount of Ti and the casting temperature on the equiaxed crystal ratio was investigated.

【0029】その結果,Ti量が高いほど,そして鋳造
温度が低いほど等軸晶率が高くなることがわかった。両
者総合すると,等軸晶率はTi×(1560−鋳造温
度)×100の式とよい相関を有することがわかった。
As a result, it was found that the equiaxed crystal ratio increased as the Ti content increased and the casting temperature decreased. When both are combined, it was found that the equiaxed crystal ratio has a good correlation with the formula of Ti × (1560−casting temperature) × 100.

【0030】本例でも,等軸晶率におよぼすその他要因
の影響を知るべく,等軸晶率と鋳造温度,鋳造速度,O
量,N量,Ti量,Al量の間で重回帰分析を行い,以
下の回帰式(4) (5) および(6) を得た。なお,これらの
式中,ΔT=1560−鋳造温度(℃)を意味する。
Also in this example, in order to know the influence of other factors affecting the equiaxed crystal ratio, the equiaxed crystal ratio, casting temperature, casting speed, O
The following regression equations (4), (5) and (6) were obtained by performing a multiple regression analysis among the amounts, the amounts of N, the amounts of Ti and the amounts of Al. In these expressions, ΔT = 1560−casting temperature (° C.) is meant.

【0031】 Y(等軸晶率)=8.12+18.5×鋳造速度(m/min)−1868 ×Ti(%)−24.8×Al(%)+193×N(%) −0.002×O(ppm)−0.376×△T(℃)+ 1.09×(△T×Ti×100) ・・・(4) Y (equiaxed crystal ratio) = 8.12 + 18.5 × casting speed (m / min) −1868 × Ti (%) − 24.8 × Al (%) + 193 × N (%) − 0.002 × O (ppm) -0.376 × ΔT (° C) + 1.09 × (ΔT × Ti × 100) (4)

【0032】 Y(等軸晶率)=8.12+18.5×鋳造速度(m/min)−24.8 ×Al(%)+193×N(%)−0.002×O(ppm) −0.376×△T(℃)+Ti×(109×△T−1868) ・・・(5) ただし,△Tが18以上の場合,(109×△T−18
68)は常に正
Y (equiaxed crystal ratio) = 8.12 + 18.5 × casting speed (m / min) −24.8 × Al (%) + 193 × N (%) − 0.002 × O (ppm) −0 .376 × ΔT (° C.) + Ti × (109 × ΔT-1868) (5) However, when ΔT is 18 or more, (109 × ΔT-18
68) is always positive

【0033】 Y(等軸晶率)=8.12+18.5×鋳造速度(m/min)−1868× Ti(%)−24.8×Al(%)+193×N(%)−0.002 ×O(ppm)+△T×(109×Ti−0.376)・・(6) ただし,0.01<Ti<0.05であるので(109×
Ti−0.376)は常に正。
Y (equiaxed crystal ratio) = 8.12 + 18.5 × casting speed (m / min) −1868 × Ti (%) − 24.8 × Al (%) + 193 × N (%) − 0.002 × O (ppm) + ΔT × (109 × Ti-0.376) ··· (6) However, since 0.01 <Ti <0.05, (109 ×
Ti-0.376) is always positive.

【0034】これらの回帰式は観測数56,重相関係数
R=0.887で得たものである。式(4) は重回帰分析
により得られた式であるが,この式(4) をTiについて
整理したのが式(5) であり,△Tについて整理したのが
式(6) である。
These regression equations were obtained with 56 observations and a multiple correlation coefficient R = 0.887. Equation (4) is an equation obtained by multiple regression analysis. Equation (5) is a summary of this equation (4) for Ti, and equation (6) is a summary of ΔT.

【0035】式(5) から,△Tが18以上の場合にのみ
(109×△T−1868)は正となり,Tiが効力を
示す。つまり,△Tがある程度確保されない限り,Ti
を増加しても,等軸晶率に対しては効果がないことが判
明した。
From the equation (5), (109 × ΔT-1868) becomes positive only when ΔT is 18 or more, and Ti is effective. In other words, unless ΔT is secured to some extent, Ti
It was found that increasing the value had no effect on the equiaxed crystal ratio.

【0036】また,Ti量は0.01%<Ti<0.05
%である。したがって,式(6) における(109×Ti
−0.376)は常に正となり,△Tが大きいほど等軸
晶率に対しては効果的であることが判明した。
The Ti content is 0.01% <Ti <0.05.
%. Therefore, (109 × Ti in equation (6)
-0.376) is always positive, and it has been proved that the larger ΔT is, the more effective the equiaxed crystal ratio is.

【0037】この重回帰分析結果から,鋳造温度,A
l,O,が低いほど等軸晶率は高くなり,Ti,N,鋳
造速度,が高いほど等軸晶率は高くなることが判明し
た。しかし,鋳造速度,Al,O,Nは偏相関係数(t
値)の絶対値が小さく,等軸晶率に対してはさほどの影
響を及ぼしていない。
From the results of this multiple regression analysis, the casting temperature, A
It was found that the lower the l, O, the higher the equiaxed crystal ratio, and the higher the Ti, N, and the casting speed, the higher the equiaxed crystal ratio. However, the casting rate, Al, O, and N are partial correlation coefficients (t
The absolute value of (value) is small, and it does not significantly affect the equiaxed crystal ratio.

【0038】この重回帰分析から得られた分析結果を表
2に総括して示した。また,表2の各因子(X値)のう
ち,X値1(鋳造速度),X値2(Ti%),X値6
(ΔT℃)およびX値(ΔT×Ti×100)の各々の
観測値グラフを図5,図6,図7および図8に示した。
なお,等軸晶率の測定は前記の図4の方法に従った。
The analytical results obtained from this multiple regression analysis are summarized in Table 2. Among the factors (X values) in Table 2, X value 1 (casting speed), X value 2 (Ti%), X value 6
The observed value graphs of (ΔT ° C.) and X value (ΔT × Ti × 100) are shown in FIGS. 5, 6, 7 and 8.
The equiaxed crystal ratio was measured according to the method shown in FIG.

【0039】[0039]

【表2】 [Table 2]

【0040】これらの結果から,Y(等軸晶率)は特に
図8の(ΔT×Ti×100)の値で整理でき,この値
が高くなるとYは向上することがわかる。より具体的に
はこの値が42以上であれば,等軸晶率60%以上とな
る確率が高く,該値が80以上であれば等軸晶率60%
以上を確保できる。
From these results, it can be understood that Y (equiaxed crystal ratio) can be arranged especially by the value of (ΔT × Ti × 100) in FIG. 8, and the higher this value is, the better Y is. More specifically, if this value is 42 or more, the probability that the equiaxed crystal ratio is 60% or more is high, and if this value is 80 or more, the equiaxed crystal ratio is 60%.
The above can be secured.

【0041】[0041]

【実施例】表3に示す2種類の成分のフェライト系ステ
ンレス鋼を,転炉一脱ガス法により溶製し,最終成分調
整段階でTiを添加し,表3に表示の鋳造温度と鋳造速
度のもとで連続鋳造し,得られた連続鋳造スラブの等軸
晶率を本文記載の方法で測定した。その結果,該スラブ
はいずれも等軸晶率90%という高等軸晶率とスラブで
あった。
[Examples] Two types of ferritic stainless steels shown in Table 3 were melted by a converter-one degassing method, Ti was added at the final component adjusting stage, and the casting temperature and casting speed shown in Table 3 were obtained. The continuous casting slab obtained by continuous casting was measured for equiaxed crystal ratio by the method described in the text. As a result, all the slabs were slabs with a high equiaxed crystal ratio of 90%.

【0042】[0042]

【表3】 [Table 3]

【0043】表3の「低C高TiのAl脱酸鋼」の成分
系において,Ti量とAl量を表4に示すように変化さ
せ(したがってTi/Al比を変化させ)て同様の連続
鋳造を行った。そのときの鋳造温度,鋳造速度および得
られた等軸晶率を表4に示した。また,これらの等軸晶
率の測定を行ったスラブ断面の写真を図9(倍率×1/
6)および図10(倍率1/4)に示した。これらのう
ち,A〜F鋼は本発明で規定する範囲を外れる比較例で
あり, G鋼は本発明例である。
In the composition system of "Al-deoxidizing steel with low C and high Ti" in Table 3, the Ti amount and the Al amount were changed as shown in Table 4 (thus, the Ti / Al ratio was changed), and the same continuation was performed. Casting was performed. Table 4 shows the casting temperature, the casting speed, and the obtained equiaxed crystal ratio at that time. In addition, a photograph of the cross section of the slab where these equiaxed crystal ratios were measured is shown in FIG.
6) and FIG. 10 (1/4 magnification). Of these, the A to F steels are comparative examples that deviate from the ranges specified in the present invention, and the G steel is an example of the present invention.

【0044】[0044]

【表4】 [Table 4]

【0045】表3の「低TiのSi脱酸鋼」の成分系に
おいて,Ti量と鋳造温度を表5に示したように変化さ
せて同様の連続鋳造を行った。得られた等軸晶率を表5
に併記した。またこれらの等軸晶率の測定を行ったスラ
ブ断面の写真を図11(倍率×1/6)および図12
(倍率1/4)に示した。これらのうち,(a)〜(e)鋼は
本発明で規定する範囲を外れる比較例であり,(f) 鋼は
本発明例である。
In the composition system of "Low Ti Si deoxidized steel" in Table 3, the same amount of Ti and casting temperature were changed as shown in Table 5, and the same continuous casting was performed. The obtained equiaxed crystal ratio is shown in Table 5.
It was also described in. In addition, photographs of the cross section of the slab where these equiaxed crystal ratios were measured are shown in FIG. 11 (magnification × 1/6) and FIG.
(Magnification 1/4). Of these, steels (a) to (e) are comparative examples outside the range specified in the present invention, and steel (f) is an example of the present invention.

【0046】[0046]

【表5】 [Table 5]

【0047】[0047]

【発明の効果】以上説明したように,本発明によれば,
Ti含有フエライト系ステンレス鋼の連鋳スラブの等軸
晶率を, その成分調整によって高めることができ, 等軸
晶率が60%以上の連鋳スラブを安定して製造できるよ
うになった。したがって,Ti含有フエライト系ステン
レス鋼冷延鋼板特有のリジング発生の問題が,リジング
発生原で防止できるようになり,以後の熱延工程,焼鈍
・冷延工程では,このリジング防止のための特別の対策
が回避でき,工業的有利に且つ安定して良品質の鋼板を
製造できる。
As described above, according to the present invention,
The equiaxed crystal ratio of the continuous cast slab of Ti-containing ferrite stainless steel can be increased by adjusting its composition, and the continuous cast slab with the equiaxed crystal ratio of 60% or more can be stably manufactured. Therefore, the problem of ridging, which is peculiar to Ti-containing ferrite stainless steel cold-rolled steel sheet, can be prevented by the source of ridging. Countermeasures can be avoided, and industrially advantageous and stable production of high-quality steel sheets.

【図面の簡単な説明】[Brief description of drawings]

【図1】低C高TiのAl脱酸鋼におけるTi量と等軸
晶率との関係を示す観測値グラフである。
FIG. 1 is an observed value graph showing the relationship between the Ti content and the equiaxed crystal ratio in a low C, high Ti Al deoxidized steel.

【図2】低C高TiのAl脱酸鋼におけるAl量と等軸
晶率との関係を示す観測値グラフである。
FIG. 2 is an observed value graph showing the relationship between the Al content and the equiaxed crystal ratio in a low C, high Ti Al deoxidized steel.

【図3】低C高TiのAl脱酸鋼におけるTi/Al比
と等軸晶率との関係を示す観測値グラフである。
FIG. 3 is an observed value graph showing the relationship between the Ti / Al ratio and the equiaxed crystal ratio in a low C, high Ti Al deoxidized steel.

【図4】等軸晶率を測定する方法を示した図である。FIG. 4 is a diagram showing a method for measuring an equiaxed crystal ratio.

【図5】低TiのSi脱酸鋼における鋳造速度と等軸晶
率の関係を示す観測値グラフである。
FIG. 5 is an observed value graph showing the relationship between the casting rate and the equiaxed crystal ratio in low Ti Si deoxidized steel.

【図6】低TiのSi脱酸鋼におけるTi量と等軸晶率
の関係を示す観測値グラフである。
FIG. 6 is an observed value graph showing the relationship between the Ti content and the equiaxed crystal ratio in low Ti Si deoxidized steel.

【図7】低TiのSi脱酸鋼におけるT(℃)と等軸晶
率の関係を示す観測値グラフである。
FIG. 7 is an observed value graph showing the relationship between T (° C.) and equiaxed crystal ratio in low Ti Si deoxidized steel.

【図8】低TiのSi脱酸鋼における(ΔT×Ti×1
00)と等軸晶率の関係を示す観測値グラフである。
FIG. 8: (ΔT × Ti × 1 in low Ti Si deoxidized steel)
00) and the equiaxed crystal ratio.

【図9】低C高TiのAl脱酸鋼のスラブ断面の金属組
織を示す写真(倍率×1/6)である。
FIG. 9 is a photograph (magnification × 1/6) showing a metal structure of a slab cross section of an Al deoxidized steel with low C and high Ti.

【図10】低C高TiのAl脱酸鋼のスラブ断面の金属
組織を示す写真(倍率×1/4)である。
FIG. 10 is a photograph (magnification × 1/4) showing a metal structure of a slab cross section of an Al deoxidized steel with low C and high Ti.

【図11】低C高TiのAl脱酸鋼のスラブ断面の金属
組織を示す写真(倍率×1/6)である。
FIG. 11 is a photograph (magnification × 1/6) showing a metal structure of a slab cross section of an Al deoxidized steel with low C and high Ti.

【図12】低TiのSi脱酸鋼のスラブ断面の金属組織
を示す写真(倍率×1/4)である。
FIG. 12 is a photograph (magnification × 1/4) showing the metallographic structure of the slab cross section of low Ti Si deoxidized steel.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C21C 7/04 C21C 7/04 B 7/06 7/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C21C 7/04 C21C 7/04 B 7/06 7/06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 設備の仕様で決まる通常の鋳造温度の範
囲と鋳造速度の範囲でフエライト系ステンレス鋼の連鋳
スラブを製造するさいに,連鋳前の成分調整の段階でA
l脱酸したうえでTiを添加し,そのさい,鋼中のAl
とTiの含有量がTi/Alの比で8以上となるよう
に,これらの元素の含有量を調整することを特徴とす
る,等軸晶率の高いフエライト系ステンレス鋼連鋳スラ
ブの製造方法。
1. When manufacturing a continuous casting slab of ferritic stainless steel within a normal casting temperature range and casting speed range determined by equipment specifications, A is adjusted at the component adjustment stage before continuous casting.
Deoxidizing Ti and adding Ti.
And Ti content is adjusted so that the Ti / Al ratio is 8 or more, the method for producing a continuous cast slab of ferrite type stainless steel with high equiaxed crystal ratio, characterized by adjusting the content of these elements .
【請求項2】 等軸晶率が60%以上である「請求項
1」に記載の製造方法。
2. The manufacturing method according to claim 1, wherein the equiaxed crystal ratio is 60% or more.
【請求項3】 Al含有量が0.001〜0.040%の
範囲,Ti含有量が0.10〜1.00%の範囲でTi/
Alの比を8以上とする「請求項1」に記載の製造方
法。
3. An Al content in the range of 0.001 to 0.040% and a Ti content in the range of 0.10 to 1.00% Ti /
The manufacturing method according to claim 1, wherein the ratio of Al is 8 or more.
【請求項4】 フエライト系ステンレス鋼はC含有量が
0.001〜0.030%の範囲のものである「請求項
1」,「請求項2」または「請求項3」に記載の製造方
法。
4. The method according to claim 1, wherein the ferritic stainless steel has a C content in the range of 0.001 to 0.030%. .
【請求項5】 設備の仕様で決まる通常の鋳造温度の範
囲と鋳造速度の範囲でフエライト系ステンレス鋼の連鋳
スラブを製造するさいに,連鋳前の成分調整の段階でS
i脱酸したうえでTiを添加し,そのさい,鋼中のTi
含有量を0.01〜0.05%の範囲となるように調整
し,且つ下式(1) Ti含有量×(1560℃−鋳造温度)×100 ・・(1) で算出される値が42以上となるように鋳造温度を調整
することを特徴とする,等軸晶率の高いフエライト系ス
テンレス鋼連鋳スラブの製造方法。
5. When manufacturing a continuous casting slab of ferrite type stainless steel within a range of normal casting temperature and casting speed determined by equipment specifications, S is added at the component adjustment stage before continuous casting.
i After deoxidizing Ti, add Ti.
The content is adjusted to be in the range of 0.01 to 0.05%, and the value calculated by the following formula (1) Ti content x (1560 ° C-casting temperature) x 100 ··· (1) is A method for producing a continuous casting slab of ferritic stainless steel having a high equiaxed crystal ratio, which is characterized in that the casting temperature is adjusted to 42 or more.
【請求項6】該(1) 式で算出される値が80以上,Si
含有量が0.75%以下,そしてスラブの等軸晶率が6
0%以上である「請求項5」に記載の等軸晶率を高める
方法。
6. The value calculated by the equation (1) is 80 or more, Si
Content is 0.75% or less, and slab equiaxed crystal ratio is 6
The method for increasing the equiaxed crystal ratio according to claim 5, which is 0% or more.
JP22273995A 1995-08-09 1995-08-09 Production of continuous casting ferritic stainless steel slab having high equi-axial crystal ratio Withdrawn JPH0949010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22273995A JPH0949010A (en) 1995-08-09 1995-08-09 Production of continuous casting ferritic stainless steel slab having high equi-axial crystal ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22273995A JPH0949010A (en) 1995-08-09 1995-08-09 Production of continuous casting ferritic stainless steel slab having high equi-axial crystal ratio

Publications (1)

Publication Number Publication Date
JPH0949010A true JPH0949010A (en) 1997-02-18

Family

ID=16787150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22273995A Withdrawn JPH0949010A (en) 1995-08-09 1995-08-09 Production of continuous casting ferritic stainless steel slab having high equi-axial crystal ratio

Country Status (1)

Country Link
JP (1) JPH0949010A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406403B1 (en) * 1999-07-13 2003-11-19 주식회사 포스코 Method of throwing Al into molten stainless steel at VOD refining process
KR100543296B1 (en) * 2001-12-11 2006-01-20 주식회사 포스코 Continuous casting method for ridging improvement of ferritic stainless steel
KR100659467B1 (en) * 2005-12-26 2006-12-19 주식회사 포스코 Production method for ferrite stainless steel, continuous casting apparatus for the same and ferrite stainless steel produced by the method and the apparatus
KR100729934B1 (en) * 2005-12-28 2007-06-18 주식회사 포스코 Method for manufacturing ferritic stainless steel slabs with equiaxed grain structures and the ferritic stainless steel manufactured by it
CN100430161C (en) * 2006-12-27 2008-11-05 东北大学 Cast rolling method and equipment of isometric crystal ferrite stainless steel slab band
KR100922059B1 (en) * 2007-12-20 2009-10-16 주식회사 포스코 Method for manufacturing high chrome stainless steel including titannium
JP2015137375A (en) * 2014-01-21 2015-07-30 Jfeスチール株式会社 Ferritic stainless cold rolled steel sheet and manufacturing method therefor
JP2017508067A (en) * 2013-12-24 2017-03-23 ポスコPosco Ferritic stainless steel with improved formability and ridge resistance and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406403B1 (en) * 1999-07-13 2003-11-19 주식회사 포스코 Method of throwing Al into molten stainless steel at VOD refining process
KR100543296B1 (en) * 2001-12-11 2006-01-20 주식회사 포스코 Continuous casting method for ridging improvement of ferritic stainless steel
KR100659467B1 (en) * 2005-12-26 2006-12-19 주식회사 포스코 Production method for ferrite stainless steel, continuous casting apparatus for the same and ferrite stainless steel produced by the method and the apparatus
KR100729934B1 (en) * 2005-12-28 2007-06-18 주식회사 포스코 Method for manufacturing ferritic stainless steel slabs with equiaxed grain structures and the ferritic stainless steel manufactured by it
WO2007074970A1 (en) * 2005-12-28 2007-07-05 Posco Method for manufacturing ferritic stainless steel slabs with equiaxed grain structures and the ferritic stainless steel manufactured by it
JP2009521599A (en) * 2005-12-28 2009-06-04 ポスコ Method for producing ferritic stainless steel with fine solidification structure and ferritic stainless steel produced thereby
CN100430161C (en) * 2006-12-27 2008-11-05 东北大学 Cast rolling method and equipment of isometric crystal ferrite stainless steel slab band
KR100922059B1 (en) * 2007-12-20 2009-10-16 주식회사 포스코 Method for manufacturing high chrome stainless steel including titannium
JP2017508067A (en) * 2013-12-24 2017-03-23 ポスコPosco Ferritic stainless steel with improved formability and ridge resistance and method for producing the same
JP2015137375A (en) * 2014-01-21 2015-07-30 Jfeスチール株式会社 Ferritic stainless cold rolled steel sheet and manufacturing method therefor

Similar Documents

Publication Publication Date Title
EP2677055B1 (en) High-purity ferritic stainless steel sheet having excellent oxidation resistance and high-temperature strength, and method for producing same
KR950008377B1 (en) Producing a weldable, ferrtic stainless steel strip
JP2001288544A (en) High purity ferritic stainless steel excellent in surface property and corrosion resistance and its production method
JPH0949010A (en) Production of continuous casting ferritic stainless steel slab having high equi-axial crystal ratio
EP2738281B1 (en) High si-content austenitic stainless steel
WO1990004658A1 (en) Heat-resistant high-al austenitic steel having excellent hot working properties
JP5223720B2 (en) Continuous casting slab of steel for B-containing high-strength thick steel plate and method for producing the same
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JPH08165520A (en) Nonoriented silicon steel sheet excellent in workability and production thereof
JP2007177303A (en) Steel having excellent ductility and its production method
JP2623606B2 (en) Manufacturing method of ferritic stainless steel
JP3455047B2 (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JP2003147492A (en) Ti-CONTAINING Fe-Cr-Ni STEEL HAVING EXCELLENT SURFACE PROPERTY, AND CASTING METHOD THEREFOR
JPH08291332A (en) Production of ferritic stainless steel plate excellent in formability and ridging resistance
JP2830745B2 (en) Manufacturing method of bake hardening type cold rolled steel sheet with excellent surface properties
JPH07268455A (en) Production of cr-ni stainless alloy free from microracking in hot rolling
JP2002283024A (en) Method for producing steel material for structure excellent in toughness at heat affected part of welding
JP3210255B2 (en) Ferritic stainless steel with excellent corrosion resistance and manufacturability
JP3362077B2 (en) Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss
JP3807377B2 (en) Ca treatment method for low Al molten steel
JP2001234284A (en) Steel excellent in crystal grain size characteristic and its producing method
JP2759678B2 (en) Stainless steel with excellent hot workability
JP3350343B2 (en) Method for producing ferritic stainless steel to prevent surface flaws from occurring during hot rolling
JP2002030395A (en) Cr STAINLESS STEEL AND ITS MANUFACTURING METHOD
JP2002038221A (en) Production method for high purity chromium-containing thin steel plate excellent in press formability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105