JPH0947853A - Method for stirring molten steel in continuos casting mold - Google Patents

Method for stirring molten steel in continuos casting mold

Info

Publication number
JPH0947853A
JPH0947853A JP19772095A JP19772095A JPH0947853A JP H0947853 A JPH0947853 A JP H0947853A JP 19772095 A JP19772095 A JP 19772095A JP 19772095 A JP19772095 A JP 19772095A JP H0947853 A JPH0947853 A JP H0947853A
Authority
JP
Japan
Prior art keywords
molten steel
flow
force
accelerating
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19772095A
Other languages
Japanese (ja)
Other versions
JP3129942B2 (en
Inventor
Takayuki Kaneyasu
孝幸 兼安
Masateru Nakaho
真輝 仲保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP07197720A priority Critical patent/JP3129942B2/en
Publication of JPH0947853A publication Critical patent/JPH0947853A/en
Application granted granted Critical
Publication of JP3129942B2 publication Critical patent/JP3129942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remove inclusion in a solidified shell and to prevent the entrapment of powder on molten metal surface by controlling a ratio of Lorenz's force in the accelerating steps at the initial period and the latter period to a specific value and securing the flow speed of molten metal to a specific value. SOLUTION: A mold 1 is formed as a rectangular shape and electromagnetic force is applied to mutually facing direction along the faced long sides to stir the molten steel. Then, accelerating cores 2a at the initial period and accelerating cores 2b at the latter period are arranged around the mold 1, respectively. The ratio F2 /F1 of the Lorenz's force F2 in the accelerating step at the latter period, in which the flow directs from the inside to the short sides, with the accelerating cores 2b to the Lorenz's force F1 in the accelerating step at the initial period with the accelerating cores 2a, is controlled in the range of 0.15-0.5. Further, the flowing speed of molten steel is secured to 20-60cm/sec. By this method, the product quality can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造用鋳型内
の溶鋼の電磁撹拌方法に関する。
TECHNICAL FIELD The present invention relates to a method of electromagnetically stirring molten steel in a continuous casting mold.

【0002】[0002]

【従来の技術】従来、連続鋳造用鋳型内の溶鋼に対し
て、表面欠陥の原因となる非金属介在物などが鋳片表層
へ捕捉されるのを防止する目的で、電磁力を加えて撹拌
することが行われている。図6は、溶鋼を電磁撹拌する
ために、連続鋳造用鋳型の回りに電磁撹拌装置のコアを
設置した場合の鋳型内の溶鋼の湯面における撹拌流の説
明図、図7は図6に示す電磁撹拌装置のコア高さ方向の
ローレンツ力分布図、図8は図6に示す連続鋳造用鋳型
内での溶鋼の撹拌流を3次元的に示した説明図である。
図6において、鋳型1の長辺に沿って電磁撹拌装置のコ
ア2が設置され、コア2には向かい合った長辺に沿って
相対する方向に電磁力が加えられ、鋳型1内には、イマ
ージョンノズル3から溶鋼が供給される。
2. Description of the Related Art Conventionally, stirring is performed by applying electromagnetic force to molten steel in a continuous casting mold in order to prevent non-metallic inclusions causing surface defects from being trapped on the surface layer of the slab. Is being done. FIG. 6 is an explanatory view of the stirring flow on the molten metal level in the mold when the core of the electromagnetic stirring device is installed around the mold for continuous casting to electromagnetically stir the molten steel, and FIG. 7 is shown in FIG. A Lorentz force distribution diagram in the core height direction of the electromagnetic stirrer, and FIG. 8 is a three-dimensional explanatory view of the stirring flow of molten steel in the continuous casting mold shown in FIG.
In FIG. 6, the core 2 of the electromagnetic stirrer is installed along the long side of the mold 1, and an electromagnetic force is applied to the core 2 in the opposite direction along the facing long side. Molten steel is supplied from the nozzle 3.

【0003】鋳型1内の溶鋼の湯面では、コア1内の矢
印方向4の電磁力により、撹拌流5,6が生じる。撹拌
流のうち、撹拌流5は湯面の電磁力による撹拌流であ
り、撹拌流6はコア中央の衝突上昇流により発生した反
転流6である。
On the molten steel surface in the mold 1, the stirring flows 5 and 6 are generated by the electromagnetic force in the direction of the arrow 4 in the core 1. Among the agitated flows, the agitated flow 5 is the agitated flow due to the electromagnetic force of the molten metal surface, and the agitated flow 6 is the reverse flow 6 generated by the collision rising flow in the center of the core.

【0004】通常、図7に示すように、コア2の構造
上、高さ方向の中央で最も大きなローレンツ力が発生し
ている。このため、図8に示すように、前記高さ方向中
央での流速が湯面での流速に対して速くなり、短辺に衝
突して上昇流6aとなり、この上昇流6aが反転流6と
なるが、反転流6は湯面の撹拌流5と干渉し合い、その
結果、流れの停滞域A,Bが発生する。
Normally, as shown in FIG. 7, due to the structure of the core 2, the largest Lorentz force is generated at the center in the height direction. Therefore, as shown in FIG. 8, the flow velocity at the center in the height direction becomes faster than the flow velocity at the molten metal surface, collides with the short side to become the upflow 6a, and the upflow 6a becomes the reverse flow 6. However, the reverse flow 6 interferes with the stirring flow 5 on the molten metal surface, and as a result, flow stagnant areas A and B are generated.

【0005】ところが、停滞域A,Bの領域では介在物
が捕捉されるので、疵不合がこの部分に集中して発生す
るという問題があった。
However, since the inclusions are captured in the stagnation areas A and B, there is a problem that defects are concentrated in this area.

【0006】そこで、この問題を解決するため、特開昭
61ー14052号公報により、図9に示すコア構造が
提案された。このコア構造では、コア2の長さを鋳型1
の長辺よりも短くしてコア2の終端で電磁力をかけない
ことにより短辺での衝突流を抑制しようとするものであ
る。
In order to solve this problem, Japanese Patent Laid-Open No. 61-14052 proposes a core structure shown in FIG. In this core structure, the length of core 2 is
It is intended to suppress the collision flow on the short side by making it shorter than the long side and applying no electromagnetic force at the end of the core 2.

【0007】また、特開昭58ー100955号公報に
より、図10に示すコア構造も提案されている。このコ
ア構造では、電磁力の方向が同じ加速用コア2c及び流
速維持用コア2dと、前記方向と逆方向の電磁力を加え
る減速用コア2eとを用い、溶鋼の流れを加速域、維持
域、減速域の3領域にわけてコア毎に別制御を行うもの
であり、図11は鋳型の長手方向の溶鋼流の流速を示す
グラフで、加速された溶鋼は、流速が維持され、短辺近
くで逆方向の電磁力により減速されるというものであ
る。
Further, the core structure shown in FIG. 10 is also proposed in Japanese Patent Application Laid-Open No. 58-100955. In this core structure, an accelerating core 2c and a flow velocity maintaining core 2d having the same electromagnetic force direction and a decelerating core 2e for applying an electromagnetic force in the opposite direction are used to accelerate the flow of molten steel into an accelerating region and a maintaining region. 11 is a graph showing the flow velocity of the molten steel flow in the longitudinal direction of the mold, divided into three regions of the deceleration region. FIG. 11 is a graph showing the flow velocity of the molten steel flow in the longitudinal direction of the mold. It is said to be decelerated by an electromagnetic force in the opposite direction nearby.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特開昭
61ー14052号公報記載のコア構造では、モールド
幅に応じてコアを長辺方向へ移動させてやる必要があ
り、そのためコアの移動スペース確保及び移動装置設置
のための投資が必要となるばかりでなく、制御も難しい
という問題がある。
However, in the core structure disclosed in Japanese Patent Laid-Open No. 61-14052, it is necessary to move the core in the long side direction according to the mold width. Therefore, a space for moving the core is secured. Also, there is a problem that not only investment for installing the mobile device is required, but also control is difficult.

【0009】また、特開昭58ー100955号公報記
載の方法は、高さ方向中央の短辺衝突上昇流は弱くなる
が、コーナ一部近辺で溶鋼流にブレーキカをかけること
により、急激に流速が低下する。このため、図10に示
される流動パターンのように流速維持域の部分だけで撹
拌され、加速域と減速域では流速が低下する。特にロー
レンツ力の小さい湯面では、注湯吐出流の上昇流の影響
を受けて鋳型のコーナ一部ではほとんど流動のない状態
となり、逆に疵不合が増加する。さらに、鋳型の幅に応
じて各コアのパワーを変える必要があるため、その制御
が複雑である。そこで、本発明は、連続鋳造用鋳型内の
溶鋼を均一に撹拌するための電磁撹拌方法を提供するも
のである。
According to the method described in Japanese Patent Laid-Open No. 58-100955, the short side collision upflow at the center in the height direction becomes weak, but the flow velocity is rapidly increased by applying a brake force to the molten steel flow near a part of the corner. Is reduced. Therefore, as in the flow pattern shown in FIG. 10, stirring is performed only in the flow velocity maintaining region, and the flow velocity decreases in the acceleration region and the deceleration region. In particular, on the surface of the molten metal with a small Lorentz force, there is almost no flow at some corners of the mold under the influence of the upward flow of the pouring discharge flow, and conversely, defects are increased. Further, the power of each core needs to be changed according to the width of the mold, so that its control is complicated. Therefore, the present invention provides an electromagnetic stirring method for uniformly stirring the molten steel in the continuous casting mold.

【0010】[0010]

【課題を解決するための手段】本発明は、矩形をした連
続鋳造用鋳型内で、向かい合った長辺に沿って相対する
方向に電磁力を加える溶鋼の電磁撹拌方法において、溶
鋼の流れを一方の短辺から長辺に沿って内側に向かわせ
る初期の加速段階のローレンツカ:Flと溶鋼の流れを
前記内側から他方の短辺に向かわせる後期の加速段階の
ローレンツカ:F2の比F2/F1を0.15〜0.5の
範囲に制御し、溶鋼の流速を20〜60cm/sに確保
することを特徴とする溶鋼の電磁撹拌方法である。
SUMMARY OF THE INVENTION The present invention provides a method for electromagnetic stirring of molten steel in which electromagnetic force is applied in opposite directions along opposed long sides in a rectangular continuous casting mold. The ratio of Lorenzka in the initial acceleration stage, which is directed from the short side to the inner side along the long side: F l, and the Lorenzka in the latter acceleration stage, which directs the flow of molten steel from the inside to the other short side: F 2 . It is an electromagnetic stirring method for molten steel, characterized in that F 2 / F 1 is controlled within a range of 0.15 to 0.5 to secure a flow rate of molten steel at 20 to 60 cm / s.

【0011】本発明は、図10、図11に示されている
従来の加速、維持、減速というパターンではなく、加速
の段階を二段階にわけて、前半の加速力に対して、後半
の加速力をある範囲に弱めて電磁撹拌するものであり、
後半の加速力の上限は、コアの高さ方向中央の流れの短
辺衝突上昇流が弱くなり湯面の停滞域が解消する値と
し、下限は湯面の撹拌力低下により、コーナ一部近傍の
流速が低下しないことを必要条件とするものである。
The present invention does not use the conventional pattern of acceleration, maintenance, and deceleration shown in FIGS. 10 and 11, but the acceleration stage is divided into two stages, and the acceleration force in the latter half is compared with the acceleration force in the first half. It weakens the force to a certain range and electromagnetically stirs,
The upper limit of the accelerating force in the latter half is the value at which the short side collision upflow of the flow in the center of the height direction of the core weakens and the stagnant area of the molten metal is eliminated, and the lower limit is near the corner due to the decrease of the stirring force of the molten metal It is a necessary condition that the flow velocity of is not decreased.

【0012】[0012]

【作用】図4は、図5に示すコア構造において、湯面で
のコア2aのローレンツ力とコア2bのローレンツ力が
等しい場合で、コア1のローレンツ力F1とモールド幅
Lの積の1/2乗に流速が比例した様子を示したもので
ある。
In the core structure shown in FIG. 5, when the Lorentz force of the core 2a and the Lorentz force of the core 2b on the molten metal surface are equal, the product of the Lorentz force F 1 of the core 1 and the mold width L is 1 It shows that the flow velocity is proportional to the squared power.

【0013】この状態では、コア高さ方向中央の短辺衝
突上昇流が湯面で内側に向かう流れとなり、湯面の撹拌
流と干渉して停滞域を生じる(図8参照)。つまり、湯
面の流れを考える場合、モールド水平方向断面の作用だ
けでなく、高さ方向の電磁力分布による作用によって生
じる3次元的流動を考えなければならないということで
あり、モールド内流動の結果、湯面では、図5のa、b
及びcの各点での流速は、図4の線a、b及びcに示さ
れるように、c点で最も低くなる。凝固シェル面への流
速付与により、介在物除去を行うためには20cm/s
以上の流速が必要である。一方、湯面のパウダー巻き込
みを防止するためには、60cm/s以下にしなければ
ならない。しかしながら、ローレンツ力F1を0.1≦
1・L≦0.6(N1/2/m)の範囲にとった場合、
a、b及びcの各点では、流速がパウダー巻き込み流速
60cm/sを超えることはなく、a及びb点では介在
物を十分に除去するのに必要な流速20cm/sを確保
できるが、c点では、停滞域が形成され、流速が20c
m/s以下になってしまうため、この部分で介在物を十
分に除去できないという問題が生じる。
In this state, the short side collision upflow at the center in the height direction of the core becomes an inward flow on the surface of the molten metal, which interferes with the stirring flow on the surface of the molten metal to produce a stagnant region (see FIG. 8). In other words, when considering the flow on the molten metal surface, it is necessary to consider not only the action of the horizontal section of the mold but also the three-dimensional flow caused by the action of the electromagnetic force distribution in the height direction. On the surface of the bath, a and b in FIG.
The flow velocity at each of the points c and c is the lowest at the point c, as shown by the lines a, b and c in FIG. 20 cm / s to remove inclusions by applying a flow velocity to the solidified shell surface
The above flow rate is required. On the other hand, in order to prevent powder entrapment on the molten metal surface, it must be 60 cm / s or less. However, the Lorentz force F 1 is 0.1 ≦
When F 1 · L ≦ 0.6 (N 1/2 / m),
The flow velocity does not exceed the powder entrainment flow velocity of 60 cm / s at points a, b, and c, and the flow velocity of 20 cm / s required to sufficiently remove inclusions can be secured at points a and b. At the point, a stagnant area is formed and the flow velocity is 20c.
Since it is less than m / s, there is a problem that inclusions cannot be sufficiently removed at this portion.

【0014】そこで、この問題を解決するために、コア
2bのローレンツ力F2をコア2aのローレンツカFl
対して弱くすることで、コア高さ方向中央で短辺に衝突
する溶鋼流速が小さくなり、これによる上昇流が抑制さ
れ、それにともなって反転流が弱くなる。その結果、反
転流と湯面の撹拌流との干渉による停滞域の発生がなく
なり、モールド幅全体にわたって、介在物除去に必要な
流速が確保可能となる。この時、湯面の停滞域を解消す
るためには、F2/lの比をある閾値以下にする必要が
ある。かつ、湯面での撹拌力を保つためには、別の閾値
以上にする必要がある。本研究においては0.15≦F
2/l≦0.5の範囲に制御するのが最も望ましい流動
になる。
[0014] To solve this problem, by weakening the Lorentz force F 2 of the core 2b against the Lorentz mosquitoes F l of the core 2a, the molten steel flow velocity impinging on the short side in the core height direction center It becomes smaller and the upward flow due to this is suppressed, and the reverse flow is weakened accordingly. As a result, a stagnant region is not generated due to the interference between the reverse flow and the stirring flow on the molten metal surface, and the flow velocity required for removing inclusions can be secured over the entire mold width. At this time, in order to eliminate the stagnation area of the molten metal surface, it is necessary to set the ratio of F 2 / F l to a certain threshold value or less. In addition, in order to maintain the stirring power on the surface of the molten metal, it is necessary to set it to another threshold value or more. In this study, 0.15 ≦ F
It is the most desirable flow to control in the range of 2 / F l ≦ 0.5.

【0015】[0015]

【実施例】本発明を図1〜図3を参照しながら説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to FIGS.

【0016】図1は、本発明のコア構造と流動パターン
を示す図である。
FIG. 1 is a diagram showing the core structure and flow pattern of the present invention.

【0017】図1において、鋳型1の回りには初期加速
コア2a及び後期加速コア2bがそれぞれ設置されてい
る。初期加速コア2aによる初期の加速段階のローレン
ツ力:Flと流れが内側から短辺に向かう後期加速コア
2bの後期の加速段階のローレンツ力:F2の比F2/F
1を0.15〜0.5の範囲に制御する。
In FIG. 1, an initial acceleration core 2a and a late acceleration core 2b are installed around the mold 1. Lorentz force in the initial acceleration stage by the initial acceleration core 2a: F 1 and the ratio of the Lorentz force in the latter acceleration stage: F 2 of the latter acceleration core 2b in which the flow goes from the inner side to the short side: F 2 / F 2 / F
1 is controlled within the range of 0.15 to 0.5.

【0018】図2はF2をF1に対して弱くした場合の介
在物の除去効果について試験した結果のグラフである。
横軸にF2のFlに対する比率、縦軸に図5に示されてい
るc点での介在物量をFl=0.16N/m3、L=lm
(Fl・L=0.16N1/2/m)の場合についてとった
ものである。なお、介在物量は電磁撹拌しない時の介在
物量を1とした。このグラフに示されているように、F
2がFlの50%を超えると、c点での流れの停滞域発生
により、十分な介在物の除去効果は得られない。また、
15%未満の場合には、コーナ一部の撹拌力不足により
やはり介在物の除去効果が小さくなってしまう。
[0018] FIG. 2 is a graph of the results of testing for the effect of removing inclusions in the case of weak F 2 against F 1.
The horizontal axis represents the ratio of F 2 to F l , and the vertical axis represents the amount of inclusions at point c shown in FIG. 5, F l = 0.16 N / m 3 , L = lm
This is for the case of (F 1 · L = 0.16N 1/2 / m). The amount of inclusions was set to 1 when no electromagnetic stirring was performed. As shown in this graph, F
When 2 exceeds 50% of F l , a sufficient effect of removing inclusions cannot be obtained due to the stagnant region of the flow at point c. Also,
If it is less than 15%, the effect of removing inclusions is also reduced due to insufficient stirring force at some corners.

【0019】したがって、F2をFlの15〜50%の範
囲にすることが、c点での停滞域を解消し、かつ十分な
撹拌力を得るために必要である。グラフから明らかなと
おり、前記範囲で操業することにより、c点での介在物
量を約半分以下にすることができる。
Therefore, it is necessary to set F 2 within the range of 15 to 50% of F 1 in order to eliminate the stagnation region at the point c and obtain a sufficient stirring force. As is clear from the graph, by operating in the above range, the amount of inclusions at point c can be reduced to about half or less.

【0020】[0020]

【発明の効果】本発明は、溶鋼の電磁撹拌において、後
期の加速段階のローレンツ力:F2を初期の加速段階の
ローレンツ力:Flの15−50%の範囲とすることに
より、湯面における溶鋼流の停滞域を解消し、かつ十分
な撹拌力を得ることができ、この結果、凝固シェル上の
介在物除去、及び湯面のパウダ一巻込みを防止でき、製
品品質の十分な向上がはかれるという効果を奏する。
INDUSTRIAL APPLICABILITY According to the present invention, in electromagnetic stirring of molten steel, the Lorentz force in the latter acceleration stage: F 2 is set within the range of 15-50% of the Lorentz force in the initial acceleration stage: F l. It is possible to eliminate the stagnant zone of the molten steel flow and to obtain a sufficient stirring force. As a result, it is possible to prevent the inclusions on the solidified shell from being removed and to prevent the powder surface from being caught up in the molten metal surface. Has the effect of being peeled off.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するためのコア構造及び溶鋼流の
説明図。
FIG. 1 is an explanatory view of a core structure and molten steel flow for carrying out the present invention.

【図2】F2/F1と介在物量指数との関係を示すグラ
フ。
FIG. 2 is a graph showing the relationship between F 2 / F 1 and the inclusion amount index.

【図3】本発明における溶鋼の流速の変化図。FIG. 3 is a diagram showing changes in the flow rate of molten steel according to the present invention.

【図4】流速と(Fl・L)1/2との関係図。FIG. 4 is a relationship diagram between a flow velocity and (F l·L ) 1/2 .

【図5】図4の流速測定点の説明図。5 is an explanatory diagram of flow velocity measurement points in FIG. 4. FIG.

【図6】従来の電磁撹拌装置を有する連続鋳造鋳型内の
湯面における撹拌流の説明図。
FIG. 6 is an explanatory diagram of a stirring flow on a molten metal surface in a continuous casting mold having a conventional electromagnetic stirring device.

【図7】図6の電磁撹拌装置のコア高さ方向のローレン
ツ力分布図。
7 is a Lorentz force distribution diagram in the core height direction of the electromagnetic stirring device of FIG.

【図8】図6に示す連続鋳造用鋳型内での溶鋼の撹拌流
の説明図。
8 is an explanatory view of a stirring flow of molten steel in the continuous casting mold shown in FIG.

【図9】従来の電磁撹拌装置のコア構造の説明図。FIG. 9 is an explanatory diagram of a core structure of a conventional electromagnetic stirrer.

【図10】従来の電磁撹拌装置の別のコア構造の説明
図。
FIG. 10 is an explanatory view of another core structure of a conventional electromagnetic stirrer.

【図11】図10に示す電磁撹拌装置による溶鋼の流速
の変化図。
11 is a change diagram of the flow velocity of molten steel by the electromagnetic stirrer shown in FIG.

【符号の説明】[Explanation of symbols]

1 鋳型、 2 コア、2a 初期加速コア、 2b
後期加速コア、2c加速用コア、 2d 流速維持用コ
ア、 2e 減速用コア、 3 イマージョンノズル、
4 電磁力方向、 5,6 撹拌流、 6a 反転流
1 mold, 2 cores, 2a initial acceleration core, 2b
Late acceleration core, 2c acceleration core, 2d flow velocity maintaining core, 2e deceleration core, 3 immersion nozzle,
4 electromagnetic force direction, 5,6 stirring flow, 6a reverse flow

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 矩形をした連続鋳造用鋳型内で、向かい
合った長辺に沿って相対する方向に電磁力を加える溶鋼
の電磁撹拌方法において、溶鋼の流れを一方の短辺から
長辺に沿って内側に向かわせる初期の加速段階のローレ
ンツカ:Flと溶鋼の流れを前記内側から他方の短辺に
向かわせる後期の加速段階のローレンツ力:F2の比F2
/F1を0.15〜0.5の範囲に制御し、溶鋼の流速
を20〜60cm/secに確保することを特徴とする
溶鋼の撹拌方法。
1. A method for electromagnetic stirring of molten steel in which electromagnetic force is applied in opposite directions along opposite long sides in a rectangular continuous casting mold, in which molten steel flows from one short side to the long side. initial acceleration phase of the Lorentz mosquito directing inward Te: Lorentz force F l and late acceleration phase for directing molten steel flow from the inside to the other short side ratio of F 2 F 2
/ F 1 is controlled in the range of 0.15 to 0.5, and the flow rate of the molten steel is secured at 20 to 60 cm / sec.
JP07197720A 1995-08-02 1995-08-02 Stirring method of molten steel in continuous casting mold Expired - Lifetime JP3129942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07197720A JP3129942B2 (en) 1995-08-02 1995-08-02 Stirring method of molten steel in continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07197720A JP3129942B2 (en) 1995-08-02 1995-08-02 Stirring method of molten steel in continuous casting mold

Publications (2)

Publication Number Publication Date
JPH0947853A true JPH0947853A (en) 1997-02-18
JP3129942B2 JP3129942B2 (en) 2001-01-31

Family

ID=16379237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07197720A Expired - Lifetime JP3129942B2 (en) 1995-08-02 1995-08-02 Stirring method of molten steel in continuous casting mold

Country Status (1)

Country Link
JP (1) JP3129942B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074213A1 (en) 2002-03-01 2003-09-12 Jfe Steel Corporation Method and apparatus for controlling flow of molten steel in mold, and method for producing continuous castings
JP2007021572A (en) * 2005-07-21 2007-02-01 Nippon Steel Corp Continuous casting cast slab and producing method therefor
JP2011506103A (en) * 2007-12-17 2011-03-03 ロテレック A method and related electromagnetic equipment for rotating molten metal inside an ingot mold for continuous casting of slabs.

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4983320B2 (en) * 2007-03-09 2012-07-25 Jfeスチール株式会社 Method and apparatus for continuous casting of steel
KR200490544Y1 (en) * 2017-03-07 2019-11-27 김신영 Accessory

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074213A1 (en) 2002-03-01 2003-09-12 Jfe Steel Corporation Method and apparatus for controlling flow of molten steel in mold, and method for producing continuous castings
JP2007021572A (en) * 2005-07-21 2007-02-01 Nippon Steel Corp Continuous casting cast slab and producing method therefor
JP4728724B2 (en) * 2005-07-21 2011-07-20 新日本製鐵株式会社 Continuous casting slab and manufacturing method thereof
JP2011506103A (en) * 2007-12-17 2011-03-03 ロテレック A method and related electromagnetic equipment for rotating molten metal inside an ingot mold for continuous casting of slabs.

Also Published As

Publication number Publication date
JP3129942B2 (en) 2001-01-31

Similar Documents

Publication Publication Date Title
JP2002522227A (en) Continuous casting method and apparatus therefor
JPS6328702B2 (en)
JP3188273B2 (en) Control method of flow in mold by DC magnetic field
JPH0947853A (en) Method for stirring molten steel in continuos casting mold
JP3583955B2 (en) Continuous casting method
KR100352535B1 (en) Continuous casting machine and casting method using the same
JP3566904B2 (en) Steel continuous casting method
JPH09182941A (en) Electromagnetic-stirring method for molten steel in continuous casting mold
JPS5976647A (en) Method and device for stirring molten metal for casting in continuous casting
JP4407260B2 (en) Steel continuous casting method
JPS6272458A (en) Electromagnetic stirring method
JP3583954B2 (en) Continuous casting method
JP3152276B2 (en) Continuous casting method of SUS304 stainless steel
JP3257546B2 (en) Steel continuous casting method
JP4910357B2 (en) Steel continuous casting method
JPH0579430B2 (en)
JPH10263763A (en) Method for controlling fluidity in continuously casting strand and device for controlling fluidity
JPH05237621A (en) Continuous casting method
JPH10166119A (en) Electr0magnetic stirring method in mold in continuous casting
JP3914092B2 (en) Thin slab continuous casting equipment and continuous casting method
JP2000015404A (en) Production of continuously cast slab having little inclusion defect
JP3088927B2 (en) Beam blank casting mold
JPH09108797A (en) Method for continuously casting steel
JP2000158108A (en) Continuous steel casting method
JP3538967B2 (en) Continuous casting method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term