JPH0945534A - Reactor core with excellent superposed-wave characteristic - Google Patents

Reactor core with excellent superposed-wave characteristic

Info

Publication number
JPH0945534A
JPH0945534A JP7196323A JP19632395A JPH0945534A JP H0945534 A JPH0945534 A JP H0945534A JP 7196323 A JP7196323 A JP 7196323A JP 19632395 A JP19632395 A JP 19632395A JP H0945534 A JPH0945534 A JP H0945534A
Authority
JP
Japan
Prior art keywords
iron loss
wave
steel plate
reactor
superposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7196323A
Other languages
Japanese (ja)
Inventor
Misao Namikawa
操 浪川
Hironori Ninomiya
弘憲 二宮
Yasushi Tanaka
靖 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7196323A priority Critical patent/JPH0945534A/en
Publication of JPH0945534A publication Critical patent/JPH0945534A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Electromagnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a reactor core whose iron loss is extremely low when it is used under a waveform condition under which harmonics are superposed. SOLUTION: In a reactor core using a high-silicon steel plate which contains 4 to 7wt.% of Si, the high-silicon steel plate which satisfies a relationship of (Ωp, n)/(ΣWs, n)<1.15 where the fundamental-wave iron loss is designated Wp, 1 and the n-th harmonic wave loss is designated Ws, n, when the high silicon steel plate is excited by a waveform containing harmonic components, an iron loss for the fundamental-wave at a time is designated Ws, 1 and an iron loss for the n-th harmonic is designated Ws, n when the silicon steel plate is excited by a single sine wave.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複数の波形が重畳
された波形により励磁されるリアクトル鉄心に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor core excited by a waveform in which a plurality of waveforms are superimposed.

【0002】[0002]

【従来の技術】従来、スイッチングデバイスの大容量化
に伴い、インバータ電源を組み込んだ電源も大容量化が
進み、様々な電源機器分野に採用されるようになってい
る。そして、これらインバータ電源のスイッチング回路
の波形は、比較的低周波の基本波と高周波成分とが重畳
した波形となっており、昨今、このインバータのスイッ
チング周波数が高周波化しており、これに伴い、高調波
成分も高周波化してきている。このため、インバータ電
源周辺で使用されるリアクトル鉄心の温度上昇、すなわ
ち、鉄心の鉄損が問題となってきている。
2. Description of the Related Art Conventionally, as the capacity of a switching device has been increased, the capacity of a power supply incorporating an inverter power supply has also been increased, and it has been adopted in various power supply equipment fields. The waveform of the switching circuit of these inverter power supplies is a waveform in which a fundamental wave of a relatively low frequency and a high frequency component are superposed, and these days, the switching frequency of this inverter has become higher, and along with this, The wave components are becoming higher in frequency. Therefore, the temperature rise of the reactor iron core used around the inverter power supply, that is, the iron loss of the iron core has become a problem.

【0003】従来、このようなリアクトルの温度上昇、
すなわち高周波鉄損の増加問題を解決するため、鉄心材
料として板厚の薄い鋼板を用いるか、又は、固有抵抗の
高い材料にするなど、通常の高周波対策と同様の対策が
とられていた。
Conventionally, such a temperature rise of the reactor,
That is, in order to solve the problem of increasing high-frequency iron loss, the same measures as those for normal high-frequency measures have been taken, such as using a thin steel plate as the iron core material or using a material with high specific resistance.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来、
高調波の重畳した励磁波形で用いられるリアクトル鉄心
の材料として、高周波鉄損の低い材料が用いられている
が、波形条件によっては、高周波鉄損の低い材料を用い
ているにも関わらず、リアクトル鉄損が異常に大きくな
ってしまい、リアクトル鉄心の温度上昇をきたしてしま
うことがあるという問題点があった。本発明は、このよ
うな問題点を解決するためになされたものであり、高調
波が重畳している波形条件で用いたときにも鉄損が極め
て低いリアクトル鉄心を提供することを目的とする。
However, conventionally,
Materials with low high-frequency iron loss are used as materials for the reactor core that is used in excitation waveforms in which harmonics are superimposed.However, depending on the waveform conditions, even though materials with low high-frequency iron loss are used, the reactor There has been a problem that the iron loss may become abnormally large and the temperature of the reactor iron core may rise. The present invention has been made to solve such a problem, and an object of the present invention is to provide a reactor iron core having extremely low iron loss even when used in a waveform condition in which harmonics are superimposed. .

【0005】[0005]

【課題を解決するための手段】本発明の一態様に係る重
畳波特性の優れたリアクトル鉄心は、Siを4〜7wt%
含む高珪素鋼板を用いたリアクトル鉄心において、高調
波成分を含む波形により励磁したときの基本波鉄損をW
p,1 、n次高調波損をWp,n 、正弦波単独で励磁したと
きの基本波周波数での鉄損をWs,1 、n次高調波での鉄
損をWs,n としたとき、下式の関係を満たす高珪素鋼板
を用いるものである。 (ΣWp,n )/(ΣWs,n )<1.15
A reactor core having excellent superimposed wave characteristics according to an aspect of the present invention has a Si content of 4 to 7 wt%.
In a reactor iron core using a high silicon steel sheet containing a fundamental wave core loss when excited by a waveform containing a harmonic component,
When p, 1, the nth harmonic loss is Wp, n, the iron loss at the fundamental frequency when excited by a sine wave alone is Ws, 1, and the iron loss at the nth harmonic is Ws, n, A high silicon steel plate that satisfies the following formula is used. (ΣWp, n) / (ΣWs, n) <1.15

【0006】また、本発明の他の態様に係る重畳波特性
の優れたリアクトル鉄心は、鋼板の最小曲げ半径が5.
0mm以下の加工性の優れた高珪素鋼板を用いるものであ
る。
A reactor core having excellent superposed wave characteristics according to another aspect of the present invention has a minimum bending radius of steel plate of 5.
A high silicon steel plate having a workability of 0 mm or less is used.

【0007】[0007]

【発明の実施の形態】この実施形態は、高周波鉄損の低
い材料を用ているにも関わらず、高調波が重畳した波形
では鉄損が大きくなってしまう現象に着目して研究を重
ね、その結果、複数の波形が重畳した励磁条件での鉄損
と正弦波単独励磁条件での鉄損との比を特定の範囲に規
定した材料を用いることで、リアクトルの鉄損を極めて
低くすることができることを見出したものである。
BEST MODE FOR CARRYING OUT THE INVENTION In this embodiment, even though a material having a low high-frequency iron loss is used, the iron loss is increased in a waveform in which harmonics are superimposed, and research is repeated. As a result, the iron loss of the reactor can be made extremely low by using a material in which the ratio of the iron loss under the excitation condition where multiple waveforms are superimposed to the iron loss under the single sine wave excitation condition is specified within a specific range. It was found that it is possible.

【0008】次に、この実施形態について、詳細に説明
する。通常、インバータ電源で用いられているPWM波
等の高調波重畳波形では、高周波成分を含んでいるため
リアクトル鉄心としては高周波鉄損が低い材料でなくて
はならない。珪素鋼板の場合、Si量が高いほど、固有
抵抗が高くなるので高周波鉄損は低減できるが、Si量
が7%を越えるものは機械的に非常に脆く実用的でな
い。また、Si量が4%未満だと高周波鉄損が非常に大
きい。
Next, this embodiment will be described in detail. Usually, a harmonic superimposed waveform such as a PWM wave used in an inverter power supply contains a high frequency component, so that the reactor iron core must be a material having a low high frequency iron loss. In the case of a silicon steel sheet, the higher the Si content, the higher the specific resistance, so that the high frequency iron loss can be reduced, but the Si content exceeding 7% is mechanically very brittle and not practical. Further, if the Si amount is less than 4%, the high frequency iron loss is very large.

【0009】したがって、リアクトルの温度上昇の上限
規定の厳しい用途では、Si量を4〜7%に規定する必
要があり、さらに、より好ましくは、鉄損特性及び騒音
特性が特に優れたSi量6.0〜7.0%とすることで
ある。
Therefore, in applications where the upper limit of the temperature rise of the reactor is strict, it is necessary to specify the Si amount to 4 to 7%, and more preferably, the Si amount 6 which is particularly excellent in iron loss characteristics and noise characteristics. It is to be 0.0 to 7.0%.

【0010】そして、本実施形態では、上述のようにS
i量を規定する他に、高調波成分を含む波形により励磁
したときの基本波鉄損をWp,1 、n次高調波損をWp,n
、正弦波単独で励磁したときの基本波周波数での鉄損
をWs,1 、n次高調波での鉄損をWs,n としたとき、正
弦波単独励磁したときの鉄損Ws,n と重畳波励磁したと
きの鉄損Wp,n との比を下式の関係を満たすものとし
た。
In the present embodiment, as described above, S
In addition to defining the i amount, the fundamental iron loss when excited by a waveform containing harmonic components is Wp, 1, and the nth harmonic loss is Wp, n
, Ws, 1 is the iron loss at the fundamental wave frequency when the sine wave is excited alone, and Ws, n is the iron loss at the nth harmonic, and Ws, n is the iron loss when the sine wave is solely excited. The ratio to the iron loss Wp, n when excited by the superposed wave is set to satisfy the following equation.

【0011】(ΣWp,n )/(ΣWs,n )<1.15(ΣWp, n) / (ΣWs, n) <1.15

【0012】ここで、このような関係を規定した理由に
ついて説明する。図1は上述の正弦波単独励磁したとき
の鉄損と重畳波励磁したときの鉄損との比に対する、実
際にリアクトルがPWM波形で励磁されたときの鉄心の
鉄損値の特性を示した特性図である。図1に示すよう
に、重畳波鉄損比が1・15以下の範囲では、実際のリ
アクトル鉄損が極めて低く抑えられることが理解でき
る。
Now, the reason for defining such a relationship will be described. FIG. 1 shows the characteristic of the iron loss value of the iron core when the reactor is actually excited by the PWM waveform with respect to the ratio of the iron loss when the sine wave is excited alone and the iron loss when the superimposed wave is excited. It is a characteristic diagram. As shown in FIG. 1, it can be understood that the actual reactor iron loss can be suppressed to be extremely low in the range where the superimposed wave iron loss ratio is 1.15 or less.

【0013】さらに、この実施形態では、重畳波鉄損比
と鋼板材質との関係について研究を進め、鋼板加工性を
高めることで重畳波鉄損比を低減できることを見出し
た。図2は、鋼板最小曲げ半径に対する重畳波鉄損比の
特性を示した特性図である。図2に示すように、鋼板最
小曲げ半径を5.0mm以下とすることにより、重畳波鉄
損比を1.15以下にすることができることが理解でき
る。さらに、好ましくは重畳波鉄損比の特性に優れた鋼
板最小曲げ半径2.0mm以下である。
Further, in this embodiment, the relationship between the superposed wave iron loss ratio and the steel plate material was studied, and it was found that the superposed wave iron loss ratio can be reduced by improving the workability of the steel plate. FIG. 2 is a characteristic diagram showing the characteristics of the superimposed wave iron loss ratio with respect to the minimum bending radius of the steel plate. As shown in FIG. 2, it can be understood that the superimposed wave core loss ratio can be set to 1.15 or less by setting the minimum bending radius of the steel plate to 5.0 mm or less. Furthermore, the minimum bending radius of the steel sheet is preferably 2.0 mm or less, which is excellent in the characteristics of the superimposed wave iron loss ratio.

【0014】なお、この実施形態では、鋼板加工性を高
めることで重畳波鉄損比を1.15以下にするものを示
したが、その他の方法により、重畳波鉄損比を1.15
以下にしてもよく、すなわち、(ΣWp,n )/(ΣWs,
n )<1.15、の式を満たすものであれば、どのよう
な高珪素鋼板を用いてもよい。
In this embodiment, the superposed wave iron loss ratio is set to 1.15 or less by improving the workability of the steel plate, but the superposed wave iron loss ratio is set to 1.15 by another method.
It may be set as follows, that is, (ΣWp, n) / (ΣWs,
Any high silicon steel plate may be used as long as it satisfies the formula of n) <1.15.

【0015】[0015]

【実施例】ここで、実質的にSi量6.5%の珪素鋼板
(枚厚0.1mm)を用意し、鋼板の高周波磁気特性とし
て周波数10kHz,磁束密度0.1Tでの鉄損(W1/10
K)を表1に示す。
EXAMPLE Here, a silicon steel sheet (sheet thickness: 0.1 mm) having a Si content of substantially 6.5% is prepared, and iron loss (W1 at a frequency of 10 kHz and a magnetic flux density of 0.1 T as high frequency magnetic characteristics of the steel sheet is prepared). /Ten
K) is shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】今回用意した鋼板のW1/10Kは、表1に示す
ように、全て概ね10W/kg前後で、高周波鉄損には差異
はないが、A→B→C→D→Eの順に加工性が高い値を
示す鋼板である。加工性指標の例として最小曲げ半径を
表1に示している。この加工性の差異は、鋼板製造時の
雰囲気条件の違いから、粒界酸素量が異なるために生じ
たものと思われる。
The W1 / 10K of the steel sheets prepared this time are all around 10 W / kg, as shown in Table 1, and although there is no difference in high frequency iron loss, they are processed in the order of A → B → C → D → E. It is a steel plate that shows a high value. Table 1 shows the minimum bending radius as an example of the workability index. It is considered that this difference in workability is caused by the difference in the amount of oxygen at the grain boundaries due to the difference in atmospheric conditions during the production of the steel sheet.

【0018】そして、表1に示した鋼板を巻鉄心CS2
5に加工後、800℃×2時間の歪み取り焼鈍を施し、
ワニスを合浸、乾操してから切断して、厚さ0.1mmの
スペーサを2ヶ所に入れてカットコアを作製した。そし
て、その作製したカットコアに巻き数22の巻き線を施
し、磁気特性を測定した。
Then, the steel plate shown in Table 1 is wound on the iron core CS2.
After processing to 5, strain relief annealing of 800 ℃ × 2 hours,
The varnish was soaked and dried, and then cut, and a spacer having a thickness of 0.1 mm was put in two places to produce a cut core. Then, the produced cut core was wound with a winding number of 22 and magnetic characteristics were measured.

【0019】はじめに、基本波50Hz、磁束密度0.5
5T、重畳波16kHz、磁束密度0.024Tの重畳波
形と、各周波数単独で励磁したときの鉄損をそれぞれ測
定した。その測定結果の値の比を重畳鉄損比として表1
に示す。このように、高周波鉄損W1/10Kは同一だが、加
工性に伴って重畳波鉄損比が1.19から1.06の値
を示した。これは、加工による曲げR部分のマイクロク
ラックが加工性の良い材料ほど少なく、低磁場特性が高
いためではないかと考えられる。
First, the fundamental wave is 50 Hz and the magnetic flux density is 0.5.
A superposed waveform of 5T, superposed wave 16kHz, and magnetic flux density of 0.024T, and iron loss when excited at each frequency were measured. Table 1 shows the ratio of the measured results as the superimposed iron loss ratio.
Shown in Thus, although the high frequency iron loss W1 / 10K was the same, the superimposed wave iron loss ratio showed a value of 1.19 to 1.06 depending on the workability. It is considered that this is because the material having better workability has less microcracks in the bending R portion due to processing, and the low magnetic field characteristics are higher.

【0020】そして、鋼板最小曲げ半径と重畳波鉄揖比
との関係は図2に示すようになり、鋼板最小曲げ半径を
5.0mm以下とすることで、重畳波鉄損比を1.15以
下にすることができることがわかる。
The relationship between the minimum bending radius of the steel plate and the superposed wave iron ratio is as shown in FIG. 2. By setting the minimum bending radius of the steel plate to 5.0 mm or less, the superposed wave iron loss ratio is 1.15. It turns out that you can:

【0021】次に、表1に示したそれぞれの鋼板につい
て、実際に、インバータ電源出力に用いられているPW
M波形で負荷率6.5%にてリアクトル鉄損を測定し
た。図3は、鋼板の種類に対する、そのリアクトル鉄損
の特性を示した特性図である。図3に示すように、C,
D,Eの鋼板では、リアクトル鉄損が極めて低くなって
いるのが分かる。
Next, for each of the steel plates shown in Table 1, the PW actually used for the inverter power supply output
The reactor iron loss was measured with an M waveform at a load factor of 6.5%. FIG. 3 is a characteristic diagram showing the characteristics of reactor core loss with respect to the type of steel sheet. As shown in FIG. 3, C,
It can be seen that in the steel sheets D and E, the reactor iron loss is extremely low.

【0022】また、表1に示したそれぞれの鋼板につい
て、重畳鉄損比とリアクトル鉄損との関係は図1に示す
ようになり、重畳鉄損比1.15以下ではリアクトル鉄
損値が極めて低くなることが確かめられた。
For each of the steel sheets shown in Table 1, the relationship between the superimposed iron loss ratio and the reactor iron loss is as shown in FIG. 1, and when the superimposed iron loss ratio is 1.15 or less, the reactor iron loss value is extremely low. It was confirmed to be low.

【0023】[0023]

【発明の効果】以上のように、本発明によれば、高調波
成分を含む波形により励磁したときの基本波鉄損をWp,
1 、n次高調波損をWp,n 、正弦波単独で励磁したとき
の基本波周波数での鉄損をWs,1 、n次高調波での鉄損
をWs,n としたとき、(ΣWp,n )/(ΣWs,n )<
1.15の関係を満たす高珪素鋼板を用い、また、鋼板
の最小曲げ半径が5.0mm以下の加工性の優れた高珪素
鋼板を用いるようにしたので、高調波が重畳している波
形条件で用いたときにも鉄損が極めて低くなるという効
果を有する。
As described above, according to the present invention, the fundamental wave iron loss when excited by a waveform containing a harmonic component is Wp,
If the iron loss at the fundamental frequency is Ws, 1 and the iron loss at the nth harmonic is Ws, n, then (ΣWp , n) / (ΣWs, n) <
Since a high silicon steel plate that satisfies the relationship of 1.15 is used and a high silicon steel plate having a minimum bending radius of 5.0 mm or less and excellent workability is used, the waveform condition in which harmonics are superposed is used. It also has an effect that the iron loss becomes extremely low when used in.

【図面の簡単な説明】[Brief description of drawings]

【図1】正弦波単独励磁したときの鉄損と重畳波励磁し
たときの鉄損との比に対する、実際にリアクトルがPW
M波形で励磁されたときの鉄心の鉄損値の特性を示した
特性図である。
FIG. 1 shows that the reactor is actually PW with respect to the ratio of the iron loss when excited by a sine wave alone and the iron loss when excited by a superposed wave.
It is a characteristic view showing the characteristic of the iron loss value of the iron core when it is excited by the M waveform.

【図2】鋼板最小曲げ半径に対する重畳波鉄損比の特性
を示した特性図である。
FIG. 2 is a characteristic diagram showing characteristics of a superposed wave iron loss ratio with respect to a minimum bending radius of a steel plate.

【図3】鋼板の種類に対する、そのリアクトル鉄損の特
性を示した特性図である。
FIG. 3 is a characteristic diagram showing characteristics of reactor core loss with respect to steel sheet types.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Siを4〜7wt%含む高珪素鋼板を用い
たリアクトル鉄心において、 高調波成分を含む波形により励磁したときの基本波鉄損
をWp,1 、n次高調波損をWp,n 、正弦波単独で励磁し
たときの基本波周波数での鉄損をWs,1 、n次高調波で
の鉄損をWs,n としたとき、下式の関係を満たす高珪素
鋼板を用いることを特徴とする重畳波特性の優れたリア
クトル鉄心。 (ΣWp,n )/(ΣWs,n )<1.15
1. A reactor iron core using a high silicon steel sheet containing 4 to 7 wt% of Si, wherein the fundamental iron loss is Wp, 1 and the nth harmonic loss is Wp, when excited by a waveform containing a harmonic component. n, the iron loss at the fundamental wave frequency when excited by a sine wave alone is Ws, 1, and the iron loss at the nth harmonic is Ws, n, use a high silicon steel sheet that satisfies the following formula Reactor core with excellent superposed wave characteristics. (ΣWp, n) / (ΣWs, n) <1.15
【請求項2】 鋼板の最小曲げ半径が5.0mm以下の加
工性の優れた高珪素鋼板を用いることを特徴とする請求
項1記載の重畳波特性の優れたリアクトル鉄心。
2. A reactor iron core having excellent superposed wave characteristics according to claim 1, wherein a high silicon steel plate having a minimum bending radius of 5.0 mm or less and having excellent workability is used.
JP7196323A 1995-08-01 1995-08-01 Reactor core with excellent superposed-wave characteristic Pending JPH0945534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7196323A JPH0945534A (en) 1995-08-01 1995-08-01 Reactor core with excellent superposed-wave characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7196323A JPH0945534A (en) 1995-08-01 1995-08-01 Reactor core with excellent superposed-wave characteristic

Publications (1)

Publication Number Publication Date
JPH0945534A true JPH0945534A (en) 1997-02-14

Family

ID=16355916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7196323A Pending JPH0945534A (en) 1995-08-01 1995-08-01 Reactor core with excellent superposed-wave characteristic

Country Status (1)

Country Link
JP (1) JPH0945534A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162770A (en) * 2001-02-06 2009-07-23 Gsi Ges Fuer Schwerionenforschung Mbh Beam scanning system for heavy ion gantry
JP2018148036A (en) * 2017-03-06 2018-09-20 新日鐵住金株式会社 Wound core
CN110607496A (en) * 2018-06-14 2019-12-24 东北大学 Preparation method of Fe-Si alloy with Goss texture
WO2020059852A1 (en) 2018-09-21 2020-03-26 日本製鉄株式会社 System for exciting iron core in electrical machine, method for exciting iron core in electrical machine, program, and modulation operation setting device for inverter power source

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162770A (en) * 2001-02-06 2009-07-23 Gsi Ges Fuer Schwerionenforschung Mbh Beam scanning system for heavy ion gantry
JP2018148036A (en) * 2017-03-06 2018-09-20 新日鐵住金株式会社 Wound core
CN110607496A (en) * 2018-06-14 2019-12-24 东北大学 Preparation method of Fe-Si alloy with Goss texture
CN110607496B (en) * 2018-06-14 2021-03-26 东北大学 Preparation method of Fe-Si alloy with Goss texture
WO2020059852A1 (en) 2018-09-21 2020-03-26 日本製鉄株式会社 System for exciting iron core in electrical machine, method for exciting iron core in electrical machine, program, and modulation operation setting device for inverter power source
KR20210024115A (en) 2018-09-21 2021-03-04 닛폰세이테츠 가부시키가이샤 Iron core excitation system in electric equipment, iron core excitation method in electric equipment, program and inverter power supply modulation operation setting device
CN112514242A (en) * 2018-09-21 2021-03-16 日本制铁株式会社 Excitation system, excitation method, program for iron core in electrical equipment, and modulation operation setting device for converter power supply
US11671049B2 (en) 2018-09-21 2023-06-06 Nippon Steel Corporation System for exciting iron core in electric device, method for exciting iron core in electric device, program, and modulation operation-setting device for inverter power supply
CN112514242B (en) * 2018-09-21 2024-02-20 日本制铁株式会社 Excitation system, excitation method, program, and modulation operation setting device for iron core in electric device, and modulation operation setting device for inverter power supply

Similar Documents

Publication Publication Date Title
KR102104769B1 (en) Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
BR112013001052B1 (en) Grain oriented electrical steel sheet
JP2012102395A (en) Grain-oriented electromagnetic steel sheet, and method for producing the same
JPWO2020158732A1 (en) Directional electrical steel sheet and its manufacturing method
JPH0945534A (en) Reactor core with excellent superposed-wave characteristic
JPH07201551A (en) Laminated electromagnetic steel plate
Hironori High silicon steel sheet realizing excellent high frequency reactor performance
JPH06251966A (en) Three-phase laminated iron core transformer of low iron loss
KR20210003797A (en) motor
EP1160340B1 (en) Grain-oriented electrical steel sheet for low-noise transformer
JP3799878B2 (en) Electrical steel sheet and method for manufacturing the same
JP3527020B2 (en) Non-oriented electrical steel sheet for inverter-controlled compressor motor
JP2001181805A (en) Grain oriented silicon steel sheet for low noise transformer
JPH0461211A (en) Magnetic iron core
Soltanzadeh et al. Effects of amorphous core distribution transformers in improvement the functioning of the electricity distribution system
JPH0615705B2 (en) High silicon iron plate with excellent workability
JPH05101943A (en) Three-phase wound core
JPH09275021A (en) Low noise iron core excellent in magnetic characteristic
JPH09209094A (en) Reactor iron core minimal in saturation iron loss
JPS62277709A (en) Manufacture of core
JPH11307349A (en) High frequency reactor with low loss
JP2016143871A (en) Excitation method of electric apparatus core excellent in noise characteristics
JPH09199340A (en) Laminated iron core with low noise
JPH0777171B2 (en) Composite core
JPS5946009A (en) Transformer of low core loss