JPH0942780A - Method for heat recovery and heat utilization using chemical energy - Google Patents

Method for heat recovery and heat utilization using chemical energy

Info

Publication number
JPH0942780A
JPH0942780A JP7190825A JP19082595A JPH0942780A JP H0942780 A JPH0942780 A JP H0942780A JP 7190825 A JP7190825 A JP 7190825A JP 19082595 A JP19082595 A JP 19082595A JP H0942780 A JPH0942780 A JP H0942780A
Authority
JP
Japan
Prior art keywords
heat
reaction
formula
carried out
methyl formate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7190825A
Other languages
Japanese (ja)
Inventor
Toshio Kajita
敏夫 梶田
Shiro Kajiyama
士郎 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP7190825A priority Critical patent/JPH0942780A/en
Publication of JPH0942780A publication Critical patent/JPH0942780A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

PROBLEM TO BE SOLVED: To lower a heat recovery temperature and raise a heat utilization characteristic in terms of the cost of a device and an operating cost or the like by recovering heat in accordance with a reaction represented by a specific expression and utilizing heat in accordance with a reaction represented by a specific expression which is reverse to the above described reaction. SOLUTION: A heat recovery is carried out by the decomposition reaction of methyl formate represented by 2CH3 OH→HCOOCH3 +H2 and heat is utilized in accordance with the composition reaction of methyl formate represented by HCOOCH3 +H2 -2CH3 OH which is a reverse reaction thereto. These reactions are carried out under the presence of a copper catalyst or a noble metal catalyst. Further, these reactions are carried out in a liquid phase and methanol, H2 gas and methyl formate are separated in accordance with a reaction distillation. Thus, industrial waste heat at a low temperature of, for example, not higher than 250 deg.C, which has been conventionally used as a heat source with difficulty and steam or hot water at a high temperature of, for example, not lower than 100 deg.C can be generated, so that it can be effectively used for various heat sources or cooling and heating in the places requiring heat of factories or cities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する分野】本発明は、化学エネルギーを用い
て工場廃熱や河川水などの低温熱源の熱利用を行う方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of utilizing heat of a low temperature heat source such as waste heat from a factory or river water by using chemical energy.

【0002】[0002]

【従来の技術】従来、熱エネルギーの回収、輸送および
利用方法としては、水蒸気又は熱水を用いる方法が一般
的である。しかしこれらの方法は、熱損失および設備コ
ストの面からの制約が大きく、低温排熱の回収には限界
がある。即ち発電所、製鉄所等のエネルギー多消費型の
各種産業設備では近年省エネルギーが進行し、かなりの
部分の排熱回収が行われているが、 200〜300 ℃以下の
低温排熱は自己設備内で適切に利用する手段がないこと
から廃棄され、そのために大きな冷却負荷を要している
ことが多い。
2. Description of the Related Art Conventionally, as a method of recovering, transporting and using thermal energy, a method using steam or hot water is generally used. However, these methods are greatly restricted in terms of heat loss and equipment cost, and there is a limit in recovering low-temperature exhaust heat. In other words, energy saving has been progressing in recent years in various energy-intensive industrial facilities such as power plants and steelworks, and a considerable part of waste heat recovery has been performed. Because of the lack of means for proper use, they are often discarded, which requires a large cooling load.

【0003】近年、低温排熱を有効に回収して都市の地
域冷暖房や給湯等に利用する方法として熱エネルギーを
化学エネルギーに変えて熱回収と熱利用を行うことが検
討されている。この方法では熱回収側と熱利用側で熱エ
ネルギーと化学エネルギーの変換が必要であるが、長距
離の輸送と貯蔵が可能であり、輸送および貯蔵での熱損
失が無く、エネルギー密度が大きいことから設備コスト
面からも有利な方法とされている。
In recent years, as a method of effectively recovering low-temperature exhaust heat and using it for district heating / cooling and hot water supply in cities, it has been studied to convert heat energy into chemical energy to perform heat recovery and heat utilization. This method requires the conversion of heat energy and chemical energy on the heat recovery side and heat utilization side, but it can be transported and stored over long distances, has no heat loss during transport and storage, and has a high energy density. Therefore, this method is advantageous in terms of equipment cost.

【0004】熱エネルギーと化学エネルギーの変換系で
有力なものとしては (i)式のメタノール分解反応と(i')
式のメタノール合成反応を用いる方法が提案されてい
る。 CH3 OH = CO + 2H2 (i) CO + 2H2 = CH3 OH (i') この方法は (i)式のメタノール分解反応が吸熱反応であ
ることから (i)式を用いて排熱回収を行い、得られたC
O+2H2 を輸送し、熱利用地で(i')式の発熱反応によ
り熱エネルギーの供給が行われる。(i')式により生成し
たメタノールは熱回収地に循環して再利用される。
[0004] The most promising thermal and chemical energy conversion systems are the methanol decomposition reaction of formula (i) and (i ')
A method using the formula methanol synthesis reaction has been proposed. CH 3 OH = CO + 2H 2 (i) CO + 2H 2 = CH 3 OH (i ') In this method, since the methanol decomposition reaction of the formula (i) is an endothermic reaction, the exhaust heat is calculated using the formula (i). The collected C
O + 2H 2 is transported, and thermal energy is supplied to the heat utilization site by an exothermic reaction of the formula (i ′). The methanol produced by the formula (i ') is circulated to the heat recovery site and reused.

【0005】[0005]

【発明が解決しようとする課題】(i)式および(i')式を
用いる変換系は、安価で取扱性の良いメタノールを用い
て、容易に反応を行うことができることから、エネルギ
ー変換系として有力と見られるが、次のような課題を有
している。 1).熱回収は (i)式の反応の下限温度により制約される
ことになるが、反応速度等の実用的見地から熱回収の下
限温度は 200℃前後が限界であり、排熱回収として最も
望ましい領域とされている 200〜100 ℃から常温程度の
低温度域での熱回収を行うことができない。 2).熱回収を有効に行うために (i)式の下限温度を低下
させる必要があるが、(i) 式の平衡関係は反応温度を低
下と共にメタノール分解側に著しく不利となる。 3).熱利用の面からは(i')式の反応を高温で行うことが
有利であるが、(i')式の反応の平衡関係は反応温度の上
昇と共にメタノール合成反応が著しく不利となる。また
平衡関係を改善するためにはメタノール合成反応を高圧
下で行うことになるが、装置コストおよび操業費等の点
から熱利用性が低く、反応温度および圧力特性の改善が
望まれる。 本発明の目的は、熱エネルギーと化学エネルギー変換シ
ステムにおいて、熱回収温度の下限の低下を図り、装置
コストおよび操業費等の点から熱利用性の高い方法を提
供することである。
The conversion system using the formulas (i) and (i ') can be easily reacted using methanol which is inexpensive and easy to handle. Although it seems to be influential, it has the following issues. 1) .Heat recovery is limited by the lower limit temperature of the reaction in equation (i), but from a practical point of view such as the reaction rate, the lower limit temperature of heat recovery is around 200 ° C. It is not possible to recover heat in a low temperature range of 200-100 ° C, which is considered to be the most desirable range, to room temperature. 2). It is necessary to lower the lower limit temperature of equation (i) in order to perform heat recovery effectively, but the equilibrium relationship of equation (i) becomes significantly disadvantageous to the methanol decomposition side as the reaction temperature decreases. 3) From the viewpoint of heat utilization, it is advantageous to carry out the reaction of formula (i ') at a high temperature, but the equilibrium relationship of the reaction of formula (i') is such that the methanol synthesis reaction is significantly disadvantageous as the reaction temperature rises. Become. In order to improve the equilibrium relationship, the methanol synthesis reaction is performed under high pressure. However, heat utilization is low from the viewpoint of equipment cost and operation cost, and it is desired to improve the reaction temperature and pressure characteristics. It is an object of the present invention to provide a method for reducing the lower limit of the heat recovery temperature in a heat energy and chemical energy conversion system, and having a high heat utilization efficiency in terms of equipment cost, operating cost and the like.

【0006】[0006]

【課題を解決するための手段】発明者等は上記の如き課
題を有する熱エネルギーと化学エネルギーの変換システ
ムについて鋭意検討した結果、メタノールに代えて蟻酸
メチルの分解と水素のシステムを用いることにより、排
熱回収とその利用を極めて有利に行うことができること
を見出し、本発明に到達した。
Means for Solving the Problems As a result of intensive investigations by the inventors on a conversion system of thermal energy and chemical energy having the above-mentioned problems, by using a system of decomposition of methyl formate and hydrogen instead of methanol, The inventors have found that exhaust heat recovery and its utilization can be carried out extremely advantageously, and arrived at the present invention.

【0007】即ち本発明は、 (1)式により熱回収を行
い、その逆反応(1')式により熱利用を行うことを特徴と
する化学エネルギーを用いる熱回収と熱利用の方法であ
る。 2CH3 OH → HCOOCH3 + H2 (1) HCOOCH3 + H2 → 2CH3 OH (1')
That is, the present invention is a method of heat recovery and heat utilization using chemical energy, characterized in that heat recovery is performed by the equation (1) and heat is utilized by the reverse reaction (1 '). 2CH 3 OH → HCOOCH 3 + H 2 (1) HCOOCH 3 + H 2 → 2CH 3 OH (1 ')

【0008】[0008]

【発明の実施の形態】まず (1)式のメタノールの脱水素
によるギ酸メチルの分解反応は液相で行うことが好まし
く、反応を液相で行い生成H2 ガスを系外に除去するこ
とにより、平衡反応が促進されるので有利である。該反
応の触媒には、ラネー銅触媒や銅−クロム系触媒などの
銅系触媒や、担持型パラジウム触媒、Cu-Ni-Al-P触媒、
Cu-Zn-Al-P-Li 触媒などの貴金属触媒が用いられる。反
応温度は150〜250℃である。また反応時間として
は0.1〜20hrの範囲、特に0.2〜10hrが一
般的である。
BEST MODE FOR CARRYING OUT THE INVENTION First, the decomposition reaction of methyl formate by dehydrogenation of methanol of the formula (1) is preferably carried out in a liquid phase, and the reaction is carried out in a liquid phase to remove generated H 2 gas out of the system. This is advantageous because the equilibrium reaction is promoted. The catalyst for the reaction includes a copper catalyst such as a Raney copper catalyst or a copper-chromium catalyst, a supported palladium catalyst, a Cu-Ni-Al-P catalyst,
Noble metal catalysts such as Cu-Zn-Al-P-Li catalysts are used. The reaction temperature is 150 to 250 ° C. The reaction time is generally in the range of 0.1 to 20 hours, particularly 0.2 to 10 hours.

【0009】(1)式の反応の圧力は、その分解温度で示
される蒸気圧下で分解を遂行させることもできるが、平
衡的には低圧ほど有利となる。一般に反応圧力としては
常圧〜30atm、実用的には常圧〜20atmの範囲
が好ましい。(1)式と(1')式の反応は化学平衡反応であ
り、気相反応では平衡組成の制約を受けるが、液相反応
とすれば生成するH2 ガスが直ちに液相から分離される
ことから反応上有利となる。反応方式はメタノールと触
媒とが接触する方法であれば何れの方法でも採用できる
が、一般的な反応方法としては、流動床、或いは固定床
等が挙げられる。なお反応を促進するために、反応蒸留
により水素ガスとギ酸メチルをメタノールから分離する
ようにすれば化学平衡上有利であり、たとえばワンパス
転化率が低い場合でも、反応蒸留を組み込むことにより
系内の反応率を高めることができるので、一般に用いら
れる循環方式に比べて効率の良いシステムとすることが
できる。
The pressure of the reaction of the formula (1) can be carried out under the vapor pressure shown by the decomposition temperature, but the lower pressure is more advantageous in equilibrium. Generally, the reaction pressure is preferably in the range of normal pressure to 30 atm, and practically in the range of normal pressure to 20 atm. The reactions of formulas (1) and (1 ') are chemical equilibrium reactions, and the equilibrium composition is restricted in the gas phase reaction, but in the case of the liquid phase reaction, the generated H 2 gas is immediately separated from the liquid phase. This is advantageous in terms of reaction. Although any reaction method can be adopted as long as it is a method in which methanol and a catalyst come into contact with each other, a general reaction method includes a fluidized bed or a fixed bed. In order to accelerate the reaction, it is advantageous in terms of chemical equilibrium that hydrogen gas and methyl formate are separated from methanol by reactive distillation. For example, even if the one-pass conversion is low, by incorporating reactive distillation, Since the reaction rate can be increased, the system can be made more efficient than the generally used circulation system.

【0010】前述の如く (1)式と(1')式の反応は化学平
衡反応であるので、(1')式の反応においても (1)式と同
様の銅系触媒や貴金属触媒を用いて逆反応を行うことに
より熱利用を行うことができる。熱利用を有効に行うた
めにはできるだけ高温で(1')式のメタノール合成反応を
行うことが望ましい。
As described above, since the reactions of the formulas (1) and (1 ') are chemical equilibrium reactions, the same copper-based catalyst or noble metal catalyst as that of the formula (1) is used in the reaction of the formula (1'). By utilizing the reverse reaction, heat can be utilized. In order to effectively utilize heat, it is desirable to carry out the methanol synthesis reaction of the formula (1 ') at a temperature as high as possible.

【0011】(1')式の反応においてHCOOCH3 とH
2 ガスのモル比は理論的には1:1であるが、H2 ガス
が過剰な条件が有利であり、該モル比は1:1〜100
である。未反応H2 ガスの循環再使用を考えると該モル
比は1:1.2〜50とすることが好ましい。反応器ま
たは反応管から分離された未反応H2 ガスは、反応系に
循環することができる。反応圧力は5〜200 kg/cm2
であり、好ましくは10〜100 kg/cm2 である。(1')
式の反応も平衡反応であり、ギ酸メチルは生成するメタ
ノールよりも低沸点であるから、反応蒸留により生成し
たメタノールを蒸留で系外に連続的に抜き出すようにす
れば、高い反応率でメタノールを容易に得ることができ
る。
In the reaction of the formula (1 '), HCOOCH 3 and H
The molar ratio of the 2 gases is theoretically 1: 1 but it is advantageous under the condition that the H 2 gas is excessive, and the molar ratio is from 1: 1 to 100.
It is. Considering the recycling and reuse of unreacted H 2 gas, the molar ratio is preferably 1: 1.2 to 50. Unreacted H 2 gas separated from the reactor or reaction tube can be circulated to the reaction system. Reaction pressure is 5-200 kg / cm 2
And preferably 10 to 100 kg / cm 2 . (1 ')
The reaction of the formula is also an equilibrium reaction, and since methyl formate has a lower boiling point than the produced methanol, if the methanol produced by the reactive distillation is continuously withdrawn from the system by distillation, the methanol will be produced at a high reaction rate. Can be easily obtained.

【0012】(1')式のギ酸メチルと水素ガスの反応の方
法はとくに制限されるものではなく、連続式方法として
触媒を管型反応器に充填し、反応管上部からギ酸メチル
と水素ガスを並流で連続供給するトリクルベッド式、下
部からギ酸メチルを連続供給し、並流もしくは向流で水
素ガスを連続供給する方式、管型反応管で反応管出口反
応液の一部を循環する循環方式等いずれも実施できる。
これらの方法により反応器また反応管からは触媒と分離
されたメタノールとギ酸メチル混合物が得られ、蒸留に
よりによりメタノールを分離し、回収されたギ酸メチル
を原料として循環することができる。
The method of reacting methyl formate with hydrogen gas of the formula (1 ') is not particularly limited, and as a continuous method, a catalyst is filled in a tubular reactor, and methyl formate and hydrogen gas are charged from the upper part of the reaction tube. , A trickle bed system that continuously supplies parallel flow, a system that continuously supplies methyl formate from the lower part and continuously supplies hydrogen gas in parallel or countercurrent, and circulates a part of the reaction solution at the reaction tube outlet with a tubular reaction tube. Any circulation method or the like can be implemented.
By these methods, a mixture of methanol and methyl formate separated from the catalyst can be obtained from the reactor or reaction tube, methanol can be separated by distillation, and the recovered methyl formate can be circulated as a raw material.

【0013】本発明の方法は、従来のメタノールの合成
および分解反応の場合と比較して低圧で反応を行うこと
ができ、メタノールからギ酸メチルを生成する反応がよ
り低温で行われるので低温での熱回収に有利である。ま
た(1')式の反応により100℃以上の高温でスチームや
熱水を発生させ、工場や都市部の熱需要地での種々の熱
源や冷暖房に有効に用いることができる。
The method of the present invention can carry out the reaction at a lower pressure than in the case of the conventional synthesis and decomposition reaction of methanol, and since the reaction for producing methyl formate from methanol is carried out at a lower temperature, it can be carried out at a lower temperature. It is advantageous for heat recovery. Moreover, steam or hot water is generated at a high temperature of 100 ° C. or higher by the reaction of the equation (1 ′), and it can be effectively used for various heat sources and cooling / heating in heat demand areas of factories and urban areas.

【0014】[0014]

【実施例】次に実施例により本発明を更に詳しく説明す
る。但し本発明はこれらの実施例に限定されるものでは
ない。
EXAMPLES The present invention will be described in more detail by way of examples. However, the present invention is not limited to these examples.

【0015】実施例1(メタノールの脱水素) チタン内張りの内容積300mlの上下攪拌式オートク
レーブを用い、流通式反応を行った。オートクレーブ内
にラネー銅40gとメタノール200mlを入れ、上下
攪拌しながらオートクレーブを200℃に加熱し、メタ
ノールを5.3g/hr供給した。また、水素ガスをオ
ートクレーブの液中に導入し、反応圧力が50 kg/cm2
G になるように冷却器を通して抜き出した。抜き出しガ
ス量は75.3リッター/hrであり、メタノール0.
1vol%、ギ酸メチル1.72vol%であった。反
応液の分析の結果、メタノールの反応率は81.1%、
ギ酸メチルの収率は73.1%であった。
Example 1 (Dehydrogenation of Methanol) A flow type reaction was carried out using an up / down stirring type autoclave having an inner volume of 300 ml with a titanium liner. 40 g of Raney copper and 200 ml of methanol were placed in the autoclave, and the autoclave was heated to 200 ° C. while stirring vertically, and methanol was supplied at 5.3 g / hr. Also, hydrogen gas was introduced into the autoclave liquid, and the reaction pressure was 50 kg / cm 2
It was pulled out through a cooler so as to be G. The amount of gas taken out was 75.3 liters / hr, and methanol was 0.
It was 1 vol% and methyl formate 1.72 vol%. As a result of analysis of the reaction solution, the reaction rate of methanol was 81.1%,
The yield of methyl formate was 73.1%.

【0016】[0016]

【発明の効果】実施例より明らかなように本発明の方法
ではギ酸メチルを媒体とする反応の熱利用を行うことに
より、従来熱利用が困難であった250℃以下の低温の
工場廃熱を熱源として、100℃以上の高温でスチーム
や熱水を発生させ、工場や都市部の熱需要地での種々の
熱源や冷暖房に有効に用いることができる。本発明の方
法は比較的低圧の温和な条件で反応が行われるので装置
コストが少なくて済み、また液相反応として反応蒸留を
用いれば効率良く熱回収と熱利用を行うことができるの
で、省エネルギー対策として極めて優れた方法である。
EFFECTS OF THE INVENTION As is clear from the examples, by utilizing the heat of the reaction using methyl formate as a medium in the method of the present invention, the low temperature industrial waste heat of 250 ° C. or lower, which has been difficult to utilize in the conventional heat, can be obtained. As a heat source, steam or hot water is generated at a high temperature of 100 ° C. or higher, and it can be effectively used for various heat sources and cooling and heating in heat demand areas of factories and cities. In the method of the present invention, the reaction is carried out under relatively low pressure and mild conditions, so that the cost of the apparatus can be reduced, and if reactive distillation is used as a liquid phase reaction, heat can be efficiently recovered and used, so that energy can be saved. This is a very good measure.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C10L 1/02 6958−4H C10L 1/02 Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C10L 1/02 6958-4H C10L 1/02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (1)式により熱回収を行い、その逆反応
(1)'式により熱利用を行うことを特徴とする化学エネル
ギーを用いる熱回収と熱利用の方法 2CH3 OH → HCOOCH3 + H2 (1) HCOOCH3 + H2 → 2CH3 OH (1')
1. Heat recovery by the equation (1) and its reverse reaction
Method of heat recovery and heat utilization using chemical energy characterized by utilizing heat according to formula (1) '2CH 3 OH → HCOOCH 3 + H 2 (1) HCOOCH 3 + H 2 → 2CH 3 OH (1' )
【請求項2】 (1)式および/または(1')式の反応を銅系
触媒または貴金属触媒の存在下で行う請求項1の化学エ
ネルギーの用いる熱回収と熱利用方法
2. The heat recovery and heat utilization method using chemical energy according to claim 1, wherein the reaction of the formula (1) and / or the formula (1 ′) is carried out in the presence of a copper catalyst or a noble metal catalyst.
【請求項3】 (1)式および/または(1')式の反応を液相
で行う請求項1〜2の化学エネルギーの用いる熱回収と
熱利用方法
3. The heat recovery and heat utilization method using chemical energy according to claim 1, wherein the reaction of formula (1) and / or formula (1 ′) is carried out in a liquid phase.
【請求項4】 (1)式および/または(1')式の反応を液相
で行い、反応蒸留によりメタノール、H2 ガスおよびギ
酸メチルを分離する請求項3の化学エネルギーの用いる
熱回収と熱利用方法
4. The heat recovery using chemical energy according to claim 3, wherein the reaction of the formula (1) and / or the formula (1 ′) is carried out in a liquid phase, and methanol, H 2 gas and methyl formate are separated by reactive distillation. How to use heat
JP7190825A 1995-07-26 1995-07-26 Method for heat recovery and heat utilization using chemical energy Pending JPH0942780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7190825A JPH0942780A (en) 1995-07-26 1995-07-26 Method for heat recovery and heat utilization using chemical energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7190825A JPH0942780A (en) 1995-07-26 1995-07-26 Method for heat recovery and heat utilization using chemical energy

Publications (1)

Publication Number Publication Date
JPH0942780A true JPH0942780A (en) 1997-02-14

Family

ID=16264395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7190825A Pending JPH0942780A (en) 1995-07-26 1995-07-26 Method for heat recovery and heat utilization using chemical energy

Country Status (1)

Country Link
JP (1) JPH0942780A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103557597A (en) * 2013-10-18 2014-02-05 中国寰球工程公司 MTP (methanol to propylene) reaction mixed gas heat recovery method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103557597A (en) * 2013-10-18 2014-02-05 中国寰球工程公司 MTP (methanol to propylene) reaction mixed gas heat recovery method and system

Similar Documents

Publication Publication Date Title
US4590310A (en) Process for the preparation of 2,2,2-trifluoroethanol
EP0003530B1 (en) A process for preparing phosgene
EP0994072B1 (en) Ammonia synthesis process
CN108997085B (en) Method and system for recovering by-products in dimethyl oxalate synthesis process
JPH04282330A (en) Process for producing methanol
CA1112670A (en) Process for manufacture of methanol
US4661624A (en) Process for the production of methyl formate
CZ280489B6 (en) Process for preparing methanol
JPH0942780A (en) Method for heat recovery and heat utilization using chemical energy
EP0625502B1 (en) Process for producing methyl formate
CN110872226A (en) Preparation process of trifluoroacetic acid
Tadokoro et al. Technical evaluation of UT-3 thermochemical hydrogen production process for an industrial scale plant
JP2007204388A (en) Method of recovering reaction heat
JP2004002336A (en) Method for producing nitrous acid ester
WO2001007385A1 (en) Methanol process for natural gas conversion
JPH0942779A (en) Method for heat recovery and heat utilization using chemical energy
JP4496327B2 (en) Methods of heat recovery, heat utilization and power generation using chemical energy
JP3322280B2 (en) Method of heat recovery and utilization using chemical energy
KR100365023B1 (en) A process for recovering acetic acid from methylacetate
JP2001263828A (en) Energy converting system using hydrogenating reaction of methyl formate
JPH09268144A (en) Heat recovery and heat utilization using chemical energy
JPH10204422A (en) Heat recovery/utilization using chemical energy
JP4691632B2 (en) Heat recovery, heat utilization and power generation using chemical energy of methanol and methyl formate
US4056607A (en) Thermochemical process for the production of hydrogen and oxygen from water
JP2003113144A (en) Method for producing alkylaryl carbonate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050803