JP2002168132A - Heat recovery and heat utilization using chemical energy of methanol and methyl formate, and method for generating power - Google Patents

Heat recovery and heat utilization using chemical energy of methanol and methyl formate, and method for generating power

Info

Publication number
JP2002168132A
JP2002168132A JP2000368554A JP2000368554A JP2002168132A JP 2002168132 A JP2002168132 A JP 2002168132A JP 2000368554 A JP2000368554 A JP 2000368554A JP 2000368554 A JP2000368554 A JP 2000368554A JP 2002168132 A JP2002168132 A JP 2002168132A
Authority
JP
Japan
Prior art keywords
methanol
methyl formate
reaction
heat
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000368554A
Other languages
Japanese (ja)
Other versions
JP4691632B2 (en
Inventor
Akira Yabe
彰 矢部
Fumio Takemura
文男 竹村
Yasuyuki Matsumura
安行 松村
Shiro Kajiyama
士郎 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Mitsubishi Gas Chemical Co Inc
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc, National Institute of Advanced Industrial Science and Technology AIST filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2000368554A priority Critical patent/JP4691632B2/en
Publication of JP2002168132A publication Critical patent/JP2002168132A/en
Application granted granted Critical
Publication of JP4691632B2 publication Critical patent/JP4691632B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method efficiently recovering heat and enhancing the utilization of heat from the standpoint of a device cost and an operation cost in a conversion system of heat energy and chemical energy using the decomposition reaction of methanol and methyl formate and the synthetic reaction of methanol and methyl formate. SOLUTION: Heat is recovered by liquid phase decomposition reaction (endothermic reaction) of methanol and methyl formate, then power is generated with an expansion turbine by using decomposition product gas, and heat of liquid phase synthetic reaction of methanol and methyl formate (exothermic reaction) is utilized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化学エネルギーを
用いて発電所、製鉄所および各種プロセス設備等から排
出される産業排熱等の熱回収と熱利用および発電を行う
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering and utilizing heat and power generation of industrial waste heat and the like discharged from power plants, steelworks and various kinds of process equipment using chemical energy.

【0002】[0002]

【従来の技術】従来、熱エネルギーの回収、輸送および
利用方法としては、水蒸気や熱水を用いる方法が一般的
である。しかしこれらの方法は、熱損失および設備コス
トの面からの制約が大きく、低温排熱の回収には限界が
ある。即ち発電所、製鉄所等のエネルギー多消費型の各
種産業設備では近年省エネルギーが進行し、かなりの部
分の排熱回収が行われているが、200〜300℃以下の低温
排熱は自己設備内で適切に利用する手段がないことから
廃棄され、そのために大きな冷却負荷を要していること
が多い。
2. Description of the Related Art Conventionally, as a method of recovering, transporting and using thermal energy, a method using steam or hot water is generally used. However, these methods are greatly restricted in terms of heat loss and equipment cost, and there is a limit in recovering low-temperature exhaust heat. In other words, energy saving is progressing in recent years in various energy-consuming industrial facilities such as power plants and steelworks, and a considerable part of exhaust heat recovery is performed. Because of the lack of means for proper use, they are often discarded, which requires a large cooling load.

【0003】近年、低温排熱を有効に回収して都市の地
域冷暖房や給湯等に利用する方法として熱エネルギーを
化学エネルギーに変換して熱回収と熱利用を行うことが
検討されている。この方法では熱回収側と熱利用側で熱
エネルギーと化学エネルギーの変換が必要であるが、長
距離の輸送と貯蔵が可能であり、輸送および貯蔵での熱
損失が無く、エネルギー密度が大きいため、設備コスト
面でも有利な方法とされている。
[0003] In recent years, as a method of effectively recovering low-temperature exhaust heat and using it for district heating and cooling, hot water supply, and the like in cities, conversion of heat energy into chemical energy for heat recovery and heat utilization has been studied. This method requires the conversion of heat energy and chemical energy on the heat recovery side and heat utilization side, but it can be transported and stored over long distances, has no heat loss during transport and storage, and has a large energy density. This method is also advantageous in terms of equipment costs.

【0004】熱エネルギーと化学エネルギーの変換系で
有力なものとしては、(1)〜(3)式のメタノール、ギ酸メ
チル分解反応と(4)〜(6)式のメタノール、ギ酸メチル合
成反応を用いる方法が提案されている(特公平6−32
3684号)。 CH3OH → 2H2 + CO (1) 2CH3OH → 2H2 + HCOOCH3 (2) HCOOCH3 → CH3OH + CO (3) 2H2 + CO → CH3OH (4) 2H2 + HCOOCH3 → 2CH3OH (5) CH3OH + CO → HCOOCH3 (6) この方法は (1)〜(3)式のメタノール、ギ酸メチル分解
反応が吸熱反応であることから(1)〜(3)式を用いて熱回
収を行い、得られた一酸化炭素、水素を輸送し、熱利用
側で(4)〜(6)式のメタノール、ギ酸メチル発熱反応によ
り熱エネルギーの供給が行われる。(4)〜(6)式により生
成したメタノール、ギ酸メチルは熱回収側に循環して再
利用される。
The most prominent thermal energy and chemical energy conversion systems are the methanol and methyl formate decomposition reactions of formulas (1) to (3) and the methanol and methyl formate synthesis reactions of formulas (4) to (6). A method to be used has been proposed (Japanese Patent Publication No. 6-32).
No. 3684). CH 3 OH → 2H 2 + CO (1) 2CH 3 OH → 2H 2 + HCOOCH 3 (2) HCOOCH 3 → CH 3 OH + CO (3) 2H 2 + CO → CH 3 OH (4) 2H 2 + HCOOCH 3 → 2CH 3 OH (5) CH 3 OH + CO → HCOOCH 3 (6) This method is an endothermic reaction of methanol and methyl formate represented by the formulas (1) to (3). Heat recovery is performed using the formula, the obtained carbon monoxide and hydrogen are transported, and heat energy is supplied by the exothermic reaction of methanol and methyl formate of formulas (4) to (6) on the heat utilization side. The methanol and methyl formate generated by the equations (4) to (6) are recycled to the heat recovery side.

【0005】[0005]

【発明が解決しようとする課題】(1)〜(6)式を用いる変
換系は、安価で取扱性の良いメタノール、ギ酸メチルを
用いて、容易に反応を行うことができることから、エネ
ルギー変換系として有力と見られるが、次のような課題
を有している。 (A)熱回収は(1)〜(3)式のメタノール、ギ酸メチル分
解反応の下限温度により制約されることになるが、反応
速度等の実用的見地から熱回収の下限温度は200℃前後
が限界である。一方、熱回収を有効に行うために(1)〜
(3)式の反応温度を低下させる必要があるが、(1)〜(3)
式の反応の化学平衡関係は反応温度の低下および反応圧
力の上昇と共に分解側に著しく不利となる。 (B)熱利用の面からは(4)〜(6)式のメタノール、ギ酸
メチル合成反応を高温で行うことが有利であるが、(4)
〜(6)式の反応の化学平衡関係は反応温度の上昇および
反応圧力の低下と共に合成反応が著しく不利となる。ま
た平衡関係を改善するためには合成反応を高圧下で行う
ことになるが、装置コストおよび操業費等の点から熱利
用性が低く、反応温度および圧力特性の改善が望まれ
る。 (C)(1)〜(3)式のメタノール、ギ酸メチル分解反応を
気相で行う場合、(1)〜(3)式の反応温度におけるメタノ
ール、ギ酸メチル蒸気圧より低い圧力で反応を行う必要
がある。また、(1)〜(3)式のメタノール、ギ酸メチル分
解反応と(4)〜(6)式のメタノール、ギ酸メチル合成反応
を、化学平衡関係を考慮し、効率よく行うには(1)〜(3)
式の反応圧力を(4)〜(6)式の反応圧力より低い圧力で行
う必要があり、熱回収側と熱利用側の間に圧縮機等が必
要となり、新たな機械エネルギーを投入することにな
り、熱利用性が低くなる。 (D)(1)〜(3)式のメタノール、ギ酸メチル分解反応を
液相で行う場合、液相を保持するため(1)〜(3)式の反応
温度におけるメタノール、ギ酸メチル蒸気圧より高い圧
力で反応を行う必要がある。このため、(1)〜(3)式の反
応により生成した一酸化炭素と水素とともに(1)〜(3)式
の反応温度におけるメタノール、ギ酸メチル蒸気圧に相
当する未反応メタノール、ギ酸メチルが分解反応器より
排出され、排出される未反応メタノール、ギ酸メチル量
の蒸発潜熱分に相当する熱を分解反応熱以外に投入する
必要があり、熱回収側において反応熱以外に投入された
未反応メタノール、ギ酸メチル量の蒸発潜熱分に相当す
る熱の有効利用が望まれる。
The conversion system using the formulas (1) to (6) can easily carry out the reaction using methanol and methyl formate which are inexpensive and easy to handle. However, it has the following problems. (A) The heat recovery is restricted by the lower limit temperature of the decomposition reaction of methanol and methyl formate in the formulas (1) to (3). From a practical viewpoint such as the reaction rate, the lower limit temperature of the heat recovery is around 200 ° C. Is the limit. On the other hand, (1) ~
It is necessary to lower the reaction temperature of formula (3), but (1) to (3)
The chemical equilibrium relation of the reaction of the formula becomes significantly disadvantageous on the decomposition side as the reaction temperature decreases and the reaction pressure increases. (B) From the viewpoint of heat utilization, it is advantageous to carry out the methanol and methyl formate synthesis reactions of the formulas (4) to (6) at a high temperature.
The chemical equilibrium relationship of the reactions of formulas (6) to (6) is such that the synthesis reaction becomes significantly disadvantageous as the reaction temperature increases and the reaction pressure decreases. In order to improve the equilibrium relationship, the synthesis reaction is performed under high pressure. However, heat utilization is low from the viewpoint of equipment cost and operation cost, and it is desired to improve the reaction temperature and pressure characteristics. (C) When the methanol and methyl formate decomposition reactions of formulas (1) to (3) are performed in the gas phase, the reaction is performed at a pressure lower than the vapor pressure of methanol and methyl formate at the reaction temperature of formulas (1) to (3). There is a need. In addition, in order to efficiently perform the methanol and methyl formate decomposition reactions of the formulas (1) to (3) and the methanol and methyl formate synthesis reactions of the formulas (4) to (6) in consideration of the chemical equilibrium relationship, ~ (3)
The reaction pressure in the formula must be lower than the reaction pressure in formulas (4) to (6), and a compressor is required between the heat recovery side and the heat utilization side, and new mechanical energy must be input. And the heat utilization becomes low. (D) When performing the methanol / methyl formate decomposition reactions of the formulas (1) to (3) in the liquid phase, the methanol and methyl formate vapor pressures at the reaction temperatures of the formulas (1) to (3) are used to maintain the liquid phase. It is necessary to carry out the reaction at a high pressure. Therefore, together with carbon monoxide and hydrogen generated by the reactions of the formulas (1) to (3), methanol at the reaction temperature of the formulas (1) to (3), unreacted methanol corresponding to the vapor pressure of methyl formate, and methyl formate The heat corresponding to the latent heat of evaporation of the unreacted methanol and methyl formate discharged from the cracking reactor must be supplied to the heat other than the cracking reaction heat. Effective utilization of heat corresponding to the latent heat of vaporization of methanol and methyl formate is desired.

【0006】本発明の目的は、メタノール、ギ酸メチル
分解反応とメタノール、ギ酸メチル合成反応を用いる熱
エネルギーと化学エネルギー変換システムにおいて、熱
回収の有効利用を図り装置コストおよび操業費等の点か
ら熱利用性の高い方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to effectively utilize heat recovery in a thermal energy and chemical energy conversion system using a methanol / methyl formate decomposition reaction and a methanol / methyl formate synthesis reaction, and to reduce heat from the viewpoint of equipment cost and operation cost. The goal is to provide a highly available method.

【0007】[0007]

【課題を解決するための手段】発明者等は上記の如き課
題を有する熱エネルギーと化学エネルギーの変換システ
ムについて鋭意検討した結果、(1)〜(3)式のメタノー
ル、ギ酸メチル液相分解反応(吸熱反応)と(4)〜(6)式
のメタノール、ギ酸メチル液相合成反応(発熱反応)を
組み合わせ、メタノールおよび/またはギ酸メチル分解
反応圧力をメタノール、ギ酸メチル合成反応圧力より高
い圧力とし、両者の圧力差を利用して膨張タービンを駆
動し電気エネルギーに変換することで熱回収と熱利用お
よび発電を極めて有利に行うことができることを見出
し、本発明に到達した。
Means for Solving the Problems The present inventors have conducted intensive studies on a thermal energy and chemical energy conversion system having the above-mentioned problems, and found that the methanol-methyl formate liquid phase decomposition reaction of the formulas (1) to (3) was carried out. (Endothermic reaction) and the liquid phase synthesis reaction of methanol and methyl formate of formulas (4) to (6) (exothermic reaction) are combined, and the methanol and / or methyl formate decomposition reaction pressure is set to a pressure higher than the methanol and methyl formate synthesis reaction pressure. The present inventors have found that heat recovery, heat utilization, and power generation can be performed extremely advantageously by driving the expansion turbine to convert the energy into electric energy using the pressure difference between the two, and have reached the present invention.

【0008】即ち本発明は、(1)〜(3)式のメタノール、
ギ酸メチル液相分解反応(吸熱反応)を組み合わせて熱
回収を行い、分解生成ガスを用いて膨張タービンにより
発電した後、(4)〜(6)式のメタノール、ギ酸メチル液相
合成反応(発熱反応)を組み合わせて熱利用を行うこと
を特徴とする化学エネルギーを用いる熱回収と熱利用お
よび発電の方法である。 CH3OH → 2H2 + CO (1) 2CH3OH → 2H2 + HCOOCH3 (2) HCOOCH3 → CH3OH + CO (3) 2H2 + CO → CH3OH (4) 2H2 + HCOOCH3 → 2CH3OH (5) CH3OH + CO → HCOOCH3 (6)
That is, the present invention relates to methanol represented by the formulas (1) to (3):
Methyl formate liquid phase decomposition reaction (endothermic reaction) is combined to perform heat recovery, and power is generated by an expansion turbine using the decomposition product gas. Then, methanol and methyl formate liquid phase synthesis reactions of formulas (4) to (6) (heat generation) The method is a method of heat recovery, heat utilization, and power generation using chemical energy, which is characterized by performing heat utilization in combination with the reaction. CH 3 OH → 2H 2 + CO (1) 2CH 3 OH → 2H 2 + HCOOCH 3 (2) HCOOCH 3 → CH 3 OH + CO (3) 2H 2 + CO → CH 3 OH (4) 2H 2 + HCOOCH 3 → 2CH 3 OH (5) CH 3 OH + CO → HCOOCH 3 (6)

【0009】[0009]

【発明の実施の形態】本発明では、(1)〜(3)式のメタノ
ール、ギ酸メチル液相分解反応(吸熱反応)および(4)
〜(6)式のメタノール、ギ酸メチル液相合成反応(発熱
反応)を行う。いずれの反応も触媒の存在下で行う。メ
タノールおよび/またはギ酸メチル分解反応圧力をメタ
ノール、ギ酸メチル合成反応圧力より高い圧力とし、両
者の圧力差を利用して膨張タービン(第1膨張タービ
ン)を駆動して電気エネルギーに変換する。本発明にお
いて(2)式と(3)式を加えると(1)式が得られ、(1)〜(3)
式は吸熱反応であるから熱回収に用いられる。熱回収は
回収対象の熱エネルギーの温度レベルとその量的分布に
対応して(1)〜(3)式の全部または一部の分解反応の吸熱
によって行われる。従って熱回収においては供給された
メタノールおよび/またはギ酸メチルは、一酸化炭素お
よび/または水素への化学エネルギーの形で熱利用側に
輸送される。このようにして回収された熱エネルギー
は、一酸化炭素および/または水素の形で気体輸送さ
れ、熱利用に供される。熱利用は、(5)式と(6)式を加え
ると(4)式が得られ、供給対象の熱エネルギーの温度レ
ベルとその量的分布に対応して(4)〜(6)式の全部または
一部の合成反応の発熱によって行われる。受入れられた
一酸化炭素および/または水素は最終的に液相取扱いの
可能なメタノールおよび/またはギ酸メチルとなり、一
酸化炭素および/または水素の化学エネルギーの一部を
反応熱として放出して熱利用される。熱利用側で合成さ
れたメタノールおよび/またはギ酸メチルは熱回収側に
循環して再利用される。また両媒体は液体であるので、
熱回収側または熱利用側に貯蔵することができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, methanol-methyl formate liquid phase decomposition reaction (endothermic reaction) of the formulas (1) to (3) and (4)
The methanol-methyl formate liquid phase synthesis reaction (exothermic reaction) of formulas (6) to (6) is performed. Both reactions are performed in the presence of a catalyst. The methanol and / or methyl formate decomposition reaction pressure is set to a pressure higher than the methanol and methyl formate synthesis reaction pressure, and the expansion turbine (first expansion turbine) is driven by using the pressure difference between the two to convert the pressure into electric energy. In the present invention, adding formulas (2) and (3) yields formula (1), and formulas (1) to (3)
The equation is an endothermic reaction and is used for heat recovery. The heat recovery is performed by endothermic heat of the decomposition reaction of all or a part of the equations (1) to (3) in accordance with the temperature level and the quantitative distribution of the heat energy to be recovered. Thus, in heat recovery, the supplied methanol and / or methyl formate is transported to the heat utilization side in the form of chemical energy to carbon monoxide and / or hydrogen. The thus recovered thermal energy is transported in gaseous form in the form of carbon monoxide and / or hydrogen and is used for heat utilization. The heat utilization is obtained by adding the formulas (5) and (6) to obtain the formula (4), and according to the temperature level of the heat energy to be supplied and the quantitative distribution thereof, the formulas (4) to (6) are used. It is carried out by the exotherm of all or part of the synthesis reaction. The received carbon monoxide and / or hydrogen finally becomes methanol and / or methyl formate, which can be handled in the liquid phase, and releases a part of the chemical energy of carbon monoxide and / or hydrogen as heat of reaction to utilize heat. Is done. Methanol and / or methyl formate synthesized on the heat utilization side is recycled to the heat recovery side for reuse. Also, since both media are liquids,
It can be stored on the heat recovery side or heat utilization side.

【0010】(1)式のメタノール液相分解反応において
反応温度と反応圧力および液空間速度は触媒の種類と触
媒量、更には目標の反応率によって広い範囲で選び得る
が、一般的な反応温度としては100℃からメタノール臨
界温度近辺235℃であり、実用的には150〜230℃の範囲
が好ましい。反応温度が低過ぎる場合には実用的な反応
速度が得られず、反応温度が高過ぎる場合には副反応の
併発や触媒の失活を招きやすい。反応温度100〜235℃で
のメタノール蒸気圧は0.35〜7.49MPaであり、反応圧力
はこれより高い圧力1.39〜7.49MPaの範囲が好ましい。
液空間速度は0.1〜10(m3−メタノール/hr/m3−触
媒)の範囲、特に0.2〜3(m3−メタノール/hr/m3−触
媒)が一般的である。
In the methanol liquid phase decomposition reaction of the formula (1), the reaction temperature, the reaction pressure and the liquid hourly space velocity can be selected in a wide range depending on the type and amount of the catalyst and the target reaction rate. From 100 ° C. to 235 ° C. near the critical temperature of methanol, and practically preferably in the range of 150 to 230 ° C. If the reaction temperature is too low, a practical reaction rate cannot be obtained, and if the reaction temperature is too high, simultaneous side reactions and deactivation of the catalyst are likely to occur. The methanol vapor pressure at a reaction temperature of 100 to 235 ° C. is 0.35 to 7.49 MPa, and the reaction pressure is preferably higher than this, in the range of 1.39 to 7.49 MPa.
The liquid hourly space velocity is generally in the range of 0.1 to 10 (m 3 -methanol / hr / m 3 -catalyst), particularly 0.2 to 3 (m 3 -methanol / hr / m 3 -catalyst).

【0011】(2)式のメタノール液相分解反応は、脱水
素反応によるギ酸メチルの生成反応である。反応温度と
反応圧力および液空間速度は触媒量、更には目標の反応
率によって広い範囲で選び得るが、一般的な反応温度と
しては100℃からギ酸メチル臨界温度付近の210℃であ
り、実用的には150〜205℃の範囲が好ましい。反応温度
が低過ぎる場合には実用的な反応速度が得られず、反応
温度が高過ぎる場合には副反応の併発や触媒の失活を招
きやすい。反応温度100〜210℃でのギ酸メチル蒸気圧は
0.77〜5.54MPaであり、反応圧力はこれより高い圧力2.1
8〜5.54MPaの範囲が好ましい。液空間速度は0.1〜10(m
3−メタノール/hr/m3−触媒)の範囲、特に0.2〜3(m
3−メタノール/hr/m3−触媒)が一般的である。
The methanol liquid phase decomposition reaction of the formula (2) is a formation reaction of methyl formate by a dehydrogenation reaction. The reaction temperature, reaction pressure and liquid hourly space velocity can be selected in a wide range depending on the amount of catalyst and the target reaction rate, but the general reaction temperature is 100 ° C to 210 ° C near the critical temperature of methyl formate, and is practical. Is preferably in the range of 150 to 205 ° C. If the reaction temperature is too low, a practical reaction rate cannot be obtained, and if the reaction temperature is too high, simultaneous side reactions and deactivation of the catalyst are likely to occur. The vapor pressure of methyl formate at a reaction temperature of 100 to 210 ° C is
0.77 to 5.54 MPa and the reaction pressure is higher than 2.1
The range of 8 to 5.54 MPa is preferred. Liquid space velocity is 0.1-10 (m
3 - methanol / hr / m 3 - catalytic) range, in particular 0.2 to 3 (m
3 -methanol / hr / m 3 -catalyst) is common.

【0012】(3)式のギ酸メチル液相分解反応において
反応温度と反応圧力および液空間速度は触媒の種類と触
媒量、更には目標の反応率によって広い範囲で選び得る
が、一般的な反応温度としては0℃からギ酸メチル臨界
温度付近の210℃であり、実用的には20〜200℃の範囲が
好ましい。反応温度が低過ぎる場合には実用的な反応速
度が得られず、反応温度が高過ぎる場合には副反応の併
発や触媒の失活を招きやすい。反応温度0〜210℃でのギ
酸メチルの蒸気圧は0.03〜5.54MPaであり、反応圧力は
これより高い圧力1.03〜5.54MPaの範囲が好ましい。液
空間速度は0.1〜10(m3−ギ酸メチル/hr/m3−触媒)
の範囲、特に0.2〜3(m3−ギ酸メチル/hr/m3−触媒)
が一般的である。
In the liquid phase decomposition reaction of methyl formate of the formula (3), the reaction temperature, the reaction pressure and the liquid hourly space velocity can be selected in a wide range depending on the type and amount of the catalyst and the target reaction rate. The temperature is from 0 ° C. to 210 ° C. near the critical temperature of methyl formate, and practically preferably from 20 to 200 ° C. If the reaction temperature is too low, a practical reaction rate cannot be obtained, and if the reaction temperature is too high, simultaneous side reactions and deactivation of the catalyst are likely to occur. The vapor pressure of methyl formate at a reaction temperature of 0 to 210 ° C. is 0.03 to 5.54 MPa, and the reaction pressure is preferably in a higher pressure range of 1.03 to 5.54 MPa. The liquid hourly space velocity is 0.1 to 10 (m 3 -methyl formate / hr / m 3 -catalyst)
, Especially 0.2 to 3 (m 3 -methyl formate / hr / m 3 -catalyst)
Is common.

【0013】(1)〜(3)式の一般的な反応方法としては、
懸濁床、或いは固定床、回分式、半回分式、流通式等の
通常知られているあらゆる方法を用いることができる。
また(1)式のメタノール液相分解反応は液相で行うこと
により生成一酸化炭素ガス、水素ガスを系外に除去する
ことにより、平衡反応が促進されることになる。(1)〜
(3)式の反応で原料として使用するメタノール、ギ酸メ
チルは、炭酸ガスの副生等を回避するためおよび触媒へ
の負担を軽減するために、使用に先だって乾燥剤等によ
りメタノール、ギ酸メチル中の水分を少なくすることが
好ましい。
As a general reaction method of the formulas (1) to (3),
Any generally known method such as a suspension bed or a fixed bed, a batch system, a semi-batch system, and a flow system can be used.
Further, the methanol liquid phase decomposition reaction of the formula (1) is carried out in the liquid phase to remove the generated carbon monoxide gas and hydrogen gas out of the system, thereby promoting the equilibrium reaction. (1) 〜
The methanol and methyl formate used as a raw material in the reaction of the formula (3) are mixed with a methanol or methyl formate with a desiccant before use in order to avoid by-products such as carbon dioxide gas and to reduce the burden on the catalyst. Is preferably reduced.

【0014】(4)式の水素と一酸化炭素混合ガスからの
メタノール液相合成反応において、反応温度と反応圧力
および液空間速度は触媒の種類と触媒量、更には使用す
る溶媒種や目標の反応率によって広い範囲で選び得る
が、一般的な反応温度としては80〜200℃であり、実用
的には100〜150℃の範囲が好ましい。反応温度が低過ぎ
る場合には実用的な反応速度が得られず、反応温度が高
過ぎる場合には副反応の併発や触媒の失活を招きやす
い。条件によっては使用する溶媒を変質させることがあ
る。反応圧力は反応温度80〜200℃で使用する溶媒の沸
点よりも高い圧力が好ましく、また(1)〜(3)式の分解反
応圧力よりも低いことが必要であるから、1.0〜5MPaの
範囲が好ましい。ガス空間速度は100〜10000(m3−[一
酸化炭素+水素]/hr/m3−触媒)の範囲、特に300〜5
000(m3−[一酸化炭素+水素]/hr/m3−触媒)が一
般的である。
In the liquid phase synthesis reaction of methanol from the mixed gas of hydrogen and carbon monoxide of the formula (4), the reaction temperature, reaction pressure and liquid space velocity depend on the type and amount of the catalyst, the type of the solvent used and the target. The reaction temperature can be selected from a wide range depending on the reaction rate, but the general reaction temperature is 80 to 200 ° C, and the range of 100 to 150 ° C is practically preferable. If the reaction temperature is too low, a practical reaction rate cannot be obtained, and if the reaction temperature is too high, simultaneous side reactions and deactivation of the catalyst are likely to occur. The solvent used may be altered depending on the conditions. The reaction pressure is preferably a pressure higher than the boiling point of the solvent used at a reaction temperature of 80 to 200 ° C., and it is necessary to be lower than the decomposition reaction pressure of the formulas (1) to (3). Is preferred. The gas hourly space velocity is in the range of 100 to 10,000 (m 3- [carbon monoxide + hydrogen] / hr / m 3 -catalyst), especially 300 to 5
000 (m 3- [carbon monoxide + hydrogen] / hr / m 3 -catalyst) is common.

【0015】(5)式のギ酸メチルの水素化反応によるメ
タノール液相合成反応において、反応温度と反応圧力お
よび液空間速度は触媒量、更には目標の反応率によって
広い範囲で選び得るが、一般的な反応温度としては100
℃から210℃であり、実用的には120〜200℃の範囲が好
ましい。反応温度が低過ぎる場合には実用的な反応速度
が得られず、反応温度が高過ぎる場合には副反応の併発
や触媒の失活を招きやすい。反応圧力は反応温度100〜2
00℃で使用するギ酸メチルの蒸気圧よりも高い反応圧力
が好ましく、また、(1)〜(3)式の分解反応圧力よりも低
いことが必要であるから、圧力は1.06〜4.84MPaの範囲
が好ましい。水素とギ酸メチルの比はギ酸メチルの反応
を考慮して理論値よりも水素が多い方が好ましく、モル
比は1〜100(水素/ギ酸メチル)であり、実用的には1.
2〜50(水素/ギ酸メチル)の範囲が好ましい。液空間
速度は0.1〜10(m3−ギ酸メチル/hr/m3−触媒)の範
囲、特に0.2〜3(m3−ギ酸メチル/hr/m3−触媒)が一
般的である。
In the methanol liquid phase synthesis reaction by hydrogenation of methyl formate of the formula (5), the reaction temperature, reaction pressure and liquid hourly space velocity can be selected in a wide range depending on the amount of catalyst and the target reaction rate. The typical reaction temperature is 100
C. to 210.degree. C., and practically preferably in the range of 120 to 200.degree. If the reaction temperature is too low, a practical reaction rate cannot be obtained, and if the reaction temperature is too high, simultaneous side reactions and deactivation of the catalyst are likely to occur. Reaction pressure is reaction temperature 100-2
The reaction pressure is preferably higher than the vapor pressure of methyl formate used at 00 ° C., and it is necessary to be lower than the decomposition reaction pressure of the formulas (1) to (3), so the pressure is in the range of 1.06 to 4.84 MPa. Is preferred. The ratio of hydrogen to methyl formate is preferably larger than the theoretical value in consideration of the reaction of methyl formate, and the molar ratio is 1 to 100 (hydrogen / methyl formate).
A range of 2 to 50 (hydrogen / methyl formate) is preferred. The liquid hourly space velocity is generally in the range of 0.1 to 10 (m 3 -methyl formate / hr / m 3 -catalyst), particularly 0.2 to 3 (m 3 -methyl formate / hr / m 3 -catalyst).

【0016】(6)式のメタノールのカルボニル化反応に
よるギ酸メチル液相合成反応において反応温度と反応圧
力および液空間速度は触媒の種類と触媒量、更には目標
の反応率によって広い範囲で選び得るが、一般的な反応
温度としては0℃から235℃であり、実用的には20〜200
℃の範囲が好ましい。反応温度が低過ぎる場合には実用
的な反応速度が得られず、反応温度が高過ぎる場合には
副反応の併発や触媒の失活を招きやすい。反応温度20〜
200℃で使用するメタノールの蒸気圧よりも高い反応圧
力が好ましく、また、(1)〜(3)式の分解反応圧力よりも
低いことが必要であるから、圧力は0.01〜4.06MPaの範
囲が好ましい。一酸化炭素とメタノールの比はメタノー
ルの反応を考慮して理論値よりも一酸化炭素が多い方が
好ましく、モル比は1〜100(一酸化炭素/メタノール)
であり、実用的には1.2〜50(一酸化炭素/メタノー
ル)の範囲が好ましい。液空間速度は0.1〜10(m3−メ
タノール/hr/m3−触媒)の範囲、特に0.2〜3(m3−メ
タノール/hr/m3−触媒)が一般的である。
In the liquid phase synthesis reaction of methyl formate by the carbonylation reaction of methanol of the formula (6), the reaction temperature, reaction pressure and liquid hourly space velocity can be selected in a wide range depending on the type and amount of catalyst and the target reaction rate. However, the general reaction temperature is 0 ° C to 235 ° C, and practically 20 to 200 ° C.
C. is preferred. If the reaction temperature is too low, a practical reaction rate cannot be obtained, and if the reaction temperature is too high, simultaneous side reactions and deactivation of the catalyst are likely to occur. Reaction temperature 20 ~
The reaction pressure is preferably higher than the vapor pressure of methanol used at 200 ° C., and it is necessary to be lower than the decomposition reaction pressure of the formulas (1) to (3), so the pressure is preferably in the range of 0.01 to 4.06 MPa. preferable. The ratio of carbon monoxide to methanol is preferably larger than the theoretical value in consideration of the reaction of methanol, and the molar ratio is preferably 1 to 100 (carbon monoxide / methanol).
Practically, the range of 1.2 to 50 (carbon monoxide / methanol) is preferable. The liquid hourly space velocity is generally in the range of 0.1 to 10 (m 3 -methanol / hr / m 3 -catalyst), particularly 0.2 to 3 (m 3 -methanol / hr / m 3 -catalyst).

【0017】(4)〜(6)式の一般的な反応方法として
は、懸濁床、或いは固定床、回分式、半回分式、流通式
等の通常知られているあらゆる方法を用いることができ
る。触媒は均一触媒、不均一触媒何れも使用することが
できる。(4)〜(6)式の反応で原料として使用するメタ
ノール、ギ酸メチルは、炭酸ガスの副生等を回避するた
め、および触媒への負担を軽減する目的で、使用に先だ
って乾燥剤等によりメタノール、ギ酸メチル中の水分を
少なくすることが好ましい。また、溶媒を使用する反応
では該溶媒中の水分についても原料と同等の配慮が必要
である。
As a general reaction method of the formulas (4) to (6), any known method such as a suspension bed or a fixed bed, a batch system, a semi-batch system, and a flow system can be used. it can. As the catalyst, either a homogeneous catalyst or a heterogeneous catalyst can be used. The methanol and methyl formate used as the raw materials in the reactions of the formulas (4) to (6) are prepared by using a desiccant or the like prior to use in order to avoid by-products such as carbon dioxide gas and to reduce the burden on the catalyst. It is preferable to reduce the water content in methanol and methyl formate. In a reaction using a solvent, the same consideration must be given to the water content in the solvent as for the raw material.

【0018】(1)〜(3)式のメタノール、ギ酸メチル分解
反応と(4)〜(6)式のメタノール、ギ酸メチル合成反応は
互いに可逆な平衡反応であり、選択率が100%の場合は
収支上問題ないが、化学反応である以上、若干の副反応
は存在し、メタン、炭酸ガス等の蓄積があり得る。これ
らの副成物は主に(4)〜(6)式のメタノール、ギ酸メチル
合成反応器の出口ガス中に濃縮されるので、これらを分
離して燃焼すること等により熱エネルギーとして回収さ
れる。この際に補給される物質はメタノールになるが、
メタノールは燃料価格に近い安価な物質であり、従って
副成物の処理に伴う経済的損失は少なく抑えられる。
The methanol and methyl formate decomposition reactions of the formulas (1) to (3) and the methanol and methyl formate synthesis reactions of the formulas (4) to (6) are reversible equilibrium reactions, and the selectivity is 100%. Although there is no problem in terms of balance, since it is a chemical reaction, there are some side reactions, and methane, carbon dioxide and the like may accumulate. Since these by-products are mainly concentrated in the outlet gas of the methanol and methyl formate synthesis reactors of formulas (4) to (6), they are recovered as thermal energy by separating and burning them. . The substance supplied at this time is methanol,
Methanol is an inexpensive substance close to the fuel price, so that the economic losses associated with processing by-products are kept low.

【0019】本発明において熱利用効率を高めるため
に、分解生成ガスによる膨張タービン(第1膨張タービ
ン)の排気ガスを利用したアンモニア水混合蒸気の膨張
タービン(第2膨張タービン)を設置し、発電を行うこ
とが好ましい。すなわち第1膨張タービン出口に、アン
モニア水蒸発用熱交換器、気液分離器、第2膨張タービ
ン、発電機、アンモニア水凝縮用熱交換器、アンモニア
水液ポンプおよび予熱用熱交換器を取り付け、余剰の回
収した熱エネルギーを利用しアンモニア水を蒸発、凝縮
させることにより電気エネルギー変換する。アンモニア
水のアンモニア濃度、アンモニア水蒸発用熱交換器の圧
力はアンモニア水蒸発用熱交換器に供給される熱の温度
レベルによって広い範囲で選び得るが、一般的なアンモ
ニア水のアンモニア濃度は50〜100wt%であり、実用的
には75〜100wt%の範囲が好ましい。アンモニア水蒸発
用熱交換器の一般的な圧力は1〜8MPa、実用的には2〜5M
Paが好ましい。各膨張タービンはその効率を保つため
に、膨張タービン出口での蒸気と液の割合が90/10
〜100/0になるように出口圧力を設定する必要が有
り、実用的には膨張タービン出口での蒸気と液の割合が
95/5〜100/0になるように出口圧力を設定す
る。
In the present invention, in order to enhance the heat utilization efficiency, an expansion turbine (second expansion turbine) of ammonia water mixed steam using exhaust gas of an expansion turbine (first expansion turbine) using decomposition product gas is installed, and power generation is performed. Is preferably performed. That is, a heat exchanger for evaporating ammonia water, a gas-liquid separator, a second expansion turbine, a generator, a heat exchanger for condensing ammonia water, an ammonia water liquid pump, and a heat exchanger for preheating are attached to the first expansion turbine outlet, Electrical energy is converted by evaporating and condensing the ammonia water using excess recovered thermal energy. The ammonia concentration of the ammonia water and the pressure of the ammonia water evaporation heat exchanger can be selected in a wide range depending on the temperature level of the heat supplied to the ammonia water evaporation heat exchanger. It is 100 wt%, and practically, the range of 75 to 100 wt% is preferable. General pressure of heat exchanger for ammonia water evaporation is 1 ~ 8MPa, practically 2 ~ 5M
Pa is preferred. Each expansion turbine has a 90/10 steam / liquid ratio at the expansion turbine outlet to maintain its efficiency.
It is necessary to set the outlet pressure so as to be 〜100 / 0. In practice, the outlet pressure is set such that the ratio of steam and liquid at the outlet of the expansion turbine is 95/5 to 100/0.

【0020】また(1)〜(3)式のメタノール、ギ酸メチル
液相分解反応器、(4)〜(6)式のメタノール、ギ酸メチル
液相合成反応器に1個以上の熱交換器を取り付けること
で、余剰の回収した熱エネルギーを効率よく系内部へ熱
交換ができる。熱交換器の数はメタノール、ギ酸メチル
液相分解反応およびメタノール、ギ酸メチル液相合成反
応の条件および膨張タービン出口圧力によってきまる
が、実用的には1〜15個が好ましい。
Further, one or more heat exchangers are provided for the methanol-methyl formate liquid phase decomposition reactors of the formulas (1) to (3) and the methanol-methyl formate liquid phase synthesis reactors of the formulas (4) to (6). By attaching, excess heat energy recovered can be efficiently exchanged into the system. The number of heat exchangers is determined by the conditions of the methanol / methyl formate liquid phase decomposition reaction and the methanol / methyl formate liquid phase synthesis reaction and the pressure at the outlet of the expansion turbine, but from 1 to 15 is practically preferable.

【0021】本発明の具体的なフローについては以下の
実施例で説明するが、本発明によりメタノール、ギ酸メ
チル分解反応を反応温度におけるメタノール、ギ酸メチ
ル蒸気圧よりも高くすることにより液相反応とし、且つ
メタノールおよび/またはギ酸メチル分解反応圧をメタ
ノール、ギ酸メチル合成反応圧よりも高くして、メタノ
ールおよび/またはギ酸メチル分解反応器出口に熱交換
器、気液分離器、第1膨張タービン、発電機およびメタ
ノール液ポンプを取り付け、電気エネルギーを回収する
と共に、第1膨張タービン出口に、アンモニア水蒸発用
熱交換器、気液分離器、第2膨張タービン、発電機、ア
ンモニア水凝縮用熱交換器およびアンモニア液ポンプを
取り付けることにより発電量を増加させることができ
る。またメタノール合成反応の反応熱から144℃程度
の水蒸気や温水を発生させる。なお本発明のシステムで
は、メタノール、ギ酸メチル分解反応器からの分解ガス
やメタノール、ギ酸メチル合成反応器からのメタノー
ル、ギ酸メチルを常温付近で長距離輸送できるので、例
えば工場からの200℃程度の廃熱の熱回収と都市部で
のスチームや温水暖房への熱利用を距離が相当離れてい
る場合でも有利に行うことができる。
The specific flow of the present invention will be described in the following examples. According to the present invention, the decomposition reaction of methanol and methyl formate is made into a liquid phase reaction by increasing the vapor pressure of methanol and methyl formate at the reaction temperature. And the methanol and / or methyl formate decomposition reaction pressure is higher than the methanol and / or methyl formate synthesis reaction pressure, and a heat exchanger, a gas-liquid separator, a first expansion turbine, Attach a generator and a methanol liquid pump to collect electric energy, and at the outlet of the first expansion turbine, heat exchanger for evaporating ammonia water, gas-liquid separator, second expansion turbine, generator, heat exchange for condensing ammonia water The amount of power generation can be increased by installing a vessel and an ammonia liquid pump. In addition, steam or hot water of about 144 ° C. is generated from the reaction heat of the methanol synthesis reaction. In the system of the present invention, methanol, decomposition gas from a methyl formate decomposition reactor and methanol, methanol and methyl formate from a methyl formate synthesis reactor can be transported over a long distance at around room temperature. The heat recovery of waste heat and the use of heat for steam and hot water heating in urban areas can be advantageously performed even when the distance is considerable.

【0022】[0022]

【実施例】次に実施例により本発明を更に詳しく説明す
る。但し本発明はこれらの実施例に限定されるものでは
ない。
Next, the present invention will be described in more detail by way of examples. However, the present invention is not limited to these examples.

【0023】参考例1((1)式のメタノール液相分解反
応) 内容積100mlの振とう式オートクレーブにメタノール24g
(ナトリウムメチラート1.3wt%含有)および還元した銅
−クロム触媒(日産ガドラー(株)製G-13A)3.0gを用
いて、反応温度200℃で3.0時間反応したところ、圧力は
7.10MPaに達した。その後オートクレーブを水中で冷却
し、気相部のバルブを開いて徐徐に内部のガスを抜き出
し、計量すると共にガスクロマトグラフで分析した。生
成ガス量は1.07NL、一酸化炭素濃度は17.9vol%であっ
た。
REFERENCE EXAMPLE 1 (Methanol liquid phase decomposition reaction of formula (1)) 24 g of methanol was placed in a shaking autoclave having an inner volume of 100 ml.
(3.0 g of sodium methylate) and 3.0 g of a reduced copper-chromium catalyst (G-13A manufactured by Nissan Gadler Co., Ltd.) at a reaction temperature of 200 ° C. for 3.0 hours.
7.10MPa was reached. Thereafter, the autoclave was cooled in water, the valve in the gas phase was opened, and the internal gas was gradually extracted, weighed, and analyzed by gas chromatography. The generated gas amount was 1.07 NL, and the carbon monoxide concentration was 17.9 vol%.

【0024】参考例2((1)式のメタノール液相分解反
応) 内容積500mlの攪拌機付き槽型反応器に200mlのメタノー
ルおよびアルカリ水溶液で展開したラネー銅−クロム触
媒(日興リカ(株)製)42.9gを仕込み、反応器を組み
立てた。系内に窒素ガスを充填した後、排気する操作を
数回繰り返し、系内のガス置換を行った。攪拌速度を10
00rpmとし、反応器の加熱を開始して反応温度を192℃と
した。温度の上昇と共に系内圧力も上昇し、圧力が所定
の抜き出し圧力4.6MPaに達したところで出口側圧力調圧
弁を調節して生成ガスの抜き出しを開始した。ガスの抜
き出しは反応器の上に設置した冷却器を通して行い、ガ
スに同伴されたメタノール等の凝縮成分を該冷却器(0
℃)にて冷却、凝縮し反応器へ戻した。ガス量はガスメ
ーターにより測定し、経時的にサンプリングし、ガスク
ロマトグラフにより分析した。なお、原料メタノールは
触媒成分の一つであるナトリウムメチラートを0.5wt%
溶解させたものを使用し、プランジャーポンプにより所
定の流量で供給した。反応生成液は、反応器内の液面が
一定(滞留液量300ml)となるようにコントロールバル
ブ(電磁弁)を通して抜き出した。その結果、一酸化炭
素濃度33.5vol%の生成ガスが15.6NL/hの割合で得られ、
メタノール供給量に対するメタノール反応率は62.2%で
あった。
Reference Example 2 (Methanol liquid phase decomposition reaction of formula (1)) Raney copper-chromium catalyst (manufactured by Nikko Rica Co., Ltd.) developed with 200 ml of methanol and an alkaline aqueous solution in a 500-ml tank-type reactor equipped with a stirrer ) 42.9 g was charged and the reactor was assembled. After the system was filled with nitrogen gas, the operation of evacuating was repeated several times to replace the gas in the system. Stirring speed 10
The heating temperature of the reactor was set to 00 rpm, and the reaction temperature was set to 192 ° C. As the temperature increased, the pressure in the system also increased. When the pressure reached a predetermined withdrawal pressure of 4.6 MPa, the outlet-side pressure regulating valve was adjusted to start extracting product gas. The gas is extracted through a cooler placed above the reactor, and condensed components such as methanol entrained in the gas are removed from the cooler (0
℃), condensed and returned to the reactor. The gas amount was measured with a gas meter, sampled with time, and analyzed by gas chromatography. In addition, the raw material methanol was 0.5 wt% of sodium methylate, one of the catalyst components.
The solution was used and supplied at a predetermined flow rate by a plunger pump. The reaction product liquid was withdrawn through a control valve (electromagnetic valve) so that the liquid level in the reactor was constant (remaining liquid volume: 300 ml). As a result, a product gas having a carbon monoxide concentration of 33.5 vol% was obtained at a rate of 15.6 NL / h,
The methanol conversion with respect to the methanol supply was 62.2%.

【0025】参考例3((1)式のメタノールの液相分解
反応) 内容積500mlの槽型反応器に還元した銅−クロム−マン
ガン−バリウム触媒(日産ガードラー(株)製G-99-B-
0)120gと5mol%のギ酸メチルを含むメタノール30mlを仕
込み、系内のガス置換後加熱を開始した。反応器内に挿
入した電極により反応器内の液面を検知し、液面が一定
となるようにプランジャーポンプで連続的に5mol%のギ
酸メチルを含むメタノールを供給した。生成ガスに同伴
されたメタノール等の凝縮成分は該冷却器(0℃)で冷
却、凝縮し反応器内に戻した。生成ガス量はガスメータ
ーにより測定した。触媒層温度を197℃、反応圧力5.1MP
aおよび原料供給量12.2g/h の条件で、水素65.1%、一酸
化炭素31.4%を有するガスが25.2NL/hの割合で生成し
た。
Reference Example 3 (Liquid phase decomposition reaction of methanol of formula (1)) A copper-chromium-manganese-barium catalyst reduced in a tank reactor having an inner volume of 500 ml (G-99-B manufactured by Nissan Gardler Co., Ltd.) -
0) 120 g and 30 ml of methanol containing 5 mol% of methyl formate were charged, and heating was started after gas replacement in the system. The liquid level in the reactor was detected by an electrode inserted into the reactor, and methanol containing 5 mol% of methyl formate was continuously supplied by a plunger pump so that the liquid level was constant. Condensed components such as methanol entrained in the produced gas were cooled and condensed in the cooler (0 ° C.) and returned into the reactor. The amount of generated gas was measured by a gas meter. Catalyst layer temperature 197 ° C, reaction pressure 5.1MP
Under the conditions of a and the raw material supply rate of 12.2 g / h, a gas having 65.1% of hydrogen and 31.4% of carbon monoxide was generated at a rate of 25.2 NL / h.

【0026】参考例4((2)式のメタノール液相分解反
応) 内容積500mlの槽型反応器に水酸化ナトリウム水溶液で
展開したラネー銅触媒(日興リカ(株)製)44.2gと30m
lのメタノールを仕込み、系内のガス置換後加熱を開始
した。反応器内に挿入した電極により反応器内の液面を
検知し、液面が一定となるようにプランジャーポンプで
メタノールを供給した。生成ガスに同伴された原料メタ
ノールおよび目的生成物であるギ酸メチル等の凝縮成分
は該冷却器(0℃)で冷却、凝縮し反応系外に取り出し
た。生成ガス量はガスメーターにより測定した。その結
果、触媒層温度を177℃、反応圧力3.1MPaおよびメタノ
ール供給量107.9g/h の条件で、メタノール反応率は25.
4%、ギ酸メチル収率は10.3 %であった。
Reference Example 4 (Methanol liquid phase decomposition reaction of formula (2)) Raney copper catalyst (Nikko Rika Co., Ltd.) 44.2 g and 30 m
l of methanol was charged, and heating was started after gas replacement in the system. The liquid level in the reactor was detected by an electrode inserted into the reactor, and methanol was supplied by a plunger pump so that the liquid level was constant. The condensed components such as raw material methanol and the target product, methyl formate, entrained in the produced gas were cooled and condensed in the cooler (0 ° C.) and taken out of the reaction system. The amount of generated gas was measured by a gas meter. As a result, under the conditions of a catalyst layer temperature of 177 ° C., a reaction pressure of 3.1 MPa, and a methanol supply amount of 107.9 g / h, the methanol conversion was 25.
The yield was 4%, and the methyl formate yield was 10.3%.

【0027】参考例5((3)式のギ酸メチル液相分解反
応) 内径35mm、長さ200mmの反応管にイオン交換樹脂(三菱
化学(株)製SA-10A)100mlを充填した。反応条件を触
媒層温度70℃、反応圧力0.6MPaとし、ギ酸メチルは触媒
容量に対する液空間速度0.5/hとして反応管下部より連
続で供給した。その結果、ガスクロマトグラフによる分
析で、同伴する蒸気圧相当のメタノールおよびギ酸メチ
ル以外の成分を含まない実質的に一酸化炭素のみの分解
ガスが得られ、供給ギ酸メチルに対する一酸化炭素収率
は55.1%であった。
Reference Example 5 (Methyl formate liquid phase decomposition reaction of formula (3)) A reaction tube having an inner diameter of 35 mm and a length of 200 mm was filled with 100 ml of ion exchange resin (SA-10A manufactured by Mitsubishi Chemical Corporation). The reaction conditions were a catalyst layer temperature of 70 ° C. and a reaction pressure of 0.6 MPa, and methyl formate was continuously supplied from the lower part of the reaction tube at a liquid hourly space velocity of 0.5 / h with respect to the catalyst capacity. As a result, a gas chromatographic analysis yielded a cracked gas of substantially only carbon monoxide containing no components other than methanol and methyl formate corresponding to the accompanying vapor pressure, and the carbon monoxide yield based on the supplied methyl formate was 55.1%. %Met.

【0028】参考例6((3)式のギ酸メチル液相分解反
応) 内容積500mlの槽型反応器に、ギ酸メチルに対して2.5wt
%濃度になる量の炭酸セシウムを溶解したギ酸メチルと
メタノールが等モルの混合溶液200mlを仕込み、系内の
ガス置換後加熱を行った。反応条件は触媒層温度を180
℃、反応圧力9.1MPaとして流通式で実験した。ガスに同
伴されたギ酸メチルおよびメタノール等の凝縮成分は該
冷却器(0℃)で冷却、凝縮しガスを分離した後反応器
に戻した。生成ガス量はガスメーターにより測定した。
原料溶液ははプランジャーポンプでギ酸メチルとメタノ
ールおよび炭酸セシウム触媒との混合溶液の形で供給
し、反応器内に挿入した電極により反応器内の液面を検
知し、液面が一定(滞留液量300ml)となるように反応液
を一部反応系外に抜き出した。反応液基準の液空間速度
は0.14/hであった。その結果、ギ酸メチル反応率は80.3
%、一酸化炭素収率は78.1 %であった。
Reference Example 6 (Methyl formate liquid phase decomposition reaction of formula (3)) In a tank reactor having an inner volume of 500 ml, 2.5 wt.
200 ml of an equimolar mixed solution of methyl formate and methanol in which cesium carbonate was dissolved in an amount to give a% concentration was charged, and the system was heated after gas replacement. The reaction conditions are as follows.
The experiment was carried out at a temperature of ℃ and a reaction pressure of 9.1 MPa by a flow system. Condensed components such as methyl formate and methanol entrained in the gas were cooled and condensed in the cooler (0 ° C.) to separate the gas, and then returned to the reactor. The amount of generated gas was measured by a gas meter.
The raw material solution is supplied in the form of a mixed solution of methyl formate, methanol and cesium carbonate catalyst using a plunger pump, and the liquid level in the reactor is detected by the electrode inserted in the reactor, and the liquid level is kept constant (retained). A part of the reaction solution was drawn out of the reaction system so as to have a liquid volume of 300 ml). The liquid hourly space velocity based on the reaction liquid was 0.14 / h. As a result, the methyl formate reaction rate was 80.3
% And the carbon monoxide yield was 78.1%.

【0029】参考例7((3)式のギ酸メチル液相分解反
応) 内径13mm、長さ300mmの反応管にイオン交換樹脂(三菱
化学(株)製SA-10A)15mlを充填した。原料はメタノー
ルとギ酸メチルのモル比が1:0.9の混合液を用い反応管
下部より連続で供給した。触媒容量に対する液空間速度
を0.25/h、触媒層温度70℃、反応圧力0.6MPaの条件で実
験した結果、ガスクロマトグラフィによる分析で、同伴
する蒸気圧相当のメタノールおよびギ酸メチル以外の成
分を含まない実質的に一酸化炭素のみの生成ガスが得ら
れ、供給ギ酸メチルに対する反応率は87.8%であった。
Reference Example 7 (Methyl formate liquid phase decomposition reaction of formula (3)) A reaction tube having an inner diameter of 13 mm and a length of 300 mm was filled with 15 ml of an ion exchange resin (SA-10A manufactured by Mitsubishi Chemical Corporation). The raw material was continuously supplied from the lower part of the reaction tube using a mixture of methanol and methyl formate in a molar ratio of 1: 0.9. The experiment was conducted under the conditions that the liquid hourly space velocity with respect to the catalyst volume was 0.25 / h, the catalyst layer temperature was 70 ° C, and the reaction pressure was 0.6 MPa. A product gas substantially containing only carbon monoxide was obtained, and the conversion to the supplied methyl formate was 87.8%.

【0030】参考例8((4)式のメタノール液相合成反
応) 内容積500mlの攪拌機付き槽型ステンレス反応器に溶媒
として100mlのメタキシレン、アルカリ水溶液で展開し
た日興リカ(株)製ラネー銅触媒40.4gおよび28wt%のナ
トリウムメトキシドメタノール溶液15gを仕込み、反応
器を組み立てた。系内に窒素ガスを充填した後、排気す
る操作を数回繰り返し、系内のガス置換を行った。続い
て水素/一酸化炭素の比が2である混合ガスを4.00MPa
充填した。攪拌速度を1000rpmとし、反応器を温度110℃
に加熱した。この温度で1時間維持し反応させた。その
後、反応器を冷却した。気相部を徐徐に抜き出し、ガス
量を計量するとともに分析した。その結果、一酸化炭素
の反応率は78.6%、メタノールの選択率は88.9%であっ
た。
REFERENCE EXAMPLE 8 (Methanol liquid phase synthesis reaction of formula (4)) Raney copper manufactured by Nikko Rica Co., Ltd. developed with 100 ml of metaxylene and an aqueous alkali solution as a solvent in a 500-ml tank-type stainless steel reactor equipped with a stirrer. A reactor was assembled by charging 40.4 g of the catalyst and 15 g of a 28 wt% sodium methoxide methanol solution. After the system was filled with nitrogen gas, the operation of evacuating was repeated several times to replace the gas in the system. Subsequently, a mixed gas having a hydrogen / carbon monoxide ratio of 2 was added to 4.00 MPa.
Filled. The stirring speed was set at 1000 rpm, and the temperature of the reactor was set at 110 ° C.
Heated. The reaction was maintained at this temperature for 1 hour. Thereafter, the reactor was cooled. The gas phase was gradually extracted, and the gas amount was measured and analyzed. As a result, the conversion of carbon monoxide was 78.6%, and the selectivity for methanol was 88.9%.

【0031】参考例9((5)式のギ酸メチル水素化反
応) 内径15mm、長さ200mmの反応管に、5W%水酸化ナトリウム
水溶液で展開した粒状ラネー銅触媒(日興リカ(株)製)
10mlを充填した。反応条件を触媒層温度160℃、反応圧
力3.3MPa、水素/ギ酸メチルのモル比を2.2とし、ギ酸
メチル供給量は触媒容量に対する液空間速度1.87/hとし
た。ギ酸メチルおよび水素は反応管上部より連続で供給
した。その結果、ギ酸メチル反応率は80.7%、メタノー
ル選択率は94.0%であった。
Reference Example 9 (Methyl formate hydrogenation reaction of formula (5)) A granular Raney copper catalyst (Nikko Rica Co., Ltd.) developed in a reaction tube having an inner diameter of 15 mm and a length of 200 mm with a 5 W% aqueous sodium hydroxide solution
10 ml was filled. The reaction conditions were a catalyst layer temperature of 160 ° C., a reaction pressure of 3.3 MPa, a hydrogen / methyl formate molar ratio of 2.2, and a methyl formate supply amount of a liquid space velocity of 1.87 / h with respect to the catalyst capacity. Methyl formate and hydrogen were continuously supplied from the upper part of the reaction tube. As a result, the methyl formate reaction rate was 80.7%, and the methanol selectivity was 94.0%.

【0032】参考例10((6)式のメタノールカルボニ
ル化反応) 内容積100mlの攪拌機付き槽型ステンレス反応器にイオ
ン交換樹脂(バイエル(株)製)15mlとメタノール50g
を充填した。反応条件を触媒層温度60℃、反応圧力5.1M
Paとして5時間反応させた。なお、反応圧力が一定圧力
になるように一酸化炭素を供給した。その結果、メタノ
ール反応率は82.1%、ギ酸メチル収率は76.9%であった。
Reference Example 10 (Methanol carbonylation reaction of formula (6)) In a tank-type stainless steel reactor having an internal volume of 100 ml and equipped with a stirrer, 15 ml of ion-exchange resin (manufactured by Bayer KK) and 50 g of methanol were used.
Was charged. The reaction conditions were as follows: catalyst layer temperature 60 ° C, reaction pressure 5.1M
The reaction was performed for 5 hours as Pa. Note that carbon monoxide was supplied so that the reaction pressure became constant. As a result, the methanol conversion was 82.1%, and the methyl formate yield was 76.9%.

【0033】実施例1 以上の参考例のデータを用い、図1のフローに基づき本
発明による熱回収と熱利用および発電システムの計算を
行った(Aspen Technology, Inc.のプロセスシミュレー
タASPEN PLUS使用)。図1は本発明の熱回収と熱利用の
システムを示すフロー図の一例である。
Example 1 Using the data of the above reference example, calculation of a heat recovery and heat utilization and power generation system according to the present invention was performed based on the flow of FIG. 1 (using a process simulator ASPEN PLUS of Aspen Technology, Inc.). . FIG. 1 is an example of a flowchart showing a heat recovery and heat utilization system of the present invention.

【0034】(メタノール、ギ酸メチル分解反応に関わ
る系)図1において、(1)および(3)式の反応の原料とな
るメタノールおよびギ酸メチルは流路100、熱交換器E10
0、流路110を経て系内部熱交換による予熱が行われ、ギ
酸メチル液相分解反応器R100に供給される。ギ酸メチル
液相分解反応器R100は参考例7に用いたイオン交換樹脂
が充填されており、温度70℃、圧力0.61MPaでギ酸メチ
ル液相分解反応が行われる(ギ酸メチル反応率54.4
%)。ギ酸メチルの液相分解反応により生成したメタノ
ール(未反応供給メタノールを含む)、一酸化炭素およ
び未反応ギ酸メチルは流路120、熱交換器E100、流路125
を経て気液分離器F130に入る。気液分離器F130より排出
されたガス相(気液分離器F130温度51.3℃のメタノー
ル、ギ酸メチル蒸気圧に相当するメタノール/ギ酸メチ
ル、液相メタノール/ギ酸メチルに溶解した一酸化炭素
を除く生成した一酸化炭素)は流路130よりCOガス圧
縮機C100を経て加圧され、流路140を経て気液分離器F10
0に供給される。なお、流路1040より系外部からの冷却
水が気液分離器F100に供給され、流路1050より系外に排
出され、気液分離器F100での冷却熱に使われる。気液分
離器F100より排出されたガス相(気液分離器F100温度5
0.0℃のメタノール、ギ酸メチル蒸気圧に相当するメタ
ノール/ギ酸メチル、液相メタノール/ギ酸メチルに溶
解した一酸化炭素を除く生成した一酸化炭素)は流路15
0よりCOガス圧縮機C110を経てさらに加圧され、流路1
60を経て気液分離器F110に供給される。気液分離器F100
より排出された液相(メタノール/ギ酸メチル、メタノ
ール/ギ酸メチルに溶解した一酸化炭素)は流路170、
流路190、熱交換器E110、流路200を経て系内部熱交換に
よる予熱が行われ、メタノール/ギ酸メチル液ポンプP1
00に供給される。なお、気液分離器F130より排出された
液相(メタノール/ギ酸メチル、メタノール/ギ酸メチ
ルに溶解した一酸化炭素)は流路180を経て流路170に合
流される。(1)および(3)式の反応の原料となるメタノー
ルおよびギ酸メチルはメタノール/ギ酸メチル液ポンプ
P100の出口流路210から、熱交換器E120、流路220、熱交
換器E130、流路230を経て系内部熱交換による予熱が行
われ、メタノール/ギ酸メチル液相分解反応器R110に供
給される。なお、流路1000より系外部からの排ガスがメ
タノール/ギ酸メチル液相分解反応器R110に供給され、
流路1010より排出され、系外部からの加熱による排ガス
からの熱回収が行われる。メタノール/ギ酸メチル液相
分解反応器R110は参考例3に用いた銅−クロム−マンガ
ン−バリウム触媒が充填されており、温度197℃、圧力
5.56MPaでメタノールおよびギ酸メチル液相分解反応が
行われる(メタノール反応率10.8%、ギ酸メチル反応率
97.4%)。メタノールおよびギ酸メチルの液相分解反応
により生成した一酸化炭素、水素および未反応メタノー
ル、ギ酸メチルは流路240、熱交換器E130、流路260を経
て気液分離器F120に入る。気液分離器F120より排出され
た液相(未反応メタノール/ギ酸メチル、未反応メタノ
ール/ギ酸メチルに溶解した一酸化炭素/水素)は流路
270、メタノール/ギ酸メチル液ポンプP110、流路280を
経てメタノール/ギ酸メチル液相分解反応器R110に供給
され、ガス相(気液分離器F120温度194.3℃のメタノー
ルおよびギ酸メチル蒸気圧に相当する未反応メタノール
/ギ酸メチル、液相未反応メタノール/ギ酸メチルに溶
解した一酸化炭素/水素を除く生成した一酸化炭素/水
素)は流路290より第1膨張タービンEX100に供給され
る。第1膨張タービンEX100で減圧されたガスは流路30
0、熱交換器E120、流路310、熱交換器E140、流路320を
経て、ギ酸メチル液相分解反応器R100で系内部熱交換に
より反応熱および未反応メタノール/ギ酸メチルの蒸発
潜熱分相当の熱供給が行われ、流路325を経て気液分離
器F140に入る。気液分離器F140より排出されたガス相
(気液分離器F140温度70.0℃のメタノール、ギ酸メチル
蒸気圧に相当するメタノール/ギ酸メチル、液相メタノ
ール/ギ酸メチルに溶解した一酸化炭素/水素を除く生
成した一酸化炭素/水素)は流路340、熱交換器E110、
流路350を経て気液分離器F110に供給される。なお、流
路1020より系外部からの冷却水が気液分離器F110に供給
され、流路1030より系外に排出され、気液分離器F110で
の冷却熱に使われる。気液分離器F110より排出された液
相(メタノール/ギ酸メチル、メタノール/ギ酸メチル
に溶解した一酸化炭素/水素)は流路370、流路380を経
てメタノール/ギ酸メチル液ポンプP100に供給される。
なお、気液分離器F140より排出された液相(メタノール
/ギ酸メチル、メタノール/ギ酸メチルに溶解した一酸
化炭素/水素)は流路330を経て、流路370に合流され
る。気液分離器F110より排出されたガス相(気液分離器
F110温度25℃のメタノール、ギ酸メチル蒸気圧に相当す
る未反応メタノール/ギ酸メチル、液相未反応メタノー
ル/ギ酸メチルに溶解した一酸化炭素/水素を除く生成
した一酸化炭素/水素)は流路360により長距離輸送さ
れる(輸送距離10km、圧力損失0.05MPa)。一方、熱交
換器E520より排出された液相(メタノール/ギ酸メチ
ル、メタノール/ギ酸メチルに溶解した一酸化炭素/水
素)は、流路100により長距離輸送される(輸送距離10k
m、圧力損失0.303MPa)。
(System Concerning Methanol-Methyl Formate Decomposition Reaction) In FIG. 1, methanol and methyl formate, which are raw materials for the reactions of formulas (1) and (3), are supplied through a flow path 100 and a heat exchanger E10.
0, preheating is performed by heat exchange inside the system via the flow path 110, and the preheated liquid is supplied to the methyl formate liquid phase decomposition reactor R100. The methyl formate liquid phase decomposition reactor R100 is filled with the ion exchange resin used in Reference Example 7, and performs a methyl formate liquid phase decomposition reaction at a temperature of 70 ° C. and a pressure of 0.61 MPa (a methyl formate reaction rate of 54.4%).
%). Methanol (including unreacted supply methanol), carbon monoxide, and unreacted methyl formate generated by the liquid phase decomposition reaction of methyl formate pass through channel 120, heat exchanger E100, and channel 125.
And enters the gas-liquid separator F130. Gas phase discharged from the gas-liquid separator F130 (excluding methanol at 51.3 ° C, methanol / methyl formate corresponding to the vapor pressure of methyl formate, and carbon monoxide dissolved in liquid-phase methanol / methyl formate) Carbon monoxide) is pressurized through a CO gas compressor C100 from a flow path 130, and is supplied to a gas-liquid separator F10 through a flow path 140.
Supplied to 0. Note that cooling water from the outside of the system is supplied to the gas-liquid separator F100 from the flow path 1040, discharged out of the system from the flow path 1050, and used for cooling heat in the gas-liquid separator F100. Gas phase discharged from gas-liquid separator F100 (gas-liquid separator F100 temperature 5
Methanol at 0.0 ° C., methanol / methyl formate corresponding to the vapor pressure of methyl formate, and carbon monoxide (except for carbon monoxide dissolved in liquid-phase methanol / methyl formate) generated in channel 15
0 and further pressurized through a CO gas compressor C110,
After 60, it is supplied to the gas-liquid separator F110. Gas-liquid separator F100
The liquid phase (methanol / methyl formate, carbon monoxide dissolved in methanol / methyl formate) discharged from
Preheating is performed by heat exchange inside the system via the flow path 190, the heat exchanger E110, and the flow path 200, and the methanol / methyl formate liquid pump P1
00 is supplied. The liquid phase (methanol / methyl formate, carbon monoxide dissolved in methanol / methyl formate) discharged from the gas-liquid separator F130 joins the flow channel 170 via the flow channel 180. Methanol and methyl formate, which are the raw materials for the reactions of formulas (1) and (3), are methanol / methyl formate liquid pumps.
From the outlet flow path 210 of P100, preheating is performed by heat exchange inside the system via the heat exchanger E120, the flow path 220, the heat exchanger E130, and the flow path 230, and supplied to the methanol / methyl formate liquid phase decomposition reactor R110. You. Exhaust gas from the outside of the system is supplied to the methanol / methyl formate liquid phase decomposition reactor R110 from the channel 1000,
Heat is recovered from exhaust gas discharged from the flow path 1010 and heated from outside the system. The methanol / methyl formate liquid-phase decomposition reactor R110 was filled with the copper-chromium-manganese-barium catalyst used in Reference Example 3, and was heated at a temperature of 197 ° C and a pressure of 197 ° C.
The liquid phase decomposition reaction of methanol and methyl formate is performed at 5.56 MPa (methanol conversion 10.8%, methyl formate conversion
97.4%). Carbon monoxide, hydrogen, unreacted methanol, and methyl formate generated by the liquid phase decomposition reaction of methanol and methyl formate enter the gas-liquid separator F120 via the flow path 240, the heat exchanger E130, and the flow path 260. The liquid phase (unreacted methanol / methyl formate, carbon monoxide / hydrogen dissolved in unreacted methanol / methyl formate) discharged from gas-liquid separator F120
270, supplied to a methanol / methyl formate liquid phase decomposition reactor R110 via a methanol / methyl formate liquid pump P110 and a flow path 280, and supplied to a gas phase (gas / liquid separator F120, corresponding to the vapor pressure of methanol and methyl formate at a temperature of 194.3 ° C). The unreacted methanol / methyl formate and the carbon monoxide / hydrogen produced excluding the carbon monoxide / hydrogen dissolved in the liquid phase unreacted methanol / methyl formate) are supplied to the first expansion turbine EX100 from the flow path 290. The gas decompressed by the first expansion turbine EX100 flows through the flow path 30
0, heat exchanger E120, flow path 310, heat exchanger E140, flow path 320, the heat of reaction and the latent heat of vaporization of unreacted methanol / methyl formate by internal heat exchange in the liquid phase cracking reactor R100 of methyl formate Is supplied to the gas-liquid separator F140 via the flow path 325. Gas phase discharged from gas-liquid separator F140 (methanol at gas-liquid separator F140 temperature of 70.0 ° C, methanol / methyl formate corresponding to vapor pressure of methyl formate, carbon monoxide / hydrogen dissolved in liquid-phase methanol / methyl formate Excluding generated carbon monoxide / hydrogen) flow path 340, heat exchanger E110,
The gas is supplied to the gas-liquid separator F110 via the flow path 350. Note that cooling water from outside the system is supplied to the gas-liquid separator F110 from the flow path 1020, discharged out of the system from the flow path 1030, and used for cooling heat in the gas-liquid separator F110. The liquid phase (methanol / methyl formate, carbon monoxide / hydrogen dissolved in methanol / methyl formate) discharged from the gas-liquid separator F110 is supplied to the methanol / methyl formate liquid pump P100 via the flow path 370 and the flow path 380. You.
The liquid phase (methanol / methyl formate, carbon monoxide / hydrogen dissolved in methanol / methyl formate) discharged from the gas-liquid separator F140 is joined to the flow path 370 via the flow path 330. Gas phase discharged from gas-liquid separator F110 (gas-liquid separator
F110 methanol at 25 ° C, unreacted methanol / methyl formate corresponding to the vapor pressure of methyl formate, and carbon monoxide / hydrogen produced excluding carbon monoxide / hydrogen dissolved in liquid phase unreacted methanol / methyl formate) Transported over long distances by 360 (transport distance 10 km, pressure loss 0.05 MPa). On the other hand, the liquid phase (methanol / methyl formate, carbon monoxide / hydrogen dissolved in methanol / methyl formate) discharged from the heat exchanger E520 is transported over a long distance by the flow path 100 (transport distance 10 k).
m, pressure loss 0.303MPa).

【0035】(メタノール合成反応に関わる系)(5)お
よび(6)式の反応の原料となる一酸化炭素および水素は
流路360、熱交換器E500、流路500、流路530を経て系内
部熱交換による予熱が行われ、メタノールカルボニル化
液相合成反応器R500に供給される。メタノールカルボニ
ル化液相合成反応器R500は参考例10に用いたイオン交
換樹脂が充填されており、温度60℃、圧力3.03MPaでメ
タノールカルボニル化液相合成反応が行われる(メタノ
ール反応率16.3%)。メタノールカルボニル化液相合成
反応により生成したギ酸メチル(未反応供給ギ酸メチル
を含む)および未反応メタノール、一酸化炭素および未
反応供給水素は流路540を経て気液分離器F500入る。気
液分離器F500より排出されたガス相(気液分離器F500温
度60.0℃のメタノール、ギ酸メチル蒸気圧に相当するメ
タノール/ギ酸メチル、液相メタノール/ギ酸メチルに
溶解した一酸化炭素/水素を除く一酸化炭素/水素)は
流路550よりCO/水素ガス圧縮機C500、流路560、流路
610、熱交換器E510、流路620を経て加圧および内部熱交
換による予熱が行われ、ギ酸メチル水素化液相合成反応
器R510に供給され、液相(メタノール/ギ酸メチル、メ
タノール/ギ酸メチルに溶解した一酸化炭素/水素)は
流路570から分岐された流路590、メタノール/ギ酸メチ
ル液ポンプP500、流路600を経て加圧され、流路560に合
流される。また、流路570の液相の一部は流路580に分岐
され、流路690に合流される。ギ酸メチル水素化液相合
成反応器R510は参考例9に用いた粒状ラネー銅触媒が充
填されており、温度150℃、圧力3.03MPaでギ酸メチル水
素化液相合成反応が行われる(ギ酸メチル反応率11.4
%)。ギ酸メチル水素化液相合成反応により生成したメ
タノール(未反応供給メタノールを含む)および未反応
ギ酸メチル、未反応供給一酸化炭素および未反応水素は
流路630、熱交換器E510、流路635、熱交換器E530を経て
気液分離器F510入る。気液分離器F510より排出されたガ
ス相(気液分離器F510温度150.0℃のメタノール、ギ酸
メチル蒸気圧に相当するメタノール/ギ酸メチル、液相
メタノール/ギ酸メチルに溶解した一酸化炭素/水素を
除く一酸化炭素/水素)は流路650よりCO/水素ガス
圧縮機C510、流路510、流路520を経て加圧され流路500
に合流され、液相(メタノール/ギ酸メチル、メタノー
ル/ギ酸メチルに溶解した一酸化炭素/水素)は流路66
0から分岐された流路670、メタノール/ギ酸メチル液ポ
ンプP510、流路680を経て加圧され、流路510に合流され
る。また、流路660の液相の一部は流路690、流路700、
熱交換器E500、流路710を経て熱交換器E520に供給され
る。なお、流路1060より系外部からの冷却水が熱交換器
E520に供給され、流路1070より系外に排出され、熱交換
器E520での冷却熱に使われる。ここで、流路1200から温
水および水蒸気を作るのに使用される水が系外から供給
され、メタノールカルボニル化液相合成反応器R500で加
熱され、流路1210から分岐された流路1220より温水が系
外に排出され、熱利用される。また、流路1210の温水の
一部は流路1230に分岐され、熱交換器E530で系内部熱交
換による予熱が行われ、流路1240、ギ酸メチル水素化液
相合成反応器R510、流路1250を経て水蒸気が系外に排出
され熱利用される。
(System Related to Methanol Synthesis Reaction) Carbon monoxide and hydrogen, which are the raw materials for the reactions of formulas (5) and (6), pass through the flow path 360, the heat exchanger E500, the flow path 500, and the flow path 530. Preheating by internal heat exchange is performed, and the resultant is supplied to a methanol carbonylation liquid phase synthesis reactor R500. The methanol carbonylation liquid phase synthesis reactor R500 is filled with the ion exchange resin used in Reference Example 10, and performs a methanol carbonylation liquid phase synthesis reaction at a temperature of 60 ° C. and a pressure of 3.03 MPa (methanol conversion rate 16.3%). . Methyl formate (including unreacted supply methyl formate) and unreacted methanol, carbon monoxide, and unreacted supply hydrogen generated by the methanol carbonylation liquid phase synthesis reaction enter the gas-liquid separator F500 via the flow path 540. Gas phase discharged from gas-liquid separator F500 (Methanol at gas-liquid separator F500 temperature 60.0 ° C, methanol / methyl formate corresponding to vapor pressure of methyl formate, carbon monoxide / hydrogen dissolved in liquid-phase methanol / methyl formate Excludes carbon monoxide / hydrogen) from channel 550 through CO / hydrogen gas compressor C500, channel 560, channel
610, heat pre-heating by pressurization and internal heat exchange via heat exchanger E510 and flow path 620, and supplied to methyl formate hydrogenation liquid phase synthesis reactor R510, liquid phase (methanol / methyl formate, methanol / methyl formate) The carbon monoxide / hydrogen dissolved in water is pressurized through a flow path 590 branched from a flow path 570, a methanol / methyl formate liquid pump P500, and a flow path 600, and merges into a flow path 560. In addition, a part of the liquid phase in the flow path 570 is branched into the flow path 580, and merges with the flow path 690. The methyl formate hydrogenation liquid phase synthesis reactor R510 is packed with the granular Raney copper catalyst used in Reference Example 9, and performs a methyl formate hydrogenation liquid phase synthesis reaction at a temperature of 150 ° C. and a pressure of 3.03 MPa (methyl formate reaction). Rate 11.4
%). Methanol (including unreacted supply methanol) and unreacted methyl formate, unreacted supply carbon monoxide and unreacted hydrogen produced by the liquid phase synthesis reaction of methyl formate hydrogenation pass through channel 630, heat exchanger E510, channel 635, The gas-liquid separator F510 enters the heat exchanger E530. The gas phase discharged from the gas-liquid separator F510 (methanol at a temperature of 150.0 ° C. in the gas-liquid separator F510, methanol / methyl formate corresponding to the vapor pressure of methyl formate, and carbon monoxide / hydrogen dissolved in the liquid-phase methanol / methyl formate) (Excluding carbon monoxide / hydrogen) is pressurized from a flow path 650 through a CO / hydrogen gas compressor C510, a flow path 510, and a flow path 520, and the flow path 500
And the liquid phase (methanol / methyl formate, carbon monoxide / hydrogen dissolved in methanol / methyl formate)
The fluid is pressurized via a flow path 670 branched from zero, a methanol / methyl formate liquid pump P510, and a flow path 680, and merges with the flow path 510. In addition, a part of the liquid phase in the flow path 660 is a flow path 690, a flow path 700,
The heat is supplied to the heat exchanger E520 via the heat exchanger E500 and the flow path 710. The cooling water from the outside of the system flows from the flow path 1060 to the heat exchanger.
It is supplied to E520, discharged out of the system from the flow path 1070, and used for cooling heat in the heat exchanger E520. Here, hot water and water used for producing steam are supplied from the outside of the system from the channel 1200, heated in the methanol carbonylation liquid-phase synthesis reactor R500, and heated from the channel 1220 branched from the channel 1210. Is discharged out of the system and used for heat. In addition, a part of the hot water in the flow path 1210 is branched to a flow path 1230, preheating is performed by heat exchange inside the system in a heat exchanger E530, a flow path 1240, a methyl formate hydrogenation liquid phase synthesis reactor R510, a flow path After 1250, steam is discharged out of the system and used for heat.

【0036】(アンモニア水の蒸発と凝縮に関わる系)
熱交換器E410で凝縮されたアンモニア水は流路400を経
てアンモニア水液ポンプP400に供給される。なお、流路
1100より系外部からの冷却水が熱交換器E410に供給さ
れ、流路1110より系外に排出され、熱交換器E410での凝
縮熱に使われる。アンモニア水液ポンプP400の出口流路
410から、凝縮されたアンモニア水が熱交換器E400で系
内部熱交換による予熱が行われ、流路420を経て熱交換
器E140で系内部熱交換により大部分が蒸発され、流路43
0を経て気液分離器F400に供給される。気液分離器F400
より排出された液相は流路440、熱交換器E400、流路450
を経て熱交換器E410に供給され、ガス相は流路460より
第2膨張タービンEX400に供給され、減圧されたガスは
流路470を経て熱交換器E410に供給される。なお、第1
膨張タービンEX100と第2膨張タービンEX400に接続され
ている発電機M100から動力が発生する。
(System related to evaporation and condensation of ammonia water)
The aqueous ammonia condensed in the heat exchanger E410 is supplied to the aqueous ammonia liquid pump P400 via the flow path 400. The flow path
Cooling water from outside the system is supplied from 1100 to the heat exchanger E410, discharged out of the system from the flow path 1110, and used for heat of condensation in the heat exchanger E410. Outlet flow path of ammonia water liquid pump P400
From 410, the condensed ammonia water is preheated by heat exchange inside the system in the heat exchanger E400, and most of the water is evaporated by heat exchange inside the system in the heat exchanger E140 via the flow path 420, and the flow path 43
After passing through 0, it is supplied to the gas-liquid separator F400. Gas-liquid separator F400
The liquid phase discharged from channel 440, heat exchanger E400, channel 450
, Is supplied to the heat exchanger E410, the gas phase is supplied to the second expansion turbine EX400 from the flow path 460, and the decompressed gas is supplied to the heat exchanger E410 via the flow path 470. The first
Power is generated from the generator M100 connected to the expansion turbine EX100 and the second expansion turbine EX400.

【0037】各流路における温度、圧力、各成分組成を
表1〜表4に記載する。なお以下の表においてブランク
部分は前流路と変わらないことを示し、各成分組成の欄
の「液」は液体、「気」は気体、「混」は気液状態を示
す。
Tables 1 to 4 show the temperature, pressure and composition of each component in each channel. In the following table, the blank portion indicates that it is the same as the previous channel, and “liquid” in the column of each component composition indicates a liquid, “gas” indicates a gas, and “mixed” indicates a gas-liquid state.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】また熱交換器、気液分離器および反応器の
熱交換量は以下の通りである。
The amounts of heat exchange of the heat exchanger, the gas-liquid separator and the reactor are as follows.

【表5】 [Table 5]

【0043】液ポンプ、膨張タービン、ガス圧縮機の仕
様は以下の通りにした。 メタノール/ギ酸メチル液ポンプ(ポンプ効率90%) P100:消費動力63 KWH 、P110:消費動力 1 KWH P500:消費動力 6 KWH 、P510:消費動力 6 KWH アンモニア水液ポンプ(ポンプ効率90%) P400:消費動力58 KWH 膨張タービン(断熱効率80%) EX100:発生動力 794KWH 、EX400:発生動力1061KWH ガス圧縮機(断熱効率85%) C100:消費動力 53KWH 、C110:消費動力 54KWH C500:消費動力 67KWH 、C510:消費動力 55KWH
The specifications of the liquid pump, the expansion turbine, and the gas compressor were as follows. Methanol / methyl formate liquid pump (Pump efficiency 90%) P100: Power consumption 63 KWH, P110: Power consumption 1 KWH P500: Power consumption 6 KWH, P510: Power consumption 6 KWH Ammonia water liquid pump (Pump efficiency 90%) P400: Power consumption 58 KWH Expansion turbine (80% adiabatic efficiency) EX100: Generated power 794KWH, EX400: Generated power 1061KWH Gas compressor (Adiabatic efficiency 85%) C100: Power consumption 53KWH, C110: Power consumption 54KWH C500: Power consumption 67KWH, C510 : Power consumption 55KWH

【0044】以上のシステムにおいて、(1)および(3)式
の反応によるメタノール、ギ酸メチル液相分解反応にお
ける外部からの回収熱量(200℃の排ガス利用)は60.
678×106 kJ/hr、(5)および(6)式の反応によるメタノー
ル、ギ酸メチル液相合成反応における外部での利用熱量
(144℃の水蒸気および55℃の温水利用)は(6.555+
10.339+11.498)×106=28.392 ×106kJ/hr、発電量
(発生動力と消費動力の差)は[(794+1061)−(6
3+1+6+6+58+53+54+67+55)]=1492KWHであり
発電効率を38.2%として14.051×106 kJ/hrとなる。これ
より本システムの熱輸送効率〔(+)/〕は70.0
%となる。従って本システムでは200℃の比較的低温の
排熱源から144℃の水蒸気利用および55℃の温熱利用と
発電を極めて高効率に行うことができることが分かる。
In the above system, the amount of heat recovered from the outside (using 200 ° C. exhaust gas) in the methanol-methyl formate liquid phase decomposition reaction by the reactions of the equations (1) and (3) is 60.
678 × 106 kJ / hr, externally used heat (water vapor at 144 ° C. and hot water at 55 ° C.) in the liquid phase synthesis reaction of methanol and methyl formate by the reactions of equations (5) and (6) is (6.555+
10.339 + 11.498) x 106 = 28.392 x 106 kJ / hr, and the amount of power generation (difference between generated power and consumed power) is [(794 + 1061)-(6
3 + 1 + 6 + 6 + 58 + 53 + 54 + 67 + 55)] = 1492 KWH, which is 14.051 x 106 kJ / hr when the power generation efficiency is 38.2%. From this, the heat transfer efficiency [(+) /] of this system is 70.0
%. Therefore, it can be seen that in this system, the use of steam at 144 ° C and the use of warm heat at 55 ° C and power generation can be performed with extremely high efficiency from a relatively low-temperature exhaust heat source at 200 ° C.

【0045】実施例2 次に示す条件以外は実施例1と同様にして、参考例に基
づき本発明による熱回収と熱利用および発電システムの
計算を行った。メタノールおよびギ酸メチル液相分解反
応圧力6.77MPa(R110:メタノール反応率20.4%、ギ酸
メチル反応率98.6%)、メタノールカルボニル化液相合
成反応温度70℃、圧力4.04MPa(R500:メタノール反応
率21.9%)およびギ酸メチル水素化液相合成反応温度16
0℃、圧力4.04MPa(R510:ギ酸メチル反応率14.8%)
Example 2 In the same manner as in Example 1 except for the following conditions, calculation of heat recovery, heat utilization, and a power generation system according to the present invention was performed based on a reference example. Methanol and methyl formate liquid phase decomposition reaction pressure 6.77 MPa (R110: methanol conversion rate 20.4%, methyl formate reaction rate 98.6%), methanol carbonylation liquid phase synthesis reaction temperature 70 ° C, pressure 4.04 MPa (R500: methanol conversion rate 21.9% ) And methyl formate hydrogenation liquid phase synthesis reaction temperature 16
0 ° C, pressure 4.04MPa (R510: methyl formate reaction rate 14.8%)

【0046】各流路における温度、圧力、各成分組成を
表6〜表9に記載する。なお以下の表においてブランク
部分は前流路と変わらないことを示し、各成分組成の欄
の「液」は液体、「気」は気体、「混」は気液状態を示
す。
Tables 6 to 9 show the temperature, pressure and composition of each component in each channel. In the following table, the blank portion indicates that it is the same as the previous channel, and “liquid” in the column of each component composition indicates a liquid, “gas” indicates a gas, and “mixed” indicates a gas-liquid state.

【0047】[0047]

【表6】 [Table 6]

【0048】[0048]

【表7】 [Table 7]

【0049】[0049]

【表8】 [Table 8]

【0050】[0050]

【表9】 [Table 9]

【0051】また熱交換器、気液分離器および反応器の
熱交換量は以下の通りである。
The heat exchange amounts of the heat exchanger, the gas-liquid separator and the reactor are as follows.

【表10】 [Table 10]

【0052】液ポンプ、膨張タービン、ガス圧縮機の仕
様は以下の通りにした。 メタノール/ギ酸メチル液ポンプ(ポンプ効率90%) P100:消費動力46 KWH 、P110:消費動力 1 KWH P500:消費動力 5 KWH 、P510:消費動力 5 KWH アンモニア水液ポンプ(ポンプ効率90%) P400:消費動力35 KWH 膨張タービン(断熱効率80%) EX100:発生動力 493KWH 、EX400:発生動力 503KWH ガス圧縮機(断熱効率85%) C100:消費動力 64KWH 、C110:消費動力 62KWH C500:消費動力 39KWH 、C510:消費動力 29KWH
The specifications of the liquid pump, the expansion turbine, and the gas compressor were as follows. Methanol / methyl formate liquid pump (Pump efficiency 90%) P100: Power consumption 46 KWH, P110: Power consumption 1 KWH P500: Power consumption 5 KWH, P510: Power consumption 5 KWH Ammonia water liquid pump (Pump efficiency 90%) P400: Power consumption 35 KWH Expansion turbine (80% adiabatic efficiency) EX100: Generated power 493KWH, EX400: Generated power 503KWH Gas compressor (Adiabatic efficiency 85%) C100: Power consumption 64KWH, C110: Power consumption 62KWH C500: Power consumption 39KWH, C510 : Power consumption 29KWH

【0053】以上のシステムにおいて、(1)および(3)式
の反応によるメタノール、ギ酸メチル液相分解反応にお
ける外部からの回収熱量(200℃の排ガス利用)は44.
104×106 kJ/hr、(5)および(6)式の反応によるメタノー
ル、ギ酸メチル液相合成反応における外部での利用熱量
(144℃の水蒸気および65℃の温水利用)は(5.222+
9.627+13.354)×106=28.203 ×106kJ/hr、発電量
(発生動力と消費動力の差)は[(493+ 503)−(4
6+1+5+5+35+64+62+39+29)]= 710KWHであり
発電効率を38.2%として 6.686×106 kJ/hrとなる。これ
より本システムの熱輸送効率〔(+)/〕は79.1
%となる。従って本システムでは200℃の比較的低温の
排熱源から144℃の水蒸気利用および65℃の温熱利用と
発電を極めて高効率に行うことができることが分かる。
In the above system, the amount of heat recovered from the outside (using the exhaust gas at 200 ° C.) in the liquid phase decomposition reaction of methanol and methyl formate by the reactions of the formulas (1) and (3) is 44.
104 x 106 kJ / hr, the heat used externally in the liquid phase synthesis reaction of methanol and methyl formate by the reactions of equations (5) and (6) (using steam at 144 ° C and hot water at 65 ° C) is (5.222+
9.627 + 13.354) x 106 = 28.203 x 106 kJ / hr, and the amount of power generation (difference between generated power and consumed power) is [(493 + 503)-(4
6 + 1 + 5 + 5 + 35 + 64 + 62 + 39 + 29)] = 710 KWH, which is 6.686 x 106 kJ / hr when the power generation efficiency is 38.2%. From this, the heat transfer efficiency [(+) /] of this system was 79.1.
%. Therefore, it can be understood that the present system can use a relatively low-temperature exhaust heat source at 200 ° C. to use steam at 144 ° C., use heat at 65 ° C., and generate power with extremely high efficiency.

【0054】[0054]

【発明の効果】以上の実施例より明らかなように本発明
による熱回収と熱利用および発電の方法では、従来高効
率で熱利用が困難であった150〜250℃程度の排熱源から
144℃程度の水蒸気発生と55〜65℃の温水発生および電
気発生を、従来得られなかったような極めて高効率で熱
利用を行い、工場や都市部の熱需要地での種々の熱源や
冷暖房に有効に用いることができる。また、電気発生す
ることにより熱回収側と熱利用側との距離による制約が
無くなる。本発明の方法は比較的低温の温和な条件で反
応が行われるので装置コストが少なくて済み、また液相
反応を用いれば効率良く熱回収と熱利用および発電を行
うことができるので、省エネルギー対策として極めて優
れた方法である。
As is clear from the above embodiments, in the method of heat recovery, heat utilization and power generation according to the present invention, a heat recovery source of about 150 to 250 ° C., which was conventionally highly efficient and difficult to utilize heat, was used.
Generates steam at about 144 ° C, generates hot water at 55 to 65 ° C, and generates electricity with extremely high efficiency, which has never been obtained before.Various heat sources and cooling and heating systems in factories and urban heat demand areas Can be used effectively. In addition, generation of electricity eliminates restrictions due to the distance between the heat recovery side and the heat utilization side. In the method of the present invention, the reaction is carried out under relatively low temperature and mild conditions, so that the equipment cost can be reduced, and if liquid phase reaction is used, heat recovery, heat utilization and power generation can be performed efficiently, so that energy saving measures can be taken. This is an extremely excellent method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱回収と熱利用のシステムを示すフロ
ー図の一例である。
FIG. 1 is an example of a flowchart showing a heat recovery and heat utilization system of the present invention.

【符号の説明】[Explanation of symbols]

C100、C110 COガス圧縮機 C500、C510 CO/H2ガス圧縮機 E100、E110、E120、E130、E140、
E400、E410、E500、E510、E520、
E530 熱交換器 EX100 第1膨張タービン EX400 第2膨張タービン F100、F110、F120、F130、F140、
F400、F500、F510 気液分離器 M100 発電機 P100、P110、P500、P510 メタノール
/ギ酸メチル液ポンプ P400 アンモニア水液ポンプ R100 ギ酸メチル液相分解反応器 R110 メタノール/ギ酸メチル液相分解反応器 R500 ギ酸メチル水素化液相合成反応器 R510 メタノールカルボニル化液相合成反応器
C100, C110 CO gas compressor C500, C510 CO / H2 gas compressor E100, E110, E120, E130, E140,
E400, E410, E500, E510, E520,
E530 Heat exchanger EX100 First expansion turbine EX400 Second expansion turbine F100, F110, F120, F130, F140,
F400, F500, F510 Gas-liquid separator M100 Generator P100, P110, P500, P510 Methanol / methyl formate liquid pump P400 Ammonia water liquid pump R100 Methyl formate liquid phase decomposition reactor R110 Methanol / methyl formate liquid phase decomposition reactor R500 formic acid Methyl hydrogenation liquid phase synthesis reactor R510 Methanol carbonylation liquid phase synthesis reactor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松村 安行 京都府相楽郡木津町木津川台九丁目2番地 財団法人地球環境産業技術研究機構内 (72)発明者 梶山 士郎 東京都千代田区丸の内二丁目5番2号 三 菱瓦斯化学株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuyuki Matsumura 9-2 Kizugawadai, Kizu-cho, Kizu-cho, Soraku-gun, Kyoto Prefecture Within the National Research Institute for Earth-Environmental Technology (72) Inventor Shiro Kajiyama 2-5 Marunouchi, Chiyoda-ku, Tokyo No. 2 Sanrishi Gas Chemical Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】(1)〜(3)式のメタノール、ギ酸メチル液相
分解反応(吸熱反応)を組み合わせて熱回収を行い、分
解生成ガスを用いて膨張タービンにより発電した後、
(4)〜(6)式のメタノール、ギ酸メチル液相合成反応(発
熱反応)を組み合わせて熱利用を行うことを特徴とする
メタノール・ギ酸メチルの化学エネルギーを用いる熱回
収と熱利用および発電の方法。 CH3OH → 2H2 + CO (1) 2CH3OH → 2H2 + HCOOCH3 (2) HCOOCH3 → CH3OH + CO (3) 2H2 + CO → CH3OH (4) 2H2 + HCOOCH3 → 2CH3OH (5) CH3OH + CO → HCOOCH3 (6)
1. Heat recovery is performed by combining a liquid phase decomposition reaction (endothermic reaction) of methanol and methyl formate of the formulas (1) to (3), and after generating power by an expansion turbine using a decomposition product gas,
Heat recovery, heat utilization and power generation using chemical energy of methanol / methyl formate, characterized by performing heat utilization by combining the liquid phase synthesis reaction (exothermic reaction) of methanol and methyl formate of formulas (4) to (6) Method. CH 3 OH → 2H 2 + CO (1) 2CH 3 OH → 2H 2 + HCOOCH 3 (2) HCOOCH 3 → CH 3 OH + CO (3) 2H 2 + CO → CH 3 OH (4) 2H 2 + HCOOCH 3 → 2CH 3 OH (5) CH 3 OH + CO → HCOOCH 3 (6)
【請求項2】(1)〜(3)式のメタノールおよび/またはギ
酸メチル液相分解反応を(4)〜(6)式のメタノール、ギ酸
メチル液相合成反応よりも高い圧力で行い、その圧力差
により発電を行う請求項1記載の化学エネルギーを用い
る熱回収と熱利用および発電の方法。
2. The methanol and / or methyl formate liquid phase decomposition reactions of formulas (1) to (3) are carried out at a higher pressure than the methanol and methyl formate liquid phase synthesis reactions of formulas (4) to (6). The method for heat recovery, heat utilization and power generation using chemical energy according to claim 1, wherein power generation is performed by a pressure difference.
【請求項3】分解生成ガスによる膨張タービンの排気ガ
スを利用したアンモニア水混合蒸気の膨張タービンを設
置し、更に発電を行う請求項1または請求項2に記載の
化学エネルギーを用いる熱回収と熱利用および発電の方
法。
3. The heat recovery and heat using chemical energy according to claim 1 or 2, wherein an expansion turbine of ammonia water mixed steam using exhaust gas of the expansion turbine by the decomposition product gas is installed, and power is further generated. How to use and generate electricity.
【請求項4】(1)〜(3)式のメタノール、ギ酸メチル液相
分解反応器内および/または(4)〜(6)式のメタノール、
ギ酸メチル液相合成反応器内に取り付けた熱交換器によ
り熱回収および/または熱利用を行う請求項1〜3のい
ずれかに記載の化学エネルギーを用いる熱回収と熱利用
および発電の方法。
4. Methanol of formulas (1) to (3), methanol in a liquid formic acid decomposition reactor and / or methanol of formulas (4) to (6),
The method for heat recovery, heat utilization and power generation using chemical energy according to any one of claims 1 to 3, wherein heat recovery and / or heat utilization is performed by a heat exchanger mounted in the methyl formate liquid phase synthesis reactor.
JP2000368554A 2000-12-04 2000-12-04 Heat recovery, heat utilization and power generation using chemical energy of methanol and methyl formate Expired - Lifetime JP4691632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000368554A JP4691632B2 (en) 2000-12-04 2000-12-04 Heat recovery, heat utilization and power generation using chemical energy of methanol and methyl formate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000368554A JP4691632B2 (en) 2000-12-04 2000-12-04 Heat recovery, heat utilization and power generation using chemical energy of methanol and methyl formate

Publications (2)

Publication Number Publication Date
JP2002168132A true JP2002168132A (en) 2002-06-14
JP4691632B2 JP4691632B2 (en) 2011-06-01

Family

ID=18838761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000368554A Expired - Lifetime JP4691632B2 (en) 2000-12-04 2000-12-04 Heat recovery, heat utilization and power generation using chemical energy of methanol and methyl formate

Country Status (1)

Country Link
JP (1) JP4691632B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114315511A (en) * 2020-09-27 2022-04-12 上海浦景化工技术股份有限公司 Method for preparing high-purity methanol and CO by decarbonylation of methyl formate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001302A (en) * 1998-04-16 2000-01-07 Haldor Topsoe As Method to simultaneously produce hydrogen-rich gas and electric power
JP2000001312A (en) * 1998-04-16 2000-01-07 Haldor Topsoe As Method for simultaneously generating ammonia synthesis gas and power and apparatus therefor
JP2000199408A (en) * 1999-01-05 2000-07-18 Ebara Corp Power generation method utilizing hot discharged water and power generation facility
JP2000221297A (en) * 1999-01-28 2000-08-11 Toshiba Corp Process and system for power generation by utilizing spent fuel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3322280B2 (en) * 1993-05-13 2002-09-09 三菱瓦斯化学株式会社 Method of heat recovery and utilization using chemical energy
JPH11106203A (en) * 1997-09-30 1999-04-20 Ishikawajima Harima Heavy Ind Co Ltd Partially oxidizing gasification apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001302A (en) * 1998-04-16 2000-01-07 Haldor Topsoe As Method to simultaneously produce hydrogen-rich gas and electric power
JP2000001312A (en) * 1998-04-16 2000-01-07 Haldor Topsoe As Method for simultaneously generating ammonia synthesis gas and power and apparatus therefor
JP2000199408A (en) * 1999-01-05 2000-07-18 Ebara Corp Power generation method utilizing hot discharged water and power generation facility
JP2000221297A (en) * 1999-01-28 2000-08-11 Toshiba Corp Process and system for power generation by utilizing spent fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114315511A (en) * 2020-09-27 2022-04-12 上海浦景化工技术股份有限公司 Method for preparing high-purity methanol and CO by decarbonylation of methyl formate

Also Published As

Publication number Publication date
JP4691632B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
CN100509726C (en) Preparation method of dichloro propanol from glycerin
JP5209499B2 (en) Acrolein manufacturing method
Saito et al. Catalyst‐assisted chemical heat pump with reaction couple of acetone hydrogenation/2–propanol dehydrogenation for upgrading low‐level thermal energy: Proposal and evaluation
CN102775274B (en) System and method for preparing ethylene glycol through oxalate hydrogenation
CN102060664B (en) High-efficiency and energy-saving reaction process for preparing ethylene glycol through hydrogenation of oxalate
CN103804142A (en) System and method used for preparing glycol via hydrogenation of oxalic ester
CN107011163B (en) The method that acetylene method gas phase produces vinylacetate
CN101747176B (en) Method for preparation of trifluoro acetyl chloride with trifluoroethane chlorinated mixture
CA3215019A1 (en) Integration for feed dilution in oxidative dehydrogenation (odh) reactor system
WO2005066110A1 (en) Combined production of dialkyl carbonate and diol
CN110215886B (en) Reaction temperature control method for reactor for preparing low-carbon alcohol from synthesis gas
CN111138251A (en) Process method, system and application for producing dimethanol formal by coupling reaction
JP4691632B2 (en) Heat recovery, heat utilization and power generation using chemical energy of methanol and methyl formate
JP4496327B2 (en) Methods of heat recovery, heat utilization and power generation using chemical energy
US20050049318A1 (en) High-pressure fischer-tropsch synthesis process using an optimized coolant
CN212335079U (en) Production process device for synthesizing methyl methacrylate by methyl acetate and formaldehyde
CN105008327B (en) Urea equipment remodeling method
CN111253213B (en) Technological method and system for preparing ethanol by acetate hydrogenation
AU2018253853B2 (en) Method and device for converting carbon dioxide into methanol
Park et al. Techno-economic analysis of the integrated DME production process: Effects of different separation trains and recycling strategies
JP3801283B2 (en) Heat recovery and utilization methods using chemical energy
JP3322280B2 (en) Method of heat recovery and utilization using chemical energy
CN103159588A (en) Optimized separation process for ethanol production from ester hydrogenation
Cai et al. Advances in Organic Liquid‐Gas Chemical Heat Pumps
JP2001263828A (en) Energy converting system using hydrogenating reaction of methyl formate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4691632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term