JP3322280B2 - Method of heat recovery and utilization using chemical energy - Google Patents

Method of heat recovery and utilization using chemical energy

Info

Publication number
JP3322280B2
JP3322280B2 JP11186093A JP11186093A JP3322280B2 JP 3322280 B2 JP3322280 B2 JP 3322280B2 JP 11186093 A JP11186093 A JP 11186093A JP 11186093 A JP11186093 A JP 11186093A JP 3322280 B2 JP3322280 B2 JP 3322280B2
Authority
JP
Japan
Prior art keywords
reaction
heat
methanol
heat recovery
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11186093A
Other languages
Japanese (ja)
Other versions
JPH06323684A (en
Inventor
敏夫 梶田
士郎 梶山
弘巳 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP11186093A priority Critical patent/JP3322280B2/en
Publication of JPH06323684A publication Critical patent/JPH06323684A/en
Application granted granted Critical
Publication of JP3322280B2 publication Critical patent/JP3322280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、化学エネルギーを用い
て、発電所、製鉄所および各種プロセス設備等から排出
される産業廃熱等の回収及びその熱利用を行う方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering industrial waste heat and the like discharged from power plants, steelworks and various kinds of process equipment using chemical energy and utilizing the heat.

【0002】[0002]

【従来の技術】従来、熱エネルギーの回収、輸送および
利用方法としては、水蒸気又は熱水を用いる方法が一般
的である。しかしこれらの方法は、熱損失および設備コ
ストの面からの制約が大きく、低温排熱の回収には限界
がある。即ち発電所、製鉄所等のエネルギー多消費型の
各種産業設備では近年省エネルギーが進行し、かなりの
部分の排熱回収が行われているが、 200〜300 ℃以下の
低温排熱は自己設備内で適切に利用する手段がないこと
から廃棄され、そのために大きな冷却負荷を要している
ことが多い。
2. Description of the Related Art Conventionally, as a method of recovering, transporting and using thermal energy, a method using steam or hot water is generally used. However, these methods are greatly restricted in terms of heat loss and equipment cost, and there is a limit in recovering low-temperature exhaust heat. In other words, energy saving has been progressing in recent years in various energy-intensive industrial facilities such as power plants and steelworks, and a considerable part of waste heat recovery has been performed. Because of the lack of means for proper use, they are often discarded, which requires a large cooling load.

【0003】近年、低温排熱を有効に回収し、熱損失が
少なく、10km以上の長距離を輸送して都市の地域冷暖房
や給湯等に利用する方法として熱エネルギーを化学エネ
ルギーに変えて熱回収と熱利用を行うことが検討されて
いる。この方法では熱回収側と熱利用側で熱エネルギー
と化学エネルギーの変換が必要であるが、長距離の輸送
と貯蔵が可能であり、輸送および貯蔵での熱損失が無
く、エネルギー密度が大きいことから設備コスト面から
も有利な方法とされている。
[0003] In recent years, as a method of effectively recovering low-temperature exhaust heat, reducing heat loss, and transporting over a long distance of 10 km or more and utilizing it for district heating and cooling, hot water supply, etc. in urban areas, heat energy is converted into chemical energy to recover heat. And heat utilization is being considered. This method requires the conversion of heat energy and chemical energy on the heat recovery side and heat utilization side, but it can be transported and stored over long distances, has no heat loss during transport and storage, and has a high energy density. Therefore, this method is advantageous in terms of equipment cost.

【0004】熱エネルギーと化学エネルギーの変換系で
有力なものとしては (1)式のメタノール分解反応と(1)'
式のメタノール合成反応を用いる方法が提案されてい
る。 CH3 OH = CO + 2H2 (1) CO + 2H2 = CH3 OH (1)' この方法は (1)式のメタノール分解反応が吸熱反応であ
ることから (1)式を用いて排熱回収を行い、得られたC
O+2H2 を輸送し、熱利用地で(1)'式の発熱反応によ
り熱エネルギーの供給が行われる。(1)'式により生成し
たメタノールは熱回収地に循環して再利用される。
[0004] The most promising thermal and chemical energy conversion systems are the methanol decomposition reaction of formula (1) and (1) '
A method using a methanol synthesis reaction of the formula has been proposed. CH 3 OH = CO + 2H 2 (1) CO + 2H 2 = CH 3 OH (1) ′ Since this method is an endothermic reaction of the methanol decomposition reaction of the formula (1), the heat is discharged using the formula (1). The collected C
O + 2H 2 is transported, and thermal energy is supplied by the exothermic reaction of the formula (1) ′ at the heat utilization site. The methanol produced by the formula (1) 'is circulated to the heat recovery area and reused.

【0005】[0005]

【発明が解決しようとする課題】(1)式および(1)'式を
用いる変換系は、安価で取扱性の良いメタノールを用い
て、容易に反応を行うことができることから、エネルギ
ー変換系として有力と見られるが、次のような課題を有
している。 1).熱回収は (1)式の反応の下限温度により制約される
ことになるが、反応速度等の実用的見地から熱回収の下
限温度は 200℃前後が限界であり、排熱回収として最も
望ましい領域とされている 200〜100 ℃から常温程度の
低温度域での熱回収を行うことができない。 2).熱回収を有効に行うために (1)式の下限温度を低下
させる必要があるが、(1) 式の平衡関係は反応温度を低
下と共にメタノール分解側に著しく不利となる。 3).熱利用の面からは(1)'式の反応を高温で行うことが
有利であるが、(1)'式の反応の平衡関係は反応温度の上
昇と共にメタノール合成反応が著しく不利となる。また
平衡関係を改善するためにはメタノール合成反応を高圧
下で行うことになるが、装置コストおよび操業費等の点
から熱利用性が低く、反応温度および圧力特性の改善が
望まれる。
The conversion system using the formulas (1) and (1) ′ can be easily reacted using methanol which is inexpensive and easy to handle. Although it seems to be influential, it has the following issues. 1) .Heat recovery is limited by the lower limit temperature of the reaction in equation (1), but from a practical point of view such as reaction rate, the lower limit temperature of heat recovery is around 200 ° C. It is not possible to recover heat in a low temperature range of 200-100 ° C, which is considered to be the most desirable range, to room temperature. 2). In order to carry out heat recovery effectively, it is necessary to lower the lower limit temperature of the equation (1). However, the equilibrium relation of the equation (1) becomes significantly disadvantageous to the methanol decomposition side as the reaction temperature decreases. 3) From the viewpoint of heat utilization, it is advantageous to carry out the reaction of the formula (1) 'at a high temperature, but the equilibrium relationship of the reaction of the formula (1)' is such that the methanol synthesis reaction is significantly disadvantageous as the reaction temperature rises. Become. In order to improve the equilibrium relationship, the methanol synthesis reaction is performed under high pressure. However, heat utilization is low from the viewpoint of equipment cost and operation cost, and it is desired to improve the reaction temperature and pressure characteristics.

【0006】媒体物質であるメタノールは燃料価格並に
廉価であることによって汎用性、一般性が大きい。従っ
てメタノールの分解および合成反応を用いる熱エネルギ
ーと化学エネルギー変換は、熱回収温度低下と熱利用性
の向上が図れれば非常に有効なものとなる。本発明の目
的は、メタノールの分解および合成反応を用いる熱エネ
ルギーと化学エネルギー変換システムにおいて、熱回収
温度の下限の低下と熱利用性の向上により改善する新規
な方法を提供することである。
[0006] Methanol, which is a medium substance, has great versatility and generality because it is inexpensive as much as fuel price. Therefore, thermal energy and chemical energy conversion using the decomposition and synthesis reactions of methanol will be very effective if the heat recovery temperature is reduced and the heat utilization is improved. It is an object of the present invention to provide a novel method of improving the heat energy and chemical energy conversion system using a decomposition and synthesis reaction of methanol by lowering the lower limit of the heat recovery temperature and improving heat utilization.

【0007】[0007]

【課題を解決するための手段】発明者等は上記の如き課
題を有する熱エネルギーと化学エネルギーの変換システ
ムについて鋭意検討した結果、メタノールから蟻酸メチ
ルを経由する反応を組み合わせることにより、排熱回収
とその利用を極めて有利に行うことができることを見出
し、本発明に到達した。
Means for Solving the Problems The present inventors have conducted intensive studies on a thermal energy and chemical energy conversion system having the above-mentioned problems, and as a result, by combining the reaction from methanol to methyl formate, it is possible to achieve the recovery of exhaust heat. The present inventors have found that the use thereof can be performed very advantageously, and arrived at the present invention.

【0008】即ち本発明は、下記の (1)〜(3) 式を組み
合わせて熱回収を行い、各式に対応する逆方向の(1)'〜
(3)'式を組み合わせて熱利用を行うことを特徴とする化
学エネルギーを用いる熱回収と熱利用の方法である。 CH3OH = CO + 2H2 (1) 2CH3OH = HCOOCH3+ 2H2 (2) HCOOCH3 = CH3OH + CO (3) CO + 2H2= CH3OH (1)' HCOO3+ 2H2= 2CH3OH (2)' CO + CH3OH = HCOOCH3 (3)'
That is, according to the present invention, heat recovery is performed by combining the following equations (1) to (3), and the reverse (1) ′ to
This is a method of heat recovery and heat utilization using chemical energy, characterized by performing heat utilization by combining formula (3) ′. CH 3 OH = CO + 2H 2 (1) 2CH 3 OH = HCOOCH 3 + 2H 2 (2) HCOOCH 3 = CH 3 OH + CO (3) CO + 2H 2 = CH 3 OH (1) 'HCOO C H 3 + 2H 2 = 2CH 3 OH ( 2) 'CO + CH 3 OH = HCOOCH 3 (3)'

【0009】本発明において (2)式と (3)式を加えると
(1)式が得られ、 (1)〜(3) 式は吸熱反応であるから排
熱回収に用いられる。熱回収は回収対象の熱エネルギー
の温度レベルとその量的を分布に対応して(2)、 (1)、
(3)式の全部または一部の分解反応の吸熱によって行わ
れる。従って熱回収においては供給されたメタノール又
は蟻酸メチルは、COおよびH2 ガスへの化学エネルギ
ーの形で熱利用側に輸送される。
In the present invention, when the equations (2) and (3) are added,
Equation (1) is obtained. Equations (1) to (3) are endothermic reactions and are used for exhaust heat recovery. In heat recovery, the temperature level and the quantity of the heat energy to be recovered correspond to the distribution (2), (1),
It is performed by the endothermic reaction of the decomposition reaction of all or part of the formula (3). Therefore, in the heat recovery, the supplied methanol or methyl formate is transported to the heat utilization side in the form of chemical energy into CO and H 2 gas.

【0010】このようにして回収された熱エネルギー
は、CO及びH2 の混合ガス、或いはCOガス、H2
スの形で気体輸送され、熱利用に供される。熱利用は供
給対象の熱エネルギーの温度レベルとその量的を分布に
対応して(2)'、(1)'、(3)'式の全部または一部の分解反
応の発熱によって行われる。受入れられたCO、H2
スは最終的に液相取扱いの可能なメタノールまたは蟻酸
メチルとなり、CO、H2 ガスの化学エネルギーの一部
を反応熱として放出して熱利用される。熱利用側で合成
されたメタノールおよび蟻酸メチルは熱回収側にリサイ
クルされ、熱回収媒体として熱利用される。また両媒体
は液体であるので、熱回収側または熱利用側に貯蔵する
ことができる。
[0010] The thus recovered thermal energy is transported in the form of a mixed gas of CO and H 2 , or CO gas or H 2 gas, and is used for heat utilization. The heat utilization is performed by the heat generated by the decomposition reaction of all or a part of the equations (2) ′, (1) ′, and (3) ′ according to the distribution of the temperature level and the quantity of the heat energy to be supplied. The received CO and H 2 gas finally becomes methanol or methyl formate which can be handled in a liquid phase, and a part of the chemical energy of the CO and H 2 gas is released as reaction heat and utilized. Methanol and methyl formate synthesized on the heat utilization side are recycled to the heat recovery side and used as heat recovery medium. Since both media are liquids, they can be stored on the heat recovery side or heat utilization side.

【0011】各種の産業設備等から排出される様々な温
度レベル、量の排熱を回収するのに最も重要な点は、如
何にして低温度まで回収温度域を拡張するかにある。
(1)式のみによる一段分解の構成では (1)式の反応特性
により決まる。反応特性は常圧反応において自由エネル
ギーが零となる理想気体・標準状態の平衡温度により比
較できるが、 (1)式の理想気体、標準状態の平衡温度が
137℃であるので、平衡上 (1)式の反応温度の低下は困
難である。熱回収の下限温度の低下は (3)式の追加によ
り可能となる。 (3)式の理想気体・標準状態の平衡温度
は 6.7℃であり (1)式に比して 130℃低く、従って (3)
式の反応は (1)式に比して反応温度を著しく低下できる
可能性があることになるので、熱回収上有利である。
The most important point in recovering exhaust heat of various temperature levels and amounts discharged from various industrial equipments and the like is how to extend the recovery temperature range to a low temperature.
In a one-stage decomposition configuration using only equation (1), it is determined by the reaction characteristics of equation (1). The reaction characteristics can be compared by the equilibrium temperature of the ideal gas and standard state where the free energy becomes zero in the atmospheric pressure reaction.
Since the temperature is 137 ° C., it is difficult to lower the reaction temperature in equation (1) due to equilibrium. The lower limit temperature of heat recovery can be reduced by adding equation (3). The equilibrium temperature of the ideal gas / standard state in Eq. (3) is 6.7 ° C, which is 130 ° C lower than Eq. (1), and therefore (3)
The reaction of the formula has a possibility that the reaction temperature can be remarkably lowered as compared with the formula (1), which is advantageous for heat recovery.

【0012】温度レベルの高い回収対象熱エネルギーに
対しては (2)式による分解反応が適しており有利とな
る。中間温度レベルの回収対象熱エネルギーに対しては
(1)式による分解反応を用いることができる。従って
(2)および (1)式による熱回収を行って温度レベルの低
下した回収対象熱エネルギーは (3)式により更に低温度
まで熱回収することができる。
For the thermal energy to be recovered at a high temperature level, the decomposition reaction according to the formula (2) is suitable and advantageous. For recoverable thermal energy at intermediate temperature levels
A decomposition reaction according to the formula (1) can be used. Therefore
The recovery target thermal energy whose temperature level has been reduced by performing the heat recovery according to the equations (2) and (1) can be further recovered to a lower temperature by the equation (3).

【0013】回収対象熱エネルギーと (1)〜(3) 式の組
合わせは固定的なものでなく、前記の如き配慮の中で最
も適した形、即ち回収対象熱源の個々の温度レベルおよ
び量と (1)〜(3) 式の反応特性によって最適な構成が用
いられる。反応の選択としては、例えば (1)、 (2)、
(3)式の全てを利用する場合、 (1)および (3)式を利用
し (2)式を欠く場合、 (3)式のみで行う場合等々、多様
な組合わせを行うことができる。この組合わせは、主に
回収対象熱エネルギーの温度レベルに応じた熱量分布に
適応させて、全体のシステムとして最も有利な変換反応
式 (1)、 (2)、 (3)式の負担割合が決まる構成となる。
The combination of the thermal energy to be recovered and the formulas (1) to (3) is not fixed, but is in the most suitable form in consideration of the above considerations, that is, the individual temperature level and amount of the heat source to be recovered. The optimum configuration is used according to the reaction characteristics of the equations (1) to (3). Reaction choices include, for example, (1), (2),
Various combinations can be performed, such as when using all of equation (3), when using equations (1) and (3), when lacking equation (2), when using only equation (3), and so on. This combination is mainly adapted to the calorific value distribution according to the temperature level of the thermal energy to be recovered, and the burden ratio of the conversion reaction formulas (1), (2), and (3), which is the most advantageous as a whole system, is reduced. The configuration is determined.

【0014】回収された熱の輸送は化学エネルギーに変
換されたCO及びH2 の混合ガス、或いはCOガス、H
2 ガスの形で行われる。気体は輸送することの困難さは
あるが、このように化学エネルギーに変換された形であ
るため熱損失への配慮が不要である。
The transport of the recovered heat is a mixed gas of CO and H 2 converted into chemical energy, or CO gas, H
It takes place in the form of two gases. Although gas is difficult to transport, it is not necessary to consider heat loss because it is converted into chemical energy.

【0015】熱利用は前述の如く(1)'、(2)'および(3)'
式を用いる合成反応の発熱により行われる。これらの合
成反応はできるだけ高温で行うことが熱の供給面で有利
となる。反応温度の上昇は加圧による圧力条件の変更で
或る程度までは容易に実現できるが、加圧は当然コスト
増とそのための動力エネルギーの消費を伴うことにな
る。従って反応圧力は系全体の圧力損失も考慮してでき
るだけ低い圧力で行うことが操業動力の面で有利とな
り、全体として合成反応温度の上昇と圧力の低下は互い
に背反した関係となるから、実用上は全体のシステムの
操業条件によって最適な調和点を決定することになる。
As described above, heat utilization is performed by using (1) ', (2)' and (3) '
It is carried out by the exotherm of the synthesis reaction using the formula It is advantageous in terms of heat supply to perform these synthesis reactions at as high a temperature as possible. The reaction temperature can be easily increased to a certain extent by changing the pressure conditions by pressurization, but pressurization naturally involves an increase in cost and consumption of motive energy. Therefore, it is advantageous in terms of operating power to perform the reaction pressure at a pressure as low as possible in consideration of the pressure loss of the entire system, and as a whole, an increase in the synthesis reaction temperature and a decrease in the pressure are in conflict with each other. Will determine the optimal harmony point according to the operating conditions of the whole system.

【0016】また(1)'、(2)'、(3)'式で合成された媒体
物質はメタノールおよび蟻酸メチルであるが、メタノー
ルは(1)'式の一段で合成する方法と、(2)'、(3)'式で二
段に合成する方法があり、双方の方法への負担割合も操
業条件によって最適割合が決定される。蟻酸メチルの生
成は熱利用側に輸送されて来たCO、H2 の中でメタノ
ール合成に消費された残分となる。平衡関係から見て、
熱利用のための発熱分の温度レベルを 140〜150 ℃程度
以上とすればメタノール合成は(1)'式による一段合成に
よるよりば(2)'および(3)'式による二段合成反応を重用
する構成が実用上有利となる。
The medium substances synthesized by the formulas (1) ', (2)' and (3) 'are methanol and methyl formate. Methanol is synthesized in a single step of the formula (1)'. There is a method of combining in two steps by the formulas 2) 'and (3)', and the optimum ratio of the burden on both methods is determined by the operating conditions. The formation of methyl formate is the residue consumed in methanol synthesis in CO and H 2 transported to the heat utilization side. From the equilibrium relationship,
If the temperature level of the exothermic component for heat utilization is 140-150 ° C or higher, the methanol synthesis will proceed with the two-step synthesis reaction according to the equations (2) 'and (3)' according to the one-step synthesis according to the equation (1) '. Practical use is advantageous in practical use.

【0017】熱利用側で合成されたメタノールおよび蟻
酸メチルは熱回収側に輸送され、熱回収に再利用され
る。両媒体物質は沸点が各々64.5℃および31.8℃である
から標準状態で液体であり、密閉せる配管系、船、ロー
リー等の輸送システムと、貯蔵タンクを用いることがで
きる。
The methanol and methyl formate synthesized on the heat utilization side are transported to the heat recovery side and reused for heat recovery. Both medium substances have a boiling point of 64.5 ° C. and 31.8 ° C., respectively, so that they are liquids under standard conditions, so that a closed piping system, a transport system such as a ship or a lorry, and a storage tank can be used.

【0018】従来法であるメタノール一段法は分解反
応、合成反応が各々 (1)、(1)'式による一種類の反応の
みであるのに比し、本発明による方法は媒体物質として
蟻酸メチルを追加することにより、分解反応は (1)、
(2)、 (3)、(1)+(2) 、(1)+(3)、(2)+(3) 、(1)+(2)+
(3) の7種類の反応の組合わせが選択できて、合成反応
も同様に7種類の反応の組合わせが選択できるから、様
々な温度レベルおよび熱エネルギー量から構成される熱
回収と熱需要に最も適した反応を行える構成を得ること
ができる。
In contrast to the conventional one-step methanol method in which the decomposition reaction and the synthesis reaction are only one kind of reaction according to the formulas (1) and (1) ', respectively, the method according to the present invention uses methyl formate as a medium substance. By adding, the decomposition reaction becomes (1),
(2), (3), (1) + (2), (1) + (3), (2) + (3), (1) + (2) +
Since the combination of the seven types of reactions in (3) can be selected, and the combination of the seven types of reactions can also be selected for the synthesis reaction, heat recovery and heat demand composed of various temperature levels and amounts of heat energy can be selected. A configuration that can perform a reaction most suitable for the above can be obtained.

【0019】しかしその反面、本発明の方法では分解/
熱回収反応と合成/熱利用反応の組合わせは、様々の操
業条件に対応できるように構成される必要がある。特に
単一の熱回収対象設備での分解反応の選択は特定反応へ
集約することが有利となる。一方、熱回収対象設備が製
鉄所の如く巨大であったり、多くの熱回収対象設備があ
って集合的に大規模な熱回収を行う場合には、結果的に
(1)、 (2)、 (3)式の全ての分解反応が利用されること
になる。
However, on the other hand, in the method of the present invention, decomposition /
The combination of the heat recovery reaction and the synthesis / heat utilization reaction needs to be configured to accommodate various operating conditions. In particular, it is advantageous to concentrate the selection of a decomposition reaction in a single heat recovery target equipment on a specific reaction. On the other hand, if the heat recovery target equipment is huge like a steel mill, or if there are many heat recovery target facilities and collectively perform large-scale heat recovery,
All the decomposition reactions of equations (1), (2) and (3) will be used.

【0020】本発明の方法の分解/熱回収反応における
供給熱媒体物質は何れにしてもメタノールおよび蟻酸メ
チルであり、生成熱媒体物質はCO、H2 の混合ガス、
またはCOガス、H2 ガスである。各反応の反応量比は
上述したように各分解反応の特性を考慮した最適構成と
なるように決定される。この反応比率に従って生成熱媒
体物質であるCOとH2 の全体量が決まる。
In any of the decomposition / heat recovery reactions of the method of the present invention, the supplied heat transfer medium is methanol and methyl formate, and the heat transfer medium produced is a mixed gas of CO and H 2 ,
Or CO gas and H 2 gas. As described above, the reaction amount ratio of each reaction is determined so as to obtain an optimum configuration in consideration of the characteristics of each decomposition reaction. According to the reaction ratio, the total amounts of the generated heat medium substances, CO and H 2 , are determined.

【0021】合成/熱利用反応の選択は、熱利用上有利
な高温度の反応と、加圧のための動力負荷の少ない反応
特性を有する反応を組み合わせることが有利となる。し
かし合成/熱利用反応における生成熱媒体物質であるメ
タノールと蟻酸メチルの量比は受入れたH2 /COの量
比により一義的に定まることになる。従って合成/熱利
用反応の選択は、メタノール化を(1)'式の一段反応で行
うか、 (2)'+(3)'の二段反応で行うかの選択となり、こ
の選択は反応温度レベルを 140〜150℃以上とすると平
衡上は二段反応方式が有利となる。
As for the selection of the synthesis / heat utilization reaction, it is advantageous to combine a reaction at a high temperature, which is advantageous for heat utilization, with a reaction having reaction characteristics with a small power load for pressurization. However, the ratio of the amounts of methanol and methyl formate, which are the heat transfer medium produced in the synthesis / heat utilization reaction, is uniquely determined by the ratio of the received H 2 / CO. Therefore, the choice of the synthesis / heat utilization reaction is to select whether the methanolization is performed in a one-step reaction of formula (1) 'or in a two-step reaction of (2)' + (3) '. When the level is 140 to 150 ° C. or higher, a two-stage reaction system is advantageous in terms of equilibrium.

【0022】本発明に利用される6種類の反応は互いに
可逆な3種類の平衡反応で構成されており、選択率が10
0%の場合は収支上の問題は無いが、化学反応である以
上、若干の副反応は存在し、CH4 、CO2 等の蓄積が
有り得る。これらの副生物は主に合成/熱利用反応の出
口ガス中に濃縮されるので、これを分離して燃焼するこ
と等により回収される。この際に補給される物質はメタ
ノールになるが、メタノールは燃料価格に近い安価な物
質であり、従って副生物の処理に伴う経済的損失は少な
く抑えられる。
The six kinds of reactions used in the present invention are composed of three kinds of equilibrium reactions which are reversible to each other, and the selectivity is 10%.
In the case of 0%, there is no problem on the balance, but since it is a chemical reaction, there are some side reactions and accumulation of CH 4 , CO 2 and the like may occur. Since these by-products are mainly concentrated in the outlet gas of the synthesis / heat utilization reaction, they are recovered by separating and burning. At this time, the substance to be replenished is methanol. Methanol is an inexpensive substance close to the fuel price, and therefore, the economic loss associated with the processing of by-products can be suppressed to a small level.

【0023】[0023]

【実施例】次に実施例により本発明に利用される6種類
の反応例を示す。各反応の操作条件は用いられる触媒等
により異なり、各反応量は熱回収反応および熱利用反応
における設定条件により決定され、気相反応の場合も液
相反応の場合もある。従って本発明はこれらの実施例に
より制限されるものではない。
The following examples show six examples of the reaction utilized in the present invention. The operating conditions of each reaction differ depending on the catalyst used, and the amount of each reaction is determined by the set conditions in the heat recovery reaction and the heat utilization reaction, and may be a gas phase reaction or a liquid phase reaction. Therefore, the present invention is not limited by these examples.

【0024】実施例1[(1)式の反応例] 内径14mmの反応管にCu-Ni-Al-P触媒を20ml充填して (1)
式によるメタノール分解反応を行った。メタノール供給
GHSV2000Hr-1とし、常圧 280℃で反応を行い、メタ
ノールの転化率が97.9%(平衡転化率99.9%)、CO選択率
が99.98%であった。
Example 1 [Example of reaction of formula (1)] A reaction tube having an inner diameter of 14 mm was charged with 20 ml of a Cu-Ni-Al-P catalyst.
A methanol decomposition reaction was performed according to the formula. The reaction was carried out at a normal pressure of 280 ° C. under a methanol supply of GHSV 2000 Hr −1, and the conversion of methanol was 97.9% (equilibrium conversion: 99.9%) and the CO selectivity was 99.98%.

【0025】実施例2[(2)式の反応例] 実施例1の反応管に Cu-Zn-Al-P-Li触媒を充填して (2)
式によるメタノールの脱水素反応を行った。メタノール
供給GHSV3500Hr-1とし、圧力5kg/cm2 G 、260℃で
反応を行い、メタノールの転化率が36.5%(平衡転化率3
7.6%)、蟻酸メチル選択率が 93.0%であった。
Example 2 [Reaction Example of Formula (2)] The reaction tube of Example 1 was charged with a Cu-Zn-Al-P-Li catalyst.
A methanol dehydrogenation reaction was performed according to the formula. The reaction was carried out at 260 ° C. at a pressure of 5 kg / cm 2 G at a GHSV of 3500 Hr −1 with methanol supplied, and the conversion of methanol was 36.5% (equilibrium conversion 3
7.6%), and the selectivity for methyl formate was 93.0%.

【0026】実施例3[(3)式の反応例] 約 360mlの容積を有する密閉循環型反応装置に、蟻酸メ
チルとNa/MgO触媒を35mgを入れ、常圧 100℃で反応させ
た。蟻酸メチルよりCOとメタノールが生成し120分後
の蟻酸メチルの転化率は60%(平衡転化率95.7%)であっ
た。
Example 3 [Example of Reaction of Formula (3)] In a closed circulation type reactor having a capacity of about 360 ml, 35 mg of methyl formate and Na / MgO catalyst were charged and reacted at normal pressure of 100 ° C. CO and methanol were generated from methyl formate, and the conversion of methyl formate after 120 minutes was 60% (equilibrium conversion: 95.7%).

【0027】実施例4[ (1)'式の反応例] 内径 8mmの反応管にCu-Zn-Al-B触媒を 0.5ml充填して
(1)'式によるメタノール合成反応を行った。H2 69.0%
、CO 31.0%の原料ガスをSV 20000Hr-1で供給し、
圧力 70kg/cm2 G 260℃で反応を行った結果、COから
のメタノールへの転化率が29.5%(平衡転化率72.0%)であ
った。
Example 4 [Reaction Example of Formula (1) '] A reaction tube having an inner diameter of 8 mm was charged with 0.5 ml of Cu-Zn-Al-B catalyst.
(1) ′ A methanol synthesis reaction was performed according to the formula. H 2 69.0%
, CO 31.0% raw material gas is supplied at SV 20000Hr -1
As a result of performing the reaction at a pressure of 70 kg / cm 2 G at 260 ° C., the conversion from CO to methanol was 29.5% (equilibrium conversion: 72.0%).

【0028】実施例5[ (2)'式の反応例] 実施例4の反応管に Cu-Cr触媒を充填して蟻酸メチルと
2 を 100気圧 220℃で反応させた。その結果、蟻酸メ
チルの転化率は85%(平衡転化率86.5%)であり、メタノー
ルへの選択率は 95%であった。
Example 5 [Reaction Example of Formula (2) ′] The reaction tube of Example 4 was filled with a Cu—Cr catalyst, and methyl formate and H 2 were reacted at 100 atm and 220 ° C. As a result, the conversion of methyl formate was 85% (equilibrium conversion: 86.5%), and the selectivity to methanol was 95%.

【0029】実施例6[ (3)'式の反応例] 2 リットルのロータリーオートクレーブに金属カリウム
27gのメタノール溶液820gを装入した。該オートクレー
ブを密閉し、溶液温度を80℃に上昇させた。次にCOを
圧力が 100気圧に達するまで導入した。この圧力低下か
ら、蟻酸メチルが毎分 32.6gの初速度で生成されたこと
が確認された。次にCOを 100気圧の平衡圧に達するま
で導入した。温度を25℃まで降下させて落圧した後、反
応生成物(1220g) をガス−液クロマトグラフでその組成
を分析した結果、蟻酸メチルの含量が60重量% であり、
メタノール転化率は50%(平衡転化率80.2%)であった。
Example 6 [Example of reaction of formula (3) '] Metal potassium was added to a 2-liter rotary autoclave.
820 g of a 27 g methanol solution were charged. The autoclave was sealed and the solution temperature was raised to 80C. Then CO was introduced until the pressure reached 100 atm. This pressure drop confirmed that methyl formate was produced at an initial rate of 32.6 g / min. Then CO was introduced until an equilibrium pressure of 100 atm was reached. After the temperature was reduced to 25 ° C. and the pressure was reduced, the composition of the reaction product (1220 g) was analyzed by gas-liquid chromatography, and as a result, the content of methyl formate was 60% by weight.
The methanol conversion was 50% (equilibrium conversion 80.2%).

【0030】[0030]

【発明の効果】本発明は従来のメタノールによる熱エネ
ルギーと化学エネルギーの変換システムに新しい媒体化
学物質として蟻酸メチルを加えたものであり、従来の方
法と比較して次のような効果を有する。 1).熱回収側においては三つの反応式による対応が可能
となり熱回収対応性が改善される。特に蟻酸メチルの分
解反応式(3) はメタノール分解反応式(1) に比して平衡
上低温側に有利であり、低温度域への熱回収範囲が拡張
される。 2).熱利用側においても反応数が増加するので熱利用へ
の対応性が改善される。特に蟻酸メチルの水素化反応式
(2)'はメタノール合成反応式(1)'に比して平衡上高温側
で有利であるので高温での発熱反応が容易となり、熱利
用を有利に行うことができる可能性がある。 3).熱利用側で合成されたメタノールおよび蟻酸メチル
はリサイクルされて熱回収媒体として再利用されるが、
両媒体物質は液体であるので熱回収側と熱利用側に容易
に貯蔵することができ、熱回収および熱利用に対して多
様に対応することができる。
According to the present invention, methyl formate is added as a new medium chemical substance to the conventional thermal energy and chemical energy conversion system using methanol, and has the following effects as compared with the conventional method. 1) On the heat recovery side, it is possible to respond by three reaction formulas, and the heat recovery compatibility is improved. In particular, the decomposition reaction formula (3) of methyl formate is advantageous to the low temperature side in terms of equilibrium as compared with the reaction formula (1) of methanol decomposition, and the heat recovery range to the low temperature range is extended. 2). The number of reactions also increases on the heat utilization side, so that the responsiveness to heat utilization is improved. Especially the hydrogenation reaction formula of methyl formate
(2) ′ is advantageous on a high temperature side in terms of equilibrium as compared with the methanol synthesis reaction formula (1) ′, so that an exothermic reaction at a high temperature becomes easy, and there is a possibility that heat utilization can be advantageously performed. 3) .Methanol and methyl formate synthesized on the heat utilization side are recycled and reused as a heat recovery medium.
Since both medium substances are liquid, they can be easily stored on the heat recovery side and the heat utilization side, and can cope with heat recovery and heat utilization in various ways.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−125564(JP,A) 特開 昭55−149641(JP,A) 特開 昭60−200064(JP,A) 特開 昭56−88801(JP,A) 特開 平1−233241(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 17/02 C09K 5/00 F24J 1/00 F28D 20/00 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-61-125564 (JP, A) JP-A-55-149641 (JP, A) JP-A-60-200064 (JP, A) JP-A-56-125 88801 (JP, A) JP-A-1-233241 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 17/02 C09K 5/00 F24J 1/00 F28D 20/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (1)〜(3) 式を組み合わせて熱回収を行
い、各式に対応する逆方向の(1)'〜(3)'式を組み合わせ
て熱利用を行うことを特徴とする化学エネルギーを用い
る熱回収と熱利用の方法 CH3OH = CO + 2H2 (1) 2CH3OH = HCOOCH3+ 2H2 (2) HCOOCH3 = CH3OH + CO (3) CO + 2H2= CH3OH (1)' HCOO3+ 2H2= 2CH3OH (2)' CO + CH3OH = HCOOCH3 (3)'
The present invention is characterized in that heat recovery is performed by combining formulas (1) to (3), and heat is used by combining formulas (1) ′ to (3) ′ in the opposite direction corresponding to each formula. the method of heat recovery and heat utilization using chemical energy to CH 3 OH = CO + 2H 2 (1) 2CH 3 OH = HCOOCH 3 + 2H 2 (2) HCOOCH 3 = CH 3 OH + CO (3) CO + 2H 2 = CH 3 OH (1) ' HCOO C H 3 + 2H 2 = 2CH 3 OH (2)' CO + CH 3 OH = HCOOCH 3 (3) '
JP11186093A 1993-05-13 1993-05-13 Method of heat recovery and utilization using chemical energy Expired - Fee Related JP3322280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11186093A JP3322280B2 (en) 1993-05-13 1993-05-13 Method of heat recovery and utilization using chemical energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11186093A JP3322280B2 (en) 1993-05-13 1993-05-13 Method of heat recovery and utilization using chemical energy

Publications (2)

Publication Number Publication Date
JPH06323684A JPH06323684A (en) 1994-11-25
JP3322280B2 true JP3322280B2 (en) 2002-09-09

Family

ID=14571978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11186093A Expired - Fee Related JP3322280B2 (en) 1993-05-13 1993-05-13 Method of heat recovery and utilization using chemical energy

Country Status (1)

Country Link
JP (1) JP3322280B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691632B2 (en) * 2000-12-04 2011-06-01 独立行政法人産業技術総合研究所 Heat recovery, heat utilization and power generation using chemical energy of methanol and methyl formate

Also Published As

Publication number Publication date
JPH06323684A (en) 1994-11-25

Similar Documents

Publication Publication Date Title
US4804797A (en) Production of commodity chemicals from natural gas by methane chlorination
US4031123A (en) Methanol production in a paraffinic medium
DK173416B1 (en) Process for producing hydrogen-rich gas
US4263141A (en) Process of producing gasoline from synthesis gas
WO2009077729A1 (en) Process for the production of ethanol from a carbonaceous feedstock
EP0326718A1 (en) A process for producing methanol
KR20000028926A (en) Isothermal ammonia converter
JPS63216836A (en) Step by step method of methanol production
NZ202374A (en) Reactor for catalytic synthesis process
JPH0625031A (en) Method of synthesizing oxygenated acetyl compound
Graaf et al. Comparison of two-phase and three-phase methanol synthesis processes
Smejkal et al. Energetic and economic evaluation of the production of acetic acid via ethane oxidation
CA1112670A (en) Process for manufacture of methanol
US5712313A (en) Process for carrying out chemical equilibrium reactions
US20070043126A1 (en) Methanol synthesis and reaction system
JP3322280B2 (en) Method of heat recovery and utilization using chemical energy
US4670187A (en) Methanol reforming process and apparatus for practicing it
CA3215019A1 (en) Integration for feed dilution in oxidative dehydrogenation (odh) reactor system
EP0705826B1 (en) Method of recovering ethylene oxide
US5534648A (en) Process for continuously producing dimethyl carbonate
US2450500A (en) Synthesis of hydrocarbons
JPS6228081B2 (en)
US3371115A (en) Process for combined production of ammonia and urea
NO158604B (en) REACTOR FOR EXOTHERMIC CATALYTIC SYNTHESIS IN THE GAS PHASE AND USE OF THE REACTOR.
US5008088A (en) Methanol-gas saturator for catalytic conversion system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees