JPH0938684A - Waste water treating device - Google Patents

Waste water treating device

Info

Publication number
JPH0938684A
JPH0938684A JP19182195A JP19182195A JPH0938684A JP H0938684 A JPH0938684 A JP H0938684A JP 19182195 A JP19182195 A JP 19182195A JP 19182195 A JP19182195 A JP 19182195A JP H0938684 A JPH0938684 A JP H0938684A
Authority
JP
Japan
Prior art keywords
sludge
aeration
amount
membrane separation
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19182195A
Other languages
Japanese (ja)
Other versions
JP4269345B2 (en
Inventor
Takayuki Otsuki
孝之 大月
Tetsuya Kawazoe
鉄也 川添
Takaaki Masui
孝明 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP19182195A priority Critical patent/JP4269345B2/en
Publication of JPH0938684A publication Critical patent/JPH0938684A/en
Application granted granted Critical
Publication of JP4269345B2 publication Critical patent/JP4269345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably maintain the flux at a high level by outputting control information on a load quantity, an aeration quantity or a sludge take-out quantity for a biological treating device based on measured data in a sludge dispersion state and a viscous substance generation state. SOLUTION: Raw water is introduced into an aeration tank 2 via a raw water pump 1 and air is fed to a diffusion pipe 4 from a air pump 3 to execute aeration and a biologically treatment is aerobically performed. The biologically treated water is introduced into a membrane separation device 6 from a piping 5 to be subjected to a membrane separation treatment and permeated water is taken out outside the system. A part of concentrated water is returned to the aeration tank 2 with a returning piping 7 and the other part is taken out via a take-out piping 8 and an excess sludge take-out pump 9. A detection signal of a sensor 11 for detecting dissolved oxygen, oxidation/reduction potential and pH, etc., is inputted to a controller 10 and based on these data, the load quantity, aeration quantity or the sludge take-out quantity in the biological treating device is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、排水を生物処理し
た後膜分離処理する排水処理装置に関する。詳しくは、
汚泥分散状態及び粘性物質発生状態の測定データに基づ
いて膜分離装置のフラックス(透過水量)低下を防ぐよ
うに運転される排水処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment apparatus for biologically treating wastewater and then performing membrane separation treatment. For more information,
The present invention relates to a wastewater treatment device operated so as to prevent a decrease in flux (permeated water amount) of a membrane separation device based on measurement data of sludge dispersion state and viscous substance generation state.

【0002】[0002]

【従来の技術】排水を生物処理した後膜分離処理する排
水処理装置においては、汚泥のフロック形成状況および
汚泥から生成する粘性物質の寡多が、膜分離装置のフラ
ックス維持に大きな影響を与えることが知られている。
2. Description of the Related Art In a waste water treatment apparatus for treating waste water by biological treatment after membrane separation, the floc formation state of sludge and the amount of viscous substances produced from sludge have a great influence on the maintenance of flux in the membrane separation apparatus. It has been known.

【0003】具体的には、汚泥のフロック形成状況が悪
化し汚泥が分散状況になると、汚泥が高密度で膜面に付
着し、極端なフラックスの低下が短期間のうちに発生す
る。また、粘性物質の増加は、膜面にスライム状の汚泥
の付着を引き起こし、フラックスの低下を引き起こす。
[0003] Specifically, when the sludge flocculation condition deteriorates and the sludge becomes dispersed, the sludge adheres to the membrane surface at a high density, and an extreme decrease in flux occurs within a short period of time. In addition, the increase in the viscous substance causes the slime-like sludge to adhere to the film surface, resulting in a decrease in the flux.

【0004】なお、前者は負荷に対する曝気量が過剰な
場合に発生し、後者は汚泥負荷が高いときに発生するこ
とが知られている。
It is known that the former occurs when the amount of aeration to the load is excessive, and the latter occurs when the sludge load is high.

【0005】従来の膜利用生物処理システムでは、この
ような運転状況をオペレータが観察情報として収集し、
他の汚泥負荷等の情報と合わせ総合的な判断を行い、経
験的に負荷量、エアレーション量および汚泥引抜量の調
整を行ってきた。
In the conventional membrane-based biological treatment system, the operator collects such operating conditions as observation information,
We have made comprehensive judgments together with other information such as sludge load, and empirically adjusted the load amount, aeration amount, and sludge withdrawal amount.

【0006】[0006]

【発明が解決しようとする課題】以上のように膜分離装
置のフラックスの維持はオペレータの経験的な知識に頼
っているため、オペレータの実務経験に大きく依存して
おり、現場毎の膜フラックス管理の水準の優劣の大きな
原因となっている。
As described above, the maintenance of the flux of the membrane separator depends on the empirical knowledge of the operator, and therefore depends largely on the practical experience of the operator. It is a major cause of superiority and inferiority.

【0007】本発明は、かかる問題点を解決し、フラッ
クスを安定的に高水準に維持することができる排水処理
装置を提供することを目的とする。
An object of the present invention is to solve the above problems and to provide a waste water treatment equipment which can stably maintain the flux at a high level.

【0008】[0008]

【課題を解決するための手段】本発明の排水処理装置
は、排水を生物処理する生物処理装置と、該生物処理装
置からの生物処理水を膜分離処理する膜分離装置とを有
する排水処理装置において、汚泥分散状態の測定データ
と粘性物質発生状態の測定データとが入力され、これら
のデータに基づいて該生物処置装置における負荷量、エ
アレーション量又は汚泥引抜量の制御情報を出力する装
置を設けたことを特徴とするものである。
A wastewater treatment equipment of the present invention comprises a biological treatment equipment for biological treatment of wastewater and a membrane separation equipment for performing membrane separation treatment of biologically treated water from the biological treatment equipment. In, the measurement data of the sludge dispersion state and the measurement data of the viscous substance generation state are input, and a device for outputting control information of the load amount, aeration amount or sludge withdrawal amount in the biological treatment device based on these data is provided. It is characterized by that.

【0009】本発明の排水処理装置では、経験の豊富な
オペレータの知識を、エキスパートシステムルール、フ
ァジー制御ルール、ニューラルネットモデル、時系列解
析モデル等のいずれかもしくはこれらの組合せによって
記述し、制御システムとして組み込む。
In the wastewater treatment equipment of the present invention, the knowledge of an operator with abundant experience is described by any one of expert system rules, fuzzy control rules, neural network models, time series analysis models, etc., or a combination thereof, and the control system Incorporate as

【0010】この制御システムに対し、汚泥の分散状態
の測定データ及び粘性物質発生状態の測定データを入力
し、これらの入力データに基いて負荷量、エアレーショ
ン量又は汚泥引抜量の制御情報を出力する。この制御情
報(原水投入量制御値、エアレーションの空気量及び時
間制御値、汚泥引抜量制御値)は、オペレータに提供さ
れるか、又はこの制御情報により排水処理装置の自動制
御が行われる。
To this control system, the measurement data of the sludge dispersion state and the measurement data of the viscous substance generation state are input, and the control information of the load amount, aeration amount or sludge withdrawal amount is output based on these input data. . This control information (raw water input amount control value, aeration air amount and time control value, sludge extraction amount control value) is provided to the operator, or the wastewater treatment device is automatically controlled by this control information.

【0011】本発明においては、オンライン及びオフラ
イン情報として従来より排水処理装置の制御に利用され
てきた曝気量、汚泥濃度、原水量、原水汚濁物質濃度、
処理水質等の数値情報をも制御システムに入力し、これ
らの数値情報も勘案して上記制御情報を出力するように
しても良い。
In the present invention, the aeration amount, sludge concentration, raw water amount, raw water pollutant concentration, which have been conventionally used for controlling wastewater treatment equipment as online and offline information,
Numerical information such as treated water quality may be input to the control system, and the control information may be output in consideration of these numerical information.

【0012】これらの数値情報データは、負荷量、曝気
量等の過不足に係るデータであり、前記汚泥分散状態及
び粘性物質発生状態の測定データに基いて、負荷量、エ
アレーション量又は汚泥引抜量の過不足を判断する際、
これらの数値情報データも判断のときに存在すると判断
の正確さが向上するので好ましい。
These numerical information data are data relating to excess and deficiency of load amount, aeration amount, etc., and based on the measurement data of the sludge dispersion state and viscous substance generation state, the load amount, aeration amount or sludge withdrawal amount. When judging the excess or deficiency of
It is preferable that these numerical information data also exist at the time of the determination, because the accuracy of the determination is improved.

【0013】また、これらの数値情報データに基づい
て、本発明装置において具体的にどのような制御が行な
われたかを把握することができる。
Further, based on these numerical information data, it is possible to grasp what kind of control is specifically performed in the device of the present invention.

【0014】汚泥の分散状態の測定データを得るには、
例えば(a) 顕微鏡観察によるフロック形成状況、
(b) 膜にスライム状の物質が観察されず、汚泥が密
に付着している状況、又は(c) SVI(スラッジ容
量指数)値を測定する。汚泥の分散が進んでいるときに
は、エアレーション量を低下させる;負荷量の増加を図
る;汚泥の引抜量を低下させる;といった対処が必要と
なる。なお、引抜量を増減すると、曝気槽内のMLSS
濃度を制御でき、負荷量を変えることもできる。
To obtain the measurement data of the dispersion state of sludge,
For example (a) Flock formation by microscopic observation,
(B) Slime-like substance is not observed on the membrane and sludge is adhered densely, or (c) SVI (sludge capacity index) value is measured. When sludge is being dispersed, it is necessary to take measures such as reducing the aeration amount, increasing the load amount, and reducing the sludge drawing amount. In addition, if the withdrawal amount is increased or decreased, the MLSS in the aeration tank
The concentration can be controlled and the amount of load can be changed.

【0015】粘性物質の発生状態の測定データを得るに
は、例えば(A) 顕微鏡観察による粘性物質が生成す
るときに現れる原生動物の出現状況、(B) 膜にスラ
イム状の物質とともに汚泥が付着している状況、(C)
曝気槽における発泡の状況、又は(D) 汚泥の粘性
情報(触診による粘性状況、糖成分含有量、撹拌に要す
るトルク情報、熱伝導率等)を測定する。
In order to obtain the measurement data of the generation state of the viscous substance, for example, (A) the appearance state of protozoa that appears when the viscous substance is generated by microscopic observation, (B) the slime-like substance and the sludge adhere to the membrane. Situation (C)
The condition of foaming in the aeration tank or (D) Viscosity information of sludge (viscosity condition by palpation, sugar component content, torque information required for stirring, thermal conductivity, etc.) is measured.

【0016】粘性物質の発生が進行している場合には、
エアレーション量の増加;汚泥負荷を減少するための負
荷量の低下;汚泥引抜量の減少;といった対処が必要に
なる。
When the generation of viscous substances is progressing,
It is necessary to take measures such as increase of aeration amount; decrease of load amount for reducing sludge load; decrease of sludge drawing amount.

【0017】以上のような情報で、数値が得られる場合
は数値として入力し、言語情報としてしか捕らえられな
い指標については、例えばN(egative 全く
観察されない),Z(ero 若干観察される),P
ositive 顕著に観察される)といった多段
階の数値化を行うように制御規則(例えばファジールー
ル)を設定し、この規則(ルール)に則って観察状況の
数値化を行い、数値化されたデータを入力する。
With the above information, when a numerical value can be obtained, it is input as a numerical value, and for indices that can be captured only as linguistic information, for example, N ( N negative is not observed at all), Z ( Z ero is observed slightly) ), P
Set the control rules to perform (P Ositive significantly the observed) such multistep digitized (e.g. fuzzy rules), the numerical values of the observation conditions in accordance with this rule (rule), was quantified Enter the data.

【0018】[0018]

【発明の実施の形態】図1は実施例装置のブロック図で
あり、原水(本実施例ではし尿系汚水)が原水ポンプ1
を介して曝気槽2に導入される。エアポンプ3から散気
管4に空気が供給されて曝気が行われ、好気的に生物処
理される。生物処理水は配管5から膜分離装置に導入さ
れ、膜分離処理される。透過水は系外に取り出される。
濃縮水は、その一部が返送配管7によって曝気槽2へ返
送され、他部は引抜配管8及び余剰汚泥引抜ポンプ9を
介して引き抜かれる。
1 is a block diagram of an apparatus according to an embodiment, in which raw water (human waste sewage in this embodiment) is a raw water pump 1.
Is introduced into the aeration tank 2 via. Air is supplied from the air pump 3 to the air diffusing pipe 4 to perform aeration, and biological treatment is performed aerobically. The biologically treated water is introduced into the membrane separation device from the pipe 5 and subjected to the membrane separation treatment. The permeated water is taken out of the system.
A part of the concentrated water is returned to the aeration tank 2 through the return pipe 7, and the other part is withdrawn via the extraction pipe 8 and the excess sludge extraction pump 9.

【0019】これらのポンプ1,3,8は制御器10に
よって制御される。曝気槽2に設けられた、溶存酸素
(DO)、酸化還元電位(ORP)、pHなどを検出す
るセンサ11の検出信号が該制御器10に入力されてい
る。
The pumps 1, 3, 8 are controlled by the controller 10. A detection signal of a sensor 11 provided in the aeration tank 2 for detecting dissolved oxygen (DO), redox potential (ORP), pH and the like is input to the controller 10.

【0020】また、この制御器10に対しては、キーボ
ード等の入力装置10aによって次のデータが入力され
ている。
The following data is input to the controller 10 by an input device 10a such as a keyboard.

【0021】 汚泥分散状態の測定データ。 粘性物質発生状態の測定データ。 原水のNH4 −N濃度、BOD濃度などの水質デー
タ。 曝気槽内のMLSS濃度、NH4 −N濃度、NOx
−N濃度、BOD濃度などの水質データ。 ポンプの容量、曝気槽容積、膜分離装置の膜面積な
どの仕様データ。
Measurement data of sludge dispersion state. Measured data of viscous substance generation state. Water quality data such as NH 4 -N concentration and BOD concentration of raw water. MLSS concentration, NH 4 -N concentration, NO x in the aeration tank
-Water quality data such as N concentration and BOD concentration. Specification data such as pump capacity, aeration tank volume, and membrane area of membrane separator.

【0022】ファジー化エキスパートシステムによって
制御を行う場合、汚泥分散状態について前記(a)〜
(c)の各項目に関し次のように評価規則を定める。
When the control is performed by the fuzzy expert system, the sludge dispersion state is described in the above (a) to
The evaluation rules are established as follows for each item in (c).

【0023】3項目の判断が異なる結果を示す場合は、
最も高い結果を採用するようにしてもよい(OR処
理)。
If the three items show different results,
The highest result may be adopted (OR processing).

【0024】[0024]

【表1】 [Table 1]

【0025】同様に粘性物質発生状態について、前記
(A)〜(D)の各項目に関し次のように評価規則を定
める。
Similarly, with respect to the viscous substance generation state, the following evaluation rules are set for each of the above items (A) to (D).

【0026】3項目の判断が異なる結果を示す場合は、
最も高い結果を採用するようにしてもよい(OR処
理)。
If the three items show different results,
The highest result may be adopted (OR processing).

【0027】[0027]

【表2】 [Table 2]

【0028】なお、上記表1,2では、N,Z,Pの3
段階評価を行っているが、5段階など他の多段階評価を
行っても良い。
In Tables 1 and 2 above, 3 of N, Z and P
Although the graded evaluation is performed, other multi-leveled evaluation such as 5 grades may be performed.

【0029】表1,2のルールに則って評価された汚泥
分散状態及び粘性物質発生状態の評価に基づいて負荷
量、エアレーション量及び汚泥負荷量を制御するルール
を表3,4,5の通り設定した。
Tables 3, 4 and 5 show rules for controlling the load amount, aeration amount and sludge load amount based on the evaluation of the sludge dispersion state and the viscous substance generation state evaluated according to the rules of Tables 1 and 2. Set.

【0030】ここで複数の評価結果に基く制御内容が一
致しないときは、例えば、評価項目毎に、増加=1,減
少=−1,現状維持=0と設定して平均演算を行い、
0.5超は増加、−0.5未満は減少、−0.5〜0.
5は現状維持に制御する。
If the control contents based on the plurality of evaluation results do not match, for example, the average calculation is performed by setting increase = 1, decrease = -1, and maintain current state = 0 for each evaluation item.
Greater than 0.5 increases, less than -0.5 decreases, -0.5-0.
5 controls to maintain the current status.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【表5】 [Table 5]

【0034】このような評価手順を示すと以下のように
することができる。
The following is a description of such an evaluation procedure.

【0035】(1) 汚泥分散状態について、表1の
(a),(b),(c)を評価(P/Z/N,P/Z/
N,P/Z/N) (2) 最大値を採用(P/Z/N) (3) 粘性物質発生状態について、表2の(A),
(B),(C),(D)を評価(P/Z/N,P/Z/
N,P/Z/N,P/Z/N) (4) 最大値を採用(P/Z/N) (5) アンモニア残留評価(P/Z/N) (6) 汚泥負荷評価(P/Z/N) (7) (2),(4) の結果に基き、負荷量制御を評価(増加
(1)/維持(0)/減少(−1),1/0/−1) (8) (7) の平均値に基き、制御内容決定(増加>0.5
≧現状維持≧−0.5>減少) (9) (2),(4),(5) に基き、エアレーション制御を評価
(1/0/−1,1/0/−1,1/0/−1) (10) (9)の平均値に基き、制御内容決定(増加>0.5
≧現状維持≧−0.5>減少) (11) (2),(4),(5),(6)の結果に基き、汚泥引抜量制御を
評価(1/0/−1,1/0/−1,1/0/−1,1
/0/−1) (12) (11) の平均値に基き、制御内容を決定(増加>
0.5≧現状維持≧−0.5>減少) 以上のルールに基づき運転状況の総合的なファジー判断
を行う。この判断は従来知られているファジーの演算方
式(例 ファジー和による演算、マックスミニ論理積に
よる演算)を使って行われる。
(1) Regarding the sludge dispersion state, (a), (b), and (c) in Table 1 were evaluated (P / Z / N, P / Z /
N, P / Z / N) (2) The maximum value is adopted (P / Z / N) (3) Regarding the viscous substance generation state, (A) in Table 2
Evaluation of (B), (C), and (D) (P / Z / N, P / Z /
N, P / Z / N, P / Z / N) (4) Adopt maximum value (P / Z / N) (5) Ammonia residue evaluation (P / Z / N) (6) Sludge load evaluation (P / Z / N) (7) Based on the results of (2) and (4), the load control is evaluated (increase (1) / maintain (0) / decrease (-1), 1/0 / -1) (8 ) Determine the control content based on the average value of (7) (increase> 0.5
≧ Maintain current status ≧ −0.5> Reduce) (9) Evaluate aeration control based on (2), (4), (5) (1/0 / -1, 1/0 / -1, 1/0) / -1) Based on the average value of (10) and (9), determine the control content (increase> 0.5
≧ Maintain current status ≧ −0.5> Reduce) (11) Based on the results of (2), (4), (5), (6), evaluate the sludge withdrawal amount control (1/0 / -1, 1 / 0 / -1, 1/0 / -1, 1
/ 0 / -1) (12) Determine the control content based on the average value of (11) (increase>
0.5 ≧ maintain current condition ≧ −0.5> decrease) Based on the above rules, comprehensive fuzzy judgment of the driving situation is performed. This judgment is performed by using a conventionally known fuzzy operation method (eg, fuzzy sum operation, maxmini logical product operation).

【0036】判断結果をデファジー化することにより負
荷量、エアレーション量、汚泥引抜量の制御値を取得し
て、これに基づいた自動制御を実施し、汚泥の分散状況
および粘性物質の発生を制御に反映させ膜フラックスの
維持を考慮にいれた制御を実行した。これにより、長期
にわたって高フラックスを維持できた。
By defuzzifying the judgment result, the control values of the load amount, the aeration amount, and the sludge withdrawal amount are acquired, and the automatic control based on the obtained control values is performed to control the sludge dispersion state and the generation of viscous substances. The control was carried out in consideration of the maintenance of the membrane flux. As a result, high flux could be maintained for a long period of time.

【0037】なお、本実施例はファジー化エキスパート
システムを採用しているが、ニューラルネットモデル、
時系列解析モデルなどを同様にして利用しても良い。
Although this embodiment employs a fuzzification expert system, a neural network model,
A time series analysis model or the like may be used similarly.

【0038】[0038]

【発明の効果】以上の通り、本発明の排水処理装置にあ
っては、汚泥の分散状況、粘性物質の発生状況を定量的
に把握し、膜フラックスを維持するよう制御するため、
適切な負荷量、エアレーション量、汚泥引抜量の制御を
実現できる。また、オペレータの経験に依存することな
く、適切な制御を実現できる。
As described above, in the wastewater treatment apparatus of the present invention, the dispersion state of sludge and the generation state of viscous substances are quantitatively grasped, and control is performed to maintain the membrane flux.
It is possible to realize appropriate control of load amount, aeration amount, and sludge withdrawal amount. In addition, appropriate control can be realized without depending on the experience of the operator.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に係る排水処理装置の系統図である。FIG. 1 is a system diagram of a wastewater treatment device according to an embodiment.

【符号の説明】[Explanation of symbols]

1 原水ポンプ 2 曝気槽 3 エアポンプ 4 散気管 6 膜分離装置 9 余剰汚泥引抜ポンプ 10 制御器 1 Raw water pump 2 Aeration tank 3 Air pump 4 Air diffuser 6 Membrane separation device 9 Excess sludge extraction pump 10 Controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 排水を生物処理する生物処理装置と、該
生物処理装置からの生物処理水を膜分離処理する膜分離
装置とを有する排水処理装置において、汚泥分散状態の
測定データと粘性物質発生状態の測定データとが入力さ
れ、これらのデータに基づいて該生物処置装置における
負荷量、エアレーション量又は汚泥引抜量の制御情報を
出力する装置を設けたことを特徴とする排水処理装置。
1. A wastewater treatment device having a biological treatment device for biologically treating wastewater and a membrane separation device for subjecting biologically treated water from the biological treatment device to membrane separation treatment, and measuring data of sludge dispersion state and generation of viscous substances. A wastewater treatment apparatus, which is provided with a device for inputting measurement data of a state and outputting control information of a load amount, an aeration amount or a sludge withdrawal amount in the biological treatment apparatus based on these data.
JP19182195A 1995-07-27 1995-07-27 Wastewater treatment equipment Expired - Fee Related JP4269345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19182195A JP4269345B2 (en) 1995-07-27 1995-07-27 Wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19182195A JP4269345B2 (en) 1995-07-27 1995-07-27 Wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JPH0938684A true JPH0938684A (en) 1997-02-10
JP4269345B2 JP4269345B2 (en) 2009-05-27

Family

ID=16281088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19182195A Expired - Fee Related JP4269345B2 (en) 1995-07-27 1995-07-27 Wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP4269345B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151480A (en) * 1996-11-25 1998-06-09 Maezawa Ind Inc Wastewater treatment apparatus and operation method
JP2006212470A (en) * 2005-02-01 2006-08-17 Toray Ind Inc Treatment method and device of soluble organic substance-containing liquid
JP2007075754A (en) * 2005-09-15 2007-03-29 Mitsubishi Rayon Co Ltd Method for treating water to be treated
US7820050B2 (en) 1998-10-09 2010-10-26 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
JP2012228645A (en) * 2011-04-26 2012-11-22 Hitachi Ltd Water treatment apparatus, water treating method, and program for the method
US8357299B2 (en) * 2005-07-12 2013-01-22 Zenon Technology Partnership Process control for an immersed membrane system
AU2014201665B2 (en) * 2005-07-12 2016-05-26 Zenon Technology Partnership Process control for an immersed membrane system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151480A (en) * 1996-11-25 1998-06-09 Maezawa Ind Inc Wastewater treatment apparatus and operation method
US7820050B2 (en) 1998-10-09 2010-10-26 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US7922910B2 (en) 1998-10-09 2011-04-12 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
JP2006212470A (en) * 2005-02-01 2006-08-17 Toray Ind Inc Treatment method and device of soluble organic substance-containing liquid
US8357299B2 (en) * 2005-07-12 2013-01-22 Zenon Technology Partnership Process control for an immersed membrane system
AU2014201665B2 (en) * 2005-07-12 2016-05-26 Zenon Technology Partnership Process control for an immersed membrane system
US9783434B2 (en) 2005-07-12 2017-10-10 Zenon Technology Partnership Real-time process control for an immersed membrane filtration system using a control hierarchy of discrete-state parameter changes
JP2007075754A (en) * 2005-09-15 2007-03-29 Mitsubishi Rayon Co Ltd Method for treating water to be treated
JP2012228645A (en) * 2011-04-26 2012-11-22 Hitachi Ltd Water treatment apparatus, water treating method, and program for the method

Also Published As

Publication number Publication date
JP4269345B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP4788182B2 (en) Organic waste water treatment apparatus and organic waste water treatment method
CN114275912A (en) Aeration system dissolved oxygen control method based on adaptive neural network model
JPH0938684A (en) Waste water treating device
KR100446250B1 (en) Control apparatus for sewage and wastewater equipment
CN110717533B (en) Water body purification method based on image recognition pipeline device
US6123846A (en) Activated-sludge processing apparatus and method for control of sludge to be returned
US6811706B1 (en) Activated sludge process optimization
JPH0381645A (en) Method, device and facility for treating suspended material in liquid
WO2023163054A1 (en) Information processing method, information processing device, program, and wastewater treatment system
Heine et al. Early warning-system for operation-failures in biological stages of WWTPs by on-line image analysis
Delgado et al. Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging
CN1583592A (en) Automatic controlling method and cotnroller for treating urban waste water by chemical biological flocculation
JP2008161836A (en) Waste water treatment apparatus, control unit and waste water treatment method
CN214088151U (en) Landfill leachate treatment system and monitoring system
JP2737150B2 (en) Activated sludge process state determination device
Cashion et al. Influence of three factors on clarification in the activated sludge process
JPH0631291A (en) Sewage treatment device
Könne Practical experiences with a new on‐line BOD measuring device
JP2001276867A (en) Anaerobic and aerobic activated sludge treating method and equipment therefor
JP2021186754A (en) Aerobic wastewater treatment system and wastewater treatment method
Nahm et al. Development of an optimum control software package for coagulant dosing process in water purification system
JPH08323394A (en) Method for diagnosing intermittent aeration type activated sludge tank
JPH0515518B2 (en)
JP2909723B2 (en) Wastewater treatment control method and apparatus
CN221680936U (en) Accurate dosing device of hospital sewage treatment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees