JP2001276867A - Anaerobic and aerobic activated sludge treating method and equipment therefor - Google Patents

Anaerobic and aerobic activated sludge treating method and equipment therefor

Info

Publication number
JP2001276867A
JP2001276867A JP2000101888A JP2000101888A JP2001276867A JP 2001276867 A JP2001276867 A JP 2001276867A JP 2000101888 A JP2000101888 A JP 2000101888A JP 2000101888 A JP2000101888 A JP 2000101888A JP 2001276867 A JP2001276867 A JP 2001276867A
Authority
JP
Japan
Prior art keywords
aeration
treatment
activated sludge
meter
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000101888A
Other languages
Japanese (ja)
Other versions
JP3437991B2 (en
Inventor
Shunsaku Yagi
俊策 八木
Munetaka Ishikawa
宗孝 石川
Shigeru Kinoshita
茂 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAJIMA AQUA TEC KK
NIPPON GIJUTSU SERVICE KK
Panasonic Environmental Systems and Engineering Co Ltd
Original Assignee
KAJIMA AQUA TEC KK
NIPPON GIJUTSU SERVICE KK
Panasonic Environmental Systems and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAJIMA AQUA TEC KK, NIPPON GIJUTSU SERVICE KK, Panasonic Environmental Systems and Engineering Co Ltd filed Critical KAJIMA AQUA TEC KK
Priority to JP2000101888A priority Critical patent/JP3437991B2/en
Publication of JP2001276867A publication Critical patent/JP2001276867A/en
Application granted granted Critical
Publication of JP3437991B2 publication Critical patent/JP3437991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide an anaerobic and aerobic activated sludge treating method which is capable of stably maintaining the good removal of a BOD component and nutrient salt component for a long period. SOLUTION: The device is provided with a second activated sludge treating vessel 3 in communication with a first activated sludge treating vessel 2 into which a water to be treated flows continuously. The respective treating vessels are provided with aerators 14 and 24 for putting the inside of the treating vessels into an aerobic or anaerobic state by the aeration quantity or aeration stoppage meeting an input control signal. The respective treating vessels are provided with pH meters 11 and 21, DO meters 12 and 22 and ORP meters 13 and 23 and pH maximal point detecting means 17 and 27 with noise removal filters are connected to the respective pH meters. A calculating means 28 for a DO decreasing rate in the anaerobic state is connected to the DO meter of the second treating vessel. The fuzzy control rule 33 having each of the anaerobic and aerobic states of the respective treating vessels, the time for detection of the pH, DO, ORP and pH maximal point and the DO decreasing rate of the second treating vessel 3 as a precondition part variable and the aeration quantity of the aerators 15 and 25 as a post condition part variable is stored into a controller 30. The switching of the anaerobic and aerobic states of the respective treating vessels and the adequate aeration quantity are controlled in accordance with the control rule 33.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は嫌気・好気活性汚泥
処理方法及び装置に関し、とくに曝気処理と非曝気処理
(曝気停止により処理槽内を無酸素状態および嫌気状態
とする処理)とを交互に繰り返す活性汚泥処理により被
処理水中の有機物、窒素及び/又はリンを除去する活性
汚泥処理方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for treating anaerobic / aerobic activated sludge, and in particular, alternately performs aeration treatment and non-aeration treatment (treatment in which the inside of a treatment tank becomes anoxic and anaerobic by stopping aeration). The present invention relates to an activated sludge treatment method and apparatus for removing organic matter, nitrogen and / or phosphorus in water to be treated by repeated activated sludge treatment.

【0002】[0002]

【従来の技術】従来から、下廃水等の被処理水中のBOD
(Biochemical Oxygen Demand)で表される有機基質
(以下、BOD成分という)は、主に曝気槽において微生
物群である活性汚泥により除去されている。しかし最近
では、閉鎖性水域における富栄養化を防ぐため、被処理
水中の窒素やリン等の栄養塩類の除去が求められてお
り、窒素やリンの除去を目的としてコストや余剰汚泥発
生量の面で有利な生物学的方法が多く取り入れられるよ
うになった。
2. Description of the Related Art Conventionally, BOD in treated water such as sewage wastewater has been known.
An organic substrate (hereinafter, referred to as a BOD component) represented by (Biochemical Oxygen Demand) is mainly removed by activated sludge, which is a group of microorganisms, in an aeration tank. Recently, however, it has been required to remove nutrients such as nitrogen and phosphorus in the treated water to prevent eutrophication in closed water areas. In order to remove nitrogen and phosphorus, cost and surplus sludge generation are reduced. Many advantageous biological methods have been adopted.

【0003】栄養塩類を除去する生物学的方法の1つと
して、従来の標準活性汚泥法の応用である嫌気・好気活
性汚泥処理方法が現在注目されている。この方法は、単
独又は複数の活性汚泥処理槽内に被処理水を連続的に流
入させ、曝気を行う曝気処理(以下、曝気工程というこ
とがある。)と曝気を停止して攪拌のみを行う非曝気処
理(以下、攪拌工程ということがある。)とを交互に繰
り返して処理し、処理水を最終沈殿池へ送り汚泥を沈降
分離したのち放流することにより被処理水中のBOD成分
と窒素とリンを除去する方法である。
As one of the biological methods for removing nutrients, anaerobic / aerobic activated sludge treatment, which is an application of the conventional standard activated sludge method, is currently receiving attention. In this method, the water to be treated is continuously flowed into one or a plurality of activated sludge treatment tanks, and aeration treatment for aeration (hereinafter, sometimes referred to as an aeration step) and aeration are stopped and only stirring is performed. Non-aeration treatment (hereinafter, sometimes referred to as a stirring process) is alternately repeated, and the treated water is sent to the final sedimentation basin, and the sludge is settled and separated. This is a method for removing phosphorus.

【0004】嫌気・好気活性汚泥処理方法では、被処理
水中のBOD成分は好気状態において酸化分解される。被
処理水中のアンモニア態窒素(NH4-N)は、先ず好気状
態において硝化菌により硝酸に硝化され、次に無酸素状
態において脱窒菌により脱窒される。被処理水中のリン
は、先ず嫌気状態において脱リン菌にリンを放出させた
のち好気状態において該脱リン菌にリンを過剰摂取さ
せ、その後リンを過剰に含んだ余剰汚泥を引き抜くこと
により脱リンされる。
In the anaerobic / aerobic activated sludge treatment method, the BOD component in the water to be treated is oxidatively decomposed in an aerobic state. Ammonia nitrogen (NH 4 -N) in the water to be treated is first nitrified by nitrifying bacteria in an aerobic state and then denitrified by denitrifying bacteria in an anoxic state. Phosphorus in the water to be treated is desorbed by first releasing phosphorus to the dephosphorus bacterium in an anaerobic state, then allowing the dephosphorus bacterium to excessively ingest phosphorus in an aerobic state, and then extracting excess sludge containing excessive phosphorus. Phosphorus.

【0005】窒素の除去を良好に行うには、処理系内に
硝化菌を保持できるように好気的汚泥滞留時間(A-SR
T)を十分確保すること、脱窒過程では酸化還元電位(O
xidation-Reduction Potential。以下、ORPという。)
をできるだけ低く保つこと、硝化過程では溶存酸素濃度
(Dissolved Oxygen。以下、DOという。)を1.5mg/l(l
はリットルを表す。以下同じ。)以上に保ち且つ酸が発
生するので酸性に偏らないようにpHをコントロールする
こと等が重要である。
[0005] In order to effectively remove nitrogen, aerobic sludge residence time (A-SR) is required so that nitrifying bacteria can be retained in the treatment system.
T), and the redox potential (O
xidation-Reduction Potential. Hereinafter, it is called ORP. )
During the nitrification process, the dissolved oxygen concentration (Dissolved Oxygen; hereafter referred to as DO) is 1.5 mg / l (l
Represents liter. same as below. ) It is important to keep the above and to control the pH so as not to bias the acidity because an acid is generated.

【0006】また、汚泥中のリン含有率を向上させて増
殖した汚泥を確実に系外に排出することがリン除去率の
向上につながる。従って、リンの除去を良好に行うに
は、汚泥を長期間滞留させると嫌気状態になりリン再放
出の可能性があるので余剰汚泥の引き抜きをこまめに行
うこと、嫌気過程では十分にリン放出させるためORPを
できるだけ低く保つこと等が重要である。
[0006] In addition, improving the phosphorus content in the sludge and reliably discharging the proliferated sludge to the outside of the system leads to an improvement in the phosphorus removal rate. Therefore, in order to effectively remove phosphorus, if sludge is retained for a long period of time, it becomes anaerobic and phosphorus may be re-released.Therefore, it is necessary to frequently extract excess sludge, and to sufficiently release phosphorus in the anaerobic process. Therefore, it is important to keep ORP as low as possible.

【0007】[0007]

【発明が解決しようとする課題】しかし、窒素又はリン
の何れかを単独で除去するのであれば上述の条件に従っ
た非曝気処理と曝気処理とを繰り返せば足りるが、両者
を共に除去する場合は非曝気処理、曝気処理及びそれら
の切り替えの制御が難しい問題点がある。複数の除去対
象に対して、それぞれ異なる環境で活動する微生物の集
合体である活性汚泥を安定に維持することが難しいから
である。
However, if either nitrogen or phosphorus is to be removed alone, it is sufficient to repeat the non-aeration treatment and the aeration treatment under the above conditions. However, there is a problem that it is difficult to control non-aeration processing, aeration processing, and switching between them. This is because it is difficult to stably maintain activated sludge, which is an aggregate of microorganisms operating in different environments, for a plurality of removal targets.

【0008】例えば、窒素除去のためには汚泥滞留時間
(以下、SRTという。)を十分に確保した方が良いのに
対し、リン除去のためにはSRTを短くして余剰汚泥をこ
まめに引き抜いた方が良い。すなわち、SRTのみの最適
設定では窒素とリンを共に除去することは難しい。
For example, it is better to secure a sufficient sludge retention time (hereinafter referred to as SRT) for nitrogen removal, whereas for phosphorus removal, the SRT is shortened and excess sludge is frequently extracted. Better. That is, it is difficult to remove both nitrogen and phosphorus by the optimal setting of only SRT.

【0009】また、非曝気処理では先ず脱窒反応が進
み、脱窒反応完了後にリンの放出反応が進むことが知ら
れている。従って窒素とリンを共に除去するためには、
脱窒反応の完了を検知して、リン放出が始まる前に曝気
処理へ切替える必要がある。脱窒反応の完了を検知する
一方法として、図5(A)に示すように処理槽内のORP
を継続的に測定し、非曝気処理(攪拌工程)におけるOR
Pの屈曲点の検出により脱窒反応完了を検知する方法が
提案されている(特許第2786770号)。しかし、ORPの屈
曲点の検出は必ずしも容易でなく、図5(B)のように
屈曲点の検出が困難な場合があり、ノイズ等により屈曲
点の検出が一層困難となる場合もある。良好な窒素除去
とリン除去を確保するため、非曝気処理における脱窒反
応の完了を確実に検知できる方法の開発が望まれてい
る。
Further, it is known that in the non-aeration treatment, a denitrification reaction first proceeds, and a phosphorus release reaction proceeds after the denitrification reaction is completed. Therefore, to remove both nitrogen and phosphorus,
It is necessary to detect the completion of the denitrification reaction and switch to the aeration process before the phosphorus release starts. As one method for detecting the completion of the denitrification reaction, as shown in FIG.
Is continuously measured, and OR in non-aeration treatment (stirring process)
A method of detecting the completion of the denitrification reaction by detecting the inflection point of P has been proposed (Japanese Patent No. 2786770). However, the detection of the inflection point of the ORP is not always easy, and the detection of the inflection point may be difficult as shown in FIG. 5B, and the detection of the inflection point may be more difficult due to noise or the like. In order to ensure good nitrogen removal and phosphorus removal, it is desired to develop a method capable of reliably detecting the completion of the denitrification reaction in the non-aeration treatment.

【0010】更に、活性汚泥は混合微生物系であり環境
の変化が生物の活動に複雑に影響し合うため、被処理水
の水量や水質(以下、流入負荷ということがある。)の
変動が大きいとシステムを良好に安定して運転すること
が難しい問題点もある。従来は、流入負荷の変動に対し
て熟練管理者の経験的ノウハウによる施設運転制御で対
応しているケースが多い。しかし、あらゆる流入条件や
環境に対して24時間体制で最適な制御を行うことは困難
であり、流入負荷の変動に応じて非曝気処理及び曝気処
理が適切に制御できる技術の開発が望まれている。
Furthermore, activated sludge is a mixed microbial system, and changes in the environment affect the activities of living organisms in a complex manner, so that the amount of water to be treated and the quality of the water (hereinafter sometimes referred to as inflow load) fluctuate greatly. There is also a problem that it is difficult to operate the system satisfactorily and stably. Conventionally, in many cases, the fluctuation of the inflow load is dealt with by facility operation control based on empirical know-how of a skilled manager. However, it is difficult to perform optimal control for all inflow conditions and environments around the clock, and there is a need for the development of technology that can appropriately control non-aeration and aeration in response to changes in inflow load. I have.

【0011】そこで本発明の目的は、BOD成分と栄養塩
類成分との良好な除去を長期間安定的に維持できる嫌気
・好気活性汚泥処理方法を提供するにある。
It is an object of the present invention to provide a method for treating anaerobic / aerobic activated sludge which can stably maintain good removal of BOD components and nutrient salts for a long period of time.

【0012】[0012]

【課題を解決するための手段】本発明者は、嫌気・好気
活性汚泥処理槽内のpHの経時変化に注目した。曝気工程
(曝気処理)では硝化反応による硝酸イオンの生成によ
りpHは低下するが、撹拌工程(非曝気処理)に切り替わ
ると、先ず脱窒反応による硝酸イオンの減少によりpHが
上昇し、脱窒処理完了後にリン蓄積細菌がリンを放出し
てリン酸イオンが生成するとpHが再度低下する。従っ
て、脱窒反応からリン放出反応への移行時にpHの極大が
現れると考えられる。しかし、図3(A)に示すよう
に、pHの変化幅は非常に狭く且つ処理槽内のpH計の出力
信号には細かいノイズが含まれるので、処理槽内のpH計
の出力信号からpHの極大を検出することは困難である。
Means for Solving the Problems The present inventors have paid attention to the change over time in pH in an anaerobic / aerobic activated sludge treatment tank. In the aeration step (aeration treatment), the pH decreases due to the formation of nitrate ions by the nitrification reaction, but when switching to the stirring step (non-aeration treatment), the pH increases first due to the decrease in nitrate ions due to the denitrification reaction, and the denitrification treatment After completion, the pH drops again when the phosphorus-accumulating bacteria release phosphorus and produce phosphate ions. Therefore, it is considered that the pH maximum appears at the time of transition from the denitrification reaction to the phosphorus release reaction. However, as shown in FIG. 3 (A), the change width of the pH is very narrow and the output signal of the pH meter in the processing tank contains fine noise. Is difficult to detect.

【0013】本発明者は、pHの極大を検出する方法の研
究の結果、処理槽内のpH計の出力信号をノイズ除去フィ
ルタ経由で入力することにより、前記pHの極大の検出が
可能となることを見出した。すなわち、図3(B)に示
すように、フィルタでノイズをカットすれば、例えばpH
が増加から減少に変化する時点としてpH極大点の検出が
可能となる。また、一般的に、極大点の検出は、屈曲点
の検出に比し容易である。本発明はこの知見に基づき完
成に至ったものである。
The present inventor has studied a method of detecting the maximum of pH. As a result, the maximum of the pH can be detected by inputting the output signal of the pH meter in the processing tank through a noise removing filter. I found that. That is, as shown in FIG. 3B, if noise is cut by a filter, for example, pH
The point at which the pH changes from an increase to a decrease can be detected at the pH maximum point. In general, detection of a local maximum point is easier than detection of a bending point. The present invention has been completed based on this finding.

【0014】図1の実施例を参照するに、本発明の嫌気
・好気活性汚泥処理方法は、曝気装置14及びpH計11を設
けた活性汚泥処理槽2に被処理水1を流入させ、ノイズ
除去フィルタ16付きpH極大点検出手段17をpH計11に接続
し、曝気装置14の駆動による曝気処理と曝気停止から前
記検出手段17によるpH極大点検出時までの非曝気処理と
からなるサイクルを繰り返した後、処理槽2から流出す
る処理水5中の汚泥を沈降分離してなるものである。
Referring to the embodiment shown in FIG. 1, the anaerobic / aerobic activated sludge treatment method of the present invention comprises the steps of: introducing the water to be treated 1 into an activated sludge treatment tank 2 provided with an aerator 14 and a pH meter 11; A cycle consisting of connecting the pH maximum point detecting means 17 with the noise removal filter 16 to the pH meter 11 and performing aeration processing by driving the aeration apparatus 14 and non-aeration processing from the stop of the aeration to the detection of the pH maximum point by the detecting means 17 Is repeated, and the sludge in the treated water 5 flowing out of the treatment tank 2 is settled and separated.

【0015】好ましくは、処理槽2にDO計12を設け、非
曝気処理時のDO減少速度の算出手段28をDO計12に接続
し、前記サイクル毎に曝気処理時の曝気装置14の駆動時
間を直前の非曝気処理時のDO減少速度に基づき制御す
る。この場合、曝気装置14の駆動時間を曝気開始からDO
計出力が所定DO設定値を超えるまでの時間とし、前記各
サイクル毎に曝気処理時の所定DO設定値を直前の非曝気
処理時のDO減少速度に基づき調整することができる。
Preferably, a DO meter 12 is provided in the treatment tank 2, and means for calculating a DO reduction rate 28 during non-aeration processing is connected to the DO meter 12, and the driving time of the aerator 14 during aeration processing is set for each cycle. Is controlled based on the DO reduction rate during the immediately preceding non-aeration treatment. In this case, the driving time of the aeration device 14 is changed from the start of the aeration to DO.
The time until the total output exceeds the predetermined DO set value is set, and the predetermined DO set value at the time of the aeration process can be adjusted for each cycle based on the DO reduction speed at the time of the immediately preceding non-aeration process.

【0016】更に好ましくは、図2に示すように、被処
理水1が流入する第1活性汚泥処理槽2と第1処理槽2
に連通する第2活性汚泥処理槽3とにそれぞれpH計11、
21及び曝気装置15、25を設け、各pH計11、21にノイズ除
去フィルタ16、26付きpH極大点検出手段17、27をそれぞ
れ接続し、第1処理槽2において曝気装置駆動による曝
気処理と曝気停止から活性汚泥のリン放出に十分な時間
経過時までの非曝気処理とからなるサイクルを繰り返
し、第2処理槽3において曝気装置駆動による曝気処理
と曝気装置停止から検出手段27によるpH極大点検出時ま
での非曝気処理とからなるサイクルを繰り返した後、第
2処理槽3から流出する処理水5中の汚泥を沈降分離す
る。
More preferably, as shown in FIG. 2, the first activated sludge treatment tank 2 into which the water 1 to be treated flows and the first treatment tank 2
PH meter 11, respectively with the second activated sludge treatment tank 3 communicating with
21 and aeration devices 15 and 25 are provided, and pH maximum points detecting means 17 and 27 with noise elimination filters 16 and 26 are connected to the respective pH meters 11 and 21 to perform aeration treatment by driving the aeration device in the first treatment tank 2. The cycle consisting of the non-aeration treatment from the stop of the aeration until the time sufficient for phosphorus release of the activated sludge elapses is repeated. After repeating the cycle including the non-aeration treatment up to the time of discharge, the sludge in the treated water 5 flowing out of the second treatment tank 3 is settled and separated.

【0017】[0017]

【発明の実施の形態】図1の実施例は、単独の活性汚泥
処理槽2で非曝気処理と曝気処理とからなるサイクル
(以下、嫌気・好気サイクルということがある。)を繰
り返す本発明の実施例を示す。処理槽2には曝気装置14
と撹拌装置15とpH計11が設けられている。曝気装置14と
撹拌装置15を駆動することにより処理槽2内を曝気状態
とし、曝気装置14を停止して撹拌装置15のみを駆動する
ことにより処理槽2内を非曝気状態とすることができ
る。曝気装置14に接続した制御装置10により、曝気装置
14の駆動・停止を制御する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiment of FIG. 1 repeats a cycle consisting of a non-aeration treatment and an aeration treatment (hereinafter sometimes referred to as an anaerobic / aerobic cycle) in a single activated sludge treatment tank 2. The following shows an example. The treatment tank 2 has an aeration device 14
, A stirrer 15 and a pH meter 11 are provided. By driving the aeration device 14 and the stirring device 15, the inside of the processing tank 2 can be in an aerated state, and by stopping the aeration device 14 and driving only the stirring device 15, the inside of the processing tank 2 can be in a non-aerated state. . The control device 10 connected to the aeration device 14
Controls drive / stop of 14.

【0018】処理槽2のpH計11にはノイズ除去フィルタ
16付きpH極大点検出手段17を接続し、pH計11の出力信号
をノイズ除去フィルタ16経由で検出手段17に入力する。
図3を参照して上述したように、pH計11の出力信号中の
ノイズをフィルタ16でカットすることにより、非曝気処
理におけるpH極大点の検出が可能となる。検出手段17
は、pH値の経時的変化に基づきpHの増加から減少に変化
する時点を検出し、又はpH値の変化率の経時的変化に基
づきpH変化率が正から負に変化する時点を検出すること
によりpH極大点を検出する装置であり、その一例は検出
プログラムを内蔵したコンピュータである。ノイズ除去
フィルタ16の一例は高周波ノイズ除去フィルタ又は後述
するような移動平均モデル(moving-average model)に
基づくノイズ除去フィルタである。pH極大点検出手段17
は制御装置10に接続され、pH極大点の検出を曝気装置14
の制御に利用する。必要に応じてpH計を制御装置10に接
続し、処理槽2のpHを曝気装置14の制御に利用してもよ
い。
The pH meter 11 of the processing tank 2 has a noise removing filter.
The pH maximum point detecting means 17 with 16 is connected, and the output signal of the pH meter 11 is input to the detecting means 17 via the noise removing filter 16.
As described above with reference to FIG. 3, by cutting the noise in the output signal of the pH meter 11 with the filter 16, it is possible to detect the pH maximum point in the non-aeration process. Detection means 17
Is to detect the point in time when the pH changes from increasing to decreasing based on the change in pH over time, or to detect the point in time when the rate of change in pH changes from positive to negative based on the change over time in the rate of change of pH. Is a device that detects a pH maximum point by using a computer having a built-in detection program. An example of the noise elimination filter 16 is a high-frequency noise elimination filter or a noise elimination filter based on a moving-average model described later. pH maximum point detection means 17
Is connected to the control device 10 to detect the pH maximum point
Used for control of If necessary, a pH meter may be connected to the control device 10 to use the pH of the processing tank 2 for controlling the aeration device 14.

【0019】移動平均モデルに基づくノイズ除去フィル
タとは、例えば下記(1)式に基づき、時系列上のある時
刻nのpH測定値Pn'を、当該時刻nのpH計出力信号
(Pn)と時系列上の前後数点の時刻におけるpH計出力信
号(例えばPn-4、Pn-3、Pn-2、Pn -1、Pn+1、Pn+2
Pn+3、Pn+4)との平均値として算出することにより、pH
計出力信号中のノイズを除去するものである。例えば処
理槽2内のpHデータ取り込みを30秒毎に行う場合、
Pn-4、Pn-3、Pn-2及びPn-1は時刻nの2分前、1分30秒
前、1分前及び30秒前のpH計出力信号、Pn+1、Pn+2、P
n+3及びPn+4は時刻nの30秒後、1分後、1分30秒後及
び2分後のpH計出力信号を示す。
The noise elimination filter based on the moving average model is, for example, based on the following equation (1), which converts a pH measurement value P n ′ at a certain time n in a time series into a pH meter output signal (P n) at the time n. ) And the pH meter output signals at several points before and after the time series (for example, Pn-4 , Pn-3 , Pn-2 , Pn- 1 , Pn + 1 , Pn + 2 ,
P n + 3 , P n + 4 )
This is to remove noise in the total output signal. For example, when taking in the pH data in the processing tank 2 every 30 seconds,
P n-4 , P n-3 , P n-2, and P n-1 are the pH meter output signals 2 minutes before time n, 1 minute 30 seconds before, 1 minute and 30 seconds before time n, P n + 1 , P n + 2 , P
n + 3 and P n + 4 indicate the pH meter output signals 30 seconds, 1 minute, 1 minute 30 seconds, and 2 minutes after time n.

【0020】移動平均モデルでは、モデル中のパラメー
タ((1)式の定係数。以下、重みという。)及び平均す
るデータの個数((1)式では9個。以下、平均点数とい
う。)の決定が問題となる。平均点数を少なくすれば微
細なノイズを除去することが難しい。一方、平均点数を
増やすとノイズの除去を行うことができても、実データ
の波形自体を崩してしまうおそれがある。本発明者は、
ある時刻nのpH測定値Pn’を求める場合に、平均点数を
多く確保し且つ時刻nに近い時刻のpH計出力信号の重み
を大きくすることにより、細かい変動のノイズを除去し
つつ、実際の処理槽2内のpH波形の特徴を残すことがで
きることを見出した。
In the moving average model, the parameters in the model (constant coefficients of equation (1), hereinafter referred to as weights) and the number of data to be averaged (9 in equation (1), hereinafter referred to as average score). Decisions matter. If the average score is reduced, it is difficult to remove fine noise. On the other hand, if the average points are increased, even if noise can be removed, the waveform of the actual data itself may be broken. The inventor has
When obtaining the pH measurement value P n ′ at a certain time n, while securing a large number of average points and increasing the weight of the pH meter output signal at a time close to the time n, the noise of small fluctuations can be removed, It has been found that the characteristics of the pH waveform in the treatment tank 2 can be left.

【0021】なお、平均点数や測定間隔(例えば30
秒)、パラメータは、(1)式の例の通りである必要はな
い。被処理水1の状態や処理槽2の環境等に応じて、pH
波形の特徴を打ち消すことなく微細変動ノイズ成分を除
去できるように、移動平均モデルにおける平均点数や測
定間隔、パラメータを適当に調整することが可能であ
る。
Note that the average score and the measurement interval (for example, 30
Seconds), the parameters need not be as in the example of equation (1). Depending on the condition of the water 1 to be treated and the environment of the treatment tank 2,
The average number of points, the measurement interval, and the parameters in the moving average model can be appropriately adjusted so that the fine fluctuation noise component can be removed without canceling the characteristics of the waveform.

【0022】[0022]

【数1】 (Equation 1)

【0023】処理槽2に流入した被処理水1は、返送汚
泥7と混合され、汚泥7が浮遊する状態で嫌気・好気サ
イクルにより処理され、処理水5として下流の最終沈殿
池4へ送られる。最終沈殿池4において処理水5中の汚
泥を沈降分離する。汚泥分離後の処理水は放流し、沈殿
汚泥の一部は返送汚泥7として処理槽2へ戻し、残余の
沈殿汚泥(以下、余剰汚泥という。)は引き抜いて処分
される。
The water to be treated 1 flowing into the treatment tank 2 is mixed with the returned sludge 7 and is treated by an anaerobic / aerobic cycle in a state where the sludge 7 floats, and is sent to the final sedimentation basin 4 downstream as treated water 5. Can be In the final sedimentation basin 4, the sludge in the treated water 5 is settled and separated. The treated water after sludge separation is discharged, a part of the settled sludge is returned to the treatment tank 2 as return sludge 7, and the remaining settled sludge (hereinafter referred to as excess sludge) is pulled out and disposed.

【0024】曝気装置14を駆動する曝気処理では、被処
理水1中のBOD成分は酸化分解され、アンモニア態窒素
は硝酸に硝化される。曝気装置14を所定時間駆動のの
ち、制御装置10により曝気装置14を停止させて非曝気処
理に切替える。非曝気処理では、硝化された硝酸性窒素
が窒素ガスに還元されて大気中に放散除去される。硝酸
還元(脱窒反応)時は処理槽2のpHが上昇し、還元終了
後に汚泥からのリン放出が始まると処理槽2のpHは低下
する。本発明では、脱窒反応完了に対応するpH極大点を
検出手段17で検出し、検出した時点で制御装置10により
曝気装置14を再駆動して曝気処理に切替える。
In the aeration treatment for driving the aerator 14, the BOD component in the water 1 is oxidatively decomposed and the ammonia nitrogen is nitrified into nitric acid. After driving the aeration device 14 for a predetermined time, the control device 10 stops the aeration device 14 and switches to non-aeration processing. In the non-aeration process, nitrated nitrate nitrogen is reduced to nitrogen gas and is diffused and removed to the atmosphere. During nitric acid reduction (denitrification reaction), the pH of the treatment tank 2 rises, and when phosphorus is released from sludge after completion of the reduction, the pH of the treatment tank 2 decreases. In the present invention, the pH maximum point corresponding to the completion of the denitrification reaction is detected by the detection means 17, and at the time of detection, the control device 10 restarts the aeration device 14 to switch to the aeration process.

【0025】一般に、非曝気処理時の脱窒反応の時間は
被処理水1の水質や水量、汚泥の性状等に応じて変化す
る。被処理水1中の栄養塩成分の除去を良好に保つため
には、被処理水1の水質等に応じた非曝気処理時間の調
整が必要である。本発明は処理槽2のpH極大点の検出に
応じて非曝気処理から曝気処理へ切替えるので、被処理
水1の水質や水量等に拘わらず脱窒反応時間に対応した
最適な非曝気処理時間を確保することができ、BOD成分
と窒素の良好な除去が達成できる。
Generally, the time of the denitrification reaction during the non-aeration treatment varies depending on the quality and quantity of the water to be treated 1, the properties of the sludge, and the like. In order to keep the removal of nutrient components in the water to be treated 1 good, it is necessary to adjust the non-aeration treatment time according to the quality of the water to be treated 1 and the like. Since the present invention switches from non-aeration processing to aeration processing in response to detection of the pH maximum point in the processing tank 2, the optimum non-aeration processing time corresponding to the denitrification reaction time is independent of the water quality and water amount of the water 1 to be treated. , And good removal of BOD components and nitrogen can be achieved.

【0026】被処理水1中のリンを除去する場合は、曝
気停止から検出手段17によるpH極大点検出時までの非曝
気処理と曝気処理とからなる嫌気・好気サイクルの繰り
返しに代えて、曝気停止から活性汚泥のリン放出に十分
な時間経過時までの非曝気処理と曝気装置駆動による曝
気処理とからなるサイクルを繰り返す。ここで「曝気停
止から活性汚泥のリン放出に十分な時間経過時まで」の
時間とは、「曝気停止から前記検出手段17によるpH極大
点検出時まで」の時間よりも十分に長くて、かつ、pH極
大点検出後に活性汚泥からのリン放出が十分に行われる
に足る時間である。活性汚泥によるリン放出は処理槽2
のpH極大点検出後に反応が進むと考えられるので、pH極
大点検出後にリン放出に十分な時間を確保することによ
り、曝気処理への切替え後において活性汚泥によるリン
の過剰摂取を促進し、被処理水中の良好なBOD成分とリ
ンの除去が達成できる。
When removing phosphorus in the water 1 to be treated, instead of repeating the anaerobic / aerobic cycle consisting of the non-aeration treatment and the aeration treatment from the stop of the aeration to the detection of the pH maximum point by the detection means 17, The cycle consisting of the non-aeration process and the aeration process by driving the aerator is repeated from the stop of the aeration to the time when a sufficient time for phosphorus release of the activated sludge has elapsed. Here, the time `` from the stop of the aeration to the lapse of time sufficient for phosphorus release of the activated sludge '' is sufficiently longer than the time `` from the stop of the aeration to the detection of the pH maximum point by the detection means 17 '', and This is a time sufficient for sufficient release of phosphorus from activated sludge after detection of the pH maximum point. Phosphorus release by activated sludge is treatment tank 2
It is considered that the reaction proceeds after the detection of the pH maximum point, so by securing sufficient time for phosphorus release after the detection of the pH maximum point, excessive intake of phosphorus by activated sludge after switching to aeration treatment is promoted, Good removal of BOD components and phosphorus in the treated water can be achieved.

【0027】好ましくは、図2に示すように、リン除去
を主目的とする第1処理槽2と窒素除去を主目的とする
第2処理槽3とを連通させて設け、第1処理槽2へ連続
的に流入する被処理水1中のリンを第1処理槽2で除去
し、被処理水1中の窒素を第2処理槽3で除去する。第
2処理槽3の下流に最終沈殿池4を設ける。各処理槽
2、3にそれぞれpH計11、21及び曝気装置15、25を設
け、各pH計11、21にノイズ除去フィルタ16、26付きpH極
大点検出手段17、27を接続する。
Preferably, as shown in FIG. 2, a first processing tank 2 mainly for removing phosphorus and a second processing tank 3 mainly for removing nitrogen are provided in communication with each other. The phosphorus in the water to be treated 1 continuously flowing into the water 1 is removed in the first treatment tank 2, and the nitrogen in the water to be treated 1 is removed in the second treatment tank 3. A final sedimentation basin 4 is provided downstream of the second treatment tank 3. Each of the treatment tanks 2 and 3 is provided with a pH meter 11 or 21 and an aeration device 15 or 25, respectively.

【0028】第1処理槽2では、曝気装置駆動による曝
気処理と曝気停止から活性汚泥のリン放出に十分な時間
経過時までの非曝気処理とからなるサイクルを繰り返す
ことにより、活性汚泥にリンを過剰摂取させ、被処理水
1中のBOD成分とリンを除去する。その後被処理水1を
第2処理槽3へ流入させる。第2処理槽3では、曝気装
置駆動による曝気処理と曝気装置停止から検出手段27に
よるpH極大点検出時までの非曝気処理とからなるサイク
ルを繰り返すことにより、被処理水1中のBOD成分と窒
素を除去すると共に、pH極大点検出後に起こる汚泥から
のリン放出反応を防止する。第2処理槽3から流出する
処理水5中の汚泥を最終沈殿池4で沈降分離することに
より、被処理水1中のBOD成分と窒素とリンの良好な除
去が達成できる。図2の2槽式処理槽2、3では、図1
の1槽式処理槽に比し、被処理水1が未処理のまま最終
沈殿池4へ流出する危険を低減する効果も期待できる。
In the first treatment tank 2, phosphorus is added to the activated sludge by repeating a cycle consisting of aeration treatment by driving the aeration device and non-aeration treatment from the stop of the aeration to the lapse of time sufficient to release phosphorus from the activated sludge. Excessive intake is performed to remove the BOD component and phosphorus in the water 1 to be treated. Thereafter, the water to be treated 1 is caused to flow into the second treatment tank 3. In the second treatment tank 3, the cycle consisting of the aeration treatment by driving the aeration device and the non-aeration treatment from the stop of the aeration device to the detection of the pH maximum point by the detection means 27 is repeated, so that the BOD component in the water to be treated 1 is reduced. It removes nitrogen and prevents phosphorus release reaction from sludge that occurs after detection of the pH maximum point. By sedimenting and separating the sludge in the treated water 5 flowing out of the second treatment tank 3 in the final sedimentation basin 4, good removal of the BOD component, nitrogen and phosphorus in the treated water 1 can be achieved. In the two-tank processing tanks 2 and 3 of FIG.
The effect of reducing the risk that the water to be treated 1 flows out to the final sedimentation basin 4 without being treated can be expected as compared with the single tank type treatment tank.

【0029】更に好ましくは、図1の処理槽2又は図2
の第2処理槽3にDO計12又は22を設け、非曝気処理時の
DO減少速度の算出手段28をDO計12又は22に接続し、嫌気
・好気サイクル毎に曝気処理時の曝気装置14の駆動時間
を直前の非曝気処理時のDO減少速度に基づき制御する。
一般に、曝気処理及び非曝気処理時の被処理水1のDO値
は、被処理水1の水量や水質(流入負荷)に応じて変化
する。流入負荷が高い場合は、BOD成分の分解に酸素が
消費されるので、曝気処理時に被処理水1のDOが上昇し
ても、非曝気処理時に比較的短時間で無酸素状態に戻す
ことができる。これに対し流入負荷が低い場合は、非曝
気処理時に無酸素状態に戻るまでの時間がかかりすぎ、
十分な脱窒処理の時間等が確保できなくなるおそれがあ
る。従って、流入負荷に応じて曝気処理時の曝気装置の
駆動時間を調整することが望ましい。
More preferably, the processing tank 2 of FIG.
The second treatment tank 3 is provided with a DO meter 12 or 22 for non-aeration treatment.
The DO reduction speed calculating means 28 is connected to the DO meter 12 or 22 to control the drive time of the aeration device 14 during the aeration process for each anaerobic / aerobic cycle based on the DO reduction speed during the immediately preceding non-aeration process.
In general, the DO value of the water to be treated 1 during the aeration treatment and the non-aeration treatment changes according to the amount of water and the water quality (inflow load) of the treatment water 1. When the inflow load is high, oxygen is consumed to decompose the BOD component. Therefore, even if the DO of the water to be treated 1 rises during the aeration treatment, it can be returned to the oxygen-free state in a relatively short time during the non-aeration treatment. it can. On the other hand, when the inflow load is low, it takes too much time to return to the anoxic state during the non-aeration treatment,
There is a possibility that sufficient time for the denitrification treatment cannot be secured. Therefore, it is desirable to adjust the drive time of the aeration device during the aeration process according to the inflow load.

【0030】本発明者は、流入負荷の違いにより非曝気
処理時のDO減少速度に違いが現れることに注目した。図
4(A)は流入負荷が高いときのDO減少速度を示し、同
図(B)は流入負荷が低いときのDO減少速度を示す。同
図から分かるように、非曝気処理時のDO減少速度に基づ
き流入負荷が推定できる。従って、図示例のように算出
手段28を制御装置10又は30へ接続し、算出手段28が出力
するDO減少速度が小さいときは制御装置10又は30により
直後の曝気処理における曝気装置の駆動時間の短縮、ま
たは供給酸素量の低減により、流入負荷の変動に対応し
た最適な曝気制御が可能となる。また、しばしば問題と
なる供用開始時の低負荷の状態においても、適切な曝気
制御を行うことにより、あらゆる流入条件における最適
な水処理が実現可能となる。DO減少速度算出装置28の一
例も、減少速度算出プログラムを内蔵したコンピュータ
である。
The present inventor has noticed that the difference in the DO reduction rate during the non-aeration treatment is different depending on the difference in the inflow load. FIG. 4A shows the DO reduction speed when the inflow load is high, and FIG. 4B shows the DO reduction speed when the inflow load is low. As can be seen from the figure, the inflow load can be estimated based on the DO reduction rate during the non-aeration processing. Therefore, as shown in the illustrated example, the calculation unit 28 is connected to the control device 10 or 30, and when the DO reduction speed output by the calculation unit 28 is small, the control device 10 or 30 reduces the drive time of the aeration device in the immediately subsequent aeration process. By shortening or reducing the amount of supplied oxygen, optimal aeration control corresponding to fluctuations in the inflow load becomes possible. In addition, even in a low load state at the start of service, which is often a problem, by performing appropriate aeration control, it becomes possible to realize optimal water treatment under all inflow conditions. An example of the DO decrease speed calculating device 28 is also a computer having a built-in decrease speed calculating program.

【0031】なお図示例では、曝気装置14、24の駆動時
間を曝気開始からDO計12、22の出力が所定DO設定値を超
えるまでの時間とし、DO計12、22の出力が所定DO設定値
を超えた時点で曝気装置14、24を停止している。算出手
段28で算出された非曝気処理時のDO減少速度が小さい時
は、直後の曝気処理時の所定DO設定値を低く調整するこ
とにより、曝気装置の駆動時間を短縮している。また、
図中の符号29はDO減少速度算出手段28に設けたメモリで
ある。
In the illustrated example, the drive time of the aeration devices 14 and 24 is defined as the time from the start of aeration until the outputs of the DO meters 12 and 22 exceed a predetermined DO set value. When the value is exceeded, the aeration devices 14 and 24 are stopped. When the DO reduction rate in the non-aeration process calculated by the calculation unit 28 is low, the drive time of the aeration apparatus is shortened by adjusting the predetermined DO set value in the subsequent aeration process to be low. Also,
Reference numeral 29 in the figure denotes a memory provided in the DO decrease speed calculating means 28.

【0032】こうして本発明の目的である「BOD成分と
栄養塩類成分との良好な除去を長期間安定的に維持でき
る嫌気・好気活性汚泥処理方法」の提供が達成できる。
In this manner, the object of the present invention is to provide the "anaerobic / aerobic activated sludge treatment method capable of stably maintaining good removal of the BOD component and the nutrient component for a long period of time".

【0033】[0033]

【実施例】図2は、ファジィ制御装置30を用いた本発明
の嫌気・好気活性汚泥処理装置の一例を示す。同図の処
理装置は、被処理水が連続的に流入する第1活性汚泥処
理槽2と該第1処理槽2に連通する第2活性汚泥処理槽
3と該第2処理槽3の処理水5が流入する沈殿池4を有
する。第1処理槽2及び第2処理槽3には、入力制御信
号に応じた曝気量又は曝気停止により処理槽内を曝気又
は非曝気状態とする第1曝気装置及び第2曝気装置がそ
れぞれ設けられている。
FIG. 2 shows an example of an anaerobic / aerobic activated sludge treatment apparatus of the present invention using a fuzzy controller 30. The treatment apparatus shown in FIG. 1 includes a first activated sludge treatment tank 2 into which water to be treated continuously flows, a second activated sludge treatment tank 3 communicating with the first treatment tank 2, and a treated water in the second treatment tank 3. 5 has a sedimentation basin 4 into which it flows. The first processing tank 2 and the second processing tank 3 are provided with a first aeration device and a second aeration device, respectively, which set the inside of the processing tank to an aerated or non-aerated state by an aeration amount or an aeration stop according to an input control signal. ing.

【0034】また、各処理槽2、3にはそれぞれ、pH計
11、21、DO計12、22、及びORP計13、23が設けられ、第
1処理槽2のpH計11にはノイズ除去フィルタ16付きpH極
大点検出手段17を接続し、第2処理槽3のpH計21にはノ
イズ除去フィルタ26付きpH極大点検出手段27を接続して
いる。また第2処理槽2のDO計21には、非曝気処理時の
DO減少速度の算出手段28を接続している。pH計11、21、
DO計12、22、ORP計13、23、pH極大点検出手段17、27、
及び第2処理槽3のDO減少速度算出手段28は、それぞれ
制御装置30に接続されている。
Each of the processing tanks 2 and 3 has a pH meter.
11, 21, DO analyzers 12, 22, and ORP analyzers 13, 23 are provided. The pH meter 11 of the first processing tank 2 is connected to a pH maximum point detecting means 17 with a noise elimination filter 16, and a second processing tank is provided. A pH maximum point detecting means 27 with a noise removing filter 26 is connected to the third pH meter 21. In addition, the DO meter 21 of the second treatment tank 2 has
The DO decreasing speed calculating means 28 is connected. pH meter 11, 21,
DO total 12, 22, ORP total 13, 23, pH maximum point detecting means 17, 27,
The DO reduction rate calculating means 28 of the second processing tank 3 is connected to the control device 30.

【0035】被処理水1は第1処理槽2へ連続的に流入
し、第1処理槽2及び第2処理槽3において嫌気・好気
サイクルにより処理され、処理水4となって第2処理槽
3の下流の最終沈殿池4へ流出する。最終沈殿池4で処
理水5と汚泥が分離され、処理水は放流され、汚泥の一
部は返送汚泥7として第1処理槽2へ返送される。この
ような2槽式処理槽2、3で被処理水1中のBOD成分と
窒素とリンとを共に除去する場合は、各処理槽2、3の
嫌気・好気サイクルを各々の処理目的に応じて非同期的
に制御する必要があるので、最適な嫌気・好気サイクル
の制御を長期間安定的に継続することが難しい。
The water to be treated 1 continuously flows into the first treatment tank 2 and is treated in the first treatment tank 2 and the second treatment tank 3 by an anaerobic / aerobic cycle to become treated water 4 and becomes the second treatment water. It flows out to the final sedimentation basin 4 downstream of the tank 3. The treated water 5 and the sludge are separated in the final sedimentation basin 4, the treated water is discharged, and a part of the sludge is returned to the first treatment tank 2 as returned sludge 7. When the BOD component, nitrogen and phosphorus in the water to be treated 1 are removed together in the two-tank treatment tanks 2 and 3, the anaerobic / aerobic cycle of each treatment tank 2 and 3 is performed for each treatment purpose. Therefore, it is difficult to control the anaerobic / aerobic cycle optimally and stably for a long period of time because it is necessary to perform the control asynchronously.

【0036】本発明者はファジィ制御に注目した。ファ
ジィ制御によれば、熟練管理者の経験的ノウハウのシス
テム化が可能である。また上述したように、非曝気処理
時のpH極大点から脱窒反応の完了時点が比較的容易に検
出できるので、pH極大点検出をファジィ制御の条件に加
えれば、脱窒反応の進行状況に応じた最適な嫌気・好気
サイクルの制御が期待できる。更に、非曝気処理時のDO
減少速度をファジィ制御の条件に加えることにより、被
処理水1の流入負荷の変動に対応した最適な嫌気・好気
サイクルの制御も期待できる。
The inventor paid attention to fuzzy control. According to the fuzzy control, it is possible to systematize the empirical know-how of a skilled manager. In addition, as described above, the completion point of the denitrification reaction can be relatively easily detected from the pH maximum point at the time of the non-aeration treatment. Optimal control of the anaerobic / aerobic cycle can be expected. Furthermore, DO during non-aeration treatment
By adding the decreasing speed to the condition of the fuzzy control, it is possible to expect the optimal control of the anaerobic / aerobic cycle corresponding to the fluctuation of the inflow load of the water 1 to be treated.

【0037】図2の制御装置30は、各処理槽2、3の非
曝気・曝気処理とpHとDOとORPとpH極大点検出時と第2
処理槽3のDO減少速度の各々を前件部変数(制御装置30
の入力)とし、且つ、各処理槽2、3の曝気装置15、25
の曝気量又は曝気停止を後件部変数(制御装置30の出
力)とする複数のファジィ制御規則33を記憶している。
各処理槽2、3のpH計11、21、DO計12、22、ORP計13、2
3、pH極大点検出手段17、27、及び第2処理槽3のDO減
少速度算出手段28の各出力信号を制御装置30へ入力し、
制御規則33に基づき各出力信号に応じた制御信号を各処
理槽2、3の曝気装置15、25へ出力し、各処理槽2、3
の曝気工程と撹拌工程の切替え及び曝気工程の最適な曝
気量を制御している。
The control device 30 shown in FIG. 2 performs the non-aeration / aeration treatment of each of the treatment tanks 2 and 3 and the detection of the pH, DO, ORP, and the pH maximum point.
Each of the DO reduction speeds of the processing tank 3 is determined by a variable in the antecedent part (control device 30
Of the processing tanks 2 and 3
A plurality of fuzzy control rules 33 are stored in which the aeration amount or stop of aeration is set as a consequent variable (output of the control device 30).
PH meter 11, 21, DO meter 12, 22, ORP meter 13, 2 for each treatment tank 2, 3
3. Inputting each output signal of the pH maximum point detecting means 17 and 27 and the DO reduction rate calculating means 28 of the second processing tank 3 to the control device 30;
A control signal corresponding to each output signal is output to the aeration devices 15 and 25 of each of the processing tanks 2 and 3 based on the control rule 33, and the respective processing tanks 2 and 3 are output.
Between the aeration step and the stirring step, and the optimum aeration amount in the aeration step is controlled.

【0038】図2の嫌気・好気活性汚泥処理装置の第1
処理槽2における撹拌工程から曝気工程への移行条件及
び曝気工程から撹拌工程への移行条件は、例えば表1の
ように整理することができる。また、第2処理槽3にお
ける撹拌工程から曝気工程への移行条件及び曝気工程か
ら撹拌工程への移行条件は、例えば表2のように整理す
ることができる。この表1及び2に基づき作成した制御
規則33を表3及び4に示す。表3に示す制御規則33は、
それぞれ条件を示す前件部(IF〜の部分)と出力に対応
する後件部(THEN…の部分)とにより記述されたファジ
ィ制御装置30の入力と出力の関係である。
The first of the anaerobic and aerobic activated sludge treatment apparatuses shown in FIG.
The transition conditions from the stirring step to the aeration step and the transition conditions from the aeration step to the stirring step in the treatment tank 2 can be arranged, for example, as shown in Table 1. In addition, the transition conditions from the agitation step to the aeration step and the transition conditions from the aeration step to the agitation step in the second processing tank 3 can be arranged as shown in Table 2, for example. Tables 3 and 4 show the control rules 33 created based on Tables 1 and 2. The control rule 33 shown in Table 3 is
The relationship between the input and output of the fuzzy control device 30 is described by the antecedent part (part of IF ~) indicating the condition and the consequent part (THEN ... part) corresponding to the output.

【0039】また、表3及び4の制御規則33の前件部変
数を表5に示す。本実施例の前件部変数は、それぞれの
入力値を括弧内に示す最小値と最大値により−1から1
までの値に規格化したものを用いている。また制御規則
33の後件部変数は各処理槽2、3の曝気装置15、25の曝
気量であり、後件部変数も−1から1までの値に規格化
されている。前件部変数に係わるファジィ変数のメンバ
ーシップ関数32を図6から10に示す。なお、表5の変
数のうちX02、X23、X25〜28、X30、X31、X39、X40は、
表3及び4の制御規則33では使用していないが、必要に
応じて制御規則33の前件部変数として加えることができ
る。
Table 5 shows antecedent variables of the control rule 33 in Tables 3 and 4. The antecedent variable in the present embodiment is such that each input value is -1 to 1 depending on the minimum value and the maximum value shown in parentheses.
The values standardized to the values up to are used. Also control rules
The consequent variable of 33 is the amount of aeration of the aerators 15 and 25 in each of the processing tanks 2 and 3, and the consequent variable is also normalized to a value from -1 to 1. FIGS. 6 to 10 show the membership function 32 of the fuzzy variable relating to the antecedent variable. Note that among the variables in Table 5, X02, X23, X25 to 28, X30, X31, X39, and X40 are:
Although not used in the control rules 33 of Tables 3 and 4, they can be added as antecedent variables of the control rules 33 as needed.

【0040】[0040]

【表1】〔撹拌工程から曝気工程への移行条件〕 (a)DOが0.5mg/l以下で、かつ、ORPが、-50mV以下に
なってから60分以上経過したとき (b)DOが0.5mg/l以下で、かつ、ORPが、-250mV前後に
なったとき (c)撹拌工程になってから、120分以上経過したとき (d)撹拌工程中にpHが極大値を取ってから60分以上経
過したとき 〔曝気工程から撹拌工程への移行条件〕 (e)ORPが、0mV以上となってから10分以上経過したと
き (f)曝気工程になってから、30分以上経過したとき
[Table 1] [Conditions for shifting from the stirring process to the aeration process] (a) When DO is 0.5 mg / l or less and ORP becomes -50 mV or less for 60 minutes or more (b) DO 0.5mg / l or less and ORP is around -250mV (c) 120 minutes or more after the start of the stirring process (d) After the pH reaches the maximum value during the stirring process When more than 60 minutes have elapsed [Conditions for shifting from the aeration step to the stirring step] (e) When 10 minutes or more have elapsed since the ORP became 0 mV or more (f) 30 minutes or more have elapsed since the aeration step was started When

【0041】[0041]

【表2】〔曝気工程から撹拌工程への移行条件〕 (g)DO値が、4.0mg/lを超えたとき (h)曝気工程になってから、60分以上経過したとき (i)pHが6.3以下でかつ曝気工程になってから、30分
以上経過したとき (j)pHが6.0以下のとき (k)前サイクルの撹拌工程におけるDOの減少速度が5.
0mg/l・h以下でかつDO値が、2.0mg/lを超えたとき 〔撹拌工程から曝気工程への移行条件〕 (l)DO値が、0.5mg/l以下になってから60分以上経過
したとき (m)ORPが、-50mV以下になったとき (n)撹拌工程になってから、75分以上経過したとき (o)撹拌工程中にpHが極大値を取ったとき
[Table 2] [Transition conditions from the aeration step to the stirring step] (g) When the DO value exceeds 4.0 mg / l (h) When 60 minutes or more have passed since the aeration step (i) pH (J) When pH is 6.0 or less (k) When the decrease rate of DO in the stirring step of the previous cycle is 5.
0 mg / l · h or less and DO value exceeds 2.0 mg / l [Transition conditions from agitation to aeration process] (l) 60 minutes or more after DO value becomes 0.5 mg / l or less (M) When the ORP falls below -50 mV (n) When 75 minutes or more have passed since the start of the stirring process (o) When the pH reached a maximum value during the stirring process

【0042】[0042]

【表3】 (a)IF X20=NB X24>TC X00<DA THEN Y=ON (b)IF X20=NB X04<OB X00<DA THEN Y=ON (c)IF X20=NB X16>TE THEN Y=ON (d)IF X20=NB X38>TC THEN Y=ON (e)IF X20=PB X22>TA THEN Y=OF (f)IF X20=PB X16>TB THEN Y=OF[Table 3] (a) IF X20 = NB X24> TC X00 <DA THEN Y = ON (b) IF X20 = NB X04 <OB X00 <DA THEN Y = ON (c) IF X20 = NB X16> TE THEN Y = ON (d) IF X20 = NB X38> TC THEN Y = ON (e) IF X20 = PB X22> TA THEN Y = OF (f) IF X20 = PB X16> TB THEN Y = OF

【0043】[0043]

【表4】 (g)IF X21=PB X09>DC THEN Y=OF (h)IF X21=PB X17>TC THEN Y=OF (i)IF X21=PB X17>TB X11<HB THEN Y=OF (j)IF X21=PB X11<HA THEN Y=OF (k)IF X21=PB X09>DB X19<RR THEN Y=OF (l)IF X21=NB X29>TC THEN Y=ON (m)IF X21=NB X09<DA X13<OA THEN Y=ON (n)IF X21=NB X17>TD THEN Y=ON (o)IF X21=NB X41=PB THEN Y=ON(Table 4) (g) IF X21 = PB X09> DC THEN Y = OF (h) IF X21 = PB X17> TC THEN Y = OF (i) IF X21 = PB X17> TB X11 <HB THEN Y = OF ( j) IF X21 = PB X11 <HA THEN Y = OF (k) IF X21 = PB X09> DB X19 <RR THEN Y = OF (l) IF X21 = NB X29> TC THEN Y = ON (m) IF X21 = NB X09 <DA X13 <OA THEN Y = ON (n) IF X21 = NB X17> TD THEN Y = ON (o) IF X21 = NB X41 = PB THEN Y = ON

【0044】[0044]

【表5】 X00:第1槽のDO値(0〜4mg/l) X02:第1槽のpH値(5〜7) X04:第1槽のORP値(−300〜0mV) X09:第2槽のDO値(0〜4mg/l) X11:第2槽のpH値(5〜7) X13:第2槽のORP値(−300〜0mV) X16:第1槽の工程が変わってからの経過時間(0〜1
20分) X17:第2槽の工程が変わってからの経過時間(0〜1
20分) X19:第2槽の撹拌工程時のDO値の減少速度(4〜6mg/
l・h) X20:第1槽の現在の工程(1の時、曝気工程・-1の時、
撹拌工程) X21:第2槽の現在の工程(1の時、曝気工程・-1の時、
撹拌工程) X22:第1槽においてORP値が0mV以上である時間(0〜
120分) X23:第2槽においてORP値が0mV以上である時間(0〜
120分) X24:第1槽においてORP値が-50mV以下である時間(0
〜120分) X25:第2槽においてORP値が-50mV以下である時間(0
〜120分) X26:第1槽においてDO値が0.5mg/l以上である時間(0
〜120分) X27:第2槽においてDO値が0.5mg/l以上である時間(0
〜120分) X28:第1槽においてDO値が0.5mg/l以下である時間(0
〜120分) X29:第2槽においてDO値が0.5mg/l以下である時間(0
〜120分) X30:第1槽においてブロワのON-OFF切替え後の経過時
間(0〜120分) X31:第2槽においてブロワのON-OFF切替え後の経過時
間(0〜120分) X38:第1槽においてpHが極大値を取った後の経過時間
(0〜120分) X39:第2槽においてpHが極大値を取った後の経過時間
(0〜120分) X40:第1槽において撹拌工程時のpHの極大値の有無
(−1・無or1・有) X41:第2槽において撹拌工程時のpHの極大値の有無
(−1・無or1・有)
Table 5 X00: DO value of the first tank (0 to 4 mg / l) X02: pH value of the first tank (5 to 7) X04: ORP value of the first tank (-300 to 0 mV) X09: Second Tank DO value (0-4 mg / l) X11: pH value of the second tank (5-7) X13: ORP value of the second tank (-300-0 mV) X16: After the process of the first tank changed Elapsed time (0-1
20 minutes) X17: Elapsed time (0 to 1) after the process of the second tank changed
20 minutes) X19: Decrease rate of DO value in the stirring step of the second tank (4 to 6 mg /
l ・ h) X20: Current process of the first tank (at 1, at aeration process-1 at
Stirring process) X21: Current process of the second tank (at 1, at aeration process-1 at
X22: Time when the ORP value is 0 mV or more in the first tank (0 to 0)
X23: Time when the ORP value is 0 mV or more in the second tank (0 to 0)
X24: Time when the ORP value is -50 mV or less in the first tank (0
X25: Time when the ORP value is -50 mV or less in the second tank (0
X26: Time when the DO value is 0.5 mg / l or more in the first tank (0
X27: Time when the DO value is 0.5 mg / l or more in the second tank (0
X28: Time when the DO value is 0.5 mg / l or less in the first tank (0
X29: Time during which the DO value is 0.5 mg / l or less in the second tank (0
X30: Elapsed time after ON / OFF switching of blower in first tank (0 to 120 minutes) X31: Elapsed time after ON / OFF switching of blower in second tank (0 to 120 minutes) X38: Elapsed time after the pH reached the maximum value in the first tank (0 to 120 minutes) X39: Elapsed time after the pH reached the maximum value in the second tank (0 to 120 minutes) X40: In the first tank Presence / absence of the maximum value of the pH during the stirring process (−1, no or 1, presence) X41: Presence or absence of the maximum value of the pH during the stirring process in the second tank (−1, no or 1, presence)

【0045】図11は、図2の制御装置30における処理
流れ図を示す。先ずステップS1において表3及び4に示
す制御規則33、及び図6〜10に示すメンバーシップ関
数32を読み込む。次にステップS2において各処理槽2、
3のpH計11、21、DO計12、22、ORP計13、23、pH極大点
検出手段17、27、及び第2処理槽3のDO減少速度算出手
段28(以下、これらを纏めてセンサということがあ
る。)の各出力信号を制御装置30へ入力する。ステップ
S3では、制御装置30の算出手段31により、表5に示すX1
6、17等の経過時間データ等の前件部変数を前記各セン
サの出力信号に基づき算出する。
FIG. 11 is a flowchart showing the processing in the control device 30 shown in FIG. First, in step S1, the control rules 33 shown in Tables 3 and 4 and the membership function 32 shown in FIGS. Next, in step S2, each processing tank 2,
PH meter 11, 21, DO meter 12, 22, ORP meter 13, 23, pH maximum point detecting means 17, 27, and DO reduction rate calculating means 28 of the second treatment tank 3 (hereinafter collectively referred to as sensor Are output to the control device 30. Steps
In S3, the calculation means 31 of the control device 30 causes X1 shown in Table 5
Antecedent variables such as elapsed time data such as 6 and 17 are calculated based on output signals of the sensors.

【0046】ステップS4において、ステップS2、S3で得
られた出力信号及びデータと、ステップS1で読み込んだ
メンバーシップ関数32及び制御規則33とに基づき、曝気
・非曝気の切替え及び曝気量のファジィ推論を行う。ス
テップS5で制御終了を判断し、制御を継続する場合はス
テップS2ヘ戻る。例えば30秒毎に上記サイクルを繰り返
す。表3及び4に示す制御規則33は、第1処理槽2にて
脱リンを主目的とし、第2処理槽3にて脱窒を主目的と
するファジィ制御を行う一例である。
In step S4, switching between aeration and non-aeration and fuzzy inference of the amount of aeration are performed based on the output signals and data obtained in steps S2 and S3, the membership function 32 and the control rule 33 read in step S1. I do. In step S5, it is determined that the control has been completed. If the control is to be continued, the process returns to step S2. For example, the above cycle is repeated every 30 seconds. The control rule 33 shown in Tables 3 and 4 is an example of performing fuzzy control in which the main purpose is dephosphorization in the first processing tank 2 and the main purpose is denitrification in the second processing tank 3.

【0047】すなわち、第1処理槽の撹拌工程において
は、リン蓄積細菌のリン放出を行うために、嫌気状態を
確保する必要がある。なお、リン蓄積細菌のリン放出は
ORP値が-50mV以下の状態で行われると言われている。従
って、第1処理槽の撹拌工程から曝気工程への移行条件
としては、ORP値が-50mV以下である状態を60分間確保す
るか(制御規則a)、又はORP値が-250mVになるまで撹
拌状態を継続する(制御規則b)。なお、撹拌工程にな
ってから120分以上が経過したとき(制御規則c)、又
は撹拌工程中にpHが極大値を取った時刻から60分経過し
たときには(制御規則d)、リンの放出はすでに終了し
ていると考えられるので、曝気工程に移行する。
That is, in the stirring step of the first treatment tank, it is necessary to secure an anaerobic state in order to release phosphorus from the phosphorus accumulating bacteria. The phosphorus release of phosphorus-accumulating bacteria is
It is said to be performed in the state where the ORP value is -50mV or less. Therefore, as a condition for shifting the first treatment tank from the stirring step to the aeration step, the state where the ORP value is -50 mV or less is maintained for 60 minutes (control rule a), or the stirring is performed until the ORP value becomes -250 mV. Continue the state (control rule b). Note that when 120 minutes or more have elapsed since the start of the stirring process (control rule c), or when 60 minutes have passed since the time when the pH reached the maximum value during the stirring process (control rule d), the release of phosphorus was not increased. Since it is considered that the process has already been completed, the process shifts to the aeration process.

【0048】第1処理槽の曝気工程では、リン蓄積細菌
にリンを過剰摂取させるために、好気状態を確保する必
要がある。従って、第1処理槽の曝気工程から撹拌工程
への移行条件としては、ORP値が0mV以上である好気条件
を10分間確保できるようにする(制御規則e)。なお、
曝気工程になってから30分以上が経過したときはリン蓄
積細菌のリンの過剰摂取も終了していると考えられ、か
つ、それ以上曝気した場合に次の撹拌工程にて嫌気状態
に戻すことが困難になるために、ただちに撹拌工程に移
行する(制御規則f)。
In the aeration step of the first treatment tank, it is necessary to ensure an aerobic state in order to cause phosphorus-accumulating bacteria to overtake phosphorus. Therefore, as a condition for shifting from the aeration step to the stirring step in the first treatment tank, an aerobic condition having an ORP value of 0 mV or more can be secured for 10 minutes (control rule e). In addition,
If more than 30 minutes have passed since the aeration step, it is considered that the excessive intake of phosphorus from the phosphorus-accumulating bacteria has been completed, and if the aeration is further performed, return to the anaerobic state in the next stirring step. Immediately, the process shifts to the stirring step (control rule f).

【0049】第2処理槽の曝気工程においては、硝化菌
による硝化を行うために、好気条件を確保する必要があ
る。従って、第2処理槽の曝気工程から撹拌工程への移
行条件としては、DO値が4.0mg/lになるまで曝気工程を
継続する(制御規則g)。ただし、直前の撹拌工程にお
けるDOの減少速度が5.0mg/l・h以下である等の負荷が小
さいと考えられる場合は、DO値が4.0mg/lになるまで曝
気工程を継続すると、次の撹拌工程において無酸素状態
に戻るまでの時間がかかりすぎるので、DO値が2.0mg/l
になった時点で撹拌工程に移行する(制御規則k)。ま
た、硝化が進みpH値が6.0以下になった場合(制御規則
j)、及びpH値が6.3以下の状態が30分以上経過した場
合(制御規則i)は、微生物に悪影響をおよぼすおそれ
があるので、ただちに撹拌工程に移行する。なお、曝気
工程になってから60分以上が経過したときは、硝化菌に
よるアンモニアの硝化がすでに終了していると考えられ
るために、ただちに撹拌工程に移行する(制御規則
h)。
In the aeration step of the second treatment tank, it is necessary to secure aerobic conditions in order to perform nitrification by nitrifying bacteria. Therefore, as a condition for shifting from the aeration step to the stirring step in the second treatment tank, the aeration step is continued until the DO value becomes 4.0 mg / l (control rule g). However, if the load is considered to be small, such as the DO reduction rate in the immediately preceding stirring step is 5.0 mg / lh or less, and the aeration step is continued until the DO value becomes 4.0 mg / l, Since it takes too much time to return to the anoxic state in the stirring process, the DO value is 2.0 mg / l
Then, the process proceeds to the stirring step (control rule k). In addition, when nitrification proceeds and the pH value becomes 6.0 or less (control rule j), and when the pH value becomes 6.3 or less for 30 minutes or more (control rule i), there is a possibility that the microorganisms may be adversely affected. Therefore, the process immediately proceeds to the stirring step. When 60 minutes or more have elapsed after the aeration step, the process immediately shifts to the stirring step because it is considered that nitrification of ammonia by nitrifying bacteria has already been completed (control rule h).

【0050】第2処理槽の撹拌工程においては、脱窒菌
による脱窒を行うために、無酸素状態を確保する必要が
ある。また、リン蓄積細菌にリン放出をさせないため
に、リン放出が起こる状態にならないように注意が必要
である。従って、第2処理槽の撹拌工程から曝気工程へ
の移行条件としては、DO値が0.5mg/l以下である状態を6
0分間確保できるようにする(制御規則l)。ただし、O
RP値が-50mV以下になったとき(制御規則m)、又は撹
拌工程中にpHが極大値を取ったとき(制御規則n)は、
リン蓄積細菌のリン放出が始まってしまうので、ただち
に曝気工程に移行する。また、撹拌工程になってから75
分以上が経過した場合には、すでに脱窒が終了している
と考えられるので曝気工程に移行する(制御規則o)。
In the stirring step of the second treatment tank, it is necessary to ensure anoxic condition in order to perform denitrification by denitrifying bacteria. Further, in order to prevent phosphorus-accumulating bacteria from releasing phosphorus, care must be taken to prevent phosphorous release from occurring. Therefore, the condition for transition from the stirring step to the aeration step in the second processing tank is that the DO value is 0.5 mg / l or less.
0 minutes can be secured (control rule 1). Where O
When the RP value falls below -50 mV (control rule m), or when the pH takes a maximum value during the stirring process (control rule n),
Since the phosphorus release of the phosphorus accumulating bacteria starts, the process immediately shifts to the aeration step. In addition, 75
If more than one minute has elapsed, it is considered that the denitrification has already been completed, so the process shifts to the aeration step (control rule o).

【0051】本実施例では、以上のような制御規則33を
基に、図12に示すようなmin-max重心法によりファジ
ィ推論を行う。この推論法では、各制御規則33について
各センサの出力信号に対する前件部各条件のファジィ集
合のメンバーシップ関数値を各制御規則33の適合度と
し、各条件の適合度の最小値(min)を後件部のメンバ
ーシップ関数に乗じ、全ての制御規則33について最大値
(max)を用いて合成する。そして、合成したメンバー
シップ関数の重心をファジィ制御装置30の出力とする方
法である。従って、1つの制御規則33のみに依存するの
ではなく、複数の制御規則33による判断結果から総合的
に推論を行うので、必要に応じて新たに制御規則33を加
えることも容易である。
In this embodiment, fuzzy inference is performed by the min-max centroid method as shown in FIG. 12 based on the above control rules 33. In this inference method, the membership function value of the fuzzy set of each condition of the antecedent part with respect to the output signal of each sensor for each control rule 33 is defined as the conformity of each control rule 33, and the minimum value (min) of the conformity of each condition Is multiplied by the membership function of the consequent part, and all control rules 33 are combined using the maximum value (max). Then, a method of using the center of gravity of the combined membership function as the output of the fuzzy controller 30 is provided. Therefore, since the inference is made comprehensively from the determination results of the plurality of control rules 33 instead of relying only on one control rule 33, it is easy to add a new control rule 33 as needed.

【0052】図12は制御規則a〜fに基づく第1処理
槽2のファジィ推論の一例を示す。同図の例におけるフ
ァジィ制御装置30の入力を表6に示す。制御規則aの前
件部各条件の適合度を図12(A)〜(C)に示し、前
件部各条件の適合度の最小値(=0.4)を後件部のメン
バーシップ関数に乗じた結果を同図(D)に示す。制御
規則bの前件部各条件の適合度は0である。制御規則c
の前件部各条件の適合度の最小値(=0.4)を後件部の
メンバーシップ関数に乗じた結果も同図(D)と同じも
のとなる。制御規則d〜fの前件部各条件の適合度は0
である。従って、制御規則a〜fの後件部を最大値を用
いて合成すると同図(E)のようになる。同図の重心を
求めることにより、この場合のファジィ制御装置30の出
力は0.74、適合度は0.4となる。この出力に応じた制御
信号を第1処理槽2の曝気装置15へ出力することによ
り、曝気装置15が適当な曝気量で駆動されて曝気工程に
移行することとなる。
FIG. 12 shows an example of fuzzy inference of the first processing tank 2 based on the control rules a to f. Table 6 shows inputs of the fuzzy controller 30 in the example of FIG. The conformity of each condition of the antecedent part of the control rule a is shown in FIGS. 12A to 12C, and the minimum value (= 0.4) of the conformity of each condition of the antecedent part is multiplied by the membership function of the consequent part. The results obtained are shown in FIG. The conformity of each condition of the antecedent part of the control rule b is 0. Control rule c
The result obtained by multiplying the minimum value (= 0.4) of the degree of conformity of each condition of the antecedent part by the membership function of the consequent part is the same as that in FIG. The conformity of each condition of the antecedent part of the control rules df is 0.
It is. Accordingly, when the consequent parts of the control rules a to f are combined using the maximum value, the result is as shown in FIG. By obtaining the center of gravity shown in the figure, the output of the fuzzy controller 30 in this case is 0.74, and the fitness is 0.4. By outputting a control signal corresponding to this output to the aeration device 15 of the first processing tank 2, the aeration device 15 is driven with an appropriate amount of aeration and shifts to the aeration step.

【0053】[0053]

【表6】 X20=-1(撹拌工程中) X00=-1(DO値が、0mg/l) X04=-0.5、X22=-1(ORP値が、-225mV) X24=-0.1(ORP値が、-50mV以下になってから54分) X16=0.8(撹拌工程になってから、108分) X38=-1(pHの極大値は、まだ検出されていない)X20 = -1 (during the stirring process) X00 = -1 (DO value is 0 mg / l) X04 = -0.5, X22 = -1 (ORP value is -225 mV) X24 = -0.1 (ORP value However, 54 minutes after -50 mV or less) X16 = 0.8 (108 minutes after the stirring process) X38 = -1 (Maximum pH value has not been detected yet)

【0054】[0054]

【発明の効果】以上詳細に説明した通り、本発明による
嫌気・好気活性汚泥処理方法及び装置は、被処理水が流
入する活性汚泥処理槽のpH極大点を検出し、曝気装置駆
動による曝気処理と曝気停止から前記pH極大点検出時ま
での非曝気処理とからなるサイクルを繰り返した後、処
理槽から流出する処理水中の汚泥を沈降分離するので、
次の顕著な効果を奏する。
As described in detail above, the anaerobic / aerobic activated sludge treatment method and apparatus according to the present invention detects the pH maximum point of the activated sludge treatment tank into which the water to be treated flows, and performs aeration by driving the aeration apparatus. After repeating the cycle consisting of the treatment and the non-aeration treatment from the stop of the aeration to the detection of the pH maximum point, the sludge in the treated water flowing out of the treatment tank is settled and separated.
It has the following remarkable effects.

【0055】(イ)被処理水の水質や水量等に拘わらず
脱窒反応の進行に応じた最適な非曝気処理時間を確保す
ることができ、BOD成分と窒素の良好な除去が達成でき
る。 (ロ)曝気装置の駆動時間を直前の非曝気処理時のDO減
少速度に応じて制御することにより、流入負荷の変動に
対応した最適な曝気制御が可能となる。 (ハ)また、供用開始時の低負荷の状態においても、適
切な曝気制御を行うことにより、あらゆる流入条件にお
ける最適な水処理の実現が期待できる。 (ニ)処理システム内の条件や流入水量の変動に対応し
つつ最適な活性汚泥の生育環境を確保し、最適な生物学
的BOD成分・窒素・リンの同時除去を達成できる。
(ホ)非曝気処理と曝気処理の切替えをファジィ制御で
行うことにより、被処理水の流入条件や環境に対して24
時間体制で適切な自動制御を行うことも期待できる。 (ヘ)非曝気処理と曝気処理の切替えを適切に行うこと
により、曝気装置の無駄な運転を減らすことができ、省
エネルギの効果が期待できる。
(A) An optimal non-aeration treatment time according to the progress of the denitrification reaction can be ensured regardless of the quality and amount of the water to be treated, and good removal of BOD components and nitrogen can be achieved. (B) By controlling the driving time of the aeration apparatus according to the DO reduction speed at the time of the immediately preceding non-aeration processing, it becomes possible to perform optimal aeration control corresponding to the fluctuation of the inflow load. (C) In addition, even in a low load state at the start of operation, by performing appropriate aeration control, it is expected that optimum water treatment can be realized under all inflow conditions. (D) It is possible to secure the optimum growth environment of activated sludge while responding to the fluctuations in the conditions in the treatment system and the amount of inflow water, and achieve the optimal simultaneous removal of biological BOD components, nitrogen and phosphorus.
(E) By switching between the non-aeration process and the aeration process by fuzzy control, the inflow condition and environment of the water to be treated can be controlled.
It can be expected that appropriate automatic control will be performed on a time schedule. (F) By appropriately switching between the non-aeration process and the aeration process, useless operation of the aeration device can be reduced, and an effect of energy saving can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明の一実施例の説明図である。FIG. 1 is an explanatory diagram of one embodiment of the present invention.

【図2】は、本発明の他の実施例の説明図である。FIG. 2 is an explanatory diagram of another embodiment of the present invention.

【図3】は、攪拌工程時にpH計で計測されたpH変化とノ
イズ除去フィルタで処理した後のpH変化を示すグラフの
一例である。
FIG. 3 is an example of a graph showing a pH change measured by a pH meter during a stirring process and a pH change after being processed by a noise removing filter.

【図4】は、流水負荷が高い場合及び低い場合の攪拌工
程時のDO経時変化を示すグラフの一例である。
FIG. 4 is an example of a graph showing the change over time of DO in the stirring step when the flowing water load is high and when the flowing water load is low.

【図5】は、曝気工程及び攪拌工程におけるORPの経時
変化から屈曲点を検出する従来方法の説明図である。
FIG. 5 is an explanatory diagram of a conventional method for detecting an inflection point from a change over time in ORP in an aeration step and a stirring step.

【図6】は、本発明で用いるメンバーシップ関数の一例
である。
FIG. 6 is an example of a membership function used in the present invention.

【図7】は、本発明で用いるメンバーシップ関数の他の
一例である。
FIG. 7 is another example of a membership function used in the present invention.

【図8】は、本発明で用いるメンバーシップ関数の更に
他の一例である。
FIG. 8 shows another example of a membership function used in the present invention.

【図9】は、本発明で用いるメンバーシップ関数の更に
他の一例である。
FIG. 9 shows still another example of the membership function used in the present invention.

【図10】は、本発明で用いるメンバーシップ関数の更
に他の一例である。
FIG. 10 shows another example of a membership function used in the present invention.

【図11】は、本発明で用いるファジィ制御装置での処
理の流れ図である。
FIG. 11 is a flowchart of a process in a fuzzy control device used in the present invention.

【図12】は、本発明で用いるファジィ制御の推論形式
の一例である。
FIG. 12 is an example of an inference format of fuzzy control used in the present invention.

【符号の説明】[Explanation of symbols]

1…被処理水 2…第1活性汚泥処理槽 3…第2活性汚泥処理槽 4…最終沈殿池 5…処理水 6…余剰汚泥 7…返送汚泥 8…隔壁 10…制御装置 11…pH計 12…DO計 13…ORP計 14…曝気装置 15…攪拌装置 16…ノイズ除去フィルタ 17…pH極大点検出手段 21…pH計 22…DO計 23…ORP計 24…曝気装置 25…攪拌装置 26…ノイズ除去フィルタ 27…pH極大点検出手段 28…DO減少速度算出手段 29…メモリ 30…ファジィ制御装置 31…経過時間算出手段 32…メンバーシップ関数 33…ファジィ制御規則 DESCRIPTION OF SYMBOLS 1 ... Water to be treated 2 ... 1st activated sludge treatment tank 3 ... 2nd activated sludge treatment tank 4 ... Final sedimentation tank 5 ... Treated water 6 ... Surplus sludge 7 ... Returned sludge 8 ... Partition wall 10 ... Control device 11 ... pH meter 12 ... DO meter 13 ... ORP meter 14 ... Aerator 15 ... Agitator 16 ... Noise removal filter 17 ... pH maximum point detection means 21 ... pH meter 22 ... DO meter 23 ... ORP meter 24 ... Aerator 25 ... Agitator 26 ... Noise Removal filter 27 pH maximum point detection means 28 DO reduction rate calculation means 29 Memory 30 Fuzzy control device 31 Elapsed time calculation means 32 Membership function 33 Fuzzy control rules

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八木 俊策 大阪府箕面市小野原東5丁目26番15−201 (72)発明者 石川 宗孝 京都府八幡市橋本意足20−2 (72)発明者 木下 茂 兵庫県神戸市灘区寺口町12−5 Fターム(参考) 4D028 AA08 AB00 BC18 BC24 BD08 BD16 CA09 CB01 CC07 CD01 CE02 CE03 CE04 4D040 BB02 BB32 BB65 BB72 BB91 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shunsaku Yagi 5-26-15-201 Onoharahigashi, Minoh-shi, Osaka (72) Inventor Munetaka Ishikawa 20-2 Hashimoto Hashimoto, Yawata-shi, Kyoto (72) Inventor Kinoshita Shigeru 12-5 Teraguchicho, Nada-ku, Kobe-shi, Hyogo F-term (reference) 4D028 AA08 AB00 BC18 BC24 BD08 BD16 CA09 CB01 CC07 CD01 CE02 CE03 CE04 4D040 BB02 BB32 BB65 BB72 BB91

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】曝気装置及びpH計を設けた活性汚泥処理槽
に被処理水を流入させ、ノイズ除去フィルタ付きpH極大
点検出手段を前記pH計に接続し、曝気装置駆動による曝
気処理と曝気停止から前記検出手段によるpH極大点検出
時までの非曝気処理とからなるサイクルを繰り返した
後、前記処理槽から流出する処理水中の汚泥を沈降分離
してなる嫌気・好気活性汚泥処理方法。
1. An aerated apparatus and a pH meter are provided with activated water to be treated into an activated sludge treatment tank. A pH maximum point detecting means with a noise elimination filter is connected to the pH meter. An anaerobic / aerobic activated sludge treatment method comprising repeating a cycle from stoppage to non-aeration treatment from the time of detection of the pH maximum point by the detection means, and then sedimenting and separating sludge in the treated water flowing out of the treatment tank.
【請求項2】請求項1の処理方法において、前記処理槽
にDO計を設け、前記非曝気処理時のDO減少速度の算出手
段を前記DO計に接続し、前記サイクル毎に曝気処理時の
曝気装置の駆動時間を直前の非曝気処理時のDO減少速度
に基づき制御してなる嫌気・好気活性汚泥処理方法。
2. The processing method according to claim 1, wherein a DO meter is provided in the processing tank, and means for calculating a DO reduction rate at the time of the non-aeration process is connected to the DO meter. An anaerobic / aerobic activated sludge treatment method in which the driving time of the aeration device is controlled based on the DO reduction rate during the immediately preceding non-aeration treatment.
【請求項3】請求項2の処理方法において、前記曝気装
置の駆動時間を曝気開始からDO計出力が所定DO設定値を
超えるまでの時間とし、前記各サイクル毎に曝気処理時
の所定DO設定値を直前の非曝気処理時のDO減少速度に基
づき調整してなる嫌気・好気活性汚泥処理方法。
3. The processing method according to claim 2, wherein the driving time of the aeration device is a time from the start of the aeration until the DO meter output exceeds a predetermined DO set value, and the predetermined DO setting at the time of the aeration process is performed for each cycle. An anaerobic / aerobic activated sludge treatment method whose value is adjusted based on the DO reduction rate during the immediately preceding non-aeration treatment.
【請求項4】請求項1から3の何れかの処理方法におい
て、前記pH極大点検出時までの非曝気処理と曝気処理と
の繰り返しに代えて又は該繰り返し前に、曝気停止から
活性汚泥のリン放出に十分な時間経過時までの非曝気処
理と曝気装置駆動による曝気処理とからなるサイクルを
繰り返してなる嫌気・好気活性汚泥処理方法。
4. The method according to claim 1, wherein, instead of or before the repetition of the non-aeration treatment and the aeration treatment until the detection of the pH maximum point, the activated sludge is removed from the aeration stop. An anaerobic / aerobic activated sludge treatment method comprising repeating a cycle consisting of a non-aeration treatment until a time sufficient for releasing phosphorus and an aeration treatment by driving an aeration device.
【請求項5】被処理水が流入する第1活性汚泥処理槽と
該第1処理槽に連通する第2活性汚泥処理槽とにそれぞ
れpH計及び曝気装置を設け、前記各pH計にノイズ除去フ
ィルタ付きpH極大点検出手段をそれぞれ接続し、前記第
1処理槽において曝気装置駆動による曝気処理と曝気停
止から活性汚泥のリン放出に十分な時間経過時までの非
曝気処理とからなるサイクルを繰り返し、前記第2処理
槽において曝気装置駆動による曝気処理と曝気装置停止
から前記検出手段によるpH極大点検出時までの非曝気処
理とからなるサイクルを繰り返した後、前記第2処理槽
から流出する処理水中の汚泥を沈降分離してなる嫌気・
好気活性汚泥処理方法。
5. A pH meter and an aeration device are provided in a first activated sludge treatment tank into which water to be treated flows and a second activated sludge treatment tank communicating with the first treatment tank, and noise is removed from each of the pH meters. A pH maximum point detecting means with a filter is connected, and a cycle consisting of aeration treatment by driving the aeration device in the first treatment tank and non-aeration treatment from the stop of the aeration to the lapse of time sufficient for phosphorus release of the activated sludge is repeated. In the second treatment tank, a cycle consisting of aeration treatment by driving the aeration device and non-aeration treatment from the stop of the aeration device to the detection of the pH maximum point by the detection means is repeated, and then the treatment flowing out of the second treatment tank. Anaerobic sedimentation and separation of sludge in water
Aerobic activated sludge treatment method.
【請求項6】請求項5の処理方法において、前記第2処
理槽にDO計を設け、前記非曝気処理時のDO減少速度の算
出手段を前記DO計に接続し、前記第2処理槽においてサ
イクル毎に曝気処理時の曝気装置の駆動時間を直前の非
曝気処理時のDO減少速度に基づき制御してなる嫌気・好
気活性汚泥処理方法。
6. The processing method according to claim 5, wherein a DO meter is provided in the second processing tank, and means for calculating a DO reduction rate during the non-aeration treatment is connected to the DO meter. An anaerobic / aerobic activated sludge treatment method in which the drive time of the aeration device during aeration treatment is controlled for each cycle based on the DO reduction rate during the immediately preceding non-aeration treatment.
【請求項7】請求項6の処理方法において、前記第2処
理槽の曝気装置の駆動時間を曝気開始からDO計出力が所
定DO設定値を超えるまでの時間とし、前記第2処理槽に
おいてサイクル毎に曝気処理時の所定DO設定値を直前の
非曝気処理時のDO減少速度に基づき調整してなる嫌気・
好気活性汚泥処理方法。
7. The processing method according to claim 6, wherein the driving time of the aeration device of the second processing tank is a time from the start of the aeration to the time when the DO meter output exceeds a predetermined DO set value. The anaerobic condition is determined by adjusting the predetermined DO set value at the time of the aeration process based on the DO reduction speed at the time of the immediately preceding non-aeration process for each time.
Aerobic activated sludge treatment method.
【請求項8】被処理水が連続的に流入する第1活性汚泥
処理槽と該第1処理槽に連通する第2活性汚泥処理槽と
該第2処理槽の処理水が流入する沈殿池、入力制御信号
に応じた曝気量又は曝気停止により各処理槽を曝気又は
非曝気状態とする第1曝気装置及び第2曝気装置、前記
各処理槽に設けたpH計とDO計とORP計、前記各処理槽のp
H計に接続したノイズ除去フィルタ付きpH極大点検出手
段、前記第2処理槽のDO計に接続した非曝気処理時のDO
減少速度算出手段、並びに前記各処理槽の状態とpHとDO
とORPとpH極大点検出時と前記第2処理槽のDO減少速度
の各々を前件部変数とし且つ前記各曝気装置の曝気量又
は曝気停止を後件部変数とする複数のファジィ制御規則
が記憶された制御装置を備え、前記pH計とDO計とORP計
と検出手段と算出手段の各出力信号を前記制御装置へ入
力し且つ前記制御規則に基づき前記各出力信号に応じた
制御信号を前記各曝気装置へ出力してなる嫌気・好気活
性汚泥処理装置。
8. A first activated sludge treatment tank into which water to be treated continuously flows, a second activated sludge treatment tank communicating with the first treatment tank, and a sedimentation tank into which treated water from the second treatment tank flows. A first aeration device and a second aeration device for setting each processing tank to an aerated or non-aerated state by aeration amount or aeration stop according to the input control signal, a pH meter, a DO meter, and an ORP meter provided in each of the processing tanks; P for each processing tank
PH maximum point detecting means with a noise elimination filter connected to the H meter, DO for non-aeration treatment connected to the DO meter in the second treatment tank
Reduction rate calculation means, and the state, pH and DO of each of the processing tanks
And a plurality of fuzzy control rules in which each of the ORP, the pH maximum point detection, and the DO reduction rate of the second treatment tank is set as an antecedent variable, and the aeration amount or stop of the aeration of each of the aerators is set as a consequent variable. The control device having a stored control device, each output signal of the pH meter, the DO meter, the ORP meter, the detection means and the calculation means is input to the control device, and a control signal corresponding to each of the output signals based on the control rule is provided. An anaerobic / aerobic activated sludge treatment device that outputs to each of the aeration devices.
【請求項9】請求項8の処理装置において、前記ノイズ
除去フィルタを高周波ノイズ除去フィルタ又は移動平均
モデルに基づくノイズ除去フィルタとしてなる嫌気・好
気活性汚泥処理装置。
9. The anaerobic / aerobic activated sludge treatment apparatus according to claim 8, wherein said noise elimination filter is a high-frequency noise elimination filter or a noise elimination filter based on a moving average model.
JP2000101888A 2000-04-04 2000-04-04 Anaerobic / aerobic activated sludge treatment method and apparatus Expired - Fee Related JP3437991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000101888A JP3437991B2 (en) 2000-04-04 2000-04-04 Anaerobic / aerobic activated sludge treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000101888A JP3437991B2 (en) 2000-04-04 2000-04-04 Anaerobic / aerobic activated sludge treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2001276867A true JP2001276867A (en) 2001-10-09
JP3437991B2 JP3437991B2 (en) 2003-08-18

Family

ID=18615854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000101888A Expired - Fee Related JP3437991B2 (en) 2000-04-04 2000-04-04 Anaerobic / aerobic activated sludge treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3437991B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432518B1 (en) * 2004-01-08 2004-05-22 주식회사 아쿠아테크 Waste water treatment system and method for carring out continuous denitrification and nitrification in a single active reaction tank by utilizing an apparatus for judging reaction step
KR100450037B1 (en) * 2002-01-07 2004-10-06 주식회사 대명테크 Wastewater treatment process and system with auto-controlled Intermittent aeration system
KR100810960B1 (en) 2007-08-08 2008-03-10 자연엔지니어링 주식회사 Economic nitrogen phosphorous which uses the to conventional activated sludge processand clear
CN100400437C (en) * 2006-04-06 2008-07-09 山东大学 Sewage treatment technique for denitrifying denitrification and descaling
WO2013099306A1 (en) * 2011-12-28 2013-07-04 三菱重工メカトロシステムズ株式会社 Wastewater treatment device
JP2016121992A (en) * 2014-12-19 2016-07-07 スティヒティング・イメック・ネーデルラントStichting IMEC Nederland Drift-compensated ion sensor
JP2016215154A (en) * 2015-05-22 2016-12-22 オルガノ株式会社 Method for forming granule and granule formation device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450037B1 (en) * 2002-01-07 2004-10-06 주식회사 대명테크 Wastewater treatment process and system with auto-controlled Intermittent aeration system
KR100432518B1 (en) * 2004-01-08 2004-05-22 주식회사 아쿠아테크 Waste water treatment system and method for carring out continuous denitrification and nitrification in a single active reaction tank by utilizing an apparatus for judging reaction step
CN100400437C (en) * 2006-04-06 2008-07-09 山东大学 Sewage treatment technique for denitrifying denitrification and descaling
KR100810960B1 (en) 2007-08-08 2008-03-10 자연엔지니어링 주식회사 Economic nitrogen phosphorous which uses the to conventional activated sludge processand clear
WO2013099306A1 (en) * 2011-12-28 2013-07-04 三菱重工メカトロシステムズ株式会社 Wastewater treatment device
JP2013138976A (en) * 2011-12-28 2013-07-18 Mitsubishi Heavy Industries Mechatronics Systems Ltd Waste water treatment device
CN103974911A (en) * 2011-12-28 2014-08-06 三菱重工机电系统株式会社 Wastewater treatment device
US9938172B2 (en) 2011-12-28 2018-04-10 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd Wastewater treatment device
JP2016121992A (en) * 2014-12-19 2016-07-07 スティヒティング・イメック・ネーデルラントStichting IMEC Nederland Drift-compensated ion sensor
JP2019219407A (en) * 2014-12-19 2019-12-26 スティヒティング・イメック・ネーデルラントStichting IMEC Nederland Drift-compensated ion sensor
JP2016215154A (en) * 2015-05-22 2016-12-22 オルガノ株式会社 Method for forming granule and granule formation device

Also Published As

Publication number Publication date
JP3437991B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
HU224163B1 (en) Wastewater treatment by monitoring oxygen utilisation rates and installation for it
KR20160008502A (en) Method and apparatus for maximizing nitrogen removal from wastewater
CN107298484B (en) The SBR deep denitrification method of municipal sewage nitric efficiency is improved using ammonia nitrogen
TW200925126A (en) Sequencing batch membrane bioreactor dealing device and method thereof
JP2012200705A (en) Nitrogen-containing wastewater treatment method and apparatus
JP2001276867A (en) Anaerobic and aerobic activated sludge treating method and equipment therefor
JP3388405B2 (en) Sewage treatment apparatus and method
JP3942488B2 (en) Control method and apparatus for intermittent aeration method
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JP3271521B2 (en) Wastewater nitrogen removal method and apparatus
JP2786770B2 (en) How to control the sewage treatment process
JP3303352B2 (en) Operation control method for batch activated sludge treatment
JP3397102B2 (en) Control method of intermittent aeration type activated sludge method
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JP3704697B2 (en) Waste water nitrification method and apparatus and nitrogen removal apparatus
JP3632265B2 (en) Control method for batch activated sludge treatment
JP3608256B2 (en) Operation control method for circulating nitrification denitrification
JPH08323394A (en) Method for diagnosing intermittent aeration type activated sludge tank
JPS6154296A (en) Treatment of sewage
JP2001009497A (en) Biological water treatment and equipment therefor
JP3303475B2 (en) Operation control method of activated sludge circulation method
JP4453287B2 (en) Sewage treatment method and sewage treatment control system
JP2005000715A (en) Method for controlling operation of aerating stirrer
JPH0947780A (en) Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor
JPH08192179A (en) Device for setting residence time of sludge in activated sludge process

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees