JPH0935553A - Manufacture of oxide superconducting wire rod - Google Patents

Manufacture of oxide superconducting wire rod

Info

Publication number
JPH0935553A
JPH0935553A JP7201558A JP20155895A JPH0935553A JP H0935553 A JPH0935553 A JP H0935553A JP 7201558 A JP7201558 A JP 7201558A JP 20155895 A JP20155895 A JP 20155895A JP H0935553 A JPH0935553 A JP H0935553A
Authority
JP
Japan
Prior art keywords
base material
superconducting wire
oxide
silver
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7201558A
Other languages
Japanese (ja)
Other versions
JP3100877B2 (en
Inventor
Yoshiaki Tanaka
吉秋 田中
Hiroshi Maeda
弘 前田
Masayuki Ishizuka
正之 石塚
Tomoyuki Yanagiya
知之 柳谷
Takashi Sekine
尚 関根
Yuji Abe
勇治 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sukegawa Electric Co Ltd
National Research Institute for Metals
Sumitomo Heavy Industries Ltd
Original Assignee
Sukegawa Electric Co Ltd
National Research Institute for Metals
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sukegawa Electric Co Ltd, National Research Institute for Metals, Sumitomo Heavy Industries Ltd filed Critical Sukegawa Electric Co Ltd
Priority to JP07201558A priority Critical patent/JP3100877B2/en
Publication of JPH0935553A publication Critical patent/JPH0935553A/en
Application granted granted Critical
Publication of JP3100877B2 publication Critical patent/JP3100877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an oxide superconducting wire rod whereby plastic workability can be improved with mechanical strength and a superconducting characteristic, by eliminating a defect in a method of manufacturing a superconducting wire rod of using a conventional pure silver to serve as a base material of sheath material or the like. SOLUTION: In a method of manufacturing an oxide superconducting wire rod, a complex unit consisting of a base material and oxide superconducting material is manufactured. In the base material, a silver/copper alloy, containing 0.05 to 90 atomic % copper to add 0.01 to 5 atomic % boron, chrome, molybdenum, tungsten, manganese, rhenium, iron, cobalt, nickel, zinc, indium, tin, magnesium, is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本願発明は、酸化物超電導体
の複合線材の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a composite wire of oxide superconductor.

【0002】[0002]

【発明が解決しようとする課題】従来より、Y,Bi系等
の酸化物超電導導体については、超電導特性、特に臨界
電流密度Jc特性を向上させるために、純銀をシース材等
の基材として使用している。しかし、純銀材は、臨界電
流密度Jc特性を向上させるのに有望ではあるものの、一
般的に、その機械的強度が低い。純銀材を酸化物等の原
料粉末と複合して加工すると、ソーセージングと呼ばれ
る長さ方向の異形変形や線材断面内における厚さの不均
一などが生じ、酸化物層の団塊化や断線が発生しやすい
という欠点がある。
Conventionally, for Y, Bi-based oxide superconducting conductors, pure silver has been used as a base material such as a sheath material in order to improve superconducting characteristics, particularly critical current density Jc characteristics. are doing. However, although the pure silver material is promising for improving the critical current density Jc characteristics, its mechanical strength is generally low. When a pure silver material is compounded with a raw material powder such as an oxide and processed, irregular deformation in the length direction called sausaging and uneven thickness in the cross section of the wire material occur, causing agglomeration and disconnection of the oxide layer. It has the drawback of being easy to do.

【0003】また、純銀基材と酸化物層との界面の整合
性が充分ではないという問題もある。これらは、超電導
特性のバラつき、臨界電流密度Jc特性の劣化、信頼性の
低下等の原因となっている。
There is also a problem that the interface between the pure silver base material and the oxide layer is not sufficiently matched. These are the causes of variations in superconducting properties, deterioration of critical current density Jc properties, and deterioration of reliability.

【0004】酸化物超電導線材の製造方法として有望視
されている複合線材加工法も、800〜900℃の高温熱処理
によりシース材の銀が軟化してしまうという欠点があ
る。軟化した銀シース材は、室温での超電導マグネット
の巻き線加工時に容易に塑性変形し、回復不能な超電導
特性劣化を生ずる技術的問題点となっている。
The composite wire processing method, which is regarded as a promising method for producing an oxide superconducting wire, also has the drawback that the silver of the sheath material is softened by the high temperature heat treatment at 800 to 900 ° C. The softened silver sheath material easily becomes plastically deformed at the time of winding the superconducting magnet at room temperature, which causes a technical problem that irreversibly deteriorates the superconducting characteristics.

【0005】このような機械的強度の問題を改善するた
めに、従来では、補強材を付加することが試みられても
いるが、この場合には、補強材を付加すると線材当たり
の臨界電流密度Jcが低下するという問題がある。このた
め、超電導機器の小型軽量化の障害となっている。
In order to improve such a problem of mechanical strength, it has been attempted to add a reinforcing material in the past. In this case, however, when the reinforcing material is added, the critical current density per wire is increased. There is a problem that Jc decreases. This is an obstacle to reducing the size and weight of superconducting equipment.

【0006】この発明は、以上の通りの事情に鑑みてな
されたものであり、従来の純銀をシース材等の基材とし
て使用する超電導線材の製造方法の欠点を解消し、機械
的強度、超電導特性とともに塑性加工性を向上させるこ
とのできる酸化物超電導線材の製造方法を提供すること
を目的としている。
The present invention has been made in view of the above circumstances, and solves the drawbacks of the conventional method for producing a superconducting wire using pure silver as a base material such as a sheath material, and has a mechanical strength and a superconducting property. It is an object of the present invention to provide a method for manufacturing an oxide superconducting wire which can improve the plastic workability as well as the characteristics.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、基材と酸化物超電導材料とからなる複
合体を作製する酸化物超電導線材の製造方法において、
基材として、ホウ素、クロム、モリブデン、タングステ
ン、マンガン、レニウム、鉄、コバルト、ニッケル、亜
鉛、インジウム、錫、マグネシウムを添加した銀銅合金
を用いることにより、超電導特性の向上、機械的強度や
塑性加工性の改善を図るものである。
In order to solve the above-mentioned problems, the present invention provides a method for producing an oxide superconducting wire, which comprises producing a composite of a base material and an oxide superconducting material,
By using a silver-copper alloy with boron, chromium, molybdenum, tungsten, manganese, rhenium, iron, cobalt, nickel, zinc, indium, tin, magnesium added as the base material, improvement of superconducting properties, mechanical strength and plasticity It is intended to improve workability.

【0008】本発明において、酸化物超電導線材の基材
として使用する銀銅合金は、銅の含有率が0.05〜90原子
%が望ましい。さらに、銀銅合金の基材に添加する元素
の種類や、その添加量によって、得られる効果には差異
があるため、銀銅合金の基材に添加する元素、すなわ
ち、B,Cr,Mo,W,Mn,Re,Fe,Co,Ni,Zn,In,Sn,
Mgについては、添加する元素の種類と添加量を適正に選
ぶ必要がある。所望の効果にあわせて適量の元素を添加
すればよいが、特に効果的な添加量としては、0.01〜5
原子%が考えられる。
In the present invention, the silver-copper alloy used as the base material of the oxide superconducting wire preferably has a copper content of 0.05 to 90 atom%. Furthermore, since the effect obtained varies depending on the type of element added to the base material of the silver-copper alloy and the amount added, the elements added to the base material of the silver-copper alloy, namely B, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Zn, In, Sn,
Regarding Mg, it is necessary to properly select the type of element to be added and the amount to be added. An appropriate amount of element may be added according to the desired effect, but a particularly effective addition amount is 0.01 to 5
Atomic% is considered.

【0009】[0009]

【従来の技術】従来より、Y,Bi系等の酸化物超電導導
体については、超電導特性、特に臨界電流密度Jc特性を
向上させるために様々な検討がなされてきており、これ
までに種々の製造方法が模索されている。
2. Description of the Related Art Conventionally, various studies have been made on oxide superconductors such as Y and Bi series in order to improve superconducting properties, particularly critical current density Jc properties, and various manufacturing processes have been conducted so far. Ways are being sought.

【0010】たとえば、純銀パイプに酸化物の原料粉末
を充填し、塑性加工と焼結処理を行う複合加工法や、純
銀基盤上にペースト状の酸化物を塗布し、乾燥させた後
に熱処理を行うドクターブレード法などが知られてい
る。
For example, a pure silver pipe is filled with an oxide raw material powder, and a composite processing method is used in which plastic working and sintering are performed, or a paste-like oxide is applied on a pure silver base, dried and then heat treated. The doctor blade method is known.

【0011】そのなかで複合線材加工法は、Bi系酸化物
超電導体の線材作製法として有力視されている。この製
法は、純銀シース中に大気中で仮焼した原料酸化物を詰
め、塑性加工により、種々の断面形状を有する細線を得
る。細線あるいはさらに細線をテープ状に圧延加工し、
高温の焼結熱処理を施して超電導線材を作製する方法で
ある。
Among them, the composite wire processing method is regarded as a promising method for manufacturing a Bi-based oxide superconductor wire. In this manufacturing method, a pure silver sheath is filled with a raw material oxide calcined in the air, and a thin wire having various cross-sectional shapes is obtained by plastic working. Thin wire or even thin wire is rolled into tape,
This is a method of producing a superconducting wire by performing high-temperature sintering heat treatment.

【0012】[0012]

【発明の実施の形態】本発明において、例えば、銀銅合
金基材に、Wを0.1原子%添加すると、基材に純銀を用い
た場合と比較して、臨界電流密度は1.3倍以上になると
いう効果が認められる。また、銀銅合金基材にB,Cr,M
o,W,Mn,Re,Fe,Co,Ni,Zn,In,Snを0.1原子%を
添加することにより、超電導特性の向上に加え、機械的
強度、塑性加工性が著しく向上する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, for example, when 0.1 atomic% of W is added to a silver-copper alloy base material, the critical current density becomes 1.3 times or more as compared with the case where pure silver is used as the base material. The effect is recognized. In addition, B, Cr, M on silver-copper alloy substrate
By adding 0.1 atomic% of o, W, Mn, Re, Fe, Co, Ni, Zn, In, and Sn, in addition to improving superconducting properties, mechanical strength and plastic workability are significantly improved.

【0013】ここでは、B,Cr,Mo,W,Mn,Re,Fe,C
o,Ni,Zn,In,Sn,Mgのいずれかを0.1原子%を添加し
た例について説明したが、本発明の酸化物超電導線材の
製造方法は、一例には限定されず、所望の効果にあわせ
て適量の元素を添加すればよいが、特に効果的な添加量
としては、0.01〜5原子%が考えられる。
Here, B, Cr, Mo, W, Mn, Re, Fe, C
Although an example in which 0.1 atomic% of any of o, Ni, Zn, In, Sn, and Mg is added has been described, the method for producing an oxide superconducting wire of the present invention is not limited to one example, and a desired effect can be obtained. An appropriate amount of element may be added together, but a particularly effective addition amount is considered to be 0.01 to 5 atom%.

【0014】[0014]

【実施例】以下、本発明の実施例として、B,Cr,Mo,
W,Mn,Re,Fe,Co,Ni,Zn,In,Sn,Mgを0.1原子%を
添加した場合と、何も添加しない場合を示し、さらに詳
しく酸化物超電導線材の製造方法について説明する。
EXAMPLES As examples of the present invention, B, Cr, Mo,
A method of adding 0.1 atomic% of W, Mn, Re, Fe, Co, Ni, Zn, In, Sn, and Mg and a case of not adding any of them will be shown, and a method for producing an oxide superconducting wire will be described in more detail.

【0015】本発明の実施例として、種々のBi系高Tc
相Ag基およびAgCu基シーステープを作製して、超電導臨
界電流値を比較した。Bi2O3、PbO、SrCO3、CaCO3、およ
びCuOの粉末をBi:Pb:Sr:Ca:Cu=1.8:0.4:2:2.
1:3の比になるように混合し、820℃で20時間仮焼き
し、粉砕後、真空中で500℃、4時間の熱処理を施し、原
料粉末とした。
As examples of the present invention, various Bi-based high Tc
The phase-based Ag-based and AgCu-based sheath tapes were prepared and the superconducting critical current values were compared. Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , and CuO powders were mixed with Bi: Pb: Sr: Ca: Cu = 1.8: 0.4: 2: 2.
The mixture was mixed in a ratio of 1: 3, calcined at 820 ° C. for 20 hours, pulverized, and then heat-treated at 500 ° C. for 4 hours in vacuum to obtain a raw material powder.

【0016】原料粉末を外径10mm、内径7mm、長さ3
0mmの純Ag管、Ag−10at%Cu−0.1at%B管、Ag−1
0at%Cu−0.1at%Cr管、Ag−10at%Cu−0.1at
%Mo管、Ag−10at%Cu−0.1at%W管、Ag−10at%
Cu−0.1at%Mn管、Ag−10at%Cu−0.1at%Re管、
Ag−10at%Cu−0.1at%Fe管、Ag−10at%Cu−0.1
at%Co管、Ag−10at%Cu−0.1at%Ni管、Ag−1
0at%Cu−0.1at%Zn管、Ag−10at%Cu−0.1at
%In管、Ag−10at%Cu−0.1at%Sn管、Ag−10at
%Cu−0.1at%Mg管にそれぞれ、詰めて、両端を銀栓
で封入した。
The raw material powder is 10 mm in outer diameter, 7 mm in inner diameter, and 3 in length.
0mm pure Ag tube, Ag-10at% Cu-0.1at% B tube, Ag-1
0at% Cu-0.1at% Cr tube, Ag-10at% Cu-0.1at
% Mo tube, Ag-10at% Cu-0.1at% W tube, Ag-10at%
Cu-0.1at% Mn tube, Ag-10at% Cu-0.1at% Re tube,
Ag-10at% Cu-0.1at% Fe tube, Ag-10at% Cu-0.1
at% Co tube, Ag-10 at% Cu-0.1 at% Ni tube, Ag-1
0at% Cu-0.1at% Zn tube, Ag-10at% Cu-0.1at
% In tube, Ag-10at% Cu-0.1at% Sn tube, Ag-10at
% Cu-0.1 at% Mg tubes were packed respectively, and both ends were sealed with silver stoppers.

【0017】充填管をスエージング、丸伸線加工を施し
て、外径1.1mmまでに加工し、平ロールにより、最終
的に厚さ0.25mmまで圧延加工を行った。得られたそれ
ぞれのテープから、長さ約200mmの試料を切り出し
た。
The filled tube was swaged and subjected to round wire drawing to a diameter of 1.1 mm, and a flat roll was finally rolled to a thickness of 0.25 mm. A sample having a length of about 200 mm was cut out from each of the obtained tapes.

【0018】それぞれの試料を、昇温速度約20℃/時間
で最高830℃まで昇温後、100時間の焼結処理を行った。
次いで、テープを室温において、平ロールにより厚さ0.
15mmまで圧延を行い、さらに830℃で50時間の焼結処
理を行い、線材試料を得た。
Each sample was heated to a maximum temperature of 830 ° C. at a heating rate of about 20 ° C./hour, and then sintered for 100 hours.
The tape is then rolled to a thickness of 0.
It was rolled to 15 mm and further sintered at 830 ° C. for 50 hours to obtain a wire rod sample.

【0019】各線材試料について、超電導特性を測定し
た結果を説明する。図1は本発明の実施例における試料
の添加元素と臨界電流密度の関係を示す相関図である。
測定条件は4.2K、外部磁場が14Tである。
The results of measuring the superconducting characteristics of each wire rod sample will be described. FIG. 1 is a correlation diagram showing the relationship between the additive element of the sample and the critical current density in the example of the present invention.
The measurement conditions are 4.2K and the external magnetic field is 14T.

【0020】図のように、元素を添加していない試料の
臨界電流密度が30000A/cm2であるのに対して、B,C
r,Mo,W,Mn,Re,Fe,Co,Ni,Zn,In,Sn,Mgを添加
した試料は、いずれも、45000A/cm2以上となり、Mn
を添加した試料には最高値の65000A/cm2が得られ
た。このように、B,Cr,Mo,W,Mn,Re,Fe,Co,Ni,
Zn,In,Sn,Mgを添加すると、臨界電流密度が大きく改
善していることがわかる。
As shown in the figure, while the critical current density of the sample to which no element is added is 30,000 A / cm 2 , B, C
The samples containing r, Mo, W, Mn, Re, Fe, Co, Ni, Zn, In, Sn, and Mg all had a Mn of 45000 A / cm 2 or more.
The highest value of 65000 A / cm 2 was obtained for the sample to which was added. Thus, B, Cr, Mo, W, Mn, Re, Fe, Co, Ni,
It can be seen that the addition of Zn, In, Sn, and Mg greatly improves the critical current density.

【0021】図2は本発明の実施例における試料とビッ
カース硬度を示す図表である。元素を添加していない試
料は、圧延加工後のテープの状態で100、焼き鈍し後の
超電導線材の状態で45であるのに対して、元素を添加し
た試料は圧延加工後のテープの状態で148〜171、焼き鈍
し後の超電導線材の状態でも106〜124となり、硬度が大
きく向上していることがわかる。本実施例において、元
素を添加した試料は、元素を添加しなかった試料に比べ
てビッカース硬度が大きいことから、機械的強度が優れ
ていることが認められる。
FIG. 2 is a table showing samples and Vickers hardness in the examples of the present invention. The sample without addition of the element is 100 in the state of the tape after rolling, and 45 in the state of the superconducting wire after annealing, whereas the sample with addition of the element is 148 in the state of the tape after rolling. ~ 171, even in the state of the superconducting wire after annealing, 106-124, showing that the hardness is greatly improved. In this example, the sample to which the element is added has a higher Vickers hardness than the sample to which the element is not added, and thus it is recognized that the mechanical strength is excellent.

【0022】本実施例に明らかなように超電導特性、機
械的強度が向上するほか、本発明の酸化物超電導線材の
製造方法では、外部磁場に対する超電導特性の劣化が少
ない、超電導結晶の配向が良好、均質な酸化物層と基材
が整合し、変形や断線等がおこりにくいため、品質の信
頼性が高い等の利点がある。
As is apparent from this example, the superconducting properties and mechanical strength are improved, and in the method for producing an oxide superconducting wire according to the present invention, the superconducting properties are less deteriorated with respect to an external magnetic field, and the superconducting crystal orientation is good. Since the homogeneous oxide layer and the base material are aligned and deformation and disconnection are unlikely to occur, there are advantages such as high quality reliability.

【0023】[0023]

【発明の効果】上記のように本発明の酸化物超電導線材
の製造方法は、銀銅合金にB,Cr,Mo,W,Mn,Re,Fe,
Co,Ni,Zn,In,Sn,Mgを添加することにより、合金の
機械的強度が向上する。本発明では、添加する元素と添
加量を適正に選び、調整された銀銅合金をチューブ材、
基盤材等の基材として用いれば、加工や焼結の際に変形
や不均質化が発生しにくく、原料粉末と基材との整合性
が良好となるため、酸化物層の団塊化が防止され、均質
な酸化物層を得る。また複合加工材として用いると、そ
の線材の断面形状が均一になる。
As described above, the method for producing an oxide superconducting wire according to the present invention can be applied to silver-copper alloys containing B, Cr, Mo, W, Mn, Re, Fe,
By adding Co, Ni, Zn, In, Sn, and Mg, the mechanical strength of the alloy is improved. In the present invention, the element to be added and the addition amount are properly selected, and the adjusted silver-copper alloy is used as a tube material,
When used as a base material such as a base material, deformation and inhomogeneity do not easily occur during processing and sintering, and the consistency between the raw material powder and the base material is good, preventing the agglomeration of the oxide layer. To obtain a homogeneous oxide layer. When it is used as a composite processed material, the cross-sectional shape of the wire becomes uniform.

【0024】このようなことから、機械的強度、塑性加
工性が改善するだけでなく、超電導特性が向上し、優れ
た酸化物超電導線材を提供することが可能となる。ま
た、製造する酸化物超電導線材の酸化物層が均質化さ
れ、変形、断線が起こりにくいため、本発明の酸化物超
電導線材の製造方法は、超電導線材の品質を向上させる
とともに、品質の信頼性を安定させる等の効果がある。
From the above, not only the mechanical strength and the plastic workability are improved, but also the superconducting properties are improved, and it is possible to provide an excellent oxide superconducting wire. Further, since the oxide layer of the oxide superconducting wire to be produced is homogenized, and deformation and disconnection are less likely to occur, the method for producing an oxide superconducting wire according to the present invention improves the quality of the superconducting wire and also improves the reliability of the quality. It has the effect of stabilizing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における試料の添加元素と臨界
電流密度の関係を示す相関図である。
FIG. 1 is a correlation diagram showing a relationship between an additive element of a sample and a critical current density in an example of the present invention.

【図2】本発明の実施例における試料とビッカース硬度
を示す図表である。
FIG. 2 is a chart showing samples and Vickers hardness in Examples of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年9月27日[Submission date] September 27, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 酸化物超電導線材の製造方法Title of the invention: Method for manufacturing oxide superconducting wire

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本願発明は、酸化物超電導体
の複合線材の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a composite wire of oxide superconductor.

【0002】[0002]

【従来の技術】従来より、Y,Bi系等の酸化物超電導導
体については、超電導特性、特に臨界電流密度Jc特性を
向上させるために様々な検討がなされてきており、これ
までに種々の製造方法が模索されている。
2. Description of the Related Art Conventionally, various studies have been made on oxide superconductors such as Y and Bi series in order to improve superconducting properties, particularly critical current density Jc properties, and various manufacturing processes have been conducted so far. Ways are being sought.

【0003】たとえば、純銀パイプに酸化物の原料粉末
を充填し、塑性加工と焼結処理を行う複合加工法や、純
銀基盤上にペースト状の酸化物を塗布し、乾燥させた後
に熱処理を行うドクターブレード法などが知られてい
る。
For example, a composite processing method in which a raw material powder of an oxide is filled in a pure silver pipe and a plastic working and a sintering process is performed, or a paste-like oxide is applied on a pure silver base, dried and then heat treated. The doctor blade method is known.

【0004】そのなかで複合線材加工法は、Bi系酸化物
超電導体の線材作製法として有力視されている。この製
法は、純銀シース中に大気中で仮焼した原料酸化物を詰
め、塑性加工により、種々の断面形状を有する細線を得
る。細線あるいはさらに細線をテープ状に圧延加工し、
高温の焼結熱処理を施して超電導線材を作製する方法で
ある。
Among them, the composite wire processing method is regarded as a promising method for manufacturing a Bi-based oxide superconductor wire. In this manufacturing method, a pure silver sheath is filled with a raw material oxide calcined in the air, and a thin wire having various cross-sectional shapes is obtained by plastic working. Thin wire or even thin wire is rolled into tape,
This is a method of producing a superconducting wire by performing high-temperature sintering heat treatment.

【0005】[0005]

【発明が解決しようとする課題】従来より、Y,Bi系等
の酸化物超電導導体については、超電導特性、特に臨界
電流密度Jc特性を向上させるために、純銀をシース材等
の基材として使用している。しかし、純銀材は、臨界電
流密度Jc特性を向上させるのに有望ではあるものの、一
般的に、その機械的強度が低い。純銀材を酸化物等の原
料粉末と複合して加工すると、ソーセージングと呼ばれ
る長さ方向の異形変形や線材断面内における厚さの不均
一などが生じ、酸化物層の団塊化や断線が発生しやすい
という欠点がある。
Conventionally, for Y, Bi-based oxide superconducting conductors, pure silver has been used as a base material such as a sheath material in order to improve superconducting characteristics, particularly critical current density Jc characteristics. are doing. However, although the pure silver material is promising for improving the critical current density Jc characteristics, its mechanical strength is generally low. When a pure silver material is compounded with a raw material powder such as an oxide and processed, irregular deformation in the length direction called sausaging and uneven thickness in the cross section of the wire material occur, causing agglomeration and disconnection of the oxide layer. It has the drawback of being easy to do.

【0006】また、純銀基材と酸化物層との界面の整合
性が充分ではないという問題もある。これらは、超電導
特性のバラつき、臨界電流密度Jc特性の劣化、信頼性の
低下等の原因となっている。
There is also a problem that the interface between the pure silver base material and the oxide layer is not sufficiently matched. These are the causes of variations in superconducting properties, deterioration of critical current density Jc properties, and deterioration of reliability.

【0007】酸化物超電導線材の製造方法として有望視
されている複合線材加工法も、800〜900℃の高温熱処理
によりシース材の銀が軟化してしまうという欠点があ
る。軟化した銀シース材は、室温での超電導マグネット
の巻き線加工時に容易に塑性変形し、回復不能な超電導
特性劣化を生ずる技術的問題点となっている。
The composite wire processing method, which is regarded as a promising method for manufacturing an oxide superconducting wire, also has a drawback that the silver of the sheath material is softened by the high temperature heat treatment at 800 to 900 ° C. The softened silver sheath material easily becomes plastically deformed at the time of winding the superconducting magnet at room temperature, which causes a technical problem that irreversibly deteriorates the superconducting characteristics.

【0008】このような機械的強度の問題を改善するた
めに、従来では、補強材を付加することが試みられても
いるが、この場合には、補強材を付加すると線材当たり
の臨界電流密度Jcが低下するという問題がある。このた
め、超電導機器の小型軽量化の障害となっている。
In order to improve such a problem of mechanical strength, it has been attempted to add a reinforcing material in the past, but in this case, when the reinforcing material is added, the critical current density per wire is increased. There is a problem that Jc decreases. This is an obstacle to reducing the size and weight of superconducting equipment.

【0009】この発明は、以上の通りの事情に鑑みてな
されたものであり、従来の純銀をシース材等の基材とし
て使用する超電導線材の製造方法の欠点を解消し、機械
的強度、超電導特性とともに塑性加工性を向上させるこ
とのできる酸化物超電導線材の製造方法を提供すること
を目的としている。
The present invention has been made in view of the circumstances as described above, and solves the drawbacks of the conventional method for producing a superconducting wire using pure silver as a base material such as a sheath material, and improves mechanical strength and superconductivity. It is an object of the present invention to provide a method for manufacturing an oxide superconducting wire which can improve the plastic workability as well as the characteristics.

【0010】[0010]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、基材と酸化物超電導材料とからなる複
合体を作製する酸化物超電導線材の製造方法において、
基材として、ホウ素、クロム、モリブデン、タングステ
ン、マンガン、レニウム、鉄、コバルト、ニッケル、亜
鉛、インジウム、錫、マグネシウムを添加した銀銅合金
を用いることにより、超電導特性の向上、機械的強度や
塑性加工性の改善を図るものである。
In order to solve the above-mentioned problems, the present invention provides a method for producing an oxide superconducting wire, which comprises producing a composite of a base material and an oxide superconducting material,
By using a silver-copper alloy with boron, chromium, molybdenum, tungsten, manganese, rhenium, iron, cobalt, nickel, zinc, indium, tin, magnesium added as the base material, improvement of superconducting properties, mechanical strength and plasticity It is intended to improve workability.

【0011】本発明において、酸化物超電導線材の基材
として使用する銀銅合金は、銅の含有率が0.05〜90原子
%が望ましい。さらに、銀銅合金の基材に添加する元素
の種類や、その添加量によって、得られる効果には差異
があるため、銀銅合金の基材に添加する元素、すなわ
ち、B,Cr,Mo,W,Mn,Re,Fe,Co,Ni,Zn,In,Sn,
Mgについては、添加する元素の種類と添加量を適正に選
ぶ必要がある。所望の効果にあわせて適量の元素を添加
すればよいが、特に効果的な添加量としては、0.01〜5
原子%が考えられる。
In the present invention, the silver-copper alloy used as the base material of the oxide superconducting wire preferably has a copper content of 0.05 to 90 atom%. Furthermore, since the effect obtained varies depending on the type of element added to the base material of the silver-copper alloy and the amount added, the elements added to the base material of the silver-copper alloy, namely B, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Zn, In, Sn,
Regarding Mg, it is necessary to properly select the type of element to be added and the amount to be added. An appropriate amount of element may be added according to the desired effect, but a particularly effective addition amount is 0.01 to 5
Atomic% is considered.

【0012】[0012]

【発明の実施の形態】本発明において、例えば、銀銅合
金基材に、Wを0.1原子%添加すると、基材に純銀を用い
た場合と比較して、臨界電流密度は1.3倍以上になると
いう効果が認められる。また、銀銅合金基材にB,Cr,M
o,W,Mn,Re,Fe,Co,Ni,Zn,In,Snを0.1原子%を
添加することにより、超電導特性の向上に加え、機械的
強度、塑性加工性が著しく向上する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, for example, when 0.1 atomic% of W is added to a silver-copper alloy base material, the critical current density becomes 1.3 times or more as compared with the case where pure silver is used as the base material. The effect is recognized. In addition, B, Cr, M on silver-copper alloy substrate
By adding 0.1 atomic% of o, W, Mn, Re, Fe, Co, Ni, Zn, In, and Sn, in addition to improving superconducting properties, mechanical strength and plastic workability are significantly improved.

【0013】ここでは、B,Cr,Mo,W,Mn,Re,Fe,C
o,Ni,Zn,In,Sn,Mgのいずれかを0.1原子%を添加し
た例について説明したが、本発明の酸化物超電導線材の
製造方法は、一例には限定されず、所望の効果にあわせ
て適量の元素を添加すればよいが、特に効果的な添加量
としては、0.01〜5原子%が考えられる。
Here, B, Cr, Mo, W, Mn, Re, Fe, C
Although an example in which 0.1 atomic% of any of o, Ni, Zn, In, Sn, and Mg is added has been described, the method for producing an oxide superconducting wire of the present invention is not limited to one example, and a desired effect can be obtained. An appropriate amount of element may be added together, but a particularly effective addition amount is considered to be 0.01 to 5 atom%.

【0014】[0014]

【実施例】以下、本発明の実施例として、B,Cr,Mo,
W,Mn,Re,Fe,Co,Ni,Zn,In,Sn,Mgを0.1原子%を
添加した場合と、何も添加しない場合を示し、さらに詳
しく酸化物超電導線材の製造方法について説明する。
EXAMPLES As examples of the present invention, B, Cr, Mo,
A method of adding 0.1 atomic% of W, Mn, Re, Fe, Co, Ni, Zn, In, Sn, and Mg and a case of not adding any of them will be shown, and a method for producing an oxide superconducting wire will be described in more detail.

【0015】本発明の実施例として、種々のBi系高Tc
相Ag基およびAgCu基シーステープを作製して、超電導臨
界電流値を比較した。Bi2O3、PbO、SrCO3、CaCO3、およ
びCuOの粉末をBi:Pb:Sr:Ca:Cu=1.8:0.4:2:2.
1:3の比になるように混合し、820℃で20時間仮焼き
し、粉砕後、真空中で500℃、4時間の熱処理を施し、原
料粉末とした。
As examples of the present invention, various Bi-based high Tc
The phase-based Ag-based and AgCu-based sheath tapes were prepared and the superconducting critical current values were compared. Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , and CuO powders were mixed with Bi: Pb: Sr: Ca: Cu = 1.8: 0.4: 2: 2.
The mixture was mixed in a ratio of 1: 3, calcined at 820 ° C. for 20 hours, pulverized, and then heat-treated at 500 ° C. for 4 hours in vacuum to obtain a raw material powder.

【0016】原料粉末を外径10mm、内径7mm、長さ3
0mmの純Ag管、Ag−10at%Cu−0.1at%B管、Ag−1
0at%Cu−0.1at%Cr管、Ag−10at%Cu−0.1at
%Mo管、Ag−10at%Cu−0.1at%W管、Ag−10at%
Cu−0.1at%Mn管、Ag−10at%Cu−0.1at%Re管、
Ag−10at%Cu−0.1at%Fe管、Ag−10at%Cu−0.1
at%Co管、Ag−10at%Cu−0.1at%Ni管、Ag−1
0at%Cu−0.1at%Zn管、Ag−10at%Cu−0.1at
%In管、Ag−10at%Cu−0.1at%Sn管、Ag−10at
%Cu−0.1at%Mg管にそれぞれ、詰めて、両端を銀栓
で封入した。
The raw material powder is 10 mm in outer diameter, 7 mm in inner diameter, and 3 in length.
0mm pure Ag tube, Ag-10at% Cu-0.1at% B tube, Ag-1
0at% Cu-0.1at% Cr tube, Ag-10at% Cu-0.1at
% Mo tube, Ag-10at% Cu-0.1at% W tube, Ag-10at%
Cu-0.1at% Mn tube, Ag-10at% Cu-0.1at% Re tube,
Ag-10at% Cu-0.1at% Fe tube, Ag-10at% Cu-0.1
at% Co tube, Ag-10 at% Cu-0.1 at% Ni tube, Ag-1
0at% Cu-0.1at% Zn tube, Ag-10at% Cu-0.1at
% In tube, Ag-10at% Cu-0.1at% Sn tube, Ag-10at
% Cu-0.1 at% Mg tubes were packed respectively, and both ends were sealed with silver stoppers.

【0017】充填管をスエージング、丸伸線加工を施し
て、外径1.1mmまでに加工し、平ロールにより、最終
的に厚さ0.25mmまで圧延加工を行った。得られたそれ
ぞれのテープから、長さ約200mmの試料を切り出し
た。
The filled tube was swaged and subjected to round wire drawing to a diameter of 1.1 mm, and a flat roll was finally rolled to a thickness of 0.25 mm. A sample having a length of about 200 mm was cut out from each of the obtained tapes.

【0018】それぞれの試料を、昇温速度約20℃/時間
で最高830℃まで昇温後、100時間の焼結処理を行った。
次いで、テープを室温において、平ロールにより厚さ0.
15mmまで圧延を行い、さらに830℃で50時間の焼結処
理を行い、線材試料を得た。
Each sample was heated to a maximum temperature of 830 ° C. at a heating rate of about 20 ° C./hour, and then sintered for 100 hours.
The tape is then rolled to a thickness of 0.
It was rolled to 15 mm and further sintered at 830 ° C. for 50 hours to obtain a wire rod sample.

【0019】各線材試料について、超電導特性を測定し
た結果を説明する。図1は本発明の実施例における試料
の添加元素と臨界電流密度の関係を示す相関図である。
測定条件は4.2K、外部磁場が14Tである。
The results of measuring the superconducting characteristics of each wire rod sample will be described. FIG. 1 is a correlation diagram showing the relationship between the additive element of the sample and the critical current density in the example of the present invention.
The measurement conditions are 4.2K and the external magnetic field is 14T.

【0020】図のように、元素を添加していない試料の
臨界電流密度が30000A/cm2であるのに対して、B,C
r,Mo,W,Mn,Re,Fe,Co,Ni,Zn,In,Sn,Mgを添加
した試料は、いずれも、45000A/cm2以上となり、Mn
を添加した試料には最高値の65000A/cm2が得られ
た。このように、B,Cr,Mo,W,Mn,Re,Fe,Co,Ni,
Zn,In,Sn,Mgを添加すると、臨界電流密度が大きく改
善していることがわかる。
As shown in the figure, while the critical current density of the sample to which no element is added is 30,000 A / cm 2 , B, C
The samples containing r, Mo, W, Mn, Re, Fe, Co, Ni, Zn, In, Sn, and Mg all had a Mn of 45000 A / cm 2 or more.
The highest value of 65000 A / cm 2 was obtained for the sample to which was added. Thus, B, Cr, Mo, W, Mn, Re, Fe, Co, Ni,
It can be seen that the addition of Zn, In, Sn, and Mg greatly improves the critical current density.

【0021】図2は本発明の実施例における試料とビッ
カース硬度を示す図表である。元素を添加していない試
料は、圧延加工後のテープの状態で100、焼き鈍し後の
超電導線材の状態で45であるのに対して、元素を添加し
た試料は圧延加工後のテープの状態で148〜171、焼き鈍
し後の超電導線材の状態でも106〜124となり、硬度が大
きく向上していることがわかる。本実施例において、元
素を添加した試料は、元素を添加しなかった試料に比べ
てビッカース硬度が大きいことから、機械的強度が優れ
ていることが認められる。
FIG. 2 is a table showing samples and Vickers hardness in the examples of the present invention. The sample without addition of the element is 100 in the state of the tape after rolling, and 45 in the state of the superconducting wire after annealing, whereas the sample with addition of the element is 148 in the state of the tape after rolling. ~ 171, even in the state of the superconducting wire after annealing, 106-124, showing that the hardness is greatly improved. In this example, the sample to which the element is added has a higher Vickers hardness than the sample to which the element is not added, and thus it is recognized that the mechanical strength is excellent.

【0022】本実施例に明らかなように超電導特性、機
械的強度が向上するほか、本発明の酸化物超電導線材の
製造方法では、外部磁場に対する超電導特性の劣化が少
ない、超電導結晶の配向が良好、均質な酸化物層と基材
が整合し、変形や断線等がおこりにくいため、品質の信
頼性が高い等の利点がある。
As is apparent from this example, the superconducting properties and mechanical strength are improved, and in the method for producing an oxide superconducting wire according to the present invention, the superconducting properties are less deteriorated with respect to an external magnetic field, and the superconducting crystal orientation is good. Since the homogeneous oxide layer and the base material are aligned and deformation and disconnection are unlikely to occur, there are advantages such as high quality reliability.

【0023】[0023]

【発明の効果】上記のように本発明の酸化物超電導線材
の製造方法は、銀銅合金にB,Cr,Mo,W,Mn,Re,Fe,
Co,Ni,Zn,In,Sn,Mgを添加することにより、合金の
機械的強度が向上する。本発明では、添加する元素と添
加量を適正に選び、調整された銀銅合金をチューブ材、
基盤材等の基材として用いれば、加工や焼結の際に変形
や不均質化が発生しにくく、原料粉末と基材との整合性
が良好となるため、酸化物層の団塊化が防止され、均質
な酸化物層を得る。また複合加工材として用いると、そ
の線材の断面形状が均一になる。
As described above, according to the method for producing an oxide superconducting wire of the present invention, silver, copper, B, Cr, Mo, W, Mn, Re, Fe,
By adding Co, Ni, Zn, In, Sn, and Mg, the mechanical strength of the alloy is improved. In the present invention, the element to be added and the addition amount are properly selected, and the adjusted silver-copper alloy is used as a tube material,
When used as a base material such as a base material, deformation and inhomogeneity do not easily occur during processing and sintering, and the consistency between the raw material powder and the base material is good, preventing the agglomeration of the oxide layer. To obtain a homogeneous oxide layer. When it is used as a composite processed material, the cross-sectional shape of the wire becomes uniform.

【0024】このようなことから、機械的強度、塑性加
工性が改善するだけでなく、超電導特性が向上し、優れ
た酸化物超電導線材を提供することが可能となる。ま
た、製造する酸化物超電導線材の酸化物層が均質化さ
れ、変形、断線が起こりにくいため、本発明の酸化物超
電導線材の製造方法は、超電導線材の品質を向上させる
とともに、品質の信頼性を安定させる等の効果がある。
From the above, not only the mechanical strength and the plastic workability are improved, but also the superconducting properties are improved, and it becomes possible to provide an excellent oxide superconducting wire. Further, since the oxide layer of the oxide superconducting wire to be produced is homogenized, and deformation and disconnection are less likely to occur, the method for producing an oxide superconducting wire according to the present invention improves the quality of the superconducting wire and also improves the reliability of the quality. It has the effect of stabilizing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における試料の添加元素と臨界
電流密度の関係を示す相関図である。
FIG. 1 is a correlation diagram showing a relationship between an additive element of a sample and a critical current density in an example of the present invention.

【図2】本発明の実施例における試料とビッカース硬度
を示す図表である。
FIG. 2 is a chart showing samples and Vickers hardness in Examples of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 弘 茨城県つくば市千現1丁目2番1号科学技 術庁金属材料技術研究所筑波支所内 (72)発明者 石塚 正之 神奈川県平塚市夕陽ヶ丘63番30号住友重機 械工業株式会社総合技術研究所内 (72)発明者 柳谷 知之 神奈川県平塚市夕陽ヶ丘63番30号住友重機 械工業株式会社総合技術研究所内 (72)発明者 関根 尚 茨城県日立市滑川本町3丁目19番5号助川 電気工業株式会社内 (72)発明者 阿部 勇治 茨城県日立市滑川本町3丁目19番5号助川 電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroshi Maeda Hiroshi Maeda 1-2-1 Sengen, Tsukuba-shi, Ibaraki Tsukuba Branch, Institute for Materials Research, Science and Technology Agency (72) Masayuki Ishizuka Yuhiga, Hiratsuka-shi, Kanagawa Hill No. 63-30 Sumitomo Heavy Industries Machinery Co., Ltd. (72) Inventor Tomoyuki Yanagiya Yuhigaoka 63-30 Sumitomo Heavy Industries Machinery Co., Ltd. (72) Inventor Nao Sekine Sukegawa Electric Industry Co., Ltd. 3-19-5 Namerikawa Honcho, Hitachi City, Ibaraki Prefecture (72) Inventor Yuji Abe 3-19-5 Namerikawa Honmachi, Hitachi City, Hitachi City, Ibaraki Prefecture Sukegawa Electric Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導体と基材とからなる複合体
を作製する酸化物超電導線材の製造方法において、前記
基材が、0.05〜90原子%の銅を含有し、B,Cr,Mo,W,
Mn,Re,Fe,Co,Ni,Zn,In,Sn,Mgのいずれか一種以
上の元素を合計して0.01〜5原子%添加してなる銀銅合
金であることを特徴とする酸化物超電導線材の製造方
法。
1. A method for producing an oxide superconducting wire for producing a composite comprising an oxide superconductor and a base material, wherein the base material contains 0.05 to 90 atomic% of copper and B, Cr, Mo. , W,
Oxide superconductivity characterized by being a silver-copper alloy formed by adding 0.01 to 5 atomic% in total of one or more elements selected from Mn, Re, Fe, Co, Ni, Zn, In, Sn, and Mg Manufacturing method of wire.
JP07201558A 1995-07-14 1995-07-14 Manufacturing method of oxide superconducting wire Expired - Fee Related JP3100877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07201558A JP3100877B2 (en) 1995-07-14 1995-07-14 Manufacturing method of oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07201558A JP3100877B2 (en) 1995-07-14 1995-07-14 Manufacturing method of oxide superconducting wire

Publications (2)

Publication Number Publication Date
JPH0935553A true JPH0935553A (en) 1997-02-07
JP3100877B2 JP3100877B2 (en) 2000-10-23

Family

ID=16443048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07201558A Expired - Fee Related JP3100877B2 (en) 1995-07-14 1995-07-14 Manufacturing method of oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP3100877B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293212C (en) * 2004-02-23 2007-01-03 西安交通大学 Alloy of copper
CN103014402A (en) * 2012-12-21 2013-04-03 重庆川仪自动化股份有限公司 High-melting-point alloy element reinforced sliding electrical contact alloy and laminar composite thereof
CN103060599A (en) * 2012-12-21 2013-04-24 重庆川仪自动化股份有限公司 Sliding electric contact alloy containing high-melting-point alloy element and laminar composite thereof
CN103710563A (en) * 2013-12-25 2014-04-09 北海鑫利坤金属材料科技开发有限公司 Silver alloy material with fluorescent effect
CN112176218A (en) * 2020-10-30 2021-01-05 南京工程学院 High-strength low-loss cable conductor material and preparation method and application thereof
CN112331385A (en) * 2020-10-30 2021-02-05 南京工程学院 Low-loss power cable and manufacturing method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293212C (en) * 2004-02-23 2007-01-03 西安交通大学 Alloy of copper
CN103014402A (en) * 2012-12-21 2013-04-03 重庆川仪自动化股份有限公司 High-melting-point alloy element reinforced sliding electrical contact alloy and laminar composite thereof
CN103060599A (en) * 2012-12-21 2013-04-24 重庆川仪自动化股份有限公司 Sliding electric contact alloy containing high-melting-point alloy element and laminar composite thereof
CN103710563A (en) * 2013-12-25 2014-04-09 北海鑫利坤金属材料科技开发有限公司 Silver alloy material with fluorescent effect
CN112176218A (en) * 2020-10-30 2021-01-05 南京工程学院 High-strength low-loss cable conductor material and preparation method and application thereof
CN112331385A (en) * 2020-10-30 2021-02-05 南京工程学院 Low-loss power cable and manufacturing method and application thereof
CN112176218B (en) * 2020-10-30 2021-04-13 南京工程学院 High-strength low-loss cable conductor material and preparation method and application thereof

Also Published As

Publication number Publication date
JP3100877B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
US6687975B2 (en) Method for manufacturing MgB2 intermetallic superconductor wires
US5063200A (en) Ceramic superconductor article
US6246007B1 (en) Oxide superconductive wire and process for manufacturing the same
JPH0935553A (en) Manufacture of oxide superconducting wire rod
US5208215A (en) Process for fabricating flexible BI-PB-SR-CA-CU-O superconducting tape
GB2076430A (en) Superconductor wires
JP2007242355A (en) PRECURSOR OF POWDER METHOD Nb3Sn SUPERCONDUCTING WIRE MATERIAL AND ITS MANUFACTURING METHOD
JP3945600B2 (en) Method for producing Nb 3 Sn superconducting wire
JP4193194B2 (en) Method for producing Nb3Sn superconducting wire
WO1995005680A1 (en) Improved superconductor tapes and coils and method of manufacture
JP2003297162A (en) METHOD FOR MANUFACTURING Nb3Ga EXTRAFINE MULTI-CORE WIRE ROD
JP2916382B2 (en) Method for producing Nb3Sn superconductor
JPH0925125A (en) Production of oxide superconductor
JPH07296654A (en) Manufacture of oxide superconductor
JP2569413B2 (en) Method for producing Bi-based oxide superconducting wire
JPH05266726A (en) Oxide superconducting wire
JP2005108782A (en) Nb3Al BASE SUPERCONDUCTIVE WIRE ROD AND MANUFACTURING METHOD FOR THE WIRE ROD
JPH028335A (en) Sheath for manufacturing of oxide superconducting wire rod
JPH06510157A (en) Textured superconductor and its manufacturing method
JPH06283056A (en) Oxide superconductive wire
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JP3667028B2 (en) Oxide superconducting wire for alternating current and method for producing the same
JP2871907B2 (en) Method of manufacturing flexible superconducting tape
JPH0513216A (en) Oxide superconducting coil magnet
Tachikawa et al. Method of producing a composite superconductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees