JPH09330738A - Sodium-sulfur battery module - Google Patents

Sodium-sulfur battery module

Info

Publication number
JPH09330738A
JPH09330738A JP8148895A JP14889596A JPH09330738A JP H09330738 A JPH09330738 A JP H09330738A JP 8148895 A JP8148895 A JP 8148895A JP 14889596 A JP14889596 A JP 14889596A JP H09330738 A JPH09330738 A JP H09330738A
Authority
JP
Japan
Prior art keywords
battery
cell
temperature
electrode active
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8148895A
Other languages
Japanese (ja)
Inventor
Yoshimi Sato
善美 佐藤
Saburo Usami
三郎 宇佐美
Mitsuo Kawakami
三雄 川上
Hisamitsu Hatou
久光 波東
Tadahiko Mitsuyoshi
忠彦 三吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8148895A priority Critical patent/JPH09330738A/en
Publication of JPH09330738A publication Critical patent/JPH09330738A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To prevent the breakage of a cell and enhance the cell life by lowering the temperature of the cell in the state where the temperature of the cell upper part is regularly lower than the lower part, when the cell temperature is lowered, so as to solidifying positive and negative electrode active materials from the cell upper part toward the lower part. SOLUTION: In a module vessel 11, cells 10 are housed within cell covers 12, and the adjacent covers 12 are mutually connected by a cell cover connecting plate 18. The vessel 11 has a fluid temperature control device 16 for the heating and cooling necessary for temperature rise and fall of the cells, and an inlet pipe 14 for introducing a heating and cooling fluid 8 into the vessel 11 and an exhaust pipe 15 for exhausting it are set on the upper part of the vessel 11. A periodic inspection requires to lower the temperature from steady operating temperature to room temperature. Since the cooling fluid 8 is then carried on the upper part of the vessel 11, the cell 10 is gradually cooled from the upper part to the lower part. Since the positive and negative active materials are thus solidified from the cell upper part to the lower part within the battery 10, the density is roughed to produce holes, so that no stress acts on each cell component to transformation expansion, particularly, after solidification of sulfur of the positive electrode active material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はナトリウム−硫黄電
池に関し、降温時及び昇温時に電池に発生する応力を小
さくし、電池の強度信頼性を向上するに最適なナトリウ
ム−硫黄電池モジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sodium-sulfur battery module, and more particularly to a sodium-sulfur battery module most suitable for reducing the stress generated in the battery during temperature lowering and temperature raising and improving the reliability of strength of the battery.

【0002】[0002]

【従来の技術】ナトリウム−硫黄電池モジュールの加熱
及び冷却方法に関しては、従来多くの提案がなされてい
る。例えば、特開平2−256174 号公報には、電池収納ケ
ースを互いに面接触させて一体的に連結することによ
り、電池を加熱及び冷却する際、熱伝導が面接触により
均一に行われ、単電池の温度分布が均一化される工夫が
なされている。また、特開昭58−25088 号公報には単電
池を保持する保持部材間に空間を設け、単電池の全側面
を空冷することにより、電池を均一に冷却する工夫がな
されている。また、特開昭49−21629 号公報には、単電
池の昇温加熱に際し、電池上部から下部にかけて負極活
物質のナトリウム及び正極活物質の硫黄が溶融するよう
に工夫がなされている。
2. Description of the Related Art Many proposals have been made in the past regarding heating and cooling methods for sodium-sulfur battery modules. For example, in Japanese Unexamined Patent Publication (Kokai) No. 2-256174, when the battery storage cases are brought into surface contact with each other and integrally connected, heat conduction is uniformly performed by surface contact when heating and cooling the battery. The temperature distribution of is uniformed. Further, Japanese Patent Application Laid-Open No. 58-25088 is devised so that a space is provided between holding members for holding the cells and all the side surfaces of the cells are air-cooled to uniformly cool the cells. Further, JP-A-49-21629 is devised so that when the cell is heated and heated, sodium as a negative electrode active material and sulfur as a positive electrode active material are melted from the upper part to the lower part of the battery.

【0003】[0003]

【発明が解決しようとする課題】このように、従来のナ
トリウム−硫黄電池モジュールにおいては、昇温及び降
温時に単電池内の温度分布及び電池間の温度分布を減少
し、均一化するための工夫及び負極活物質のナトリウム
が正極活物質の硫黄を昇温溶融するに、上部から下部に
向って溶解することで発生応力を減少する観点からの工
夫がなされているが、電池の降温時に電池上部より下部
に向って負極活物質のナトリウム及び正極活物質の硫黄
を固化し、特に正極活物質の固化後に生じる変態膨張に
よる発生応力を低減すると共に、電池寿命を増大する観
点からの考慮がなされていなかった。
As described above, in the conventional sodium-sulfur battery module, a device for reducing and making uniform the temperature distribution in the unit cell and the temperature distribution between the cells at the time of heating and cooling. Also, while sodium of the negative electrode active material is melted by heating the sulfur of the positive electrode active material at elevated temperature, it is devised from the viewpoint of reducing the stress generated by melting from the upper part to the lower part. It is considered from the viewpoint of solidifying sodium of the negative electrode active material and sulfur of the positive electrode active material toward the lower part, and particularly reducing the stress generated by transformation expansion that occurs after solidification of the positive electrode active material and increasing the battery life. There wasn't.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明は、各々一対の正極端子と負極端子を有
する単電池を直並列接続した多数のナトリウム−硫黄電
池を収縮するナトリウム−硫黄電池のモジュールにおい
て、電池の降温時に電池上部より下部に向って負極活物
質のナトリウムと正極活物質の硫黄が固化するように、
常に電池上部が電池下部より低温状態で降温する手段を
設置したことを特徴とした構造のナトリウム−硫黄電池
モジュールである。
In order to achieve the above object, a first aspect of the present invention is to shrink a large number of sodium-sulfur batteries in which a plurality of cells each having a pair of positive electrode terminals and negative electrode terminals are connected in series and parallel to each other. -In the module of the sulfur battery, when the temperature of the battery is lowered, the sodium of the negative electrode active material and the sulfur of the positive electrode active material are solidified from the upper part to the lower part of the battery,
A sodium-sulfur battery module having a structure characterized in that means for constantly lowering the temperature of the upper part of the battery than the lower part of the battery is installed.

【0005】また第2の発明は、電池の降温時に電池の
上部より下部に向って負極活物質のナトリウムと正極活
物質の硫黄が固化する手段として、電池上部からのみ排
熱及び排気することを特徴とした構造のナトリウム−硫
黄電池モジュールである。
A second aspect of the invention is to exhaust heat and exhaust only from the upper part of the battery as means for solidifying the sodium of the negative electrode active material and the sulfur of the positive electrode active material from the upper part to the lower part of the battery when the temperature of the battery is lowered. It is a sodium-sulfur battery module having a characteristic structure.

【0006】第3の発明は、電池降温時に電池の上部よ
り下部に向って負極活物質のナトリウムと正極活物質の
硫黄を固化する手段として、電池降温時に電池下部を加
熱しながら電池全体を降温することを特徴とした構造の
ナトリウム−硫黄電池モジュールである。
A third aspect of the invention is a means for solidifying sodium as a negative electrode active material and sulfur as a positive electrode active material from the upper part to the lower part of the battery when the temperature of the battery is lowered, and the entire battery is cooled while heating the lower part of the battery when the temperature of the battery is lowered. It is a sodium-sulfur battery module having a structure characterized by

【0007】第1発明ないし第3発明によれば、電池降
温時に電池上部より下部に向って負極活物質のナトリウ
ムと正極活物質の硫黄が固化するため、両活物質は固化
冷却時の収縮により密度が粗となりながら、上部から固
化する。特に硫黄では固化後の変態による体積膨張に対
しても応力は電池構成各部に働くことがなく、電池の破
損を防止すると共に電池寿命を増大する。固化後の再加
熱でも固化過程を経た負極活物質のナトリウムと正極活
物質の硫黄においては、昇温加熱時において、溶融及び
加熱変態による体積膨張が生じても、圧力増大はそれぞ
れの活物質内で吸収でき、電池構成各部に応力が作用す
るのを防止できる。そのため、電池の破損を防止すると
共に電池寿命を増大することが可能である。
According to the first to third inventions, since sodium of the negative electrode active material and sulfur of the positive electrode active material solidify from the upper part to the lower part of the battery when the temperature of the battery is lowered, both active materials are contracted during solidification cooling. It solidifies from the top while the density becomes coarse. In particular, in the case of sulfur, stress does not act on each component of the battery even with respect to volume expansion due to transformation after solidification, which prevents damage to the battery and increases battery life. In the sodium of the negative electrode active material and the sulfur of the positive electrode active material that have undergone the solidification process even after reheating after solidification, even if volume expansion due to melting and heat transformation occurs during heating at elevated temperature, the pressure increase is caused in each active material. Can be absorbed by and can prevent stress from acting on each part of the battery. Therefore, it is possible to prevent damage to the battery and increase the battery life.

【0008】[0008]

【発明の実施の形態】本発明のナトリウム−硫黄電池モ
ジュールの一実施例を図1に示す。各々一対の正極端子
1と負極端子2を有する単電池10を直並列に接続した
多数のナトリウム−硫黄電池を収納するナトリウム−硫
黄電池のモジュール容器11には、単電池10をそれぞ
れ電池カバー12の内に納め、電池カバー12は電池カ
バー連結板18で隣接電池カバー12同士を連結してい
る。連結カバー12間には防火砂13が配備されてい
る。ナトリウム−硫黄電池モジュールには、電池昇温及
び降温に必要な加熱及び冷却するための流体温度制御装
置16を有し、加熱及び冷却流体8をモジュール容器1
1に引き込む導入管14がモジュール容器11上部に、
また加熱及び冷却流体8を排気する排出管15が同じく
モジュール容器11の上部に設置されている。図1にお
いて、定期点検時等には定常運転温度から室温まで降温
する必要がある。その際、本発明構造では電池モジュー
ル容器11の上部を冷却流体8が導入管14から排出管
15に向って流れるため、電池10は上部から下部に向
って冷却が進む。その時の単電池10の内部では図2に
示すように、電池上部より電池下部に向って負極活物質
5のナトリウムと正極活物質6の硫黄が固化するため、
両活物質5,6は固化降温時の収縮により密度が粗とな
り、固体負極活物質5−2と固体正極活物質6−2には
収縮による空孔9が生じ、特に正極活物質6の硫黄の固
化後の変態膨張に対して応力が電池構成各部に働くこと
がない。固化過程を経たナトリウム及び硫黄の正・負両
活物質6,5は、固化後の再加熱による熱膨張及び変態
膨張でも電池構成各部に応力を作用させず、電池の破損
を防止すると共に電池寿命を増大する効果がある。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the sodium-sulfur battery module of the present invention is shown in FIG. In a sodium-sulfur battery module container 11 for storing a large number of sodium-sulfur batteries, each of which has a pair of positive electrode terminals 1 and negative electrode terminals 2 connected in series and in parallel, each of the single cells 10 is attached to a battery cover 12. The battery cover 12 connects the adjacent battery covers 12 with each other by the battery cover connecting plate 18. Fireproof sand 13 is provided between the connecting covers 12. The sodium-sulfur battery module has a fluid temperature control device 16 for heating and cooling necessary for raising and lowering the temperature of the battery, and supplies the heating and cooling fluid 8 to the module container 1
1, the introduction pipe 14 drawn into the upper part of the module container 11,
A discharge pipe 15 for exhausting the heating and cooling fluid 8 is also installed above the module container 11. In FIG. 1, it is necessary to lower the temperature from the steady operating temperature to room temperature at the time of regular inspection. At that time, in the structure of the present invention, the cooling fluid 8 flows in the upper part of the battery module container 11 from the introduction pipe 14 to the discharge pipe 15, so that the battery 10 is cooled from the upper part to the lower part. In the inside of the unit cell 10 at that time, as shown in FIG. 2, since sodium of the negative electrode active material 5 and sulfur of the positive electrode active material 6 solidify from the upper part of the battery toward the lower part of the battery,
Both active materials 5 and 6 have a coarse density due to shrinkage during solidification and cooling, and voids 9 are generated in the solid negative electrode active material 5-2 and the solid positive electrode active material 6-2 due to shrinkage. The stress does not act on each component of the battery due to the transformation expansion after solidification. The positive and negative active materials 6 and 5 of sodium and sulfur that have undergone the solidification process do not exert stress on the various components of the battery even when they are subjected to thermal expansion and transformation expansion due to reheating after solidification, preventing damage to the battery and improving battery life. Has the effect of increasing.

【0009】図3は本発明の実施例を示す。電池モジュ
ール容器11は真空17の断熱構造となっており、上蓋
22も真空17の断熱構造となっている。加熱時は上部
の加熱ヒータ7−1で加熱し、定常運転時は側部の加熱
ヒータ7−2で一定温度に保つようにしている。定常運
転温度から室温に降温する時はモジュール容器11内の
ヒータ7−1,7−2を全てオフとして自然冷却する。
熱は真空断熱部となっていないモジュール容器11と上
蓋22との間の熱封じ板24からのみ放熱するため、電
池は上部より下部に向って冷却が進む。つまり、負極活
物質5のナトリウムと正極活物質6の硫黄は電池上部か
ら下部に向って固化するため、固化後の再加熱の熱膨
張,変態による体積膨張によって生じる電池構造各部へ
の応力発生を低減し、電池の破損を防止すると共に電池
寿命を増大する効果がある。本発明では図1に示す流体
温度制御装置が不用である簡易構造となっている。
FIG. 3 shows an embodiment of the present invention. The battery module container 11 has a vacuum 17 heat insulating structure, and the upper lid 22 also has a vacuum 17 heat insulating structure. During heating, heating is performed by the upper heater 7-1, and during steady operation, the side heater 7-2 maintains a constant temperature. When the temperature is decreased from the steady operating temperature to room temperature, all the heaters 7-1 and 7-2 in the module container 11 are turned off to naturally cool.
The heat is radiated only from the heat sealing plate 24 between the module container 11 and the upper lid 22, which is not a vacuum heat insulating unit, so that the battery is cooled from the upper portion toward the lower portion. That is, since sodium of the negative electrode active material 5 and sulfur of the positive electrode active material 6 solidify from the upper part to the lower part of the battery, stress is generated in each part of the battery structure caused by thermal expansion of reheating after solidification and volume expansion due to transformation. It has the effects of reducing the amount, preventing damage to the battery, and increasing the battery life. The present invention has a simple structure in which the fluid temperature control device shown in FIG. 1 is unnecessary.

【0010】図4と図5は本発明の他の実施例である。
加熱及び運転時は図4のように上部の移動上蓋20をス
トッパ19に接するまで押して、放熱を防止し、電池冷
却降温時には図5に示すように移動蓋20を引いて、排
熱孔21を適切に開口し、排熱することで、降温時に電
池上部より下部に向って負極活物質5のナトリウムと正
極活物質6の硫黄が固化するようにしてある。本実施例
でも図1及び図3に示す発明と同様に、固化後の硫黄に
よる変態,再加熱時の熱膨張や変態膨張による電池構造
各部への応力発生を低減し、電池の破損を防止すると共
に電池寿命を増大する。本実施例では図1に示すような
流体温度制御装置16や、図3に示すような真空断熱容
器11や真空断熱上蓋22が不用であり、極めて簡易構
造となる。
4 and 5 show another embodiment of the present invention.
At the time of heating and operation, as shown in FIG. 4, the upper movable cover 20 is pushed until it contacts the stopper 19 to prevent heat radiation, and when the battery cooling temperature is lowered, the movable cover 20 is pulled as shown in FIG. By appropriately opening and discharging heat, sodium in the negative electrode active material 5 and sulfur in the positive electrode active material 6 are solidified from the upper part to the lower part of the battery when the temperature is lowered. Also in this embodiment, similarly to the invention shown in FIGS. 1 and 3, transformation due to sulfur after solidification, thermal expansion at the time of reheating and stress generation in each part of the battery structure due to transformation expansion are reduced, and damage to the battery is prevented. Along with this, the battery life is increased. In this embodiment, the fluid temperature control device 16 as shown in FIG. 1, the vacuum heat insulating container 11 and the vacuum heat insulating upper lid 22 as shown in FIG. 3 are unnecessary, and the structure is extremely simple.

【0011】図6は本発明の変形応用例を示す。電池モ
ジュール構造に対して下部に加熱ヒータ7−3を設置
し、電池降温時に電池上部より下部に向って負極活物質
5のナトリウムと正極活物質6の硫黄を固化するための
手段として、電池降温時に電池下部を加熱ヒータ7−3
で加熱しながら電池全体を降温できる。本電池モジュー
ル構造でも電池構造各部への応力発生を低減し、電池の
破損防止,電池寿命を増大する効果がある。本発明によ
れば、図1及び図3,図4と図5の発明に比べより確実
に、電池下部を上部より高温にしながら電池全体を降温
できる。
FIG. 6 shows a modified application example of the present invention. A heater 7-3 is installed in the lower part of the battery module structure, and as the means for solidifying sodium of the negative electrode active material 5 and sulfur of the positive electrode active material 6 from the upper part to the lower part of the battery when the battery temperature is decreased, the battery temperature decrease is performed. Sometimes the lower part of the battery is heated by a heater 7-3
The temperature of the entire battery can be lowered while heating. This battery module structure also has the effects of reducing stress generation in various parts of the battery structure, preventing damage to the battery, and increasing battery life. According to the present invention, it is possible to more reliably lower the temperature of the entire battery while making the temperature of the lower portion of the battery higher than that of the upper portion thereof, as compared with the inventions of FIGS. 1 and 3, 4 and 5.

【0012】[0012]

【発明の効果】本発明によれば、電池構成各部に発生す
る応力を低減し、電池の破損を防止し、電池寿命を増大
する。
According to the present invention, the stress generated in each part of the battery is reduced, damage to the battery is prevented, and the battery life is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の説明図。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】単電池内の正,負極活物質の固化状況を示す説
明図。
FIG. 2 is an explanatory diagram showing a solidification state of positive and negative electrode active materials in a unit cell.

【図3】本発明の他の実施例の説明図。FIG. 3 is an explanatory view of another embodiment of the present invention.

【図4】本発明の他の実施例の説明図。FIG. 4 is an explanatory diagram of another embodiment of the present invention.

【図5】本発明の他の実施例の説明図。FIG. 5 is an explanatory view of another embodiment of the present invention.

【図6】本発明の応用変形例の説明図。FIG. 6 is an explanatory diagram of an application modification example of the present invention.

【符号の説明】[Explanation of symbols]

1…正極端子、2…負極端子、3…絶縁リング、4…固
体電解質管、5…負極活物質、5−1…液体負極活物
質、5−2…固体負極活物質。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode terminal, 2 ... Negative electrode terminal, 3 ... Insulating ring, 4 ... Solid electrolyte tube, 5 ... Negative electrode active material, 5-1 ... Liquid negative electrode active material, 5-2 ... Solid negative electrode active material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 波東 久光 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 三吉 忠彦 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisamitsu Hato 3-1-1, Saiwai-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory (72) Inventor Tadahiko Miyoshi 3-chome, Hitachi-shi, Ibaraki No. 1 No. 1 Stock Company Hitachi Ltd. Hitachi factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】各々一対の正極端子と負極端子を有する単
電池を直並列接続した多数のナトリウム−硫黄電池を収
納するナトリウム−硫黄電池のモジュールにおいて、電
池の降温時に電池上部より下部に向って負極活物質のナ
トリウムと正極活物質の硫黄が固化するように、常に電
池上部が電池下部より低温状態で降温する手段を設置し
たことを特徴とするナトリウム−硫黄電池モジュール。
1. A sodium-sulfur battery module containing a large number of sodium-sulfur batteries, each of which has a pair of positive and negative terminals connected in series and in parallel, in a sodium-sulfur battery module from the upper part to the lower part of the battery when the temperature of the battery is lowered. A sodium-sulfur battery module, characterized in that means for constantly cooling the upper part of the battery at a lower temperature than the lower part of the battery is installed so that sodium of the negative electrode active material and sulfur of the positive electrode active material solidify.
【請求項2】請求項1において、電池の降温時に電池の
上部より下部に向って負極活物質のナトリウムと正極活
物質の硫黄が固化する手段として、電池上部からのみ排
熱及び排気するナトリウム−硫黄電池モジュール。
2. The method according to claim 1, wherein as the means for solidifying the sodium of the negative electrode active material and the sulfur of the positive electrode active material from the upper part to the lower part of the battery when the temperature of the battery is lowered, the exhaust heat and exhaust gas from only the upper part of the battery are used. Sulfur battery module.
【請求項3】請求項1または2において、電池降温時に
電池の上部より下部に向って負極活物質のナトリウムと
正極活物質の硫黄を固化する手段として、電池降温時に
電池下部を加熱しながら電池全体を降温するナトリウム
−硫黄電池モジュール。
3. The battery according to claim 1, wherein as the means for solidifying the sodium of the negative electrode active material and the sulfur of the positive electrode active material from the upper part to the lower part of the battery when the temperature of the battery is lowered, the battery is heated while the lower part of the battery is heated. Sodium-sulfur battery module that cools the whole.
JP8148895A 1996-06-11 1996-06-11 Sodium-sulfur battery module Pending JPH09330738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8148895A JPH09330738A (en) 1996-06-11 1996-06-11 Sodium-sulfur battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8148895A JPH09330738A (en) 1996-06-11 1996-06-11 Sodium-sulfur battery module

Publications (1)

Publication Number Publication Date
JPH09330738A true JPH09330738A (en) 1997-12-22

Family

ID=15463097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8148895A Pending JPH09330738A (en) 1996-06-11 1996-06-11 Sodium-sulfur battery module

Country Status (1)

Country Link
JP (1) JPH09330738A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142199A1 (en) * 2010-05-12 2011-11-17 日本碍子株式会社 Secondary battery module
US20130295428A1 (en) * 2011-02-03 2013-11-07 Ngk Insulators, Ltd. Battery housing structure
WO2015056739A1 (en) * 2013-10-17 2015-04-23 日本碍子株式会社 Secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142199A1 (en) * 2010-05-12 2011-11-17 日本碍子株式会社 Secondary battery module
CN102870269A (en) * 2010-05-12 2013-01-09 日本碍子株式会社 Secondary battery module
US8597813B2 (en) 2010-05-12 2013-12-03 Ngk Insulators, Ltd. Secondary battery module
US20130295428A1 (en) * 2011-02-03 2013-11-07 Ngk Insulators, Ltd. Battery housing structure
US10141615B2 (en) * 2011-02-03 2018-11-27 Ngk Insulators, Ltd. Battery housing structure
WO2015056739A1 (en) * 2013-10-17 2015-04-23 日本碍子株式会社 Secondary battery
CN105659431A (en) * 2013-10-17 2016-06-08 日本碍子株式会社 Secondary battery

Similar Documents

Publication Publication Date Title
WO2012144344A1 (en) Molten salt battery device
JP5729306B2 (en) Molten salt battery device
US4578325A (en) Power storage system using sodium-sulfur batteries
JPH081815B2 (en) Battery
US5376479A (en) Lead-acid battery of the absorptive mat type with improved heat transfer
JP2959298B2 (en) Lithium secondary battery device
JPH09330738A (en) Sodium-sulfur battery module
EP0310982A3 (en) Process for preventing overheating of high temperature accumulators
JP3846285B2 (en) Crystal manufacturing apparatus and crystal manufacturing method
KR200446667Y1 (en) Apparatus of fabricating silicon ingot for solar cell
JP2931581B1 (en) Temperature control system for sodium-sulfur battery
JP3643662B2 (en) DC power supply charger
KR100307454B1 (en) Method for making secondary battery
JPS62131474A (en) Cooling device of alkaline type fuel cell
JP4273664B2 (en) Crystalline silicon production equipment
WO1998032186A1 (en) Sodium-sulfur battery module
JP2551713B2 (en) Fuel cell
WO2022061765A1 (en) Pole plate connection method for lead-acid battery
JPH0843575A (en) Core catcher
JPS62200655A (en) Metal mold for cast-on strap of lead storage battery
CN116073026A (en) Step heating system for heating lithium battery in low-temperature environment and control method
JPH06188028A (en) Processing method of high-temperature storage battery
JPS63269453A (en) Strap forming device for lead battery
JPH05198308A (en) Fuel cell
JP2002063891A (en) Cast-on strap welding device and cast-on strap welding method