JPH09330703A - Manufacture of negative electrode for lithium ion secondary battery - Google Patents

Manufacture of negative electrode for lithium ion secondary battery

Info

Publication number
JPH09330703A
JPH09330703A JP8149161A JP14916196A JPH09330703A JP H09330703 A JPH09330703 A JP H09330703A JP 8149161 A JP8149161 A JP 8149161A JP 14916196 A JP14916196 A JP 14916196A JP H09330703 A JPH09330703 A JP H09330703A
Authority
JP
Japan
Prior art keywords
graphite
negative electrode
secondary battery
solvent
organic binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8149161A
Other languages
Japanese (ja)
Inventor
Masashi Wakata
昌志 若田
Yoshihisa Suda
吉久 須田
Yasushi Yamamoto
泰 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP8149161A priority Critical patent/JPH09330703A/en
Publication of JPH09330703A publication Critical patent/JPH09330703A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily manufacture a negative electrode carbon material with high performance to manufacture a lithium ion secondary battery with high charge and discharge capacity by dissolving graphite crystal fine powder and a furan resin to an excessive quantity of THF, and carbonizing the solution after evaporating the solvent to form a negative electrode material. SOLUTION: In the manufacture of a negative electrode carbon material for secondary battery, graphite crystal fine powder and an organic binder are dissolved in an excessive solvent, and the solvent is then evaporated to form a composition formed of graphite and the organic binder. This composition is baked in inert atmosphere or in non-oxygen atmosphere, whereby the contained organic binder is carbonized to provide a graphite/carbon composite carbon material. A secondary battery using this graphite/carbon composite carbon material as negative electrode has characteristics preferred as secondary battery of stable voltage at discharge and gentle voltage change in discharge end.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、黒鉛結晶粉末
を、結晶性の低い炭素材料となるバインダーにより配向
させてかためた黒鉛/炭素複合炭素材料を含むリチウム
イオン二次電池用負極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a negative electrode for a lithium-ion secondary battery containing a graphite / carbon composite carbon material obtained by orienting graphite crystal powder with a binder which is a carbon material having low crystallinity. Regarding

【0002】[0002]

【従来の技術】金属リチウムを負極活物質とする電池を
すべてリチウム電池とよぶ。正確には正極活物質と組合
わせて“二酸化マンガン−リチウム電池”のようによ
ぶ。リチウム電池は、近年実用化された電池であるが、
電圧が通常の乾電池の約2倍と高く、容量が大きくしか
も貯蔵寿命も5年以上あるため、高価ではあるが、よく
利用されるようになった。特に近年、急速にエレクトロ
ニックス機器における小型化技術が発展してきた結果、
その電源として用いられる電池にも小型化が要求され、
高エネルギー密度、大容量、高起電力性の向上が必須と
なり、新しいリチウムイオン二次電池の研究開発が活発
化している。
2. Description of the Related Art All batteries using metallic lithium as a negative electrode active material are called lithium batteries. To be precise, it is called a "manganese dioxide-lithium battery" in combination with the positive electrode active material. The lithium battery is a battery that has been put to practical use in recent years,
The voltage is about twice as high as that of a normal dry battery, the capacity is large, and the storage life is 5 years or more. Especially in recent years, as a result of rapid development of miniaturization technology for electronic devices,
The batteries used as the power source are also required to be downsized,
Improvements in high energy density, large capacity, and high electromotive force are essential, and research and development of new lithium-ion secondary batteries are becoming active.

【0003】しかし、従来のリチウム二次電池では、負
極活物質として金属リチウム箔等を用いる場合が多いの
で、以下のような解決しなければならない課題を有して
いた。すなわち、金属リチウムは放電に伴って電解液中
に溶出するため、充電時にリチウムは再析出することに
なる。この時、リチウムがデンドライド(樹枝)状に析
出したり、微粒子化したりする。デンドライドはショー
トの原因となったり、脱落して容量低下をもたらすため
に、サイクル特性や安全性の低下につながる。デンドラ
イドは大電流時に生成し易いので、急速充電はサイクル
寿命を悪化させる。
However, in the conventional lithium secondary battery, since a metal lithium foil or the like is often used as the negative electrode active material, it has the following problems to be solved. That is, since metallic lithium is eluted into the electrolytic solution as it is discharged, lithium is redeposited during charging. At this time, lithium deposits in the form of dendrites (dendritic) or becomes fine particles. The dendride causes a short circuit or drops off to bring about a decrease in capacity, which leads to deterioration of cycle characteristics and safety. Since dendrites are easily generated at high current, rapid charging deteriorates cycle life.

【0004】そこで、リチウム/アルミ合金、ウッド合
金等のようなリチウムを吸蔵することができる物質を負
極に用いる方法が提案されているが、電極としての加工
性が低下するなど問題点の完全な解決にはいたっていな
い。リチウムを吸蔵できる物質の内、最も可能性が高い
負極材料は炭素で、近年、黒鉛を始めとする各種の炭素
材に担持させる研究が盛んに行われている。特開昭57
−208079号公報には、黒鉛を負極として充電を行
うと、正極中のリチウムは電気化学的に負極黒鉛の層間
にインターカレーション(挿入)され、放電にともなっ
てリチウムは黒鉛層間から電解液中にイオンとしてデイ
ンターカレーションされ正極中に戻ることができるの
で、黒鉛粉末を結着材とともにペースト状にし、これを
金属箔の集電材に塗着した負極が開示されている。
Therefore, a method has been proposed in which a material capable of absorbing lithium, such as a lithium / aluminum alloy or a wood alloy, is used for the negative electrode. The solution has not been reached. Among the substances capable of storing lithium, the most probable negative electrode material is carbon. In recent years, research on supporting carbon on various carbon materials such as graphite has been actively conducted. JP 57
According to Japanese Patent Publication No. -2008079, when charging is performed using graphite as a negative electrode, lithium in the positive electrode is electrochemically intercalated (inserted) between the layers of the negative electrode graphite, and lithium is discharged from the graphite layer into the electrolytic solution during discharging. Thus, a negative electrode is disclosed in which graphite powder is formed into a paste together with a binder and applied to a current collector of a metal foil because the ions can be deintercalated as ions into the positive electrode.

【0005】しかし、金属リチウムの放電能力の理論値
は、3860 mAh/gであるが、黒鉛では、C6 Li迄
吸蔵できたとして、黒鉛1g当たりの放電容量の理論値
は、372mAh で、金属リチウムの1/10以下であ
る。したがって、従来より提案されている黒鉛材料にリ
チウムを担持させた負極材を用いても必ずしも高容量が
期待できず、黒鉛のみではリチウム吸蔵能力が乏しく、
リチウムイオン電池としての充放電容量が小さいという
問題がある。
[0005] However, the theoretical value of the discharge capacity of metallic lithium is 3860 mAh / g. However, assuming that graphite can occlude up to C 6 Li, the theoretical value of the discharge capacity per gram of graphite is 372 mAh. 1/10 or less of lithium. Therefore, even if a negative electrode material supporting lithium in a graphite material that has been conventionally proposed cannot be expected to have a high capacity, graphite alone has a poor lithium storage capacity,
There is a problem that the charge / discharge capacity as a lithium ion battery is small.

【0006】黒鉛を負極として単独で使用すると、電解
液であるプロピレンカーボネート(PC)の分解反応が
クーロン効率ほぼ100%で進み、リチウムの吸蔵が困
難となることが明らかにされている。また、黒鉛を負極
として単独で使用すると、充放電により黒鉛層間にリチ
ウムをインターカレーション・デインターカレーション
させた場合に、黒鉛の結晶はC軸方向に膨張、収縮を繰
り返すが、充放電サイクルを繰り返していくと、その結
晶構造は膨張したままの状態になり、負極の集電材と黒
鉛粉末の密着性が低下したり、集電材からの脱落が起こ
って、負極での集電効率が低下したり、電池の充放電特
性が低下してくるという現象が起っていた。さらに、黒
鉛単独では放電末期に急激に電圧が変化するので電池残
量のインジケートが困難である。
It has been found that when graphite is used alone as a negative electrode, the decomposition reaction of propylene carbonate (PC) as an electrolytic solution proceeds with a Coulomb efficiency of almost 100%, and it becomes difficult to occlude lithium. Also, when graphite is used alone as the negative electrode, when lithium is intercalated / deintercalated between the graphite layers by charge / discharge, the graphite crystals repeatedly expand and contract in the C-axis direction, but the charge / discharge cycle Repeating the above, the crystal structure remains expanded, and the adhesion between the negative electrode current collector and the graphite powder decreases, or the graphite powder falls off from the current collector and the current collecting efficiency at the negative electrode decreases. Or the charging / discharging characteristics of the battery are deteriorated. Furthermore, with graphite alone, it is difficult to indicate the remaining battery level because the voltage changes rapidly at the end of discharge.

【0007】黒鉛に代えて、有機材料を炭素化して得ら
れる低結晶性の炭素質材料を負極として用いることが、
例えば、特開昭62−122066号公報に記載されて
いる。しかし、低結晶性の炭素質材料単独では、リチウ
ムの吸蔵量が小さく理論値に満たない。特開平7−32
6343号公報には、リチウムイオン二次電池の負極材
料として高結晶性の黒鉛と低結晶性の炭素からなる炭素
材料を用いることが記載されている。しかしながら、黒
鉛と炭素化前の有機材料との混合が粉末どうしの単なる
混合であり不完全であるため、黒鉛が低結晶性炭素で充
分に覆われていないと推測され、黒鉛と低結晶性炭素と
を単に混ぜ合わせたときと同様に、両者の複合則に従っ
ているに過ぎない。すなわち、放電電圧が安定している
が放電末期に急激に変化するという黒鉛の特性と、放電
初期から末期にわたって電圧が徐々に変化する低結晶性
炭素の特性との中間的な特性を、両者の比率に応じて呈
している。
[0007] Instead of graphite, a low-crystalline carbonaceous material obtained by carbonizing an organic material is used as a negative electrode.
For example, it is described in JP-A-62-12266. However, the low crystalline carbonaceous material alone has a small lithium storage amount, which is less than the theoretical value. JP-A-7-32
No. 6,343 describes that a carbon material composed of highly crystalline graphite and low crystalline carbon is used as a negative electrode material of a lithium ion secondary battery. However, it is presumed that graphite is not sufficiently covered with low-crystallinity carbon because the mixture of graphite and the organic material before carbonization is a mere mixture of powders and is incomplete. Just as if they were mixed together, they simply obey the compound rule of the two. In other words, the characteristics of graphite, in which the discharge voltage is stable but changes abruptly at the end of discharge, and the characteristics of low crystalline carbon, in which the voltage gradually changes from the initial stage to the end of the discharge, are intermediate between the two. Presented according to the ratio.

【0008】これに対し本願出願人は、特願平7−32
409号において、黒鉛結晶微粉末と有機物粘結材とを
混合し、高度な剪断力を作用させることによりメカノケ
ミカル反応を行なわせて分散複合させた組成物を、黒鉛
結晶が高度に配向するように押出成形した後、有機物粘
結材を炭素化して得られた黒鉛/炭素複合炭素材料を、
リチウムイオン二次電池の負極材料として用いることを
提案した。
On the other hand, the applicant of the present application has filed Japanese Patent Application No.
No. 409, a composition obtained by mixing a graphite crystal fine powder and an organic binder and performing a mechanochemical reaction by applying a high shearing force to disperse and composite the mixture so that the graphite crystals are highly oriented. After extrusion molding to a graphite / carbon composite carbon material obtained by carbonizing an organic binder,
It was proposed to use it as a negative electrode material for lithium ion secondary batteries.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、上記
の特願平7−32409号において提案されたリチウム
イオン二次電池用負極の製造方法をさらに改善して製造
工程を簡略化し、かつ、電池の特性をさらに改善するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to further improve the method for manufacturing a negative electrode for a lithium ion secondary battery proposed in Japanese Patent Application No. 7-32409, simplifying the manufacturing process, and , To further improve the characteristics of the battery.

【0010】[0010]

【課題を解決するための手段】本発明によれば、黒鉛結
晶微粉末と有機物粘結材を過剰の溶剤と溶解させた後溶
剤を蒸発させて黒鉛と有機物粘結材からなる組成物と
し、該組成物を不活性雰囲気中または非酸素性雰囲気中
で焼成することにより、含まれる有機物粘結材を炭素化
して黒鉛/炭素複合炭素材料を得、該黒鉛/炭素複合炭
素材料をリチウムイオン二次電池用負極の材料として用
いるステップを具備するリチウムイオン二次電池用負極
の製造方法が提供される。
According to the present invention, a graphite crystal fine powder and an organic binder are dissolved in excess solvent and then the solvent is evaporated to form a composition comprising graphite and the organic binder, By firing the composition in an inert atmosphere or a non-oxygen atmosphere, the organic binder contained therein is carbonized to obtain a graphite / carbon composite carbon material. Provided is a method for producing a negative electrode for a lithium-ion secondary battery, which comprises the step of using it as a material for a negative electrode for a secondary battery.

【0011】有機物粘結材に対する黒鉛結晶微粉末の重
量比は、溶剤を蒸発させた後に組成物が粉末状になる範
囲であることが好適である。高度な剪断力の作用のもと
での混練(ハイシェア混練)の代わりに過剰の溶剤で溶
解する工程を採用することにより、製造工程が簡略化さ
れる。さらに、有機物粘結材に対する黒鉛微粉末の重量
比が所定の範囲内であれば、溶剤を蒸発させた後に粉末
状になり、炭素化後においても粉末状であるので、粉砕
の工程を必要とせず、一層工程が簡略化される。
It is preferable that the weight ratio of the graphite crystal fine powder to the organic binder is such that the composition becomes powdery after the solvent is evaporated. By adopting a step of dissolving with an excess solvent instead of kneading under the action of a high shearing force (high shear kneading), the manufacturing process is simplified. Further, if the weight ratio of the fine graphite powder to the organic binder is within a predetermined range, it becomes powdery after evaporating the solvent and is powdery even after carbonization, so a pulverization step is not required. Therefore, the process is further simplified.

【0012】また、上記の工程によって得られた複合炭
素材料を負極材料とする電池はハイシェア混練の工程に
よる場合と比べて充放電容量及びハイレート特性(定格
値よりも高い電流値における充放電特性)が改善されて
いる。これは、電子顕微鏡による観察によると、ハイシ
ェア混練及び粉末の工程を経た複合炭素材の表面にはハ
イシェア混練または粉砕の工程で生じたと考えられる傷
が観察されるのに対して、溶剤を使用したものの表面は
非常にきれいな状態であり、そのために電池の充放電容
量及びハイレート特性が改善されたものと考えられる。
Further, the battery using the composite carbon material obtained in the above process as a negative electrode material has a higher charge / discharge capacity and higher rate characteristics (charge / discharge property at a current value higher than the rated value) as compared with the case of the high shear kneading process. Has been improved. According to the observation with an electron microscope, this is because the surface of the composite carbon material that has been subjected to the high shear kneading and powdering process has a scratch that is considered to have occurred in the high shear kneading or crushing process, whereas the solvent is used. The surface of the product was in a very clean state, and it is considered that the charge and discharge capacity and high rate characteristics of the battery were improved for that reason.

【0013】有機物粘結材は、不活性雰囲気中または非
酸化性雰囲気中で焼成した時不定形もしくは乱層構造の
炭化物を残す有機物であって、天然及び合成による有機
高分子物質、モノマー・オリゴマー類、タール・ピッチ
類、乾留ピッチ類、熱可塑性樹脂類、熱硬化性樹脂の初
期重合体類よりなる群より選んだ少なくとも1種である
ことが好適である。
The organic binder is an organic substance that leaves an amorphous or turbostratic carbide when fired in an inert atmosphere or a non-oxidizing atmosphere, and includes natural and synthetic organic polymeric substances, monomers and oligomers. It is preferable that it is at least one selected from the group consisting of the following compounds: tars, pitches, dry-distilled pitches, thermoplastic resins, and prepolymers of thermosetting resins.

【0014】ここで、バインダー炭素の出発材料につい
て説明を加える。天然及び合成有機高分子物質として
は、後記する熱可塑性樹脂および熱硬化性樹脂以外の物
質で、リグニン、セルロース、トラガントガム、アラビ
アガム、天然ガム及びその誘導体、糖類、キチン、キト
サン等のごとき縮合多環芳香族を分子の基本構造内に持
つ化合物及び、ナフタレンスルフォン酸のホルマリン縮
合物、ジニトロナフタレン、ピレン、ピラントロン、ビ
オラントロン、ベンゾアントロン等から誘導されるイン
ダンスレン系建染染料及びその中間体である。
The starting material for the binder carbon will now be described. Examples of natural and synthetic organic polymer substances include substances other than the thermoplastic resins and thermosetting resins described below, such as lignin, cellulose, tragacanth gum, gum arabic, natural gums and derivatives thereof, saccharides, chitin, chitosan, and the like. Compounds having a ring aromatic in the basic structure of the molecule, and indanthrene-based vat dyes derived from formalin condensate of naphthalene sulfonic acid, dinitronaphthalene, pyrene, pyranthrone, biolanthrone, benzanthrone, and intermediates thereof is there.

【0015】熱可塑性樹脂類としては、ポリ塩化ビニ
ル、ポリアクリロニトリル、ポリ塩化ビニリデン、後塩
素化ポリ塩化ビニル、ポリ酢酸ビニル、ポリビニルアル
コール、ポリビニルピロリドン、エチルセルロース、カ
ルボキシメチルセルロース、ポリ塩化ビニル・酢酸ビニ
ル共重合体、等の通常の熱可塑性樹脂及びポリフェニレ
ンオキサイド、ポリパラキシレン、ポリスルフォン、ポ
リイミド、ポリアミドイミド、ポリベンツイミダゾー
ル、ポリオキサジアゾール、等の耐熱性熱可塑性樹脂を
用い炭素前駆体化処理として、酸化架橋したものであ
る。
The thermoplastic resins include polyvinyl chloride, polyacrylonitrile, polyvinylidene chloride, post-chlorinated polyvinyl chloride, polyvinyl acetate, polyvinyl alcohol, polyvinylpyrrolidone, ethyl cellulose, carboxymethyl cellulose, polyvinyl chloride / vinyl acetate. As a carbon precursor treatment using an ordinary thermoplastic resin such as polymer and polyphenylene oxide, polyparaxylene, polysulfone, polyimide, polyamideimide, polybenzimidazole, polyoxadiazole, etc. , Oxidatively crosslinked.

【0016】熱硬化性樹脂としては、フェノール樹脂、
フラン樹脂、エポキシ樹脂、キシレン樹脂、コプナ樹
脂、等が用いられ加熱により、流動すると共に、分子間
架橋を生じ三次元化して硬化し、特別の炭素前駆体化処
理を行うことなく高い炭素残査収率を示すものである。
ピッチ類としては、石油ピッチ、コールタールピッチ、
アスファルト、及び、これらのピッチ類や合成樹脂など
の炭化水素化合物の乾留ピッチ(400℃以下の処理物
で、炭素残査収率が75%〜95%)に酸化処理などの
難黒鉛化処理を施したものである。
As the thermosetting resin, a phenol resin,
Furan resin, epoxy resin, xylene resin, copna resin, etc. are used, and when heated, they flow and generate intermolecular cross-links, become three-dimensional and harden, and have a high carbon residue without special carbon precursor treatment. It shows the rate.
As pitches, oil pitch, coal tar pitch,
Asphalt and carbonized dry pitches of hydrocarbon compounds such as pitches and synthetic resins (processed at 400 ° C. or less; carbon residue yield is 75% to 95%) are subjected to non-graphitizing treatment such as oxidation treatment. It was done.

【0017】次に、本発明において、バインダー炭素の
出発原料である有機物材料に複合して用いられる黒鉛微
粉末について説明を加える。電池反応を良好に行わせる
には、高度に発達した黒鉛の結晶端面(エッジ面)が電
極の反応面に垂直に整列するように組織配向した複合炭
素材料を作製することが重要である。それ故、黒鉛ウィ
スカ、高配向性気相熱分解黒鉛(HOPG)、気相成長
黒鉛(VGCF)、キッシュ黒鉛、結晶質天然黒鉛が好
ましく用いられる。黒鉛微粉末の粒度は、目的とする電
池の構成によっても異なるが、最大粒子径が数μm以下
であることが好ましい。
Next, in the present invention, a description will be given of the graphite fine powder used in combination with the organic material which is the starting material of the binder carbon. In order to make the battery reaction satisfactorily performed, it is important to prepare a composite carbon material in which the crystal end face (edge face) of highly developed graphite is tissue-oriented so as to be vertically aligned with the reaction face of the electrode. Therefore, graphite whiskers, highly oriented gas phase pyrolytic graphite (HOPG), vapor grown graphite (VGCF), quiche graphite, and crystalline natural graphite are preferably used. The particle size of the graphite fine powder varies depending on the intended configuration of the battery, but the maximum particle size is preferably several μm or less.

【0018】次に、本願発明の負極炭素材料の製造方法
について説明する。バインダー炭素材を構成する非晶質
炭素を残す有機物として、上記の天然高分子物質、合成
高分子物質、熱硬化性樹脂、熱可塑性樹脂、ピッチ類等
のうち一種又は、二種以上を適宜選択して出発原料と
し、これに前記結晶性黒鉛微粉末を目的に応じて配合
し、これらを過剰のテトラヒドロフラン等の溶剤に溶解
させた後溶媒を蒸発させて黒鉛と有機物からなる組成物
とする。
Next, a method for producing the negative electrode carbon material of the present invention will be described. As the organic material that leaves the amorphous carbon that constitutes the binder carbon material, one or two or more of the above natural polymer substances, synthetic polymer substances, thermosetting resins, thermoplastic resins, pitches, etc. are appropriately selected. As a starting material, the crystalline graphite fine powder is mixed with the starting material according to the purpose, and these are dissolved in an excess solvent such as tetrahydrofuran, and then the solvent is evaporated to obtain a composition composed of graphite and an organic substance.

【0019】高密度化や容量性の付与等の必要に応じて
は、上記組成に炭素残査収率の高い乾留ピッチを配合す
る。次に、この組成物を180℃に加熱されたエアー・
オーブン中にて、10時間処理してプリ・カーサー(炭
素前駆体)材料とする。更に、窒素ガス中で昇温速度を
制御しつつ1,100℃以下の所定の温度まで徐々に加
熱して炭素化を終了させ目的とする負極用炭素材料を得
る。
Dry distillation pitch having a high carbon residue yield is blended with the above composition, if necessary, such as for increasing the density and imparting capacity. Next, the composition was heated with air heated to 180 ° C.
It is treated in an oven for 10 hours to obtain a pre-cursor (carbon precursor) material. Further, while controlling the temperature rising rate in nitrogen gas, the carbon material is gradually heated to a predetermined temperature of 1,100 ° C. or lower to complete the carbonization and obtain the intended carbon material for the negative electrode.

【0020】焼成最終温度としては、通常500〜1,
100℃であるが、700〜900℃の温度が好まし
い。負極電極の成形は、得られた負極用炭素材料を約5
重量%のポリテトラフロロエチレン(PTFE)と混合
し、粉末圧縮成形を施してシート状にし、これを円形に
打ち抜き、負極電極とした。作製した負極電極は、真空
状態で加温して絶乾状態とした。本願発明によれば、高
性能の負極用炭素材料を極めて容易に製造することがで
き、この負極材料を用いることにより、高充放電容量
で、サイクル安定性の良いリチウムイオン二次電池が製
造できる。
The final firing temperature is usually 500 to 1,
Although it is 100 ° C, a temperature of 700 to 900 ° C is preferable. For molding the negative electrode, the carbon material for a negative electrode obtained was approximately 5
The mixture was mixed with polytetrafluoroethylene (PTFE) in an amount of wt%, powder compression molding was performed to form a sheet, which was punched out into a circle to obtain a negative electrode. The prepared negative electrode was heated in a vacuum state to make it a completely dry state. ADVANTAGE OF THE INVENTION According to this invention, a high performance carbon material for negative electrodes can be manufactured very easily. By using this negative electrode material, a lithium ion secondary battery with high charge / discharge capacity and good cycle stability can be manufactured. .

【0021】[0021]

【実施例】リチウムイオン電池用のテストセルの構成を
図1に示す。対極10には、過剰量の金属リチウムを使
い、セパレータ12には濾紙を3重にして用いた。対極
10及び作用極14は、スプリング15で付勢されたス
テンレス棒16によって押さえ合わせた。ステンレス棒
16はガラス管18に入れOリング20によってセルを
密閉状態とした。22はマルロインドフィルム、24は
導線である。電解液26として、重量比で1:1のエチ
レンカーボネート(EC)とジエチルカーボネート(D
EC)に過塩素酸リチウムを加えたものを用いた。 (実施例1)負極電極のバインダー炭素原料として、フ
ラン樹脂(日立化成製VF−302)50重量部、これ
に天然黒鉛微粉末(日本黒鉛社製 CSSP−B 平均
粒度1μm)50重量部を複合した組成物100重量部
に対し、溶剤としての過剰量のテトラヒドロフラン(T
HF)を加えて溶解させた後、溶剤を蒸発させ、180
℃に加熱したエアー・オーブン中で10時間処理してプ
リ・カーサー(炭素前駆体)とした。次に、これを窒素
ガス中で500℃までを10℃/時、500℃から10
00℃迄を50℃/時の昇温速度で昇温し、1000℃
で3時間保持した後、自然冷却して焼成を完了した。
FIG. 1 shows the configuration of a test cell for a lithium ion battery. An excessive amount of metallic lithium was used for the counter electrode 10, and filter paper was used in triplicate for the separator 12. The counter electrode 10 and the working electrode 14 were pressed against each other by the stainless rod 16 biased by the spring 15. The stainless rod 16 was placed in a glass tube 18 and the cell was sealed by an O-ring 20. Reference numeral 22 denotes a malloined film, and 24 denotes a conductor. As the electrolytic solution 26, ethylene carbonate (EC) and diethyl carbonate (D
EC) to which lithium perchlorate was added. (Example 1) As a binder carbon raw material for the negative electrode, 50 parts by weight of a furan resin (VF-302 manufactured by Hitachi Chemical Co., Ltd.) and 50 parts by weight of natural graphite fine powder (manufactured by Nippon Graphite Co., Ltd. CSSP-B average particle size 1 μm) were compounded. With respect to 100 parts by weight of the above composition, an excess amount of tetrahydrofuran (T
HF) was added and dissolved, and the solvent was evaporated,
It was treated for 10 hours in an air oven heated to 0 ° C. to obtain a pre-cursor (carbon precursor). Next, this is heated in nitrogen gas up to 500 ° C. at 10 ° C./hour, 500 ° C. to 10 ° C.
Heat up to 00 ℃ at a heating rate of 50 ℃ / hour to 1000 ℃
After being held for 3 hours, it was naturally cooled to complete firing.

【0022】得られた負極用炭素材料の、「黒鉛/炭
素」の重量比は、「75/25」であった。つぎに、こ
の粉末状の負極用炭素材料を約5重量%のPTFEと混
合し、粉末成形を施してシート状にし、これを直径5.
3mmの円形に打ち抜き、負極電極とした。作製した電極
は、電極の実重量が、1〜2mg前後であった。真空状態
で110℃、1日、乾燥して絶乾状態とした。作製した
負極電極は、図1に示すテストセルを用いて、充放電試
験を行った。対極には、過剰量の金属リチウムを使い、
セパレータには濾紙を3重にして用いた。電極どうし
は、直径8mmステンレス棒によって押さえ合わせた。ス
テンレス棒は、外径10mm、内径8mmガラス管に入れ、
Oリングによってセルを密閉状態とした。電解液とし
て、重量比で1:1のエチレンカーボネート(EC)と
ジエチルカーボネート(DEC)に過塩素酸リチウム
(LiClO4 )を加えたものを用いた。
The "graphite / carbon" weight ratio of the obtained carbon material for negative electrode was "75/25". Next, the powdery carbonaceous material for negative electrode was mixed with about 5% by weight of PTFE and powder-molded to form a sheet having a diameter of 5.
It was punched out into a circle of 3 mm to obtain a negative electrode. The actual weight of the manufactured electrode was about 1 to 2 mg. It was dried in a vacuum at 110 ° C. for 1 day to make it completely dry. The produced negative electrode was subjected to a charge / discharge test using the test cell shown in FIG. For the counter electrode, use an excessive amount of metallic lithium,
As the separator, three filter papers were used. The electrodes were pressed together by a stainless rod having a diameter of 8 mm. Put the stainless rod in a glass tube with an outer diameter of 10 mm and an inner diameter of 8 mm.
The cell was sealed with an O-ring. As the electrolytic solution, a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) to which lithium perchlorate (LiClO 4 ) was added at a weight ratio of 1: 1 was used.

【0023】テストセルは、次に示す方法で充放電試験
を行った。初回の充電(リチウムイオンが炭素極に入っ
ていく電流の方向を充電とする。)は、リチウムの持つ
電位差である3Vから、0Vに達するまで、電流密度
0.1mA/cm2 の定電流で行い、これに対し放電は同じ
電流密度で1.5V迄行った。2回目以降の充放電は0
Vから1.5Vの間でこれも電流密度を同じくして測定
した。この結果得られた充放電曲線を図2に示す。
The test cell was subjected to a charge / discharge test by the following method. The first charge (the direction of the current in which lithium ions enter the carbon electrode is referred to as charge) is performed at a constant current of 0.1 mA / cm 2 until the potential reaches 3 V from the potential difference of lithium, ie, 3V. On the other hand, the discharge was performed up to 1.5 V at the same current density. The charge / discharge after the second time is 0
The current density was also measured between V and 1.5 V. The charge / discharge curve obtained as a result is shown in FIG.

【0024】図2及びそれ以降の図面において、全体と
して右下りの曲線が充電曲線、全体として右上りの曲線
が放電曲線である。放電時の電圧が安定で、かつ、放電
末期の電圧変化が急激でないという、二次電池として好
ましい特性が得られている。充電曲線と電位差0Vの線
との交点における横軸の値が充電容量〔 mAh/g〕、放
電曲線と電圧差1.5Vの線との交点における横軸の値
が放電容量〔 mAh/g〕を示す。各充放電サイクルにお
ける充放電容量の値を図の右上に示す。
In FIG. 2 and the subsequent drawings, the curve to the right is generally the charging curve, and the curve to the upper right is the discharging curve as a whole. Preferred characteristics as a secondary battery are obtained, in which the voltage at the time of discharging is stable and the voltage change at the end of discharging is not abrupt. The value on the horizontal axis at the intersection of the charge curve and the line with a potential difference of 0 V is the charge capacity [mAh / g], and the value on the horizontal axis at the intersection of the discharge curve and the line with a voltage difference of 1.5 V is the discharge capacity [mAh / g]. Is shown. The value of the charge / discharge capacity in each charge / discharge cycle is shown in the upper right of the figure.

【0025】比較のために、同じ組成比でハイシェア混
練及び粉砕の工程を経て得られた複合炭素材料の充放電
特性を図3に示す。結着剤として4.9重量%のPTF
Eが使用されている。両者を比較すれば、溶剤法の採用
により充放電容量が改善されていることがわかる。0.
5mA/cm2 の電流密度における充放電特性すなわちハイ
レート特性を図4及び図5に示す。図4が溶剤法による
もの、図5が混練法によるものである。溶剤法の採用に
よりハイレートにおける充放電容量が著しく改善される
ことがわかる。
For comparison, the charge / discharge characteristics of the composite carbon material obtained through the steps of high shear kneading and crushing with the same composition ratio are shown in FIG. 4.9 wt% PTF as a binder
E is used. Comparing the two, it can be seen that the charge-discharge capacity is improved by adopting the solvent method. 0.
Charge and discharge characteristics, that is, high rate characteristics at a current density of 5 mA / cm 2 are shown in FIGS. 4 and 5. FIG. 4 shows the result by the solvent method, and FIG. 5 shows the result by the kneading method. It can be seen that the adoption of the solvent method significantly improves the charge / discharge capacity at high rates.

【0026】溶剤を蒸発させた後の黒鉛/樹脂組成物が
粉末状であれば、焼成後も粉末状であり、その後の粉砕
工程を省略することができて、電池の特性の点でも好ま
しい。溶剤を蒸発させた後の黒鉛/樹脂組成物が粉末状
であるか塊状であるかは、黒鉛と樹脂の組成比及び樹脂
の種類によって異なる。表1には、種々の樹脂と溶剤の
組み合わせ及び黒鉛/樹脂の重量比における組成物の状
態に関する実験結果を示す。表1の最後の欄には、参考
として溶剤を使用しないで黒鉛と樹脂を混合したときの
結果と示す。
If the graphite / resin composition after evaporation of the solvent is in powder form, it is in powder form even after firing, and the subsequent pulverization step can be omitted, which is also preferable in terms of battery characteristics. Whether the graphite / resin composition after evaporating the solvent is powdery or lumpy depends on the composition ratio of graphite and resin and the type of resin. Table 1 shows the experimental results regarding the state of the composition at various resin / solvent combinations and graphite / resin weight ratios. The last column of Table 1 shows the results when graphite and resin were mixed without using a solvent as a reference.

【0027】[0027]

【表1】 [Table 1]

【0028】表1の結果によれば、フラン樹脂と溶剤と
してのTHFとの組み合わせにおいては、黒鉛と樹脂の
重量比が50/50及び80/20のとき粉末状になっ
た。なお黒鉛の比率がそれ以上になると、電池の特性は
黒鉛単独のときに近くなる。樹脂が塩化ビニル樹脂及び
塩素化塩化ビニル樹脂のときはどの溶剤を使っても粉末
状にならなかった。
According to the results shown in Table 1, in the combination of furan resin and THF as a solvent, powdery powder was obtained when the weight ratio of graphite to resin was 50/50 and 80/20. When the ratio of graphite is higher than that, the characteristics of the battery become closer to those of graphite alone. When the resin was a vinyl chloride resin or a chlorinated vinyl chloride resin, no powder was obtained even if any solvent was used.

【0029】[0029]

【発明の効果】本願発明によれば、高性能の負極用炭素
材料を極めて容易に製造することができ、この負極材料
を用いることにより、高充放電容量のリチウムイオン二
次電池が製造できる。
According to the present invention, a high performance carbon material for a negative electrode can be manufactured very easily, and by using this negative electrode material, a lithium ion secondary battery having a high charge / discharge capacity can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】充放電試験に用いたテストセルの構造説明図で
ある。
FIG. 1 is a structural explanatory view of a test cell used in a charge / discharge test.

【図2】本発明の製造方法による電池の充放電曲線図で
ある。
FIG. 2 is a charge / discharge curve diagram of a battery according to the manufacturing method of the present invention.

【図3】ハイシェア混練及び粉砕の工程を経た電池の充
放電曲線図である。
FIG. 3 is a charge / discharge curve diagram of a battery that has undergone the steps of high shear kneading and pulverization.

【図4】本発明の製造方法による電池のハイレートにお
ける充放電曲線図である。
FIG. 4 is a charge / discharge curve diagram at a high rate of a battery according to the manufacturing method of the present invention.

【図5】ハイシェア混練及び粉砕の工程を経た電池のハ
イレートにおける充放電曲線図である。
FIG. 5 is a charge / discharge curve diagram at a high rate of a battery that has undergone the steps of high shear kneading and pulverization.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛結晶微粉末と有機物粘結材を過剰の
溶剤と溶解させた後溶剤を蒸発させて黒鉛と有機物粘結
材からなる組成物とし、 該組成物を不活性雰囲気中または非酸素性雰囲気中で焼
成することにより、含まれる有機物粘結材を炭素化して
黒鉛/炭素複合炭素材料を得、 該黒鉛/炭素複合炭素材料をリチウムイオン二次電池用
負極の材料として用いるステップを具備するリチウムイ
オン二次電池用負極の製造方法。
1. A graphite crystal fine powder and an organic binder are dissolved in an excess amount of solvent, and then the solvent is evaporated to obtain a composition comprising graphite and the organic binder, the composition being in an inert atmosphere or a non-volatile atmosphere. A step of carbonizing the contained organic binder to obtain a graphite / carbon composite carbon material by firing in an oxygen atmosphere, and using the graphite / carbon composite carbon material as a material for a negative electrode for a lithium ion secondary battery. A method for manufacturing a negative electrode for a lithium ion secondary battery, which comprises:
【請求項2】 有機物粘結材に対する黒鉛結晶微粉末の
重量比は、溶剤を蒸発させた後に組成物が粉末状になる
範囲である請求項1記載の方法。
2. The method according to claim 1, wherein the weight ratio of the graphite crystal fine powder to the organic binder is in a range such that the composition becomes powdery after the solvent is evaporated.
JP8149161A 1996-06-11 1996-06-11 Manufacture of negative electrode for lithium ion secondary battery Withdrawn JPH09330703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8149161A JPH09330703A (en) 1996-06-11 1996-06-11 Manufacture of negative electrode for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8149161A JPH09330703A (en) 1996-06-11 1996-06-11 Manufacture of negative electrode for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH09330703A true JPH09330703A (en) 1997-12-22

Family

ID=15469133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8149161A Withdrawn JPH09330703A (en) 1996-06-11 1996-06-11 Manufacture of negative electrode for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH09330703A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0919175A2 (en) 1997-12-01 1999-06-02 Nippon Sanso Corporation A synthetic resin insulated receptacle
CN100447077C (en) * 2005-09-07 2008-12-31 宁波杉杉新材料科技有限公司 Preparation method of artificial graphite charcoal negative electrode material and prepared artificial graphite charcoal negative electrode material
CN102723469A (en) * 2011-03-31 2012-10-10 荣炭科技股份有限公司 Graphite composite carbon material as anode material for lithium ion batteries and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0919175A2 (en) 1997-12-01 1999-06-02 Nippon Sanso Corporation A synthetic resin insulated receptacle
CN100447077C (en) * 2005-09-07 2008-12-31 宁波杉杉新材料科技有限公司 Preparation method of artificial graphite charcoal negative electrode material and prepared artificial graphite charcoal negative electrode material
CN102723469A (en) * 2011-03-31 2012-10-10 荣炭科技股份有限公司 Graphite composite carbon material as anode material for lithium ion batteries and preparation method thereof

Similar Documents

Publication Publication Date Title
US6139989A (en) Cathode formed of graphite/carbon composite for lithium ion secondary battery
KR101038637B1 (en) Negative Active Material, Negative Electrode Using the Same, Non-Aqueous Electrolyte Battery Using the Same, and Manufacturing Method for Negative Active Material
JP4228593B2 (en) Nonaqueous electrolyte secondary battery
EP2167228B1 (en) Lithium fluoropolymer and fluoro-organic batteries
EP0808798A2 (en) Nonaqueous secondary battery and a method of manufacturing a negative electrode active material
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
JPH05190209A (en) Liquid electrolyte and rechargeable chemical cell with lithium/carbon anode
WO2004001880A1 (en) Electrode and cell comprising the same
JPH1012217A (en) Negative electrode for lithium ion secondary battery
JPH05325967A (en) Lithium secondary battery negative electrode material and manufacture thereof
JP2007048717A (en) Battery
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JPH07335216A (en) Nonaqueous electrolytic secondary battery
JPH1111919A (en) Production method of conjugated carbon particle, conjugated carbon particle obtained by this production method, carbon paste using the conjugated carbon particle, negative pole for lithium secondary battery and lithium secondary battery
JPH0773868A (en) Nonaqueous electrolyte secondary battery and manufacture of negative electrode thereof
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JPH09330703A (en) Manufacture of negative electrode for lithium ion secondary battery
JP3544015B2 (en) Non-aqueous electrolyte secondary battery
JP2000315500A (en) Slightly graphitizable carbon material for lithium ion secondary battery, its manufacture, and lithium ion secondary battery
JPH07249411A (en) Manufacture of negative electrode material for lithium secondary battery and lithium secondary battery
JPH11343109A (en) Carbon material and its production, negative pole for lithium secondary battery and lithium secondary battery
JPH08162096A (en) Lithium secondary battery
JP3870309B2 (en) Carbon material for electrode, method for producing the same, and negative electrode for non-aqueous electrolyte secondary battery using the same
JPH07335217A (en) Nonaqueous electrolytic secondary battery
JP2002190301A (en) Electrode carbon material of nonaqueous-solvent secondary battery, and method for manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030902