JPH09329146A - Manufacture of bearing with bore groove and bearing unit with bore groove - Google Patents

Manufacture of bearing with bore groove and bearing unit with bore groove

Info

Publication number
JPH09329146A
JPH09329146A JP16512896A JP16512896A JPH09329146A JP H09329146 A JPH09329146 A JP H09329146A JP 16512896 A JP16512896 A JP 16512896A JP 16512896 A JP16512896 A JP 16512896A JP H09329146 A JPH09329146 A JP H09329146A
Authority
JP
Japan
Prior art keywords
bearing
diameter portion
outer peripheral
shape
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16512896A
Other languages
Japanese (ja)
Other versions
JP3578297B2 (en
Inventor
Motohiro Miyasaka
元博 宮坂
Hidekazu Tokushima
秀和 徳島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP16512896A priority Critical patent/JP3578297B2/en
Publication of JPH09329146A publication Critical patent/JPH09329146A/en
Application granted granted Critical
Publication of JP3578297B2 publication Critical patent/JP3578297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous bearing unit and its manufacturing method which makes the highly accurate support of rotation possible, and can simply, inexpensively and accurately produce a bearing unit with a bore groove. SOLUTION: A cylindrical bearing material 2A which is about polygonal in an external form and circular in a bore form is prepared, and pressed into a sizing metal mold or a bearing housing 1 using a mandrel. In this case, a bore part corresponding to the outer peripheral large diameter part 2a of the bearing material 2A which is compressed toward an axial center side by the sizing metal mold or the bearing housing 1 is reformed into a circular arc-shape by the mandrel to form the small diameter part 4a of a bearing 2, and the thin thickness part 3b of the bearing material 2A is plastic-deformedly expanded in a direction for leaving an axial center to form a large diameter part 4b being the bore groove of the bearing 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特に、ディスクを
高速回転するモータ軸用に好適な内径溝付き軸受ユニッ
トの製造方法及び内径溝付き軸受ユニットに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a bearing unit with an inner diameter groove and a bearing unit with an inner diameter groove which are suitable for a motor shaft for rotating a disk at a high speed.

【0002】[0002]

【従来の技術】CD−ROM、MO、HDD、DVDと
いったディスクを回転するモータ軸用の軸受としては、
ボールベアリングが従来より使用されてきたが、最近の
コストダウンの傾向や高速回転化に伴う非周期性振れ
(NRRO)の問題等より、滑り軸受が検討されつつあ
る。また、この滑り軸受において、軸受内径形状の形成
方法としては、特開平6−109020号に記載さいて
いる如く、軸受を内外径真円形状にて製作し、それを軸
受ハウジングないしはケース内に圧入固定する場合、ケ
ースの外径部にカット面を予め形成しておき、そのケー
スの肉厚の差により軸受圧入過程で内径形状の縮小する
割合が部分的に変化するのを利用して、軸受内径を前記
カット面に対応して変形させるようにしたもある。ま
た、特開平8−68423号には、焼結含油軸受の内径
面に仮想内径基準面を設定し、この基準面より外側にな
る凹部と内側になる凸部を各3カ所以上、周方向に連続
的に形成し、軸との相対回転により動圧を発生させる軸
受構造を開示している。その軸受製造としては、外径に
3カ所以上の外径凹部及び内径に外径凹部と同じ半径上
に内径凹部を予め軸受素材に設けておき、この軸受素材
をサイジング又はハウジングに圧入する際に、圧入変形
させ、前述の内径凹凸形状を形成させる方法である。
2. Description of the Related Art As a bearing for a motor shaft that rotates a disk such as a CD-ROM, MO, HDD, or DVD,
Although ball bearings have been used in the past, sliding bearings are being studied due to the recent trend of cost reduction and the problem of non-periodic runout (NRRO) associated with high speed rotation. Further, in this slide bearing, as a method of forming the inner diameter of the bearing, as described in JP-A-6-109020, the bearing is manufactured to have a perfect inner and outer diameter and is press-fitted into a bearing housing or a case. When fixing, the cut surface is formed in advance on the outer diameter part of the case, and the difference in wall thickness of the case partially changes the rate of reduction of the inner diameter shape in the process of press-fitting the bearing. There is also a case where the inner diameter is deformed corresponding to the cut surface. Further, in Japanese Unexamined Patent Publication No. 8-68423, a virtual inner diameter reference surface is set on the inner diameter surface of a sintered oil-impregnated bearing, and there are three or more concave portions on the outer side and three or more convex portions on the inner side in the circumferential direction. Disclosed is a bearing structure which is continuously formed and generates dynamic pressure by relative rotation with a shaft. To manufacture the bearing, the outer diameter of three or more outer diameter concave portions and the inner diameter of the inner diameter concave portion on the same radius as the outer diameter concave portion are previously provided in the bearing material, and when this bearing material is sizing or press-fitted into the housing, This is a method of press-fitting and deforming to form the above-mentioned inner diameter uneven shape.

【0003】[0003]

【発明が解決しようとする課題】上記した従来の滑り軸
受は、軸を高精度に支持するためにはクリアランスをよ
り小さくする必要がある反面、クリアランスを小さくす
るほど潤滑剤の流体抵抗を受けてモータ等の消費電力が
増大するといった問題があった。この問題については、
潤滑剤の粘度を低下させたり、クリアランスを広げるこ
とが対策として考えられるが、相反する性質であり、画
期的な対策が望まれていた。また、上記特開平6−10
9020号記載の如くケースの肉厚による内径変形は、
あくまでもケースの工夫であり、モータが小型化された
現状ではケースをそのままモータのヨークなどとして使
用することもあり、ケース形状の自由度がなくなって採
用し難いものとなっている。そのため、軸受自体での対
策が望まれていた。その対策は小型化及び生産性に優れ
ているものでなければならない。
In the conventional slide bearing described above, it is necessary to make the clearance smaller in order to support the shaft with high accuracy, but the smaller the clearance, the more the fluid resistance of the lubricant is received. There is a problem that the power consumption of the motor and the like increases. For this issue,
Although reducing the viscosity of the lubricant and widening the clearance can be considered as countermeasures, they have contradictory properties and epoch-making countermeasures have been desired. Further, the above-mentioned JP-A-6-10
As described in No. 9020, the inner diameter deformation due to the thickness of the case is
This is just a device for the case, and in the current situation where the motor is downsized, the case may be used as it is as a yoke of the motor, etc., and the flexibility of the case shape is lost, and it is difficult to adopt it. Therefore, countermeasures have been demanded for the bearing itself. The measures must be compact and highly productive.

【0004】更に、軸受内径に凹凸形状を形成する方法
として、上記特開平8−68423号記載の如く外径に
凹部を予め形成しておき、圧入もしくはサイジング時に
内径に圧縮させる力を利用して形成する方法は、この圧
縮され変形する内径面での度合の管理が難しく、凹凸形
成は可能でも、肝心の内径寸法が安定しないという問題
がある。特に、高精度回転を要求する軸受機構の場合、
内径寸法精度が1〜2μmまで求められ、圧入代を20
μm程度に想定すると、内径の縮小量が少なく見積って
も10μm程度あり、内径寸法を高精度に維持すること
は困難である。また、この方法では、軸を支持する内径
部分が外側から内側に縮小されただけの面であり、高精
度に支持するためには気孔をより細かくする必要がある
が、それではその他の内径凹部(油供給部)も細かくな
ってしまい内径面への油供給不足になる懸念もでてく
る。しかも、この方法は、内径および外径ともに凹部を
予め形成することが要件となっているが、この素材形状
では、例えば、成形ダイスおよびコアの両方に凹部・凸
部を形成し、かつ、パンチも対応する形状をつけ、位相
を合わせて成形する必要があることから、成形が複雑に
なると共に金型コトスが高くなる。
Further, as a method of forming a concavo-convex shape on the inner diameter of the bearing, a concave portion is previously formed on the outer diameter as described in JP-A-8-68423, and the force for compressing the inner diameter at the time of press-fitting or sizing is used. The forming method has a problem in that it is difficult to control the degree of compression and deformation on the inner diameter surface, and although irregularities can be formed, the inner diameter dimension of the core is not stable. Especially in the case of a bearing mechanism that requires high-precision rotation,
Inner diameter dimensional accuracy of 1 to 2 μm is required, and press fitting margin is 20
Assuming that the inner diameter is reduced to about 10 μm, it is difficult to maintain the inner diameter with high accuracy. Further, in this method, the inner diameter portion supporting the shaft is only a surface reduced from the outer side to the inner side, and it is necessary to make the pores finer in order to support the shaft with high accuracy. There is a concern that the oil supply section will also become finer and oil supply to the inner diameter surface will become insufficient. Moreover, this method requires that the recesses be formed in advance on both the inside diameter and the outside diameter. However, with this material shape, for example, the recesses and protrusions are formed on both the molding die and the core, and the punch is used. However, since it is necessary to provide a corresponding shape and mold in phase, molding becomes complicated and the mold cost increases.

【0005】本発明の目的は、上記の問題を合理的に解
消して、高精度の回転支持が可能となり、簡易で安価、
かつ精度良く生産することができる内径溝付き軸受の製
造方法及び内径溝付き軸受ユニットを提供することにあ
る。更に、他の目的は以下に説明する内容の中で順次明
らかにして行く。
It is an object of the present invention to rationally solve the above problems and to enable highly accurate rotation support, which is simple and inexpensive.
Another object of the present invention is to provide a method of manufacturing a bearing with an inner diameter groove and a bearing unit with an inner diameter groove that can be produced with high precision. Furthermore, other purposes will be clarified one after another in the content described below.

【0006】[0006]

【課題を解決するための手段】上記の目的は、本発明の
最も特長としている以下の構成により達成される。第1
の発明は、請求項1の記載と図1に例示する如く、外形
が略多角形状で、内孔形状が円形である筒状軸受素材2
Aを作製し、前記軸受素材2Aをサイジング用金型また
は軸受ハウジング1にマンドレルを用いて圧入し、その
際に、前記サイジング金型または軸受ハウジング1によ
って軸心側に向かって圧縮される軸受素材2Aの外周大
径部2aに対応する内孔部を、前記マンドレルにて円弧
状に矯正して軸受2の径小部4aに形成すると共に、軸
受素材2Aの薄肉部3bを軸心から遠ざける方向へ塑性
変形膨出させて軸受2の内径溝である径大部4bを形成
する、製造方法である。第2の発明は、請求項3の記載
と図3に例示する如く、外形が略多角形状で、内孔形状
が外周大径部11bに対応する位置を大径部11cにし
た略多角形状ないしは外周大径部11bに対応する位置
に溝を備えた溝付き円形である筒状軸受素材10Aを作
製し、前記筒状軸受素材10Aを、サイジング用金型ま
たは軸受ハウジング1にマンドレルを用いて圧入し、そ
の際に、軸受素材10Aの内径小部11dを前記マンド
レルで拡張し円弧状に矯正して軸受10の径小部13a
を形成すると共に軸受素材10Aの薄肉部12bを軸心
から遠ざける方向へ塑性変形膨出させ、軸受10の内径
溝である径大部13bを形成する、製造方法である。第
3の発明は、請求項6の記載と図5に例示する如く、外
形が略多角形状で、内孔形状が外周大径部19aに対応
する位置を径小部19dにした略多角形状ないしは外周
大径部19a同士を結ぶ中間付近と対応する位置に溝を
備えた溝付き円形である筒状軸受素材18Aを作製し、
前記筒状軸受素材18Aを、サイジング用金型または軸
受ハウジング1にマンドレルを用いて圧入し、その際
に、軸受素材18Aの内径小部19dを前記マンドレル
で拡張し円弧状に矯正して軸受18の径小部21aを形
成すると共に、軸受素材18Aの薄肉部20bを軸心か
ら遠ざける方向へ塑性変形膨出させて軸受18の内径溝
である径大部21bを形成する、製造方法である。
The above-mentioned objects are achieved by the following features, which are the most characteristic features of the present invention. First
As described in claim 1 and illustrated in FIG. 1, the invention of claim 1 is a cylindrical bearing material 2 having a substantially polygonal outer shape and a circular inner hole shape.
A is manufactured, and the bearing material 2A is press-fitted into the sizing die or the bearing housing 1 using a mandrel, and at that time, the bearing material is compressed toward the axial center side by the sizing die or the bearing housing 1. A direction in which the inner hole portion corresponding to the outer peripheral large diameter portion 2a of 2A is corrected to an arc shape by the mandrel to form the small diameter portion 4a of the bearing 2 and the thin portion 3b of the bearing material 2A is moved away from the axis. This is a manufacturing method in which the large diameter portion 4b that is the inner diameter groove of the bearing 2 is formed by plastic deformation and bulging. According to a second aspect of the present invention, as described in claim 3 and in FIG. 3, the outer shape is a substantially polygonal shape, and the inner hole shape is a substantially polygonal shape or a large diameter portion 11c at a position corresponding to the outer circumference large diameter portion 11b. A circular cylindrical bearing material 10A having a groove provided at a position corresponding to the outer peripheral large diameter portion 11b is produced, and the cylindrical bearing material 10A is press-fitted into the sizing die or the bearing housing 1 using a mandrel. At that time, the small inner diameter portion 11d of the bearing material 10A is expanded by the mandrel and corrected into an arc shape to reduce the small diameter portion 13a of the bearing 10.
And the thin portion 12b of the bearing material 10A is plastically deformed and bulged in the direction away from the axis to form the large diameter portion 13b that is the inner diameter groove of the bearing 10. According to a third aspect of the present invention, as described in claim 6 and FIG. 5, the outer shape is a substantially polygonal shape, and the inner hole shape is a substantially polygonal shape or a small diameter portion 19d at a position corresponding to the outer peripheral large diameter portion 19a. A cylindrical bearing material 18A having a circular shape with a groove having a groove provided at a position corresponding to the vicinity of the middle connecting the outer peripheral large-diameter portions 19a is produced,
The tubular bearing material 18A is press-fitted into the sizing die or the bearing housing 1 by using a mandrel, and at that time, the small inner diameter portion 19d of the bearing material 18A is expanded by the mandrel and corrected into an arc shape to form the bearing 18 The small diameter portion 21a of the bearing material 18A is formed, and the thin portion 20b of the bearing material 18A is plastically deformed and bulged in the direction away from the axis to form the large diameter portion 21b which is the inner diameter groove of the bearing 18.

【0007】上記第1〜第3の発明は試験結果から次の
(1)または(2)の条件を具備することが好ましい。 (1)、前記圧入前の筒状軸受素材において、サイジン
グ用金型または軸受ハウジングの内面と当接する外周の
大径部(図1の例では外周大径部2aの総和)面積が、
外周全体(図1の例では外周大径部2aを通る仮想円
周)面積の15〜85%である。 (2)、前記圧入前の筒状軸受素材において、軸受素材
の薄肉部の最小厚さ寸法をT(単位はmmで、図1の例
では薄肉部3bの厚さ)、軸受素材の大径部の半径をD
(単位はmmで、図1の例では外周大径部2aと軸心と
を結ぶ半径)、軸受素材の内孔の大径部の半径をd(単
位はmmで、図1の例では内孔の半径)、係数をkとす
ると、T=(D−d)×k で、 k=0.4〜0.8
である。 そして、より好ましくは、軸受素材がD−d=0.5〜
5mm、軸受素材の大径部の圧入代が15〜20μm、
材質が青銅系や鉄−銅系(30〜55% 程度)の条件
にて行なうことである。
From the test results, it is preferable that the first to third inventions satisfy the following condition (1) or (2). (1) In the cylindrical bearing material before the press-fitting, the area of the large-diameter portion (the total of the large-diameter portion 2a of the outer periphery in the example of FIG. 1) of the outer periphery that contacts the inner surface of the sizing die or the bearing housing is
It is 15 to 85% of the area of the entire outer circumference (a virtual circumference passing through the outer circumference large diameter portion 2a in the example of FIG. 1). (2) In the cylindrical bearing material before press fitting, the minimum thickness dimension of the thin wall portion of the bearing material is T (unit is mm, thickness of thin wall portion 3b in the example of FIG. 1), large diameter of bearing material The radius of the part is D
(The unit is mm, and in the example of FIG. 1, the radius connecting the outer peripheral large diameter portion 2a and the shaft center), the radius of the large diameter portion of the inner hole of the bearing material is d (the unit is mm, and in the example of FIG. Radius of hole), where k is the coefficient, T = (D−d) × k, and k = 0.4 to 0.8
It is. And more preferably, the bearing material is D−d = 0.5 to
5 mm, the press-fit margin of the large diameter part of the bearing material is 15-20 μm,
The material is bronze-based or iron-copper-based (about 30 to 55%).

【0008】また、上記の目的は、本発明の他の特長を
示す図7の如く、2以上の軸受27を軸受ハウジング1
内に同軸線上に圧入固定し、前記各軸受27に軸を回転
自在に支持する内径溝付き軸受ユニット26において、
各軸受27の軸受内径に1つ以上の内径溝28bを各々
形成していると共に、隣接する前記軸受27の内径溝2
8b同士が軸回転方向に位相がずれた状態で設けられて
いることにより達成され、スピンドル等の軸を高精度回
転支持することが可能となる。
Further, the above object is to provide two or more bearings 27 with the bearing housing 1 as shown in FIG. 7 showing another feature of the present invention.
In the bearing unit 26 with an inner diameter groove, which is press-fitted and fixed on the coaxial line inside and rotatably supports the shaft in each of the bearings 27,
One or more inner diameter grooves 28b are formed in the bearing inner diameter of each bearing 27, and the inner diameter groove 2 of the adjacent bearing 27 is formed.
This is achieved by the fact that 8b are provided in a state in which the phases are shifted in the axial rotation direction, and it becomes possible to rotatably support the shaft of the spindle or the like with high precision.

【0009】[0009]

【発明の実施の形態】以下、実施の形態例を示した図面
を参照し、本発明の要部を詳述する。なお、以下の形態
例において、用いられる軸受素材は、例えば、青銅系や
鉄−銅系の原料粉を混合して加圧成形した後、その成形
体を還元雰囲気中、所定温度下にて焼結し、その焼結体
自体あるいは更に含油処理した含油焼結体である。この
ような、焼結体は公知の製法にて得られるが、本発明で
はその焼結体自体の形状を、軸受ハウジング(サイジン
グ用金型であってもよい、以下、同様である)にマンド
レルを用いて圧入にて変形させることを想定して工夫さ
れたものである。したがって、以下の説明では、軸受素
材が軸受ハウジングに圧入される前の状態のときは2
A,6Aという様に符号Aを付加して表現し、軸受ハウ
ジング内に圧入された後の製品軸受のときは2,6とい
う様に表現する。
BEST MODE FOR CARRYING OUT THE INVENTION The main part of the present invention will be described in detail below with reference to the drawings showing an embodiment. In the following embodiment examples, the bearing material used is, for example, bronze-based or iron-copper-based raw material powder mixed and pressure-molded, and then the molded body is fired at a predetermined temperature in a reducing atmosphere. The sintered body itself is an oil-impregnated sintered body which has been subjected to oil-impregnation treatment. Such a sintered body can be obtained by a known manufacturing method, but in the present invention, the shape of the sintered body itself is changed to a bearing housing (may be a sizing die, the same applies hereinafter) to a mandrel. It was devised on the assumption that it would be deformed by press fitting using. Therefore, in the following description, when the bearing material is in a state before being press-fitted into the bearing housing,
It is expressed by adding the symbol A such as A and 6A, and it is expressed as 2, 6 when the product bearing is press-fitted into the bearing housing.

【0010】図1は請求項1に対応した形態であり、同
1(a)は軸受ハウジング1に圧入する前の軸受素材2
Aの端面形状図、同(b)は軸受ハウジング1(内径は
真円)に圧入した後の軸受2を模式的に示す端面形状図
である。この第1の形態の筒状軸受素材2Aは、外形が
略三角形状で、内孔形状が円形に形成されている。した
がって、軸受素材2Aの外周は、外周大径部2a付近が
三角形の頂部に対応していて厚肉部分になっていると共
に、三角形の各辺部に対応する部分2bが薄肉部分にな
っている。つまり、各部分2bは、外周径大部2aの軌
跡内側を軸方向に欠如した態様で設けられており、各部
分2bの中間部と軸心とを結ぶ肉厚部分3b(以下、薄
肉部3bという)が外周大径部2aと軸心とを結ぶ肉厚
部分3a(以下、厚肉部3aという)に比して薄くなっ
ている。
FIG. 1 shows a form corresponding to claim 1, in which 1 (a) is a bearing material 2 before being press-fitted into a bearing housing 1.
FIG. 3B is an end surface shape view of A, and FIG. 3B is an end surface shape view schematically showing the bearing 2 after being press-fitted into the bearing housing 1 (inner diameter is a perfect circle). The cylindrical bearing material 2A of the first embodiment has a substantially triangular outer shape and a circular inner hole shape. Therefore, in the outer circumference of the bearing material 2A, the vicinity of the large diameter portion 2a of the bearing corresponds to the top of the triangle and is a thick portion, and the portions 2b corresponding to the sides of the triangle are thin portions. . That is, each portion 2b is provided in a manner in which the inner side of the locus of the large outer diameter portion 2a is axially lacking, and the thick portion 3b (hereinafter, thin portion 3b) connecting the intermediate portion of each portion 2b and the axial center. Is smaller than a thick portion 3a (hereinafter referred to as a thick portion 3a) connecting the outer peripheral large diameter portion 2a and the shaft center.

【0011】そして、このように作製された軸受素材2
Aは、軸受ハウジング1に対し不図示のマンドレルを用
いて圧入され、その圧入過程にて、塑性変形されて正規
の軸受2に形成される。この塑性過程では、同(b)に
矢示した如く、軸受素材2Aの外周大径部2aが軸受ハ
ウジング1によって軸心側に向かって圧縮される。この
とき、外周大径部2aに対応する内孔部をマンドレルに
て円弧状に矯正して軸受の径小部4aに形成すると共
に、軸受素材2Aの薄肉部3bを軸心から遠ざける方向
へ塑性変形膨出させて軸受の径大部4bを形成する。す
なわち、軸受素材2Aを軸受ハウジング1内に圧入する
際に外周径大部2aから受ける押圧力によって、薄肉部
3bが厚肉部3aより強く塑性変形されつつ、軸受ハウ
ジング1の非拘束部側へ膨出変形して軸受の径大部4b
となり、前記マンドレルにて円弧状に矯正された3カ所
の軸受の径小部4a(モータ等の軸Sが接面状態に係合
する部分)の軌跡から外側に逃げている。
The bearing material 2 produced in this way
A is press-fitted into the bearing housing 1 using a mandrel (not shown), and is plastically deformed in the press-fitting process to form a regular bearing 2. In this plastic process, as shown by the arrow in (b), the outer peripheral large diameter portion 2a of the bearing material 2A is compressed by the bearing housing 1 toward the axial center side. At this time, the inner hole portion corresponding to the outer peripheral large diameter portion 2a is corrected to an arc shape by a mandrel to form the small diameter portion 4a of the bearing, and the thin portion 3b of the bearing material 2A is plastically moved in a direction away from the axial center. The large diameter portion 4b of the bearing is formed by deforming and bulging. That is, when the bearing material 2A is press-fitted into the bearing housing 1, the thin wall portion 3b is plastically deformed more strongly than the thick wall portion 3a by the pressing force received from the large outer diameter portion 2a, and the thin wall portion 3b moves toward the non-restraint portion side of the bearing housing 1. Large diameter part 4b of the bearing due to bulging deformation
Therefore, it escapes from the locus of the small-diameter portion 4a (the portion where the shaft S of the motor or the like is engaged in the contact surface state) of the bearing at three locations which are straightened in an arc shape by the mandrel.

【0012】図2は請求項2に対応し前記図1の軸受素
材を変形した例であり、図2(a)は図1(a)に対応
し、同(b)は図1(b)に対応している。この第2の
形態の軸受素材6Aでは、図1の形態に対し外周大径部
7a付近が三角形の頂部に対応していて厚肉部分になっ
ている点で同じくしているが、三角形の各辺部に対応す
る部分に形成された欠落部7bを有することにより、外
周大径部7aを頂部とする複数の肉厚部分7cが略放射
状に設けられている。換言すると、各欠落部7bは、外
周径大部7aの軌跡内側を軸方向に欠如した態様で設け
られており、各部分7bと軸心とを結ぶ肉厚部分8b
(以下、薄肉部8bという)が外周大径部7aと軸心と
を結ぶ肉厚部分8a(以下、厚肉部8aという)に比し
て薄くなっている。また、この軸受素材6Aは、図1と
同様、軸受ハウジング1に対し不図示のマンドレルを用
いて圧入されることで、塑性変形されて正規の軸受6に
形成される。この塑性過程では、同(b)に矢示した如
く、軸受素材6Aの外周大径部7aが軸受ハウジング1
によって軸心側に向かって圧縮されて対応する内孔部
を、前記マンドレルにて円弧状に矯正して軸受の径小部
9aに形成する。同時に、薄肉部8bを軸心から遠ざけ
る方向へ塑性変形膨出させて軸受の径大部9bを形成す
る。すなわち、この場合も、軸受素材6Aを軸受ハウジ
ング1内に圧入する際に外周径大部7aから受ける押圧
力によって、薄肉部8bが厚肉部8aより強く塑性変形
されつつ、軸受ハウジング1の非拘束部側へ膨出変形し
て軸受の径大部9bとなり、前記マンドレルにて円弧状
に矯正された3カ所の内径小部4a(モータ等の軸Sが
接面状態に係合する部分)の軌跡から外側に逃げてい
る。
FIG. 2 shows an example in which the bearing material of FIG. 1 is modified in accordance with claim 2, FIG. 2 (a) corresponds to FIG. 1 (a), and FIG. 2 (b) corresponds to FIG. 1 (b). It corresponds to. The bearing material 6A of the second embodiment is similar to the embodiment of FIG. 1 in that the vicinity of the outer peripheral large-diameter portion 7a corresponds to the top of the triangle and is a thick portion. By having the missing portion 7b formed in the portion corresponding to the side portion, a plurality of thick-walled portions 7c having the outer peripheral large diameter portion 7a as the apex are provided in a substantially radial shape. In other words, each missing portion 7b is provided in such a manner that the inside of the locus of the outer peripheral diameter large portion 7a is axially missing, and the thick portion 8b connecting each portion 7b and the axial center.
The thin portion 8b (hereinafter referred to as the thin portion 8b) is thinner than the thick portion 8a (hereinafter referred to as the thick portion 8a) that connects the outer peripheral large diameter portion 7a and the shaft center. Further, the bearing material 6A is press-fitted into the bearing housing 1 by using a mandrel (not shown) as in FIG. In this plastic process, as shown by the arrow in (b), the outer peripheral large diameter portion 7a of the bearing material 6A is moved to the bearing housing 1
Then, the corresponding inner hole portion compressed by the axial center side is corrected into an arc shape by the mandrel to form the small diameter portion 9a of the bearing. At the same time, the thin portion 8b is plastically deformed and bulged in the direction away from the axis to form the large diameter portion 9b of the bearing. That is, also in this case, when the bearing material 6A is press-fitted into the bearing housing 1, the thin portion 8b is plastically deformed more strongly than the thick portion 8a by the pressing force received from the large outer diameter portion 7a, and The large diameter portion 9b of the bearing is bulged and deformed toward the restraint portion side, and the small inner diameter portions 4a are corrected in an arc shape by the mandrel (the portion where the shaft S of the motor or the like engages in the contact surface state). Is running away from the trail of.

【0013】したがって、以上の各形態の製造方法では
次のような利点がある。 、想像線で示す軸Sを支持するのは軸受の径小部4
a,9aであり、この寸法の精度が重要となる。この精
度は、本発明の如く真円形状のマンドレルを用いて圧入
時にこの部分を矯正するので、精度を確実かつ容易に付
与することができる。 、軸受素材2A,6Aの厚肉部3a,8aに対応する
内孔部分を、マンドレルで矯正して軸受の径小部4a,
9aを形成しているため、軸受の径小部4a,9aの内
径面は表面気孔が少なくなる。 、軸受素材2A,6Aの厚肉部3a,8aに対応する
部分は圧縮されるため緻密化つまり密度が高くなる。こ
れに反し、軸受素材2A,6Aの薄肉部3b,8bに対
応する部分は軸受ハウジング1の非拘束部側へ膨出変形
されるため密度的にあまり変わらない。つまり、外径部
の拘束されていない部分(薄肉部3b,8bに対応する
部分)が軸受の径小部4a,9aから外側へ逃げた軸受
の径大部4b,9bに対応し、この部分が軸受内径側へ
の油供給側となるため油溜りや動圧溝作用的に好ましい
ものになる。この場合、図1の各軸受の径大部4bに対
し図2の各軸受の径大部9bは非対称になるためより高
い動圧が得られる。 、同時に、外径部の拘束されていない部分(薄肉部3
b,8bに対応する部分)と軸受ハウジング1との間の
隙間5を利用し、フェルトや多孔質材料などを補油機構
としてその隙間5内に配置することが可能なため、耐久
性能が特に望まれる用途に対して有効となる。 、この形態の軸受素材形状では、軸受ハウジング1が
内外径ともに真円であればよく、特定の形状に限定され
ない。
Therefore, the above-described manufacturing methods have the following advantages. , The small diameter portion 4 of the bearing supports the shaft S indicated by the imaginary line.
a and 9a, and the accuracy of this dimension is important. As for this accuracy, since this portion is straightened at the time of press-fitting using a perfect circular mandrel as in the present invention, the accuracy can be surely and easily imparted. , The inner diameter of the bearing material 2A, 6A corresponding to the thick portions 3a, 8a is corrected by a mandrel to reduce the diameter of the bearing 4a,
Since 9a is formed, the inner diameter surfaces of the small diameter portions 4a, 9a of the bearing have few surface pores. Since the portions of the bearing materials 2A and 6A corresponding to the thick portions 3a and 8a are compressed, they are densified, that is, the density is increased. On the contrary, the portions of the bearing materials 2A and 6A corresponding to the thin-walled portions 3b and 8b are bulged and deformed toward the non-restraint portion side of the bearing housing 1, so that the density does not change so much. That is, the unconstrained portion of the outer diameter portion (the portion corresponding to the thin portion 3b, 8b) corresponds to the large diameter portion 4b, 9b of the bearing that has escaped from the small diameter portion 4a, 9a of the bearing to the outside. Is on the oil supply side to the inner diameter side of the bearing, which is preferable in terms of oil reservoir and dynamic pressure groove action. In this case, since the large diameter portion 9b of each bearing in FIG. 2 is asymmetrical with respect to the large diameter portion 4b of each bearing in FIG. 1, a higher dynamic pressure can be obtained. At the same time, the unconstrained portion of the outer diameter portion (thin portion 3
b, 8b) and the bearing housing 1 and a felt, a porous material, or the like can be arranged in the gap 5 as a refueling mechanism, so that durability performance is particularly high. It is effective for desired applications. The shape of the bearing material of this embodiment is not limited to a specific shape as long as the inner and outer diameters of the bearing housing 1 are true circles.

【0014】なお、上記に関して更に付言する。従
来、軸受内径部の非対称形状は、通常、圧入時に高精度
に仕上げたマンドレルにより強制的にしごき、その形状
にならわせる方式がとられており、そのマンドレルの加
工精度が非常に重要となる。しかし、そのマンドレルは
量産対応上、精度が求められるため摩耗しにくい硬質の
材料にて製造されており、この硬い材料を高精度になお
かつ非対称形状など複雑な形状に仕上げるのは非常に困
難であり、コスト及び再現性の点で大きな問題があっ
た。これに対し、この本発明構成によれば、軸受外径部
を所定の形状に予め金型により成形しておき、その後は
真円の通常のマンドレルを用いて軸受素材を軸受ハウジ
ング1に圧入するだけで所定の非対称形状が得られるこ
とから、高精度に加工した複雑形状のマンドレルが不要
となり、生産性が非常に向上することになる。なおか
つ、その軸受外径部には、補油機構を設けることもで
き、寿命延長効果も期待できる。しかも軸受素材外径部
の欠落部は直線の他、曲線や複合線など多種の組み合わ
せも可能である。
A further remark will be made regarding the above. Conventionally, the asymmetrical shape of the inner diameter of the bearing is normally forced to be squeezed by a highly accurate mandrel at the time of press fitting, and the shape is taken to be that shape, and the machining accuracy of the mandrel is very important. . However, the mandrel is made of a hard material that is difficult to wear because precision is required for mass production, and it is very difficult to finish this hard material with high precision and in a complicated shape such as an asymmetrical shape. However, there were major problems in terms of cost and reproducibility. On the other hand, according to the configuration of the present invention, the outer diameter portion of the bearing is preliminarily formed into a predetermined shape by a mold, and thereafter, the bearing material is press-fitted into the bearing housing 1 using a normal circular ordinary mandrel. Since a predetermined asymmetrical shape can be obtained only by itself, a highly precise processed mandrel having a complicated shape is not required, and productivity is greatly improved. In addition, an oil replenishing mechanism can be provided on the outer diameter portion of the bearing, and a life extension effect can be expected. Moreover, in addition to the straight line, the missing portion of the outer diameter portion of the bearing material can be various combinations such as a curved line and a composite line.

【0015】図3は請求項3に対応した形態であり、同
(a)は軸受素材10Aの端面形状図であり、同(b)
は軸受ハウジング1(内径は真円)に圧入した後の軸受
10を模式的に示す端面形状図である。この第3の形態
の筒状軸受素材10Aは、外形が三角形状で、内孔形状
が外周大径部11aに対応する位置を大径部11cであ
る三角形状に形成されている。したがって、この外周
は、外周大径部11a付近が三角形の頂部に対応してい
ると共に、外周大径部11a同士を結ぶ辺部分11bが
三角形の各辺部に対応している。これに対し、内周は、
内周大径部11cが外周大径部11aの真下に位置して
いると共に、内周大径部11c同士を結ぶ辺部分(内径
小部に相当)11dが辺部分11bの真下に位置してい
る。また、両辺部分11b,11dとの間の肉厚部分1
2b(以下、薄肉部12bという)が外・内周大径部1
1a,11cとの間の肉厚部分12a(以下、厚肉部1
2aという)に比して薄くなっている。
FIG. 3 shows a form corresponding to claim 3, and FIG. 3 (a) is an end face shape view of the bearing material 10A, and FIG. 3 (b).
[Fig. 3] is an end face shape diagram schematically showing the bearing 10 after being press-fitted into the bearing housing 1 (inner diameter is a perfect circle). The tubular bearing material 10A of the third embodiment has a triangular outer shape, and the inner hole shape is formed in a triangular shape having a large-diameter portion 11c at a position corresponding to the outer-diameter large-diameter portion 11a. Therefore, in this outer circumference, the vicinity of the large outer diameter portion 11a corresponds to the apex of the triangle, and the side portions 11b connecting the large outer diameter portions 11a correspond to the respective side portions of the triangle. On the other hand, the inner circumference is
The inner peripheral large diameter portion 11c is located directly below the outer peripheral large diameter portion 11a, and the side portion (corresponding to the small inner diameter portion) 11d connecting the inner peripheral large diameter portions 11c is located directly below the side portion 11b. There is. In addition, the thick portion 1 between the both side portions 11b and 11d
2b (hereinafter referred to as thin portion 12b) is the outer / inner peripheral large diameter portion 1
A thick portion 12a (hereinafter, thick portion 1
2a).

【0016】そして、作製された軸受素材10Aは、軸
受ハウジング1に対し不図示のマンドレルを用いて圧入
され、その圧入過程にて、塑性変形されて正規の軸受1
0に形成される。この塑性過程では、同(b)に矢示し
た如く、軸受素材10Aの内径小部である辺部分11d
を前記マンドレルで拡張して円弧状に矯正すると共に、
薄肉部12dを軸心から遠ざける方向へ塑性変形膨出さ
せる。換言すると、軸受素材10Aを軸受ハウジング1
内に圧入する際には、薄肉部12bがマンドレル及び厚
肉部12a側から強い変形力を受け軸受ハウジング1の
非拘束部側へ膨出変形すると同時に、前記マンドレルに
て円弧状に矯正された軸受の径小部13a(モータ等の
軸Sが接面状態に係合する部分)を3カ所に形成し、ま
た軸受素材10Aの内周大径部11cが軸受の径大部1
3bを形成する。なお、軸受素材10Aの圧入過程にお
いて、外周大径部11aは内径縮小されるが、この場
合、内周大径部11cは前記内径縮小量よりも大きな差
を付けてあることから、これに対応する部分は軸受の径
大部13bになるのである。
The manufactured bearing material 10A is press-fitted into the bearing housing 1 using a mandrel (not shown), and is plastically deformed during the press-fitting process to form the regular bearing 1.
0 is formed. In this plastic process, as shown by the arrow in (b), the side portion 11d which is the small inner diameter portion of the bearing material 10A.
While expanding with the mandrel to correct the arc shape,
The thin portion 12d is plastically deformed and bulged in the direction away from the axis. In other words, the bearing material 10A is replaced by the bearing housing 1
At the time of press fitting into the inside, the thin portion 12b receives a strong deforming force from the mandrel and thick portion 12a sides and bulges and deforms to the non-restraint portion side of the bearing housing 1, and at the same time, the mandrel corrects the arc shape. The small diameter portion 13a of the bearing (the portion where the shaft S of the motor or the like engages in the contact surface state) is formed at three places, and the large diameter portion 11c of the inner circumference of the bearing material 10A is the large diameter portion 1 of the bearing.
3b is formed. In the process of press-fitting the bearing material 10A, the outer diameter of the large diameter portion 11a is reduced. However, in this case, the inner diameter of the large diameter portion 11c is larger than the reduction amount of the inner diameter. The portion to be formed is the large diameter portion 13b of the bearing.

【0017】図4は請求項4に対応し前記図3の軸受素
材を変形した例であり、同(a)は図3(a)に対応
し、同(b)は図3(b)に対応している。この第4の
形態の軸受素材14Aでは、図3の形態に対し、外形が
三角形状で、内孔形状が外周大径部15aに対応する位
置を内径大径部15cにした三角形状に形成されている
点で同じくしているが、外周の三角形の各辺部に対応す
る部分に形成された欠落部15bを有することにより、
外周大径部15aを頂部とする複数の肉厚部分15fが
略放射状に設けられている。したがって、この外周は外
周大径部15aと欠落部15bにて形成されている一
方、内周は内周大径部15cが外周大径部15aの真下
に位置していると共に、内周大径部15c同士を結ぶ辺
部分(内径小部に相当)15dが欠落部15bの真下に
位置している。また、欠落部15bと辺部分15dとの
間の肉厚部分16b(以下、薄肉部16bという)が外
・内周大径部15a,15cとの間の肉厚部分16a
(以下、厚肉部16aという)に比して薄くなってい
る。また、この場合も、図3と同様、軸受素材14Aを
軸受ハウジング1に不図示のマンドレルを用いて圧入さ
れる過程にて、塑性変形させて正規の軸受14に形成す
る。すなわち、軸受素材14Aは内径小部である辺部分
15dを前記マンドレルで拡張して円弧状に矯正される
と共に、薄肉部16dを軸心から遠ざける方向へ塑性変
形膨出される。この結果、薄肉部16bがマンドレル及
び厚肉部16a側から強い変形力を受け軸受ハウジング
1の非拘束部側へ膨出変形すると同時に、前記マンドレ
ルにて円弧状に矯正された軸受の径小部17a(モータ
等の軸Sが接面状態に係合する部分)を3カ所に形成
し、また三角形の頂部に対応している内周大径部15c
が軸受の径大部17bを形成する。
FIG. 4 shows an example in which the bearing material of FIG. 3 is modified in accordance with claim 4, the same (a) corresponds to FIG. 3 (a), and the same (b) corresponds to FIG. 3 (b). It corresponds. In the bearing material 14A of the fourth embodiment, the outer shape is triangular and the inner hole shape is formed in a triangular shape in which the position corresponding to the outer peripheral large diameter portion 15a is the inner diameter large diameter portion 15c as compared with the configuration of FIG. The same applies to the points described above, but by having the missing portion 15b formed in the portion corresponding to each side of the outer peripheral triangle,
A plurality of thick-walled portions 15f having the outer peripheral large-diameter portion 15a as the top are provided in a substantially radial shape. Therefore, the outer circumference is formed by the outer circumference large diameter portion 15a and the missing portion 15b, while the inner circumference has the inner circumference large diameter portion 15c located directly below the outer circumference large diameter portion 15a. A side portion (corresponding to a small inner diameter portion) 15d connecting the portions 15c is located directly below the missing portion 15b. Further, a thick portion 16b (hereinafter referred to as a thin portion 16b) between the missing portion 15b and the side portion 15d is a thick portion 16a between the outer / inner peripheral large diameter portions 15a, 15c.
It is thinner than (hereinafter referred to as the thick portion 16a). Also in this case, similarly to FIG. 3, the bearing material 14A is plastically deformed to form the regular bearing 14 in the process of being press-fitted into the bearing housing 1 using a mandrel (not shown). That is, the bearing material 14A is expanded by the mandrel at the side portion 15d having a small inner diameter to be corrected into an arc shape, and at the same time, the thin portion 16d is plastically deformed and expanded in a direction away from the axial center. As a result, the thin portion 16b receives a strong deforming force from the mandrel and thick portion 16a sides and bulges and deforms toward the non-restraint portion side of the bearing housing 1, and at the same time, the small diameter portion of the bearing straightened into an arc shape by the mandrel. 17a (a portion where the shaft S of the motor or the like engages in the contact surface state) is formed at three places, and the large diameter portion 15c of the inner circumference corresponding to the top of the triangle is formed.
Form the large diameter portion 17b of the bearing.

【0018】以上の各構成では、段落0013に記載し
た〜の利点に加え、次のような特長がある。なお、
図4の場合には、図2の形態と同様、図3の各軸受の径
大部13bに対し図4の各軸受の径大部17bは非対称
になるためより高い動圧が得られる。 、マンドレルで形成される軸受の径小部13a,17
aは、軸受素材10A,14Aの厚肉部12a,16a
よりも薄くなっている内径小部である辺部分11d,1
5d側から膨出変形していることから、気孔が比較的粗
くなり、目潰しを望まない場合に好適なものとなる。 、軸Sの支持部は軸受の径小部13a,17aであ
り、この部分がハウジング1に対する圧入部分に対応し
ていないことから、軸受性能的に軸受ハウジング材料の
経時変化の影響を受け難いものとなる。この点を次に付
言する。従来構成において、例えば、軽量化及び低コス
ト化を図るため亜鉛合金ダイカスト製の軸受ハウジング
等の場合、軸受圧入後のクリープによりケースが経時変
化するものがあり、この経時変化に伴って軸受の内径小
部もその影響(内径が経時変化に伴って大きくなる)を
受け、寸法の絶対値が変化するという問題があるが、そ
のような問題を解消するものとして極めて有効なものと
なる。換言すると、圧入部(外周大径部11a,15
a)はその影響が直接出るのに対して、非圧入部(内径
小部である辺部分11b,15b)はその影響が出にく
いため、この非圧入部にて軸受の径小部13a,17a
を形成することにより、内径寸法が経時変化しにくい軸
受10,14とすることができる。これは、従来行なわ
れていた、圧入後の寸法が安定するまで放置するなどと
いった工程を省くことが可能となり、生産性を向上でき
る。
Each of the above-mentioned configurations has the following features in addition to the advantages (1) to (3) described in paragraph 0013. In addition,
In the case of FIG. 4, similarly to the embodiment of FIG. 2, the large diameter portion 17b of each bearing of FIG. 4 is asymmetrical with respect to the large diameter portion 13b of each bearing of FIG. 3, so that a higher dynamic pressure can be obtained. , Small diameter parts 13a, 17 of the bearing formed by the mandrel
a is the thick parts 12a, 16a of the bearing materials 10A, 14A
Side portions 11d, 1 that are smaller in inner diameter and are thinner than
Since it is bulged and deformed from the 5d side, the pores become relatively rough, which is suitable when crushing is not desired. The supporting portions of the shaft S are the small diameter portions 13a and 17a of the bearing, and since these portions do not correspond to the press-fitted portions with respect to the housing 1, the bearing performance is not easily affected by the temporal change of the bearing housing material. Becomes This point will be added below. In the conventional configuration, for example, in the case of a zinc alloy die-cast bearing housing to reduce weight and cost, the case may change with time due to creep after press fitting of the bearing. The small portion is also affected by the influence (the inner diameter increases with the lapse of time), and there is a problem that the absolute value of the dimension changes, but this is extremely effective as a solution to such a problem. In other words, the press-fitting portion (outer peripheral large diameter portion 11a, 15
In (a), the influence is directly exerted, whereas in the non-press-fitted portions (side portions 11b, 15b which are small inner diameter portions), the influence is hard to exert. Therefore, in the non-press-fitted portions, the small diameter portions 13a, 17a of the bearing are used.
By forming the above, it is possible to obtain the bearings 10 and 14 in which the inner diameter is less likely to change with time. This makes it possible to omit the step which has been conventionally performed, such as leaving it until the dimensions after the press-fitting are stable, and the productivity can be improved.

【0019】なお、このような形状の軸受素材10A,
14Aは、円筒状の素材を形成しておき、その素材を外
径の複数方向から押圧して塑性変形することでも容易に
得られる。また、これらの各形態において、筒状軸受素
材10A,14Aは、外形が三角形状で、内孔形状が外
周大径部11a,15aに対応する位置を内径大径部1
1c,15cにした三角形状に形成されている場合を説
明したが、内孔形状が外周大径部11a,15aに対応
する位置に溝を備えた溝付き円形にしたものでも同様に
可能である。
The bearing material 10A having such a shape,
14A can be easily obtained by forming a cylindrical material and pressing the material from a plurality of outer diameter directions to plastically deform the material. Further, in each of these embodiments, the cylindrical bearing materials 10A and 14A have a triangular outer shape, and the inner hole shape corresponds to the outer peripheral large diameter portions 11a and 15a at positions corresponding to the large inner diameter portion 1a.
Although the case of forming the triangular shapes 1c and 15c has been described, it is also possible to use a grooved circular shape having a groove at a position corresponding to the outer peripheral large diameter portions 11a and 15a. .

【0020】図5は請求項6に対応した形態であり、同
(a)は軸受素材18Aの端面形状図、同(b)は軸受
ハウジング1(内径は真円)に圧入した後の軸受18を
模式的に示す端面形状図である。この第5の形態の筒状
軸受素材18Aは、外形が三角形状で、内孔形状が外周
大径部19aに対応する位置を内周小径部19dにした
三角形状に形成されている。したがって、この外周は、
外周大径部19a付近が三角形の頂部に対応していると
共に、外周大径部19a同士を結ぶ辺部分19bが三角
形の各辺部に対応している。これに対し、内周は、内周
大径部19cが辺部分19bの略中間の真下に位置して
いると共に、内周小径部19dが外周大径部19aの真
下に位置している。また、辺部分19b及内周大径部1
9cの間の肉厚部分20b(以下、薄肉部20bとい
う)が外周大径部19a及び内周径小部19dの間の肉
厚部分20a(以下、厚肉部20aという)に比して薄
くなっている。
5A and 5B show a form corresponding to claim 6, FIG. 5A is an end face shape view of the bearing material 18A, and FIG. 5B is the bearing 18 after being press-fitted into the bearing housing 1 (inner diameter is a perfect circle). It is an end face shape figure which shows typically. The tubular bearing material 18A of the fifth embodiment has a triangular outer shape, and the inner hole shape is formed in a triangular shape in which the position corresponding to the outer peripheral large diameter portion 19a is the inner peripheral small diameter portion 19d. Therefore, this circumference is
The vicinity of the outer peripheral large diameter portion 19a corresponds to the top of the triangle, and the side portion 19b connecting the outer peripheral large diameter portions 19a corresponds to each side of the triangle. On the other hand, in the inner circumference, the inner circumference large diameter portion 19c is located directly below the middle of the side portion 19b, and the inner circumference small diameter portion 19d is located directly below the outer circumference large diameter portion 19a. In addition, the side portion 19b and the inner peripheral large diameter portion 1
The thick portion 20b between 9c (hereinafter referred to as the thin portion 20b) is thinner than the thick portion 20a (hereinafter referred to as the thick portion 20a) between the outer peripheral large diameter portion 19a and the small inner peripheral diameter portion 19d. Has become.

【0021】作製された軸受素材18Aは、軸受ハウジ
ング1に対し不図示のマンドレルを用いて圧入され、そ
の圧入過程にて、塑性変形されて正規の軸受18に形成
される。この塑性過程では、同(b)に矢示した如く、
軸受素材18Aの内周小径部19dを前記マンドレルで
拡張して円弧状に矯正すると共に、薄肉部20dを軸心
から遠ざける方向へ塑性変形して膨出させる。換言する
と、軸受素材18Aを軸受ハウジング1内に圧入する際
には、薄肉部20bがマンドレル側から強い変形力を受
け軸受ハウジング1の拘束部側へ膨出変形すると同時
に、前記マンドレルにて円弧状に矯正された軸受の径小
部21a(モータ等の軸Sが接面状態に係合する部分)
を3カ所に形成し、また三角形の頂部に対応している内
周大径部19cが軸受の内径溝である径大部21bを形
成する。
The manufactured bearing material 18A is press-fitted into the bearing housing 1 using a mandrel (not shown), and is plastically deformed in the press-fitting process to form a regular bearing 18. In this plastic process, as indicated by the arrow in (b),
The inner peripheral small-diameter portion 19d of the bearing material 18A is expanded by the mandrel to correct it into an arc shape, and the thin-walled portion 20d is plastically deformed and bulged in a direction away from the axial center. In other words, when the bearing material 18A is press-fitted into the bearing housing 1, the thin portion 20b receives a strong deforming force from the mandrel side and bulges and deforms toward the restraining portion side of the bearing housing 1, and at the same time, the thin mandrel has an arc shape. Small diameter portion 21a of the bearing straightened (a portion where the shaft S of the motor or the like engages in the contact surface state)
Is formed in three places, and the large diameter portion 19c of the inner circumference corresponding to the top of the triangle forms the large diameter portion 21b which is the inner diameter groove of the bearing.

【0022】図6は請求項7に対応し前記図5の軸受素
材を変形した例であり、同(a)は図5(a)に対応
し、同(b)は図5(b)に対応している。この第6の
形態の軸受素材22Aは、図5の形態に対し、外形が三
角形状で、内孔形状が外周大径部23aに対応する位置
を内周小径部23dである三角形状に形成されている点
で同じくしているが、外周の三角形の各辺部に対応する
部分に形成された欠落部23bを有することにより、外
周大径部23aを頂部とする複数の肉厚部分23fが略
放射状に設けられている。したがって、この外周は外周
大径部23aと欠落部23bにて形成されている一方、
内周は内周大径部23cが欠落部23bの真下に位置し
ていると共に、内周小径部23dが外周大径部23aの
真下に位置している。また、欠落部23b及び内周大径
部23cの間の肉厚部分24b(以下、薄肉部24bと
いう)が外周大径部23a及び内周径小部23dの間の
肉厚部分24a(以下、厚肉部24aという)に比して
薄くなっている。また、この場合も、図5と同様、軸受
素材22Aを軸受ハウジング1に不図示のマンドレルを
用いて圧入させる過程にて、塑性変形させて正規の軸受
22に形成する。この塑性過程では、同(b)に矢示し
た如く、軸受素材22Aの内周径小部23dを前記マン
ドレルで拡張して円弧状に矯正すると共に、薄肉部24
dを軸心から遠ざける方向へ塑性変形膨出させる。換言
すると、軸受素材22Aを軸受ハウジング1内に圧入す
る際には、薄肉部24bがマンドレル側から強い変形力
を受け軸受ハウジング1の拘束部側へ膨出変形すると同
時に、前記マンドレルにて円弧状に矯正された軸受の径
小部25a(モータ等の軸Sが接面状態に係合する部
分)を3カ所に形成し、また三角形の頂部に対応してい
る内周大径部23cが軸受の径大部25bを形成する。
FIG. 6 shows an example in which the bearing material of FIG. 5 is modified in accordance with claim 7, the same (a) corresponds to FIG. 5 (a), and the same (b) corresponds to FIG. 5 (b). It corresponds. The bearing material 22A of the sixth embodiment has a triangular outer shape, and the inner hole shape is a triangular shape in which the inner peripheral small diameter portion 23d is located at a position corresponding to the outer peripheral large diameter portion 23a. However, since the outer peripheral large-diameter portion 23a has a plurality of thickened portions 23f, the plurality of thick-walled portions 23f are formed substantially in the outer peripheral large-diameter portion 23a. It is provided radially. Therefore, while this outer periphery is formed by the outer periphery large diameter portion 23a and the missing portion 23b,
In the inner circumference, the large diameter portion 23c of the inner circumference is located directly below the missing portion 23b, and the small diameter portion 23d of the inner circumference is located directly below the large diameter portion 23a of the outer circumference. Further, a thick portion 24b (hereinafter, referred to as a thin portion 24b) between the missing portion 23b and the inner peripheral large diameter portion 23c is a thick portion 24a (hereinafter, referred to as a thin portion 24a) between the outer peripheral large diameter portion 23a and the inner peripheral small diameter portion 23d. It is thinner than the thick portion 24a). Also in this case, similarly to FIG. 5, in the process of press-fitting the bearing material 22A into the bearing housing 1 using a mandrel (not shown), the bearing material 22A is plastically deformed to form the regular bearing 22. In this plastic process, as shown by the arrow (b), the small inner peripheral diameter portion 23d of the bearing material 22A is expanded by the mandrel to correct it into an arc shape, and the thin portion 24
Plastic deformation swells in a direction away from d. In other words, when the bearing material 22A is press-fitted into the bearing housing 1, the thin portion 24b receives a strong deforming force from the mandrel side and bulges and deforms toward the restraining portion side of the bearing housing 1, and at the same time, the thin mandrel has an arc shape. The small diameter portion 25a (the portion where the shaft S of the motor or the like is engaged in the contact surface state) is formed in three places, and the large inner diameter portion 23c corresponding to the top of the triangle is formed in the bearing. The large-diameter portion 25b is formed.

【0023】以上の各構成では、段落0013に記載し
た〜の利点に加え、次のような特長がある。 、軸Sの支持部は軸受の径小部21a,25aであ
り、この部分が外周大径部19a,23aと内周径小部
19d,23dから押圧されて緻密化すると共に内径表
面気孔も少ないものとなる。反対に、内周径大部21
b,25bは密度の変化がほとんどなく、マンドレルの
影響もないことから気孔量が多い状態に維持される。な
お、図6の場合には、図2の形態と同様、図5の各内周
径大部21bに対し図6の各内周径大部25bは非対称
になるためより高い動圧が得られる。また、これらの各
形態において、筒状軸受素材18A,22Aは、外形が
三角形状で、内孔形状が外周大径部19a,23aに対
応する位置を内周小径部19d,23dである三角形状
に形成されている場合を説明したが、内孔形状が外周大
径部19a,23aに対応する位置に溝を備えた溝付き
円形にしたものでも同様に可能である。
Each of the above constructions has the following features in addition to the advantages (1) to (3) described in paragraph 0013. The supporting portion of the shaft S is the small diameter portions 21a and 25a of the bearing, and these portions are pressed from the large outer diameter portions 19a and 23a and the small inner diameter portions 19d and 23d to be densified and have few inner surface pores. Will be things. On the contrary, the large inner diameter portion 21
Since b and 25b have almost no change in density and are not affected by the mandrel, they are maintained in a state with a large amount of pores. In the case of FIG. 6, similarly to the embodiment of FIG. 2, each inner diameter large portion 25b of FIG. 6 is asymmetrical to each inner diameter large portion 21b of FIG. 5, so a higher dynamic pressure is obtained. . Further, in each of these forms, the cylindrical bearing materials 18A and 22A have a triangular outer shape, and the inner hole shape is a triangular shape in which the positions corresponding to the outer peripheral large diameter portions 19a and 23a are the inner peripheral small diameter portions 19d and 23d. Although the case where the inner hole is formed in a circular shape with grooves provided at the positions corresponding to the outer peripheral large diameter portions 19a and 23a is also possible.

【0024】次に、本発明の第7の形態を図7を用いて
説明する。この第7の形態は、以上の各形態とは異な
り、軸受ハウジング内に軸受の複数個を圧入固定する場
合の改良技術である。ここでは、2個の軸受27を用い
る場合の例であるが、3個以上を圧入する場合も同様な
構成にて可能であり、また圧入される前の軸受素材は上
記した製造方法に用いられる形状が好ましいが、更に変
形したものであっても差し支えない。
Next, a seventh mode of the present invention will be described with reference to FIG. The seventh mode is an improved technique in which a plurality of bearings are press-fitted and fixed in the bearing housing, unlike the above-described modes. Here, an example is shown in which two bearings 27 are used, but the same configuration can be applied when three or more bearings are press-fitted, and the bearing material before press-fitting is used in the above-described manufacturing method. The shape is preferable, but the shape may be further modified.

【0025】図7(a)は本発明の内径溝付き軸受ユニ
ット26を軸方向に断面した図、図7(b)はその端面
側から見た図である。この軸受ユニット26は、軸受ハ
ウジング1の内部両側に圧入された軸受27,27を有
している。この各軸受27は、上記した本発明方法を適
用して形成されたものであり、軸受の径小部28a及び
軸受の径大部28bを共に3カ所つつ形成している点で
同じくしているが、軸受ハウジング1内にあって両軸受
27,27の軸受の径大部28b,28b同士の位相を
所定角度ずらした構成となっている。より具体的には、
この形態例において、各軸受27が内周約120度間隔
に軸受の径大部28bを形成しており、軸受ハウジング
1内に圧入する際、左側の軸受27に対し、右側の軸受
27を図7(b)に示す如く60度だけずらした位置に
圧入固定している。したがって、両軸受27,27の各
軸受の径大部28bの位相が60度づつずれている。こ
の結果、軸受ユニット26としては、上下ないしは左右
の軸受27,27において、軸受の径小部28a,28
a(軸Sを支持する摺動部分)及び軸受の径大部28
b,28bが上側で3カ所、下側で3カ所、60度の間
隔で合計6カ所に共に形成されることとなり、見掛上、
6カ所の動圧発生による軸受と同じ効果がある。
FIG. 7 (a) is a view in which the bearing unit 26 with an inner diameter groove of the present invention is axially sectioned, and FIG. 7 (b) is a view seen from the end face side. The bearing unit 26 has bearings 27, 27 that are press-fitted on both sides inside the bearing housing 1. Each of the bearings 27 is formed by applying the above-described method of the present invention, and is the same in that the small diameter portion 28a of the bearing and the large diameter portion 28b of the bearing are formed at three locations. However, in the bearing housing 1, the phases of the large diameter portions 28b, 28b of the bearings 27, 27 are shifted by a predetermined angle. More specifically,
In this embodiment, each of the bearings 27 has a large diameter portion 28b of the bearing formed at intervals of about 120 degrees on the inner circumference. When press-fitting into the bearing housing 1, the bearing 27 on the right side is shown against the bearing 27 on the right side. As shown in FIG. 7 (b), they are press-fitted and fixed at positions shifted by 60 degrees. Therefore, the phase of the large diameter portion 28b of each bearing of both bearings 27, 27 is shifted by 60 degrees. As a result, as the bearing unit 26, in the upper and lower or left and right bearings 27, 27, the small diameter portions 28a, 28 of the bearings are formed.
a (sliding portion that supports the shaft S) and the large diameter portion 28 of the bearing
b and 28b are formed at 3 places on the upper side, 3 places on the lower side, and 6 places at intervals of 60 degrees in total. Apparently,
It has the same effect as a bearing by generating dynamic pressure at 6 locations.

【0026】なお、従来軸受の如く単純に6カ所の動圧
部を形成すると、当然、60度の範囲内で動圧を発生し
なければならず、動圧は出来るだけ大きな幅があればあ
るほど安定して大きな動圧が得られるが、範囲が狭くな
ってしまい発生させる動圧に制限がでてくる。したがっ
て、内径寸法や回転数などにより動圧発生部の個数は今
までは制限されていた。しかし、そのような制約はこの
本発明により解消される。つまり、前記した如く軸受ハ
ウジング1内に圧入される軸受27を2個以上で構成
し、各軸受27,27同士を所定角度ずらして異なる位
相に圧入させて、個々の軸受27,27に分けて動圧部
(軸受の内径溝である径大部28b,28b)を設ける
ようにすることにより、多数の動圧部を幅を確保しつつ
容易に形成することが可能となるのである。
Incidentally, if six dynamic pressure portions are simply formed as in the conventional bearing, the dynamic pressure must be generated within the range of 60 degrees, and the dynamic pressure has a width as large as possible. The more stable and large dynamic pressure can be obtained, but the range is narrowed and the dynamic pressure generated is limited. Therefore, the number of dynamic pressure generating parts has been limited so far by the inner diameter size and the number of rotations. However, such constraints are overcome by this invention. That is, as described above, the bearings 27 to be press-fitted into the bearing housing 1 are composed of two or more, and the respective bearings 27, 27 are shifted by a predetermined angle to be press-fitted into different phases to be divided into individual bearings 27, 27. By providing the dynamic pressure portions (large diameter portions 28b, 28b which are the inner diameter grooves of the bearing), it becomes possible to easily form a large number of dynamic pressure portions while ensuring the width.

【0027】したがって、本発明の内径溝付き軸受ユニ
ット26は、多数の動圧部(軸受の径大部28b,28
b)によって安定した大きな動圧を得ることができ、高
速回転時でも軸振れを抑え、摩擦トルクの上昇も抑える
軸受が可能となる。上下ないしは左右の軸受27,27
の内径形状は、動圧発生用として軸受の径大部28b,
28bの他に、上記した図1〜図6でも同様の効果が有
り、しかも軸受同士を異なる形状に設定したり、軸受同
士の位相角度などを任意に設定することが可能である。
Therefore, the bearing unit 26 with an inner diameter groove of the present invention has a large number of dynamic pressure portions (bearing large diameter portions 28b, 28).
By b), a stable large dynamic pressure can be obtained, and it becomes possible to provide a bearing that suppresses shaft runout even at high speed rotation and suppresses an increase in friction torque. Top and bottom or left and right bearings 27, 27
The inner diameter of the bearing has a large diameter portion 28b of the bearing for generating dynamic pressure.
In addition to 28b, the same effect can be obtained in FIGS. 1 to 6 described above, and the bearings can be set in different shapes, and the phase angle between the bearings can be arbitrarily set.

【0028】[0028]

【発明の効果】以上説明したとおり、本発明によれば、
従来から軸受の内径形状を複雑な形状とするためには、
対応した形状でかつ高精度なマンドレル等の金型治具が
必要であった点、高速回転を支持する軸受としてはます
ます高精度の回転支持が求められて、複雑な内径形状が
必要となっている点、等に対し比較的単純形状の軸受素
材で複雑な内径形状を形成可能にし、量産上にも優れた
製造方法及び軸受ユニットを提供できる。特に、本発明
は、複雑な形状を簡単で安価に、かつ精度良く生産する
ことができる。また、各軸受の動圧発生点をそれぞれず
らすことで、1個の軸受では限界のあった動圧部(軸受
の径大部もしくはグルーブ部)を分散できるため、より
良好な高精度の回転支持が可能となる。
As described above, according to the present invention,
Conventionally, in order to make the inner diameter shape of the bearing complicated,
A mold jig such as a mandrel with a corresponding shape and high accuracy was required, and as a bearing that supports high-speed rotation, more accurate rotation support is required, and a complicated inner diameter shape is required. In view of the above, it is possible to form a complicated inner diameter shape with a relatively simple bearing material, and it is possible to provide a manufacturing method and a bearing unit that are excellent in mass production. In particular, the present invention can produce a complicated shape easily, inexpensively, and accurately. Also, by shifting the dynamic pressure generation points of each bearing, the dynamic pressure part (large diameter part or groove part of the bearing), which has a limit in one bearing, can be dispersed, so that better and more accurate rotation support can be achieved. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1形態として示す軸受端面図及び圧
入後の模式端面図である。
FIG. 1 is an end view of a bearing shown as a first embodiment of the present invention and a schematic end view after press fitting.

【図2】前記第1形態を変形した例を同様な態様で示す
図である。
FIG. 2 is a diagram showing a modified example of the first embodiment in a similar manner.

【図3】本発明の第3形態を図1と同様な態様で示す図
である。
FIG. 3 is a diagram showing a third embodiment of the present invention in the same manner as in FIG.

【図4】前記第3形態を変形した例を同様な態様で示す
図である。
FIG. 4 is a diagram showing a modified example of the third embodiment in a similar manner.

【図5】本発明の第5形態を図1と同様な態様で示す図
である。
FIG. 5 is a diagram showing a fifth mode of the present invention in the same manner as in FIG.

【図6】前記第5形態を変形した例を図5と同様な態様
で示す図である。
FIG. 6 is a diagram showing a modified example of the fifth embodiment in a manner similar to FIG.

【図7】本発明の第7形態として示す軸受ユニット構造
の断面図及び端面図である。
FIG. 7 is a sectional view and an end view of a bearing unit structure shown as a seventh embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2A,6A,10A,14A,18A,22Aは軸受素
材 2,6,10,14,18,22,27は軸受 4a,9a,13a,17aは軸受の径小部 21a,25a,26a,28aは軸受の径小部 4b,9b,13b,17bは軸受の径大部(内径溝) 21b,25b,26b,28bは軸受の径大部(内径
溝) 26は軸受ユニット Sは軸
2A, 6A, 10A, 14A, 18A, 22A is a bearing material 2,6,10,14,18,22,27 is a bearing 4a, 9a, 13a, 17a is a small diameter portion 21a, 25a, 26a, 28a of the bearing Small diameter part of bearing 4b, 9b, 13b, 17b is large diameter part of bearing (inner diameter groove) 21b, 25b, 26b, 28b is large diameter part of bearing (inner diameter groove) 26 is bearing unit S is shaft

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 外形が略多角形状で、内孔形状が円形で
ある筒状軸受素材を作製し、 前記軸受素材を、サイジング用金型または軸受ハウジン
グにマンドレルを用いて圧入し、その際に、前記サイジ
ング金型または軸受ハウジングによって軸心側に向かっ
て圧縮される前記軸受素材の外周大径部に対応する内孔
部を、前記マンドレルにて円弧状に矯正して軸受の径小
部に形成すると共に、軸受素材の薄肉部を軸心から遠ざ
ける方向へ塑性変形膨出させて軸受の内径溝である径大
部を形成する、ことを特徴とする内径溝付き軸受の製造
方法。
1. A cylindrical bearing material having a substantially polygonal outer shape and a circular inner hole shape is produced, and the bearing material is press-fitted into a sizing die or a bearing housing by using a mandrel. , The inner hole portion corresponding to the outer peripheral large diameter portion of the bearing material compressed toward the axial center side by the sizing die or the bearing housing is corrected to an arc shape by the mandrel to form a small diameter portion of the bearing. A method of manufacturing a bearing with an inner diameter groove, characterized in that the thin portion of the bearing material is plastically deformed and expanded in a direction away from the shaft center to form a large diameter portion that is an inner diameter groove of the bearing.
【請求項2】 前記圧入前の筒状軸受素材は、前記外周
大径部付近を除く外周の各辺部に欠落部を形成すること
により、前記外周大径部を頂部とする複数の肉厚部分が
略放射状に設けられている請求項1に記載の内径溝付き
軸受の製造方法。
2. The cylindrical bearing material before press-fitting has a plurality of wall thicknesses having the outer peripheral large diameter portion as a top by forming a cutout portion on each side of the outer peripheral portion except near the outer peripheral large diameter portion. The method for manufacturing an inner diameter grooved bearing according to claim 1, wherein the portions are provided in a substantially radial shape.
【請求項3】 外形が略多角形状で、内孔形状が外周大
径部に対応する位置を大径部にした略多角形状ないしは
外周大径部に対応する位置に溝を備えた溝付き円形であ
る筒状軸受素材を作製し、 前記筒状軸受素材を、サイジング用金型または軸受ハウ
ジングにマンドレルを用いて圧入し、その際に、前記軸
受素材の内径小部を前記マンドレルで拡張し円弧状に矯
正して軸受の径小部を形成すると共に軸受素材の薄肉部
を軸心から遠ざける方向へ塑性変形膨出させ、軸受の内
径溝である径大部を形成する、ことを特徴とする内径溝
付き軸受の製造方法。
3. A groove having a substantially polygonal outer shape and a groove formed at a position corresponding to the outer peripheral large-diameter portion or a substantially polygonal shape having a large-diameter portion corresponding to the outer peripheral large-diameter portion. The tubular bearing material is manufactured by press-fitting the tubular bearing material into a sizing die or a bearing housing using a mandrel, and at that time, a small inner diameter portion of the bearing material is expanded by the mandrel to form a circle. It is characterized by forming a small diameter portion of the bearing by correcting it in an arc shape and plastically bulging the thin portion of the bearing material in a direction away from the shaft center to form a large diameter portion that is an inner diameter groove of the bearing. Manufacturing method of bearing with internal groove.
【請求項4】 前記圧入前の筒状軸受素材は、前記外周
大径部付近を除く外周の各辺部に欠落部を形成すること
により、前記外周大径部を頂部とする複数の肉厚部分が
略放射状に設けられている請求項3に記載の内径溝付き
軸受の製造方法。
4. The cylindrical bearing material before press-fitting has a plurality of wall thicknesses having the outer peripheral large diameter portion as a top by forming a cutout portion on each side of the outer peripheral portion excluding the vicinity of the outer peripheral large diameter portion. The method for manufacturing an inner diameter grooved bearing according to claim 3, wherein the portions are provided in a substantially radial shape.
【請求項5】 前記圧入前の筒状軸受素材が、円筒状の
素材を外径の複数方向から押圧して塑性変形したもので
ある請求項3または請求項4に記載の内径溝付き軸受の
製造方法。
5. The bearing with inner diameter groove according to claim 3, wherein the cylindrical bearing material before press-fitting is formed by pressing a cylindrical material from a plurality of outer diameter directions and plastically deforming the material. Production method.
【請求項6】 外形が略多角形状で、内孔形状が外周大
径部に対応する位置を径小部にした略多角形状ないしは
外周大径部同士を結ぶ中間付近と対応する位置に溝を備
えた溝付き円形である筒状軸受素材を作製し、 前記筒状軸受素材を、サイジング用金型または軸受ハウ
ジングにマンドレルを用いて圧入し、その際に、前記軸
受素材の内径小部を前記マンドレルで拡張し円弧状に矯
正して軸受の径小部に形成すると共に、軸受素材の薄肉
部を軸心から遠ざける方向へ塑性変形膨出させて軸受の
内径溝である径大部を形成する、ことを特徴とする内径
溝付き軸受の製造方法。
6. A groove is provided at a position corresponding to a substantially polygonal shape having an outer shape of a substantially polygonal shape and an inner hole shape having a smaller diameter portion at a position corresponding to the outer peripheral large diameter portion, or a position near an intermediate portion connecting the outer peripheral large diameter portions. A tubular bearing material having a circular shape with a groove is prepared, and the tubular bearing material is press-fitted into a sizing die or a bearing housing using a mandrel, in which case the small inner diameter portion of the bearing material is Expands with a mandrel and corrects it into an arc shape to form a small diameter part of the bearing, and at the same time forms the large diameter part that is the inner diameter groove of the bearing by plastically bulging the thin part of the bearing material in the direction away from the axis A method for manufacturing a bearing with an inner diameter groove, comprising:
【請求項7】 前記圧入前の筒状軸受素材は、前記外周
大径部付近を除く外周の各辺部に欠落部を形成すること
により、前記外周大径部を頂部とする複数の肉厚部分が
略放射状に設けられている請求項6に記載の内径溝付き
軸受の製造方法。
7. The cylindrical bearing material before press-fitting has a plurality of wall thicknesses having the outer peripheral large diameter portion as a top by forming a cutout portion on each side of the outer peripheral portion except near the outer peripheral large diameter portion. The method for manufacturing a bearing with an inner diameter groove according to claim 6, wherein the portions are provided substantially radially.
【請求項8】 2以上の軸受を軸受ハウジング内に同軸
線上に圧入固定し、前記各軸受に軸を回転自在に支持す
る軸受ユニットにおいて、 前記各軸受の軸受内径に1つ以上の内径溝を各々形成し
ていると共に隣接する前記軸受の内径溝同士が軸回転方
向に位相がずれた状態に設けられていることを特徴とす
る内径溝付き軸受ユニット。
8. A bearing unit in which two or more bearings are press-fitted and fixed on a coaxial line in a bearing housing and a shaft is rotatably supported by each of the bearings, and one or more inner diameter grooves are provided in a bearing inner diameter of each of the bearings. A bearing unit with an inner diameter groove, characterized in that the inner diameter grooves of the respective bearings that are respectively formed and are adjacent to each other are provided in a state of being out of phase in the axial rotation direction.
JP16512896A 1996-06-06 1996-06-06 Manufacturing method of bearings with internal groove Expired - Fee Related JP3578297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16512896A JP3578297B2 (en) 1996-06-06 1996-06-06 Manufacturing method of bearings with internal groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16512896A JP3578297B2 (en) 1996-06-06 1996-06-06 Manufacturing method of bearings with internal groove

Publications (2)

Publication Number Publication Date
JPH09329146A true JPH09329146A (en) 1997-12-22
JP3578297B2 JP3578297B2 (en) 2004-10-20

Family

ID=15806445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16512896A Expired - Fee Related JP3578297B2 (en) 1996-06-06 1996-06-06 Manufacturing method of bearings with internal groove

Country Status (1)

Country Link
JP (1) JP3578297B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029371A1 (en) * 2005-09-06 2007-03-15 Ntn Corporation Housing for fluid bearing device
JP2012187670A (en) * 2011-03-10 2012-10-04 Toyota Motor Corp Method for manufacturing press fitting part

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029371A1 (en) * 2005-09-06 2007-03-15 Ntn Corporation Housing for fluid bearing device
JP2007071275A (en) * 2005-09-06 2007-03-22 Ntn Corp Housing for fluid bearing device
KR101289733B1 (en) * 2005-09-06 2013-07-26 엔티엔 가부시키가이샤 Housing for fluid bearing device
US8778242B2 (en) 2005-09-06 2014-07-15 Ntn Corporation Housing for fluid dynamic bearing device
JP2012187670A (en) * 2011-03-10 2012-10-04 Toyota Motor Corp Method for manufacturing press fitting part

Also Published As

Publication number Publication date
JP3578297B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
KR100951630B1 (en) Hydrodynamic bearing device
US4845817A (en) Method of forming a half-round bearing
JP3954695B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
CN106194987B (en) Thrust bearing assembl
US20110296896A1 (en) Housing for fluid lubrication bearing apparatuses, a housing for hydrodynamic bearing apparatuses, and a method for producing the same
JP2002106577A (en) Bearing ring, bearing with bearing ring and manufacturing method of bearing ring
JP2006125516A (en) Oil-retaining sintered bearing
JP3511553B2 (en) Method for producing sintered oil-impregnated bearing
JP4573349B2 (en) Manufacturing method of hydrodynamic bearing
JP3578297B2 (en) Manufacturing method of bearings with internal groove
US7789565B2 (en) Fluid dynamic bearing apparatus
JP2002081454A (en) Inner and outer ring of bearing, and assembling method thereof
JPH10113832A (en) Manufacture of dynamic pressure fluid beaking
JP2008121806A (en) Manufacturing method of valve shaft and valve shaft manufactured by the method
JP3649486B2 (en) Sintered bearing and manufacturing method thereof
JP4420339B2 (en) Manufacturing method of hydrodynamic bearing
US20220196133A1 (en) Gear unit including a rotatably mounted toothed part, and process for manufacturing a gear unit including a toothed part
JP2007218379A (en) Shaft member for hydrodynamic bearing device and its manufacturing method
JP3307182B2 (en) Sintered bearing and manufacturing method thereof
JP2716031B2 (en) Bearing and its manufacturing method
JP2007255515A (en) Oil-impregnated sintered bearing and motor
JPH09317770A (en) Oilles bearing with dynamic pressure generating mechanism and manufacture and using method for oleo-bearing
JP3900990B2 (en) Uneven wall pipe manufacturing method
JPH10238481A (en) Scroll compressor
JP2006070811A (en) Roller follower for valve system of internal combustion engine, metal bushing used for the same and method for manufacturing the roller follower

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040708

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040708

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080723

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090723

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110723

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120723

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130723

LAPS Cancellation because of no payment of annual fees