JPH09325822A - Multistage voltage generation circuit - Google Patents

Multistage voltage generation circuit

Info

Publication number
JPH09325822A
JPH09325822A JP14523296A JP14523296A JPH09325822A JP H09325822 A JPH09325822 A JP H09325822A JP 14523296 A JP14523296 A JP 14523296A JP 14523296 A JP14523296 A JP 14523296A JP H09325822 A JPH09325822 A JP H09325822A
Authority
JP
Japan
Prior art keywords
elements
voltage
resistance
switch
switch element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14523296A
Other languages
Japanese (ja)
Other versions
JP3611672B2 (en
Inventor
Masahiro Oohashi
聖弘 大橋
Hideki Ishida
秀樹 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14523296A priority Critical patent/JP3611672B2/en
Publication of JPH09325822A publication Critical patent/JPH09325822A/en
Application granted granted Critical
Publication of JP3611672B2 publication Critical patent/JP3611672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Voltage And Current In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To make voltage of various levels selectable by performing ON/OFF control of (n) pieces of switch elements and securing the overlapping of the ON period of an optional switch element and the ON period of another switch element or the ON periods of plural switch elements. SOLUTION: Six resistance elements 1 to 6 are connected in series to each other, so that five voltage levels V1 to V5 (n=5) are extracted. The number (n) of extracted voltage is equal to the number of nodes (N1 to N5) existing among the elements 1 to 6. In other words, it's enough to prepare (n-1) and (n+1) pieces of resistance elements at the least and the most respectively to extract (n) levels of voltage V1 to Vn after dividing the potential difference between voltage VCC and VSS. One of both ends of switch elements 7 to 11 is connected to each of nodes N1 to N5, and the other end of each of elements 7 to 11 is connected to each node serving as a voltage output node. The conduction can be turned on and off between both ends of each of elements 7 to 11 and also can be controlled by a control signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、二つの電位間の電
位差を分圧して多段階の電圧を生成し、そのうちの一つ
の電位を選択して出力する多段階電圧発生回路に関し、
詳しくは、元の多段階電圧の数よりも多い電圧のなかか
ら出力電圧を選択できるように改良した多段階電圧発生
回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-stage voltage generating circuit which divides a potential difference between two potentials to generate multi-stage voltages and selects and outputs one of the potentials.
More specifically, the present invention relates to an improved multi-stage voltage generation circuit that allows the output voltage to be selected from among voltages higher than the original number of multi-stage voltages.

【0002】[0002]

【従来の技術】ある種の電子回路では、内部的に電位の
異なる複数の電圧を発生し、そのうちの一つの電圧を所
定のタイミングで選択して使用することが行われる。デ
ィジタル液晶表示装置の表示電圧発生回路やディジタル
アナログ変換器、または疑似正弦波発生回路などはその
一例である。
2. Description of the Related Art In a certain electronic circuit, a plurality of voltages having different potentials are internally generated, and one of the voltages is selected and used at a predetermined timing. A display voltage generating circuit, a digital-analog converter, a pseudo sine wave generating circuit, etc. of the digital liquid crystal display device are examples thereof.

【0003】たとえば、液晶表示装置の表示電圧発生回
路では、表示階調数に応じた種類の電圧を発生するため
に、抵抗分圧を利用した多段階電圧発生回路を使用する
が、その基本的な構成は、二つの電位の間に複数の抵抗
を直列に接続し、それぞれの接続ノードに現れる電位の
異なる複数の電圧の一つをスイッチ要素を介して取り出
すようにしたもので、ディジタル入力信号のビットの組
み合わせに従って一つのスイッチ要素をオン(他はオ
フ)することにより、複数の電圧のなかから表示階調に
応じた電圧を選択して、表示パネルの液晶画素に書き込
むというものである。
For example, in a display voltage generating circuit of a liquid crystal display device, a multi-stage voltage generating circuit utilizing resistance voltage division is used to generate a voltage of a type corresponding to the number of display gradations. In this configuration, a plurality of resistors are connected in series between two potentials, and one of a plurality of different potentials appearing at each connection node is taken out through a switch element. One switch element is turned on (the other switch is turned off) according to the combination of bits, and a voltage corresponding to the display gradation is selected from a plurality of voltages and written in the liquid crystal pixel of the display panel.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、かかる
従来の多段階電圧発生回路にあっては、多段階電圧の数
とノードの数が一対一に対応していたため、たとえば、
液晶表示装置の場合には、多階調化の要求に伴ってディ
ジタル入力信号のビット数が高々1ビット増えるだけで
も、抵抗の数が2倍に増えるから、多段階電圧発生回路
の規模増大を免れないという問題点があった。
However, in such a conventional multi-stage voltage generating circuit, since the number of multi-stage voltages and the number of nodes are in a one-to-one correspondence, for example,
In the case of a liquid crystal display device, even if the number of bits of a digital input signal increases by at most 1 bit in response to the demand for multiple gradations, the number of resistors doubles, so the scale of the multi-stage voltage generation circuit must be increased. There was a problem that I could not escape.

【0005】そこで、本発明は、元の電圧の数や素子数
を増やすことなく、より多くの電圧を選択できるように
し、以て、回路規模の増大を回避することを目的とす
る。
Therefore, an object of the present invention is to make it possible to select a larger voltage without increasing the number of original voltages or the number of elements, thereby avoiding an increase in circuit scale.

【0006】[0006]

【課題を解決するための手段】上記目的は、異なる電位
を有するn個(n>1)のノードのそれぞれにn個のス
イッチ要素の各一端を接続し、該n個のスイッチ要素の
各他端を一つの電圧出力ノードに接続して構成する多段
階電圧発生回路において、前記n個のスイッチ要素のオ
ンオフを制御する制御手段を備え、該制御手段は、任意
の一つのスイッチ要素のオン期間と、該一つのスイッチ
要素以外の他の一つのスイッチ要素若しくは他の複数の
スイッチ要素のオン期間とをオーバラップさせる制御モ
ードを有する、という特徴的な事項を備えることによっ
て達成できる。
The above object is to connect one end of each of n switch elements to each of n (n> 1) nodes having different potentials, and to connect each of the n switch elements to each other. In a multi-stage voltage generation circuit configured by connecting an end to one voltage output node, a control means for controlling ON / OFF of the n switch elements is provided, and the control means is an ON period of any one switch element. And a control mode in which one switch element other than the one switch element or the ON period of a plurality of other switch elements are overlapped with each other.

【0007】これは、上記制御モードを選択すると、少
なくとも二つのスイッチ要素が共にオンする期間が生
じ、これらのスイッチ要素を介して伝えられる少なくと
も二つの電圧からn個のノードのいずれの電位にも一致
しない新たな電圧が作られるためで、この新たな電圧の
分だけ、実質的な選択電圧の数が増えるからである。
This is because, when the above control mode is selected, there is a period in which at least two switch elements are both turned on, and at least two voltages transmitted via these switch elements reach any of the potentials of the n nodes. This is because a new voltage that does not match is created, and the number of selection voltages substantially increases by the new voltage.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。図1〜図2は本発明に係る多段階電圧
発生回路の一実施例を示す図であり、抵抗分圧回路への
応用である。図1において、VCC、VSSは一方が高
電位、他方が低電位の直流電圧である。典型的には、V
CC=正電位電圧、VSS=接地電位電圧であるが、こ
れらの電位や極性に限定されない。また、一般に、抵抗
分圧回路は二つの“直流電圧”の間の任意電圧を取り出
すために用いられるが、たとえば、一方の電圧が線形的
に変化したり、非線形(階段状や指数関数的)に変化し
たりするものであってもよい。あるいは、二つの電圧の
一方若しくは双方が交流であってもよい。このように、
VCCやVSSの電位、極性及び波形は用途によって様
々であるが、本明細書では説明の便宜上、VCC=直流
の正電位電圧、VSS=接地電位電圧に統一する。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are diagrams showing an embodiment of a multi-stage voltage generating circuit according to the present invention, which is an application to a resistance voltage dividing circuit. In FIG. 1, one of VCC and VSS is a high-potential, and the other is a low-potential DC voltage. Typically V
CC = positive potential voltage, VSS = ground potential voltage, but not limited to these potentials and polarities. Generally, a resistance voltage divider circuit is used to extract an arbitrary voltage between two “DC voltages”. For example, one voltage changes linearly or is non-linear (stepwise or exponential). It may be changed to. Alternatively, one or both of the two voltages may be alternating current. in this way,
The potentials, polarities, and waveforms of VCC and VSS vary depending on the application, but in this specification, for convenience of description, VCC = DC positive potential voltage and VSS = ground potential voltage are unified.

【0009】1〜6はVCCとVSS間に直列接続され
た抵抗要素である。これらの抵抗要素1〜6は、一般的
には固有抵抗値を有する通常の抵抗素子であるが、トラ
ンジスタ等の能動素子であっても構わないし(たとえ
ば、MOSトランジスタの場合にはチャネルオン抵抗を
利用)、リアクタンスやインダクタンスを含むインピー
ダンスであっても構わない。要は、その抵抗値(直流的
な抵抗値又は交流的な抵抗値)の比を特定できるもので
あればよく、抵抗要素の物理的形状や性質は問わない。
Reference numerals 1 to 6 are resistance elements connected in series between VCC and VSS. These resistance elements 1 to 6 are generally normal resistance elements having a specific resistance value, but they may be active elements such as transistors (for example, in the case of MOS transistors, channel on resistance is Use), and impedance including reactance and inductance may be used. The point is that the ratio of the resistance values (DC-like resistance value or AC-like resistance value) can be specified, and the physical shape and properties of the resistance element do not matter.

【0010】抵抗要素1〜6の数は、抵抗分圧回路から
の電圧取り出し数(n)に依存する。図1の例では、V
1からV5までの五つの電圧(n=5)を取り出すため
に、6個の抵抗要素1〜6を直列に接続している。電圧
取り出し数(n)は、それぞれの抵抗素子1〜6の間の
ノード(N1〜N5)の数と同じである。なお、V1=
VCCとする場合にはN1はVCCとなり、抵抗要素1
を必要としない。又は、V5=VSSとする場合にはN
5はVSSとなり、抵抗要素6を必要としない。すなわ
ち、VCC〜VSSの間の電位差を分圧してn個の電圧
V1〜Vnを取り出すためには、最小でn−1個、最大
でn+1個の抵抗要素を備えればよい。言うまでもない
が、ノードとノードの間(又はノードと電源の間)の抵
抗要素が複数の抵抗要素からなる直列回路、並列回路若
しくは直並列回路であっても、常に1個とカウントす
る。
The number of resistance elements 1 to 6 depends on the number (n) of voltages taken out from the resistance voltage dividing circuit. In the example of FIG. 1, V
Six resistance elements 1 to 6 are connected in series in order to extract five voltages (n = 5) from 1 to V5. The voltage extraction number (n) is the same as the number of nodes (N1 to N5) between the resistance elements 1 to 6, respectively. Note that V1 =
In the case of VCC, N1 becomes VCC, and the resistance element 1
Does not need Or N when V5 = VSS
5 is VSS and does not require the resistive element 6. That is, in order to divide the potential difference between VCC and VSS to take out the n voltages V1 to Vn, it is sufficient to provide at least n−1 resistance elements and at most n + 1 resistance elements. Needless to say, even if the resistance element between the nodes (or between the node and the power supply) is a series circuit, a parallel circuit, or a series-parallel circuit composed of a plurality of resistance elements, it is always counted as one.

【0011】各ノードN1〜N5には、スイッチ要素7
〜11の一端がそれぞれ接続されており、スイッチ要素
7〜11の他端は、電圧出力ノードを兼ねる一つのノー
ド(便宜的にN6とする)に共通に接続されている。こ
こで、スイッチ要素7〜11に必要な要件は、第1に、
両端間の電気的導通をオンオフできることであり、第2
に、そのオンオフ動作を所定の制御信号でコントロール
できることである。たとえば、MOSトランジスタはこ
れらの要件を満たしている。MOSトランジスタは、ゲ
ート電極の電位に応じて電流チャネルが形成されたり
(オンに相当)されなかったり(オフに相当)するから
である。なお、MOSトランジスタは集積化に適してい
るから、特に、LSIに組み込む場合に好ましいが、プ
リント基板や機器に実装する場合のように充分なスペー
スを確保できる場合には、たとえば、リレースイッチや
リードスイッチなどを用いても構わない。
A switch element 7 is provided at each of the nodes N1 to N5.
1 to 11 are connected to each other, and the other ends of the switch elements 7 to 11 are commonly connected to one node (for convenience, N6) which also serves as a voltage output node. Here, the requirements necessary for the switch elements 7 to 11 are as follows:
It is possible to turn on and off the electrical continuity between both ends.
First, the on / off operation can be controlled by a predetermined control signal. For example, MOS transistors meet these requirements. This is because, in the MOS transistor, a current channel is formed (corresponding to ON) or not (corresponding to OFF) depending on the potential of the gate electrode. Since MOS transistors are suitable for integration, they are particularly preferable when they are incorporated in an LSI. However, when sufficient space can be secured such as when they are mounted on a printed circuit board or equipment, for example, a relay switch or a lead is used. A switch or the like may be used.

【0012】各スイッチ要素7〜11の制御端子(MO
Sトランジスタであればゲート電極)には、制御回路1
2から個別の制御信号S1〜S5が入力している。制御
信号S1〜S5とスイッチ要素7〜11のオンオフの関
係は、説明の便宜上、次のとおりとする。すなわち、制
御信号SiがHレベルになるとその制御信号に対応した
スイッチ要素6+iが「オン」し、同制御信号SiがL
レベルになるとその制御信号に対応したスイッチ要素6
+iが「オフ」するものとする。なお、iは制御信号の
符号に付された数字(1〜5)を表わす置換文字であ
る。たとえば、図1の一番上のノードN1につながるス
イッチ要素7に注目すると、i=1であり、スイッチ要
素の符号は6+1=7となる。
Control terminals (MO of each switch element 7 to 11)
If it is an S-transistor, the control circuit 1
The individual control signals S1 to S5 are input from No. 2. The relationship between the control signals S1 to S5 and the on / off states of the switch elements 7 to 11 is as follows for convenience of description. That is, when the control signal Si becomes H level, the switch element 6 + i corresponding to the control signal is turned “on”, and the control signal Si becomes L level.
Switch element 6 corresponding to the control signal when the level reaches
+ I shall be "off". It should be noted that i is a substitution character that represents a number (1 to 5) attached to the sign of the control signal. For example, focusing on the switch element 7 connected to the top node N1 in FIG. 1, i = 1 and the switch element code is 6 + 1 = 7.

【0013】このような構成において、SiをHレベル
にすると、スイッチ要素6+iがオンし、そのスイッチ
要素を介してノードNiの電圧ViがノードN6から取
り出される。OUTはN6から取り出される出力電圧で
あり、この場合、OUT=Viである。今、制御信号S
1〜S5を一つずつ順次にHレベルにすること、すなわ
ち、一つの制御信号がHレベルのときに、残りの制御信
号がすべてLレベルになるように制御することを考え
る。図2(a)は、この場合のOUTの電位変化を示す
グラフである。グラフでは、時間の経過に伴ってOUT
の電位が段階的に上昇している。これは、「S5」→
「S4」→「S3」→「S2」→「S1」の順番でHレ
ベルにしたからである。このように、常に一つの制御信
号だけをHレベルにした場合、言い換えれば、常に一つ
のスイッチ要素だけをオンにした場合には、ノードと同
じ数の電位(V1〜V5)しか得られないが、以下のよ
うな特徴的な制御モードを備えることにより、ノード数
以上の電位が得られる。
In such a structure, when Si is set to the H level, the switch element 6 + i is turned on, and the voltage Vi of the node Ni is taken out from the node N6 via the switch element. OUT is an output voltage taken out from N6, and OUT = Vi in this case. Now the control signal S
It is considered that 1 to S5 are sequentially set to H level one by one, that is, when one control signal is at H level, the remaining control signals are all set to L level. FIG. 2A is a graph showing the potential change of OUT in this case. In the graph, OUT goes out as time passes.
The potential of is rising in steps. This is "S5" →
This is because the H level is set in the order of “S4” → “S3” → “S2” → “S1”. As described above, when only one control signal is always set to the H level, in other words, when only one switch element is always turned on, only the same number of potentials (V1 to V5) as the node can be obtained. By providing the following characteristic control modes, a potential higher than the number of nodes can be obtained.

【0014】かかる制御モードの基本形は、上記の順番
を「S5」→「S5_4」→「S4」→「S4_3」→
「S3」→「S3_2」→「S2」→「S2_1」→
「S1」と変形させるというものである。アンダースコ
ア(_)付の符号は、その両側の制御信号のHレベル期
間の重なりを表現したもので、実際の制御信号はあくま
でもその両側の信号(たとえば、S5_4の場合にはS
5とS4)である。
The basic form of the control mode is as follows: "S5" → "S5_4" → "S4" → "S4_3" →
"S3" → "S3_2" → "S2" → "S2_1" →
It is transformed into "S1". The code with an underscore (_) expresses the overlap of the H level periods of the control signals on both sides thereof, and the actual control signal is the signal on both sides thereof (for example, in the case of S5_4, S
5 and S4).

【0015】S5_4の期間では、二つの制御信号S
5、S4が共にHレベルになる。このため、隣り合う二
つのスイッチ要素10、11がオンし、OUT側のノー
ドN6はこれらのスイッチ要素10、11を通して二つ
のノードN4、N5に接続される。このときのノードN
6の電位(OUTの電位)は、ノードN4の電位(V
4)とノードN5の電位(V5)の間の電位、すなわち
V5<OUT<V4になる。
During the period of S5_4, two control signals S
Both 5 and S4 become H level. Therefore, the two adjacent switch elements 10 and 11 are turned on, and the node N6 on the OUT side is connected to the two nodes N4 and N5 through these switch elements 10 and 11. Node N at this time
The potential of 6 (potential of OUT) is the potential of node N4 (V
4) and the potential (V5) of the node N5, that is, V5 <OUT <V4.

【0016】このことを検証する。S5_4の期間で
は、ノードN4とノードN5につながる二つのスイッチ
要素10、11が共にオンするから、ノードN4とノー
ドN5の間(抵抗要素5の両端)がショート状態にな
る。今、VCC−VSS間の6個の抵抗要素1〜6の値
をR〔Ω〕とすると、この場合のVCC−VSS間の合
成抵抗値は、抵抗要素5を除いた5個分の加算値(5
R)であり、VCC=正極性電位、VSS=接地電位
(0V)であるから、この場合のOUTの電位は、次式
で与えられる。なお、OUTの添え字は期間を表わして
いる。
This will be verified. During the period of S5_4, the two switch elements 10 and 11 connected to the node N4 and the node N5 are both turned on, so that the node N4 and the node N5 (both ends of the resistance element 5) are short-circuited. Now, assuming that the values of the six resistance elements 1 to 6 between VCC and VSS are R [Ω], the combined resistance value between VCC and VSS in this case is the sum of the five resistance values excluding the resistance element 5. (5
R), VCC = positive potential, and VSS = ground potential (0 V), the potential of OUT in this case is given by the following equation. The subscript of OUT represents the period.

【0017】OUT(5_4)=(VCC/5R)×R 同一の条件で、S5及びS4の(Hレベル期間の)OU
Tを求めると、 OUT(5) =(VCC/6R)×R OUT(4) =(VCC/6R)×2R ここで、簡単化のために、R=1Ω、VCC=6Vと仮
定すると、 OUT(5_4)=(6〔V〕/5〔Ω〕)×1〔Ω〕=
1.2〔V〕 OUT(5) =(6〔V〕/6〔Ω〕)×1〔Ω〕=
1.0〔V〕 OUT(4) =(6〔V〕/6〔Ω〕)×2〔Ω〕=
2.0〔V〕 となり、OUT(5)<OUT(5_4)<OUT(4)の関係に
なることが分かる。この関係は、S4とS3の間、S3
とS2の間、S2とS1の間でも変わらない。参考まで
に、上記と同一の条件で算出した実際の電圧値を列挙す
る。 S4とS3の間 OUT(4_3)=(6〔V〕/5〔Ω〕)×2〔Ω〕=
2.4〔V〕 OUT(4) =(6〔V〕/6〔Ω〕)×2〔Ω〕=
2.0〔V〕 OUT(3) =(6〔V〕/6〔Ω〕)×3〔Ω〕=
3.0〔V〕 ∴ OUT(4)<OUT(4_3)<OUT(3) S3とS2の間 OUT(3_2)=(6〔V〕/5〔Ω〕)×3〔Ω〕=
3.6〔V〕 OUT(3) =(6〔V〕/6〔Ω〕)×3〔Ω〕=
3.0〔V〕 OUT(2) =(6〔V〕/6〔Ω〕)×4〔Ω〕=
4.0〔V〕 ∴ OUT(3)<OUT(3_2)<OUT(2) S2とS1の間 OUT(2_1)=(6〔V〕/5〔Ω〕)×4〔Ω〕=
4.8〔V〕 OUT(2) =(6〔V〕/6〔Ω〕)×4〔Ω〕=
4.0〔V〕 OUT(1) =(6〔V〕/6〔Ω〕)×5〔Ω〕=
5.0〔V〕 ∴ OUT(2)<OUT(2_1)<OUT(1) このように、本実施例によれば、ノードN1〜N5の五
つの電位V1〜V5に、さらにOUT(5_4)、OUT
(4_3)、OUT(3_2)及びOUT(2_1)の四つの電位を加
えた計九つの電位のなかから一つの電位を選択できる
(図2(b)参照)。これに対して、抵抗分圧だけで九
つの電位を生成するには、上述したように、最大でn+
1個の抵抗要素を備えなければならず、この場合、n=
9であるから、最大で10個の抵抗要素を必要とする
が、本実施例では抵抗の数をまったく増やさずに、しか
も、各スイッチ要素7〜11の制御を工夫するという簡
単な手続だけで、実質的な選択電圧の数を増加すること
ができるという従来技術にないきわめて有益な技術を提
供できる。
OUT (5_4) = (VCC / 5R) × R Under the same condition, OU of S5 and S4 (in H level period)
When T is calculated, OUT (5) = (VCC / 6R) × R OUT (4) = (VCC / 6R) × 2R Here, for the sake of simplicity, if R = 1Ω and VCC = 6V, then OUT (5_4) = (6 [V] / 5 [Ω]) x 1 [Ω] =
1.2 [V] OUT (5) = (6 [V] / 6 [Ω]) × 1 [Ω] =
1.0 [V] OUT (4) = (6 [V] / 6 [Ω]) × 2 [Ω] =
It is 2.0 [V], and it is understood that the relationship of OUT (5) <OUT (5_4) <OUT (4) is satisfied. This relationship is between S4 and S3, S3
Between S2 and S2, and between S2 and S1. For reference, the actual voltage values calculated under the same conditions as above are listed. Between S4 and S3 OUT (4_3) = (6 [V] / 5 [Ω]) × 2 [Ω] =
2.4 [V] OUT (4) = (6 [V] / 6 [Ω]) × 2 [Ω] =
2.0 [V] OUT (3) = (6 [V] / 6 [Ω]) × 3 [Ω] =
3.0 [V] ∴ OUT (4) <OUT (4_3) <OUT (3) Between S3 and S2 OUT (3_2) = (6 [V] / 5 [Ω]) × 3 [Ω] =
3.6 [V] OUT (3) = (6 [V] / 6 [Ω]) × 3 [Ω] =
3.0 [V] OUT (2) = (6 [V] / 6 [Ω]) × 4 [Ω] =
4.0 [V] ∴ OUT (3) <OUT (3_2) <OUT (2) Between S2 and S1 OUT (2_1) = (6 [V] / 5 [Ω]) × 4 [Ω] =
4.8 [V] OUT (2) = (6 [V] / 6 [Ω]) × 4 [Ω] =
4.0 [V] OUT (1) = (6 [V] / 6 [Ω]) × 5 [Ω] =
5.0 [V] ∴ OUT (2) <OUT (2_1) <OUT (1) As described above, according to the present embodiment, the five potentials V1 to V5 of the nodes N1 to N5 are further OUT (5_4). , OUT
One potential can be selected from a total of nine potentials including four potentials (4_3) , OUT (3_2) and OUT (2_1) (see FIG. 2B). On the other hand, in order to generate nine potentials only by resistance voltage division, as described above, at most n +
One resistance element must be provided, where n =
Since it is 9, a maximum of 10 resistance elements are required. However, in this embodiment, the number of resistances is not increased at all, and a simple procedure of devising control of each switch element 7 to 11 is used. Thus, it is possible to provide a very useful technique that is not available in the prior art in that the number of selection voltages can be substantially increased.

【0018】なお、実施例では、隣接する二つのスイッ
チ要素のオン期間をオーバラップさせているが、これに
限らない。三つ以上のスイッチ要素のオン期間をオーバ
ラップさせてもよいし、あるいは、隣接しないスイッチ
要素のオン期間をオーバラップさせてもよい。要は、任
意の一つのスイッチ要素のオン期間と、その一つのスイ
ッチ要素以外の他の一つのスイッチ要素若しくは他の複
数のスイッチ要素のオン期間とをオーバラップさせれば
よい。
Although the ON periods of two adjacent switch elements are overlapped in the embodiment, the present invention is not limited to this. The ON periods of three or more switch elements may overlap, or the ON periods of non-adjacent switch elements may overlap. The point is that the ON period of any one switch element and the ON period of one other switch element or a plurality of other switch elements other than the one switch element may be overlapped.

【0019】図3〜図5は本発明に係る多段階電圧発生
回路の他の実施例を示す図であり、疑似正弦波発生回路
への応用である。なお、疑似正弦波とは、理想的な正弦
波でなくても概ね正弦波に近い波形であれば充分な用途
(電話端末のトーン発生回路など)に用いられる波形
(サインカーブに沿って段階的に変化する波形)であ
る。
3 to 5 are views showing another embodiment of the multi-stage voltage generating circuit according to the present invention, which is an application to a pseudo sine wave generating circuit. It should be noted that the pseudo sine wave is a waveform used for a sufficient purpose (a tone generation circuit of a telephone terminal, etc.) (stepwise along a sine curve) as long as it is a waveform close to a sine wave even if it is not ideal. Waveform that changes to).

【0020】図3において、20は差動増幅器である。
差動増幅器20の非反転入力(+入力)は接地電位に接
続され、反転入力(−入力)は7個のスイッチ要素21
〜27の一端に接続されている。それぞれのスイッチ要
素21〜27の各他端は、抵抗分圧回路28の各ノード
N11〜N17に接続(但し、右端のスイッチ要素27
の他端だけは抵抗要素29を介して)されており、抵抗
分圧回路28は、各ノードN11〜N17の間に接続さ
れた抵抗要素30〜35、及び、左端のノードN11と
電位切替え用スイッチ要素36との間に接続された抵抗
要素37とから構成されている。
In FIG. 3, 20 is a differential amplifier.
The non-inverting input (+ input) of the differential amplifier 20 is connected to the ground potential, and the inverting input (− input) is seven switch elements 21.
Is connected to one end of ~ 27. The other ends of the respective switch elements 21 to 27 are connected to the respective nodes N11 to N17 of the resistance voltage dividing circuit 28 (however, the right end switch element 27
The other end is connected via the resistance element 29), and the resistance voltage dividing circuit 28 uses the resistance elements 30 to 35 connected between the nodes N11 to N17 and the node N11 at the left end for potential switching. The resistor element 37 is connected between the switch element 36 and the switch element 36.

【0021】38は制御回路であり、この制御回路38
は、7個のスイッチ要素21〜27のそれぞれに対応し
た制御信号S11〜S17と電位切り替え用スイッチ要
素36に対応した制御信号Scとを発生するもので、7
個のスイッチ要素21〜27は、対応する制御信号がH
レベルのときにオンし、電位切替え用スイッチ要素36
は、制御信号ScがHレベルのときに所定の高電位電圧
Hiを選択し、Lレベルのときに所定の低電位電圧V
LOWを選択する。
Reference numeral 38 denotes a control circuit, and this control circuit 38
Generates the control signals S11 to S17 corresponding to the seven switch elements 21 to 27 and the control signal Sc corresponding to the potential switching switch element 36, respectively.
The corresponding control signal of each of the switch elements 21 to 27 is H.
Switch element 36 that turns on at the level and switches the potential
Selects a predetermined high potential voltage V Hi when the control signal Sc is at the H level, and a predetermined low potential voltage V Hi when the control signal Sc is at the L level.
Select LOW .

【0022】このような構成において、説明の簡単化の
ために、すべての抵抗要素の抵抗値を「R」とし、Sc
=S11=Hレベル、S12〜S17=Lレベルとする
と、図3の差動増幅器20は、抵抗要素37の抵抗値
(R)を入力抵抗、抵抗要素30〜抵抗要素35の直列
合成抵抗値(6R)をフィードバック抵抗とする反転増
幅回路を構成するから、その増幅率ANFは、次式で与
えられる。
In such a structure, for simplification of description, the resistance values of all the resistance elements are set to "R", and Sc
= S11 = H level and S12 to S17 = L level, the differential amplifier 20 of FIG. 3 uses the resistance value (R) of the resistance element 37 as the input resistance, and the series combined resistance value of the resistance element 30 to the resistance element 35 ( 6R) constitutes an inverting amplifier circuit having a feedback resistance, the amplification factor ANF is given by the following equation.

【0023】ANF=−6R/R=−6 同じ条件で、S12〜S17をそれぞれHレベルにする
と、Sc=S12=Hレベルの場合の増幅率ANFは、 ANF=−5R/2R=−2.5 Sc=S13=Hレベルの場合の増幅率ANFは、 ANF=−4R/3R≒1.333 Sc=S14=Hレベルの場合の増幅率ANFは、 ANF=−3R/4R=−0.75 Sc=S15=Hレベルの場合の増幅率ANFは、 ANF=−2R/5R=−0.4 Sc=S16=Hレベルの場合の増幅率ANFは、 ANF=−R/6R≒−0.166 Sc=S17=Hレベルの場合の増幅率ANFは、 ANF=−R/7R≒−0.142 となる。
ANF = -6R / R = -6 Under the same conditions, if S12 to S17 are respectively set to H level, the amplification factor ANF in the case of Sc = S12 = H level is ANF = -5R / 2R = -2. 5 Amplification factor ANF in the case of Sc = S13 = H level is ANF = -4R / 3R≈1.333 Amplification factor ANF in the case of Sc = S14 = H level is ANF = -3R / 4R = -0.75 The amplification factor ANF in the case of Sc = S15 = H level is ANF = -2R / 5R = -0.4 The amplification factor ANF in the case of Sc = S16 = H level is ANF = -R / 6R≈-0.166 When Sc = S17 = H level, the amplification factor ANF is ANF = −R / 7R≈−0.142.

【0024】すなわち、7個のスイッチ要素21〜27
を順次にHレベルにすることにより、差動増幅器20の
増幅率ANFを「−6倍」から「−0.142倍」へと
7段階に変化させることができる。ANFの変化段数と
スイッチ要素の数及びノードの数は同じであり、これら
の数は発明の要旨に記載のnに相当する。図4(a)
は、7個のスイッチ要素21〜27を順次にオンさせる
(常に1個だけをオンさせる)場合の制御信号のタイミ
ングチャート、同図(b)はその場合の疑似正弦波(V
SIN )の波形例である。Sc=Hレベルの期間が正の半
サイクル、Sc=Lレベルの期間が負の半サイクルであ
る。S11〜S17のタイミングに着目すると、一つの
制御信号(たとえばS11の拡大波形参照)の立ち下が
りと同時に次順の制御信号(たとえばS12の拡大波形
参照)が立ち上がっている。すなわち、隣接する制御信
号のHレベル期間がオーバラップしていない。このよう
な制御信号では、ノード数(n)と同数のANF段数し
か得られないため、疑似正弦波(VSIN )の段差が大き
く、したがって、波形が粗く、たとえば、電話端末のト
ーン発生回路に適用した場合に疑似正弦波の繰返し周波
数以外の高調波ノイズが目立つという不都合がある。こ
れを解決するには単純に「n」を増やせばよいが、回路
規模の増大を招くから好ましくない。
That is, the seven switch elements 21 to 27
By sequentially setting the H level to H level, the amplification factor ANF of the differential amplifier 20 can be changed from "-6 times" to "-0.142 times" in seven steps. The number of change stages of the ANF is the same as the number of switch elements and the number of nodes, and these numbers correspond to n described in the gist of the invention. Figure 4 (a)
Is a timing chart of the control signal when seven switch elements 21 to 27 are sequentially turned on (only one is turned on at all times), and FIG.
SIN ) waveform example. The period of Sc = H level is a positive half cycle, and the period of Sc = L level is a negative half cycle. Focusing on the timing of S11 to S17, the next control signal (see, for example, the enlarged waveform of S12) rises at the same time as the fall of one control signal (see, for example, the enlarged waveform of S11). That is, the H level periods of adjacent control signals do not overlap. With such a control signal, since only the same number of ANF stages as the number of nodes (n) can be obtained, the step of the pseudo sine wave (V SIN ) is large, and therefore the waveform is rough, for example, in the tone generation circuit of a telephone terminal. When applied, there is the inconvenience that harmonic noise other than the repetition frequency of the pseudo sine wave becomes noticeable. To solve this, simply increasing "n" is not preferable because it causes an increase in circuit scale.

【0025】そこで、本実施例では、図5(a)に示す
ように、隣り合う二つのスイッチ要素に対応するそれぞ
れの制御信号のHレベル期間をオーバラップさせること
により、回路規模の増大を招くことなく、ANFの変化
段数を「n」以上にし、段差の少ない滑らかな疑似正弦
波(VSIN )を得ている。因みに、擬似正弦波発生回路
における各抵抗要素の値は、正弦波の空間角に対応させ
た適正な値でなければならない。以下にその適正値の一
例を示す。
Therefore, in this embodiment, as shown in FIG. 5 (a), the H level periods of the control signals corresponding to the two adjacent switch elements are overlapped with each other, thereby increasing the circuit scale. Without changing the number of stages of ANF change to "n" or more, a smooth pseudo sine wave (V SIN ) with few steps is obtained. Incidentally, the value of each resistance element in the pseudo sine wave generation circuit must be an appropriate value corresponding to the spatial angle of the sine wave. An example of the appropriate value is shown below.

【0026】 抵抗要素29 → 30KΩ 抵抗要素30 → 2.6KΩ 抵抗要素31 → 8.17KΩ 抵抗要素32 → 14.966KΩ 抵抗要素33 → 24.264KΩ 抵抗要素34 → 38.319KΩ 抵抗要素35 → 61.681KΩ 抵抗要素37 → 150KΩ なお、以上の疑似正弦波発生回路は反転増幅型である
が、非反転増幅型でも同様である。図6は非反転型の例
であり、図3との相違は、電位切り替え用スイッチ要素
36を差動増幅器20の非反転入力(+入力)に接続し
ている点、差動増幅器20の反転入力(−入力)をn個
のスイッチ要素21〜27を介してn+1個の抵抗素子
41〜48からなる抵抗分圧回路49の7個のノードN
11〜N17に接続している点、及び、抵抗分圧回路4
9の両端を差動増幅器20の出力と接地電位に接続して
いる点である。制御信号S11〜S17のHレベル期間
をオーバラップさせることにより、増幅率ANFを
「n」以上にすることができ、反転型と同様に滑らかな
疑似正弦波が得られる。
Resistance element 29 → 30 KΩ resistance element 30 → 2.6 KΩ resistance element 31 → 8.17 KΩ resistance element 32 → 14.966 KΩ resistance element 33 → 24.264 KΩ resistance element 34 → 38.319 KΩ resistance element 35 → 61.681 KΩ Resistance element 37 → 150 KΩ The pseudo sine wave generating circuit described above is an inverting amplification type, but the same applies to a non-inverting amplification type. 6 is an example of the non-inverting type, and the difference from FIG. 3 is that the potential switching switch element 36 is connected to the non-inverting input (+ input) of the differential amplifier 20, that is, the inverting of the differential amplifier 20. The seven nodes N of the resistance voltage dividing circuit 49 including the input (-input) through the n switch elements 21 to 27 and the n + 1 resistance elements 41 to 48.
11 to N17, and the resistance voltage dividing circuit 4
9 is connected to the output of the differential amplifier 20 and the ground potential. By overlapping the H level periods of the control signals S11 to S17, the amplification factor ANF can be set to "n" or more, and a smooth pseudo sine wave can be obtained as in the inverting type.

【0027】[0027]

【発明の効果】本発明によれば、元の電圧の数や素子数
を増やすことなく、より多くの電圧を選択できるように
なるから、たとえば、ディジタル液晶表示装置の表示電
圧発生回路やディジタルアナログ変換器、または疑似正
弦波発生回路などの性能向上を、コストをかけずに簡便
に達成できるきわめて有益な技術を提供できる。
According to the present invention, more voltages can be selected without increasing the number of original voltages or the number of elements. Therefore, for example, a display voltage generating circuit or a digital analog circuit of a digital liquid crystal display device can be selected. It is possible to provide a very useful technique that can easily achieve performance improvement of a converter, a pseudo sine wave generation circuit, or the like at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例の構成図である。FIG. 1 is a configuration diagram of one embodiment.

【図2】一実施例の波形図である。FIG. 2 is a waveform diagram of one embodiment.

【図3】他の実施例の構成図(その1)である。FIG. 3 is a configuration diagram (1) of another embodiment.

【図4】他の実施例の波形図(オーバラップなし)であ
る。
FIG. 4 is a waveform diagram of another embodiment (without overlap).

【図5】他の実施例の波形図(オーバラップあり)であ
る。
FIG. 5 is a waveform diagram (with overlap) of another embodiment.

【図6】他の実施例の構成図(その2)である。であ
る。
FIG. 6 is a configuration diagram (2) of another embodiment. It is.

【符号の説明】[Explanation of symbols]

N1〜N5:n個のノード N6:電圧出力ノード 7〜11:スイッチ要素 12:制御回路(制御手段) N11〜N17:n個のノード 21〜27:スイッチ要素 38:制御回路(制御手段) N1 to N5: n nodes N6: voltage output node 7 to 11: switch element 12: control circuit (control means) N11 to N17: n number of nodes 21 to 27: switch element 38: control circuit (control means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】異なる電位を有するn個(n>1)のノー
ドのそれぞれにn個のスイッチ要素の各一端を接続し、
該n個のスイッチ要素の各他端を一つの電圧出力ノード
に接続して構成する多段階電圧発生回路において、 前記n個のスイッチ要素のオンオフを制御する制御手段
を備え、 該制御手段は、 任意の一つのスイッチ要素のオン期間と、該一つのスイ
ッチ要素以外の他の一つのスイッチ要素若しくは他の複
数のスイッチ要素のオン期間とをオーバラップさせる制
御モードを有することを特徴とする多段階電圧発生回
路。
1. One end of each of n switch elements is connected to each of n (n> 1) nodes having different potentials,
In a multi-stage voltage generation circuit configured by connecting the other ends of the n switch elements to one voltage output node, a control means for controlling ON / OFF of the n switch elements is provided, the control means comprising: A multi-step having a control mode for overlapping an ON period of any one switch element and an ON period of another switch element or a plurality of other switch elements other than the one switch element Voltage generation circuit.
JP14523296A 1996-06-07 1996-06-07 Multi-stage voltage generator Expired - Lifetime JP3611672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14523296A JP3611672B2 (en) 1996-06-07 1996-06-07 Multi-stage voltage generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14523296A JP3611672B2 (en) 1996-06-07 1996-06-07 Multi-stage voltage generator

Publications (2)

Publication Number Publication Date
JPH09325822A true JPH09325822A (en) 1997-12-16
JP3611672B2 JP3611672B2 (en) 2005-01-19

Family

ID=15380401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14523296A Expired - Lifetime JP3611672B2 (en) 1996-06-07 1996-06-07 Multi-stage voltage generator

Country Status (1)

Country Link
JP (1) JP3611672B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767953B2 (en) 2007-06-01 2010-08-03 Panasonic Corporation Voltage generator, analog-to-digital converter, and image sensor system
WO2012147448A1 (en) * 2011-04-25 2012-11-01 アイシン・エィ・ダブリュ株式会社 Discharge control circuit
WO2013001740A1 (en) * 2011-06-30 2013-01-03 三洋電機株式会社 Inverter and power converter mounted therewith
WO2016031127A1 (en) * 2014-08-28 2016-03-03 株式会社ソシオネクスト Bias generation circuit, voltage generation circuit, communication device, and radar device
CN115469295A (en) * 2022-11-02 2022-12-13 北醒(北京)光子科技有限公司 Laser radar receiving circuit, analog front end, laser radar and signal processing method
JP2023132111A (en) * 2022-03-10 2023-09-22 ディー・クルー・テクノロジーズ株式会社 time gain control circuit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041205A (en) * 2009-08-18 2011-02-24 Panasonic Corp Voltage generation circuit, digital/analog converter, lamp wave generation circuit, analog/digital converter, image sensor system and voltage generation method
DE102018218785A1 (en) 2018-11-05 2020-05-07 Volkswagen Aktiengesellschaft Circuit unit and method for controlling load currents

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767953B2 (en) 2007-06-01 2010-08-03 Panasonic Corporation Voltage generator, analog-to-digital converter, and image sensor system
WO2012147448A1 (en) * 2011-04-25 2012-11-01 アイシン・エィ・ダブリュ株式会社 Discharge control circuit
JP2012231556A (en) * 2011-04-25 2012-11-22 Aisin Aw Co Ltd Discharge control circuit
WO2013001740A1 (en) * 2011-06-30 2013-01-03 三洋電機株式会社 Inverter and power converter mounted therewith
WO2016031127A1 (en) * 2014-08-28 2016-03-03 株式会社ソシオネクスト Bias generation circuit, voltage generation circuit, communication device, and radar device
JPWO2016031127A1 (en) * 2014-08-28 2017-06-22 株式会社ソシオネクスト Bias generation circuit, voltage generation circuit, communication device, and radar device
US9996099B2 (en) 2014-08-28 2018-06-12 Socionext, Inc. Bias generator circuit, voltage generator circuit, communications device, and radar device
JP2023132111A (en) * 2022-03-10 2023-09-22 ディー・クルー・テクノロジーズ株式会社 time gain control circuit
CN115469295A (en) * 2022-11-02 2022-12-13 北醒(北京)光子科技有限公司 Laser radar receiving circuit, analog front end, laser radar and signal processing method

Also Published As

Publication number Publication date
JP3611672B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
JP3594125B2 (en) DA converter and liquid crystal driving device using the same
JP4644760B2 (en) DA converter
US7006027B2 (en) Digital-to-analog converter with secondary resistor string
KR970017597A (en) Buffer circuit with variable output impedance
EP0631269A2 (en) Liquid crystal driving power supply circuit
JP2002258816A (en) Liquid crystal driving
KR19990006574A (en) Digital-to-analog converters, circuit boards, electronic devices and liquid crystal displays
US20050206602A1 (en) Driving voltage generation device and method for controlling driving voltage generation device
JPH09325822A (en) Multistage voltage generation circuit
US20070008203A1 (en) Digital-to-analog converter with short integration time constant
US20030011558A1 (en) Integrated circuit for driving liquid crystal
JP2001136069A (en) Digital/analog conversion circuit
US20080224909A1 (en) D/a converter
US8384641B2 (en) Amplifier circuit and display device including same
TWI252462B (en) Image display apparatus having gradation potential generating circuit
JPH10142582A (en) Liquid crystal gray scale voltage generation circuit
JP4493681B2 (en) Liquid crystal drive device
JP3691034B2 (en) Signal output device and liquid crystal display device using the same
JP3088393B2 (en) Resistor string type D / A converter
CN109523964B (en) Selection circuit, digital-to-analog converter and display device
JP2680940B2 (en) D / A converter
KR100356813B1 (en) Current cell type digital-analog converter
JP2833070B2 (en) Track / hold circuit
JPH10215179A (en) D/a converter
JP3311380B2 (en) Limiter circuit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040526

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041020

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term