JPH09323300A - Substrate dividing method - Google Patents

Substrate dividing method

Info

Publication number
JPH09323300A
JPH09323300A JP14554896A JP14554896A JPH09323300A JP H09323300 A JPH09323300 A JP H09323300A JP 14554896 A JP14554896 A JP 14554896A JP 14554896 A JP14554896 A JP 14554896A JP H09323300 A JPH09323300 A JP H09323300A
Authority
JP
Japan
Prior art keywords
substrate
groove
light
absorbing material
dividing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14554896A
Other languages
Japanese (ja)
Other versions
JP3816147B2 (en
Inventor
Atsushi Ichihara
淳 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP14554896A priority Critical patent/JP3816147B2/en
Publication of JPH09323300A publication Critical patent/JPH09323300A/en
Application granted granted Critical
Publication of JP3816147B2 publication Critical patent/JP3816147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make dicing performable with small cutting allowance without receiving any restriction of this cutting allowance due to the edge width of a rotary blade and also the nonlinear dicing achievable as well as to make any damage to a divided substrate so as to get off with smallness in an easy manner, in regard to a dividing method of brittle substrates such as a glass substrate, a ceramic substrate, a silicon wafer, a compound semiconductor wafer or the like, especially a substrate dividing method dividing a semiconductor wafer, where plural pieces of elements are set up, and an optical element substrate into each individual element unit. SOLUTION: A groove 12 is formed in the surface of a substrate, putting a photoabsorber 15 provided with an optical characteristic to absorb a specified wavelength of light into a bottom part of this groove 12, and then a laser beam 16 is irradiated and it is absorbed in the photoabsorber 15 on the bottom part of the groove 12, through which the substrate 10 is divided along the groove 12 by the volumetric heat expansion of the photoabsorber 15 and the vicinity of the bottom part at that time. In brief, a medium absorbing, for example, a laser beam and an infrared ray is reapplied to the surface of a brittle substrate with light permeability, whereby the substrate is divided into pieces by way of making the medium absorb the light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はガラス基板、セラミ
ック基板、シリコンウエハ、化合物半導体ウエハ等の脆
性基板の分割方法に関し、殊に複数の素子が配置された
半導体ウエハや光学素子基板を個別の素子単位に分割す
る基板分割方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dividing a brittle substrate such as a glass substrate, a ceramic substrate, a silicon wafer, a compound semiconductor wafer, etc., and particularly to a semiconductor wafer having a plurality of elements arranged thereon or an optical element substrate as individual elements. The present invention relates to a board dividing method for dividing into units.

【0002】[0002]

【従来の技術】従来より、例えば半導体ウエハをチップ
やペレット等の素子単位に分離、分割する方法として、
回転ブレードを用いたダイサーによってダイシング溝を
形成し、その溝に沿ってクラッキングする方法が一般的
である(特開昭51ー28754号公報、特開昭56ー
135007号公報等参照)。
2. Description of the Related Art Conventionally, as a method of separating and dividing a semiconductor wafer into element units such as chips and pellets, for example,
Generally, a dicing groove is formed by a dicer using a rotating blade, and cracking is performed along the groove (see JP-A-51-28754, JP-A-56-135007, etc.).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、一般
に、ダイサーにはダイヤモンド砥石製ブレードが使用さ
れているが、ダイシング溝の幅がブレード幅で規制され
るため、50μm以上の切り代を必要として、ウエハ全
体に占めるダイシング領域の面積が大きくなりウエハ1
枚あたりのチップ取れ数の向上を妨げていた。逆に幅狭
のブレードを用いると横方向にマイクロクラックが生じ
易くなるという問題があった。
However, although a diamond grindstone blade is generally used in the dicer, the width of the dicing groove is regulated by the blade width, so that a cutting margin of 50 μm or more is required and The area of the dicing area occupying the whole becomes large and the wafer 1
It was hindering the improvement in the number of chips taken per sheet. Conversely, if a narrow blade is used, there is a problem that microcracks tend to occur in the lateral direction.

【0004】また、レーザダイオードの製造において
は、図5に示すように、基板ウエハ50に各レーザダイ
オード素子51を形成し、その各素子の活性層53をエ
ッチングによって露出させ反射面を形成した後、そのエ
ッチング溝底面の所定箇所55をダイヤモンドブレード
54によりカットして所定方向56にそって素子毎に分
割していた。この場合、ブレード54の刃幅が該エッチ
ング溝程度あるため、素子角部に当たるのを避けて反射
面から距離Tだけ離れた溝底面の中央をカットしている
が、該反射面から射出されるレーザ光Lが距離Tの突出
部分に反射して干渉を起こしてしまうという問題を生じ
ていた。勿論、一点鎖線で示すように、素子端面の近傍
までカット位置を近づけるのは素子端面を削ることにな
り事実上無理であった。さらに、分割時に破片が飛び散
って素子の反射面を傷付けたり、端面に破片が付着した
りして所定の反射率を得ることができなかった。殊に、
最近青色レーザダイオード製造に使用されようとしてい
るサファイア(Al23基板は大きいモース硬度9
(参考:ダイヤモンドは硬度10)をもつため、機械的
切断力により分離するとクラックが発生しやすく上記ダ
イサーによるダイシングを行うことは極めて困難であっ
た。
In manufacturing a laser diode, as shown in FIG. 5, after forming each laser diode element 51 on a substrate wafer 50 and exposing an active layer 53 of each element by etching to form a reflecting surface. A predetermined portion 55 on the bottom surface of the etching groove was cut by a diamond blade 54 and divided into elements along a predetermined direction 56. In this case, since the blade width of the blade 54 is about the etching groove, the center of the groove bottom which is separated by a distance T from the reflection surface is avoided while avoiding the corner of the element, but is emitted from the reflection surface. There has been a problem that the laser light L is reflected on a protruding portion of the distance T and causes interference. Of course, as shown by the one-dot chain line, it is practically impossible to bring the cut position closer to the vicinity of the element end face because the element end face is cut. Furthermore, the fragments cannot be scattered at the time of division to damage the reflection surface of the element, or the fragments adhere to the end faces, so that a predetermined reflectance cannot be obtained. In particular,
Recently sapphire that it is going to be used for the blue laser diode manufacturing (Al2 O 3) substrate is greater Mohs hardness 9
(Reference: Since diamond has a hardness of 10), when it is separated by a mechanical cutting force, cracks are likely to occur and it is extremely difficult to perform dicing with the above dicer.

【0005】しかも、従来の回転ブレードによるダイシ
ングは通常直線的な溝を形成するものであり、矩形の分
割形状に限られるため、直角方向と異なるジグザグなへ
き開方位にそって非直線的にダイシングする場合には適
さなかった。ところで、これらの脆性基板にダイサーの
みによるダイシングを行うと、ウエハクラッキングが発
生する点につき、予め半導体ウエハの表面にペレット分
割のダイシング溝を浅く形成しておき、ついでその溝に
水を注入して低温固化させそのときの体積膨張でウエハ
を分割する方法が提案されている(特開昭57ー713
7号公報等参照)。しかし、この場合低温固化用の複雑
な設備を必要とし、また低温固化処理によってウエハ全
体に冷却ダメージを与える恐れがあった。
Moreover, the conventional dicing with a rotary blade usually forms a linear groove and is limited to a rectangular divided shape. Therefore, dicing is performed non-linearly along a zigzag cleavage direction different from the orthogonal direction. It wasn't the case. By the way, if dicing is performed on these brittle substrates only with a dicer, a dicing groove for dividing the pellet is formed in advance on the surface of the semiconductor wafer to a point where wafer cracking occurs, and then water is injected into the groove. A method has been proposed in which a wafer is solidified at a low temperature and the wafer is divided by volume expansion at that time (Japanese Patent Laid-Open No. 57-713).
No. 7). However, in this case, complicated equipment for low-temperature solidification is required, and the low-temperature solidification treatment may cause cooling damage to the entire wafer.

【0006】本発明にかかる課題は、上記従来の問題点
に鑑み、切り代のダイシング領域をできるだけ小さく、
かつ非直線的なダイシングを行うことができ、さらに簡
易にかつ被分割基板に対するダメージが少なくて済む基
板分割方法を提供することである。
In view of the above conventional problems, an object of the present invention is to make the dicing area of the cutting margin as small as possible.
Another object of the present invention is to provide a substrate dividing method that can perform non-linear dicing and that can easily and less damage a substrate to be divided.

【0007】[0007]

【課題を解決するための手段】本出願にかかる発明者
は、ガラスは透明体でありレーザのみでは割断できない
が、ガラス表面にレーザ光を吸収させる媒体を塗布して
おき、その媒体にレーザ光を吸収させることによってガ
ラスを割断できる点に着目したものである(工作機械技
術研究会・編 監修・安井武司 「工作機械シリーズ
レーザ加工」P127〜134、「YAGレーザによる
ガラス切断加工」(黒部利次著) 大北出版 平成2年
9月10日発行 参照)。
The inventor of the present application has found that glass is a transparent body and cannot be cleaved only by a laser, but a medium for absorbing laser light is applied to the surface of the glass and the laser light is applied to the medium. Focusing on the fact that glass can be broken by absorbing the (machine tool technology study group, edited by Takeshi Yasui "Machine tool series"
Laser processing "P127-134," Glass cutting processing by YAG laser "(written by Toshiji Kurobe) Ohkita Publishing, published September 10, 1990).

【0008】そこで、上記課題を解決するために、請求
項1にかかる発明の基板分割方法は、基板に溝を形成
し、所定波長の光を吸収する光学特性を有した光吸収材
を前記溝の底部に入れ、ついで前記光を照射して前記溝
の底部の前記光吸収材に吸収させ、そのときの前記光吸
収材およびその底部近傍の体積熱膨張によって前記基板
を前記溝にそって分割することを特徴とする。
In order to solve the above-mentioned problems, the substrate dividing method of the invention according to claim 1 forms a groove in the substrate and uses a light absorbing material having optical characteristics for absorbing light of a predetermined wavelength. And then irradiate with the light to be absorbed by the light absorbing material at the bottom of the groove, and the substrate is divided along the groove by the volume thermal expansion of the light absorbing material and the vicinity of the bottom at that time. It is characterized by doing.

【0009】また、請求項2の発明にかかる基板分割方
法は、前記溝を形成した後、レジストを塗布して前記溝
の底部に埋設し、ついで加熱処理によって生じた炭化物
を残留させ、前記光吸収材として前記炭化物を用いるこ
とを特徴とする。さらに、請求項3の基板分割方法は、
請求項1または2の発明において、へき開方位が直角と
異なる基板を用い、そのへき開方位にそって前記溝を形
成することによって、平面視長方形と異なる形状に分割
することを特徴とし、これは矩形以外の3角形や6角形
の多角形チップを製造するのに適する。
Further, in the substrate dividing method according to the invention of claim 2, after forming the groove, a resist is applied to be buried in the bottom portion of the groove, and then the carbide generated by the heat treatment is left, and The charcoal-based material is used as the absorbent. Furthermore, the substrate dividing method according to claim 3 is
The invention according to claim 1 or 2 is characterized in that a substrate having a cleavage orientation different from a right angle is used, and the groove is formed along the cleavage orientation to divide the substrate into a shape different from a rectangular shape in a plan view. It is suitable for manufacturing other triangular or hexagonal polygonal chips.

【0010】本発明における上記基板は、例えばシリコ
ン半導体を用いるときはシリコンウエハが、またエピタ
キシャル成長層を備えた基板等が用いられる。また、照
射光としてレーザ光、赤外光等を使用でき、好ましくは
高出力なものがよい。さらに、上記光吸収材は、一般に
印刷インク等に用いられる有機顔料、例えばアゾ顔料、
あるいはフタロシアニン系縮合多環系顔料などを、また
より具体的には市販のマジックインキ(商品名)に使用
される合成染料を用いてもよい。
As the substrate in the present invention, for example, a silicon wafer is used when a silicon semiconductor is used, and a substrate having an epitaxial growth layer is used. In addition, laser light, infrared light, or the like can be used as irradiation light, and a high-output light is preferable. Further, the light absorbing material is an organic pigment generally used for a printing ink or the like, for example, an azo pigment,
Alternatively, a phthalocyanine-based condensed polycyclic pigment or the like, or more specifically, a synthetic dye used in a commercially available magic ink (trade name) may be used.

【0011】なお、光の照射は基板の裏側から行うのが
好ましいが、表側の素子形成領域に影響を与えないよう
にすれば表面側からでも構わない。また、溝の深さ及び
幅は、脆性基板の割断性質や、光照射時の光吸収材の膨
張性等によって決定される。
The light irradiation is preferably performed from the back side of the substrate, but may be performed from the front side as long as it does not affect the element forming region on the front side. Further, the depth and width of the groove are determined by the breaking property of the brittle substrate, the expandability of the light absorbing material during light irradiation, and the like.

【0012】[0012]

【発明の効果】本発明によれば、かかる脆性基板に予め
エッチング等で比較的浅い溝を形成しておき、かつ光照
射によって分割することができるので、最小限の切り代
を設けるだけで済み、チップあるいはペレットの基板1
枚あたりの取れ数を格段に向上させることができる。ま
た、光透過性のある脆性基板であれば適用できるので、
基板全体を冷却したり加熱したりせずに、基板に与える
ダメージの少ない、つまり品質に影響しない基板分割を
行える。さらに、従来のようにダイサーでは直線的なダ
イシングのみであるが、本発明では少なくとも溝パター
ン適宜選択して、例えばへき開方位にそった分割を別途
複雑な設備を用いることなく簡単に行うことができる。
殊に、反射面をエッチングで形成するレーザダイオード
チップの製造に適用すれば、本発明にかかる溝を当該エ
ッチング工程を利用して簡単に形成でき、かつへき開用
の溝として分割でき、発生レーザの干渉を起こさない反
射面のフラット化を実現することができる。
According to the present invention, a relatively shallow groove is previously formed in such a brittle substrate by etching or the like, and the groove can be divided by light irradiation. , Chip or pellet substrate 1
The number of pieces per sheet can be remarkably improved. In addition, since it can be applied if it is a brittle substrate having light transmittance,
The substrate can be divided without damaging the substrate, that is, without affecting the quality, without cooling or heating the entire substrate. Furthermore, as in the conventional dicer, only linear dicing is performed, but in the present invention, at least a groove pattern can be appropriately selected, and for example, division along the cleavage direction can be easily performed without separately using complicated equipment. .
In particular, when applied to the manufacture of a laser diode chip in which a reflecting surface is formed by etching, the groove according to the present invention can be easily formed by utilizing the etching process and can be divided as a groove for cleaving. It is possible to realize a flat reflecting surface without causing interference.

【0013】[0013]

【発明の実施の形態】以下、本発明を実施した例を図面
によって説明する。図1は本発明をレーザダイオード製
造工程に適用した例を示す。基板10はレーザダイオー
ド製造用の光透過性GaAs素材からなり、通常のレーザ
素子形成工程(図示せず)に従い基板10上に活性層1
3等の素子領域を形成した後、各チップ11毎に分割す
るため本発明の基板分割処理工程を行う。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example in which the present invention is applied to a laser diode manufacturing process. The substrate 10 is made of a light-transmissive GaAs material for manufacturing a laser diode, and the active layer 1 is formed on the substrate 10 according to a normal laser element forming process (not shown).
After the element regions such as 3 are formed, the substrate dividing processing step of the present invention is performed for dividing each chip 11.

【0014】まず、所定のチップ分割パターンに対応し
た分割溝12をドライエッチング技術を用いて、各チッ
プの反射面を露出させる程度の深さに穿設する。また、
溝12はGaAs基板のへき開面方向にそった方向に形成
され、例えば、100μm厚さの基板であれば、深さ4
μm、幅2μm程度の溝12を用いる。次に、溝12に
光吸収材15を入れる。光吸収材15は上述したような
顔料を含むインク溶液を用いる。このインク溶液は次の
レーザ照射工程で用いるレーザ光を吸収する色の顔料を
有し、例えば、Arレーザを用いるときは波長0.49μm
の光を吸収する材質を有し、あるいはHeーNeレーザで
あれば波長0.63μmの光を、YAGレーザであれば波長
1.06μmの光をそれぞれ吸収させるようにすればよい
(上記文献「YAGレーザによるガラス切断加工」はY
AGレーザには青色塗布インクが適するとある。)。光
吸収材15の溝注入あるいは埋設は、基板表面にスピン
コート法により予め塗布し、その後表面の余分の溶液を
拭き取って取り除き、溝12底部にのみ光吸収材15を
残存させるようにして行う。
First, the division groove 12 corresponding to a predetermined chip division pattern is formed by a dry etching technique to a depth enough to expose the reflection surface of each chip. Also,
The groove 12 is formed in a direction along the cleavage plane direction of the GaAs substrate.
A groove 12 having a width of about 2 μm is used. Next, the light absorbing material 15 is put in the groove 12. As the light absorbing material 15, an ink solution containing the above-described pigment is used. This ink solution has a pigment of a color that absorbs the laser light used in the next laser irradiation step. For example, when an Ar laser is used, the wavelength is 0.49 μm.
Has a material that absorbs the light of, or the He-Ne laser has a wavelength of 0.63 μm, and the YAG laser has a wavelength of 0.63 μm.
It is only necessary to absorb 1.06 μm light (refer to the above-mentioned document “Glass cutting by YAG laser”)
Blue coating ink is said to be suitable for the AG laser. ). The light absorbing material 15 is injected or buried in the groove by spin-coating the surface of the substrate in advance, then wiping off the excess solution on the surface and removing the light absorbing material 15 only at the bottom of the groove 12.

【0015】このような光吸収材15の残留状態で、基
板10の裏面から上記レーザ光を照射する。このとき基
板表面側の素子形成領域への影響をなるべく避けるた
め、光学レンズ系17によってレーザ光16のフォーカ
スポイントが溝12の底部に合うように調整して残留光
吸収材15にレーザ光16を集光させる。これによっ
て、光吸収材15は基板10を透過したレーザ光16を
吸収することによって、局部的に急激に熱膨張するとと
もにその周辺の基板10部位も加熱され膨張するため、
基板10の裏面方向に向かい、かつ溝の形成方向にそっ
てクラックが成長していき、各チップ11単位に分割す
ることができる。このようにして、反射面をエッチング
で形成するレーザダイオードチップの製造において、溝
12の形成を反射面形成のエッチング工程を利用して簡
単に形成することができる。それによって、反射面と実
質的に同一の面方向に分割が可能になるため、ダイヤモ
ンドブレードを使用するときに生じる余分の切り代によ
る突出部をなくすことができる。すなわち、該突出部に
起因する反射光の干渉を生じることのない、フラットな
反射面を備えたレーザダイオードチップを得ることがで
きる。また、溝12をへき開方向に設定することによっ
てへき開を容易にして、最適なチップサイズで円滑な分
割を行うことができる。
With the light absorbing material 15 remaining as described above, the laser light is irradiated from the back surface of the substrate 10. At this time, in order to avoid the influence on the element formation region on the substrate surface side as much as possible, the focus point of the laser light 16 is adjusted by the optical lens system 17 so as to be aligned with the bottom of the groove 12, and the residual light absorber 15 is exposed to the laser light 16. Focus. As a result, the light absorbing material 15 absorbs the laser light 16 that has passed through the substrate 10 to locally and rapidly expand, and the surrounding substrate 10 portion is also heated and expanded.
Cracks grow in the direction of the back surface of the substrate 10 and along the direction of formation of the grooves, and each chip 11 can be divided. Thus, in the manufacture of the laser diode chip in which the reflecting surface is formed by etching, the groove 12 can be easily formed by using the etching process for forming the reflecting surface. As a result, it is possible to divide the surface in a direction substantially the same as that of the reflection surface, and it is possible to eliminate a protrusion caused by an extra cutting margin generated when a diamond blade is used. That is, it is possible to obtain a laser diode chip having a flat reflecting surface without causing interference of reflected light caused by the protruding portion. Further, by setting the groove 12 in the cleavage direction, cleavage can be facilitated, and a smooth division can be performed with an optimum chip size.

【0016】図2は青色レーザダイオード製造用サファ
イア(Al23)基板の切断例を示す。基板1は光透過
性に優れた単結晶サファイアであり、その表面にレーザ
ダイオードの素子形成領域としてのエピタキシャル層2
が設けられている。このエピタキシャル層2は、Ga
N、InGaN、AlGaN、GaNからなる多層構造であ
り、全体の厚みは約4μmである。基板1の厚さDはエ
ピタキシャル層2を含み約80μmである。
FIG. 2 shows an example of cutting a sapphire (Al 2 O 3 ) substrate for manufacturing a blue laser diode. The substrate 1 is made of single crystal sapphire having excellent light transmittance, and the surface thereof has an epitaxial layer 2 as an element forming region of a laser diode.
Is provided. This epitaxial layer 2 is made of Ga
It has a multilayer structure composed of N, InGaN, AlGaN, and GaN, and has a total thickness of about 4 μm. The thickness D of the substrate 1 is about 80 μm including the epitaxial layer 2.

【0017】上記の基板1にレーザダイオードの素子形
成を行った後(素子形成工程は省略)、レーザダイオー
ドチップ個々に分離、分割する分割工程を図1と同様に
して行う。この場合も、所定のチップ分割パターンに対
応した分割溝3をドライエッチング技術を用いて基板1
表面に穿設するが、この例では溝3の幅Wを4μm、深
さSを8μmとする。次に、溝3に光吸収材4を入れ
る。光吸収材4は上記のような顔料を含むインク溶液を
用いる。そして、基板1の裏面から上記のレーザ光5を
照射し、光学レンズ系6によってレーザ光5を残留光吸
収材4に集光させる。これによって、光吸収材4および
その周辺の基板1部位は基板1を透過したレーザ光5を
吸収し、図1に示すように、裏面方向A及び横方向B、
Cに局部的に急激に熱膨張するため、基板1の裏面方向
Aにそってクラックが成長していき、溝3の形成方向に
そった基板分割を行うことができる。
After the laser diode elements are formed on the substrate 1 (the element forming step is omitted), the laser diode chips are separated and divided in the same manner as in FIG. Also in this case, the dividing grooves 3 corresponding to the predetermined chip dividing pattern are formed on the substrate 1 by using the dry etching technique.
In this example, the width W of the groove 3 is 4 μm and the depth S is 8 μm. Next, the light absorbing material 4 is put in the groove 3. As the light absorbing material 4, an ink solution containing the above-described pigment is used. Then, the laser light 5 is irradiated from the back surface of the substrate 1, and the laser light 5 is focused on the residual light absorbing material 4 by the optical lens system 6. As a result, the light absorbing material 4 and the peripheral portion of the substrate 1 absorb the laser light 5 that has passed through the substrate 1, and as shown in FIG.
Since the thermal expansion locally increases rapidly to C, the crack grows along the back surface direction A of the substrate 1, and the substrate can be divided along the formation direction of the groove 3.

【0018】上記図1および図2の実施例においては光
吸収材を溝底部に塗布しているが、従前より半導体製造
プロセスに使用されているフォトレジスト材料を用いて
もよい。即ち、溝形成後、スピンコート法によって塗布
し、ついで溝底部にのみ残留するようにアッシング(ash
ing)処理を施し、さらに窒素ガス雰囲気で加熱処理して
その残留レジストを炭化させることによって生じた炭化
物を光吸収材として用いればよい。また、上記の基板分
割方法は、図4の分割溝パターンに示すように、シリコ
ン基板あるいはGaAs基板のウエハ主面を{100}面
30とするものに適用して平面視矩形のチップ製造を行
うことができる。
In the embodiments shown in FIGS. 1 and 2, the light absorbing material is applied to the bottom of the groove, but a photoresist material which has been used in the semiconductor manufacturing process in the past may be used. That is, after the groove is formed, coating is performed by a spin coating method, and then ashing (ash) is performed so that the groove remains only at the bottom of the groove.
ing) treatment, and heat treatment in a nitrogen gas atmosphere to carbonize the remaining resist may be used as a light absorbing material. Further, the above-described substrate dividing method is applied to a silicon substrate or a GaAs substrate whose main wafer surface is the {100} face 30 as shown in the dividing groove pattern of FIG. be able to.

【0019】さらに、本発明は図3に示すように{11
1}面のウエハ主面の基板にも適用できる。つまり、図
4の場合、へき開方位は<110>となり直角方向での
矩形分割が適するが、図3の場合にはへき開方位が図4
と比較して60度の方向に傾斜するため、ハニカム形状
の分割が適する。そのためには、そのへき開方位にそっ
た図3のハニカム状の分割溝パターン20を予め形成し
ておくことによって、上記図1または図2の実施例の分
割手順に従い平面視6角形のチップ分割を行うことがで
きる。勿論、6角形以外にも3角形の繰り返しパターン
で溝形成を行えば、平面視3角形のチップを製造でき
る。なお、このような碁盤目と異なるハニカム形状の他
に、より複雑な溝パターンであってもエッチング技術を
用いて任意に形成することにより、所望の平面形状のチ
ップ分割も可能になる。
Further, according to the present invention, as shown in FIG.
The present invention can also be applied to a 1} wafer main surface substrate. That is, in the case of FIG. 4, the cleavage direction is <110>, and the rectangular division in the right angle direction is suitable, but in the case of FIG.
Since it is inclined in the direction of 60 degrees as compared with the above, division of the honeycomb shape is suitable. To this end, a honeycomb-shaped dividing groove pattern 20 of FIG. 3 along the cleavage direction is formed in advance, so that a hexagonal chip division in plan view is divided according to the dividing procedure of the embodiment of FIG. 1 or FIG. It can be carried out. Of course, a triangular chip in plan view can be manufactured by forming grooves in a repetitive pattern of a triangle other than the hexagon. Note that, in addition to such a honeycomb shape different from a grid, even a more complicated groove pattern can be arbitrarily formed by using an etching technique to divide a chip into a desired planar shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の実施例であるレーザダイオード
用基板の分割方法を示す模式断面図である。
FIG. 1 is a schematic cross-sectional view showing a method of dividing a laser diode substrate that is an embodiment of the present invention.

【図2】図2は本発明の実施例であるサファイア基板の
分割方法を示す模式断面図であ
FIG. 2 is a schematic cross-sectional view showing a method of dividing a sapphire substrate which is an embodiment of the present invention.

【図3】図3は本発明のハニカム分割例を示すウエハ平
面図である。
FIG. 3 is a wafer plan view showing an example of honeycomb division of the present invention.

【図4】図4は本発明の矩形分割例を示すウエハ平面図
である。
FIG. 4 is a wafer plan view showing an example of rectangular division of the present invention.

【図5】図5は従来のレーザダイオード基板の分割例を
示すウエハ断面図である。
FIG. 5 is a wafer sectional view showing an example of division of a conventional laser diode substrate.

【符号の説明】[Explanation of symbols]

1 基板 2 エピタキシャル層 3 溝 4 光吸収材 5 レーザ光 12 溝 15 光吸収材 16 レーザ光 1 Substrate 2 Epitaxial Layer 3 Groove 4 Light Absorbing Material 5 Laser Light 12 Groove 15 Light Absorbing Material 16 Laser Light

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/78 Q ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication location H01L 21/78 Q

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板に溝を形成し、所定波長の光を吸収
する光学特性を有した光吸収材を前記溝の底部に入れ、
ついで前記光を照射して前記溝の底部の前記光吸収材に
吸収させ、そのときの前記光吸収材およびその底部近傍
の体積熱膨張によって前記基板を前記溝にそって分割す
ることを特徴とする基板分割方法。
1. A groove is formed on a substrate, and a light absorbing material having an optical characteristic of absorbing light of a predetermined wavelength is placed at the bottom of the groove,
Then, the light is irradiated to be absorbed by the light absorbing material at the bottom of the groove, and the substrate is divided along the groove by volume thermal expansion of the light absorbing material and the vicinity of the bottom at that time. Board dividing method.
【請求項2】 前記溝を形成した後、レジストを塗布し
て前記溝の底部に埋設し、ついで加熱処理によって生じ
た炭化物を残留させ、前記光吸収材として前記炭化物を
用いることを特徴とする請求項1記載の基板分割方法。
2. After forming the groove, a resist is applied to be buried in the bottom of the groove, and then the carbide generated by the heat treatment is left, and the carbide is used as the light absorbing material. The substrate dividing method according to claim 1.
【請求項3】 へき開方位が直角と異なる基板を用い、
そのへき開方位にそって前記溝を形成することによっ
て、平面視長方形と異なる形状に分割することを特徴と
する請求項1または2記載の基板分割方法。
3. A substrate whose cleavage direction is different from a right angle is used.
3. The substrate dividing method according to claim 1, wherein the groove is formed along the cleavage direction to divide the groove into a shape different from a rectangular shape in plan view.
JP14554896A 1996-06-07 1996-06-07 Substrate division method Expired - Fee Related JP3816147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14554896A JP3816147B2 (en) 1996-06-07 1996-06-07 Substrate division method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14554896A JP3816147B2 (en) 1996-06-07 1996-06-07 Substrate division method

Publications (2)

Publication Number Publication Date
JPH09323300A true JPH09323300A (en) 1997-12-16
JP3816147B2 JP3816147B2 (en) 2006-08-30

Family

ID=15387733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14554896A Expired - Fee Related JP3816147B2 (en) 1996-06-07 1996-06-07 Substrate division method

Country Status (1)

Country Link
JP (1) JP3816147B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001827A1 (en) * 2002-06-19 2003-12-31 Disco Corporation Method and apparatus for splitting semiconducor wafer
JP2005252178A (en) * 2004-03-08 2005-09-15 Toshiba Corp Method of and apparatus for manufacturing semiconductor device
JP2006082232A (en) * 2004-09-14 2006-03-30 Fujitsu Ltd Laser processing method
JP2008062547A (en) * 2006-09-08 2008-03-21 Hiroshima Univ Method and device for splitting rigid brittle plate by laser irradiation
JP2009130128A (en) * 2007-11-22 2009-06-11 Denso Corp Dividing method of wafer
JP2010021174A (en) * 2008-07-08 2010-01-28 Denso Corp Method of manufacturing substrate
JP2012142484A (en) * 2011-01-05 2012-07-26 National Institute Of Advanced Industrial & Technology Manufacturing method of silicon carbide semiconductor device
JP2014007288A (en) * 2012-06-25 2014-01-16 Disco Abrasive Syst Ltd Processing method and processing device
WO2014050322A1 (en) * 2012-09-27 2014-04-03 ローム株式会社 Chip component and production method therefor
CN105150397A (en) * 2015-10-27 2015-12-16 天津英利新能源有限公司 Glass capable of reducing edge breakage of silicon block cutting and splicing technology
JP5862733B1 (en) * 2014-09-08 2016-02-16 富士ゼロックス株式会社 Manufacturing method of semiconductor piece
JP5884935B1 (en) * 2015-10-28 2016-03-15 富士ゼロックス株式会社 Manufacturing method of semiconductor piece

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001827A1 (en) * 2002-06-19 2003-12-31 Disco Corporation Method and apparatus for splitting semiconducor wafer
JP2005252178A (en) * 2004-03-08 2005-09-15 Toshiba Corp Method of and apparatus for manufacturing semiconductor device
US7294558B2 (en) 2004-03-08 2007-11-13 Kabushiki Kaisha Toshiba Method and apparatus for cleaving a wafer through expansion resulting from vaporization or freezing of liquid
JP4515790B2 (en) * 2004-03-08 2010-08-04 株式会社東芝 Semiconductor device manufacturing method and manufacturing apparatus thereof
JP2006082232A (en) * 2004-09-14 2006-03-30 Fujitsu Ltd Laser processing method
JP2008062547A (en) * 2006-09-08 2008-03-21 Hiroshima Univ Method and device for splitting rigid brittle plate by laser irradiation
JP2009130128A (en) * 2007-11-22 2009-06-11 Denso Corp Dividing method of wafer
JP2010021174A (en) * 2008-07-08 2010-01-28 Denso Corp Method of manufacturing substrate
JP2012142484A (en) * 2011-01-05 2012-07-26 National Institute Of Advanced Industrial & Technology Manufacturing method of silicon carbide semiconductor device
JP2014007288A (en) * 2012-06-25 2014-01-16 Disco Abrasive Syst Ltd Processing method and processing device
WO2014050322A1 (en) * 2012-09-27 2014-04-03 ローム株式会社 Chip component and production method therefor
JP2014072242A (en) * 2012-09-27 2014-04-21 Rohm Co Ltd Chip component and process of manufacturing the same
US9583238B2 (en) 2012-09-27 2017-02-28 Rohm Co., Ltd. Chip component and production method therefor
US10312002B2 (en) 2012-09-27 2019-06-04 Rohm Co., Ltd. Chip component and production method therefor
JP5862733B1 (en) * 2014-09-08 2016-02-16 富士ゼロックス株式会社 Manufacturing method of semiconductor piece
JP2016058474A (en) * 2014-09-08 2016-04-21 富士ゼロックス株式会社 Semiconductor chip manufacturing method
CN105150397A (en) * 2015-10-27 2015-12-16 天津英利新能源有限公司 Glass capable of reducing edge breakage of silicon block cutting and splicing technology
JP5884935B1 (en) * 2015-10-28 2016-03-15 富士ゼロックス株式会社 Manufacturing method of semiconductor piece
JP2016058741A (en) * 2015-10-28 2016-04-21 富士ゼロックス株式会社 Semiconductor chip manufacturing method

Also Published As

Publication number Publication date
JP3816147B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
JP3636835B2 (en) Substrate dividing method and light emitting element manufacturing method using the substrate dividing method
KR101607341B1 (en) Working object grinding method
KR101548397B1 (en) Working object cutting method
US6559075B1 (en) Method of separating two layers of material from one another and electronic components produced using this process
US7008861B2 (en) Semiconductor substrate assemblies and methods for preparing and dicing the same
KR100854986B1 (en) Production method of compound semiconductor device wafer
JP5509448B2 (en) Substrate slicing method
JP3816147B2 (en) Substrate division method
JP2007142277A (en) Method for manufacturing light emitting element
JP6455166B2 (en) Manufacturing method of semiconductor wafer and semiconductor chip
JP7182456B2 (en) LASER PROCESSING METHOD AND SEMICONDUCTOR MEMBER MANUFACTURING METHOD
JP5645000B2 (en) Substrate processing method
JP5561666B2 (en) Substrate slicing method
JP3338360B2 (en) Gallium nitride based semiconductor wafer manufacturing method
WO2020130054A1 (en) Laser processing method, semiconductor member manufacturing method, and laser processing device
WO2020129569A1 (en) Laser machining method, semiconductor member production method, and semiconductor object
WO2020130108A1 (en) Laser machining method, and semiconductor device manufacturing method
JP2006043717A (en) Marking method, method for producing member made of single crystal silicon carbide and member made of single crystal silicon carbide
WO2020130053A1 (en) Laser machining method, semiconductor member manufacturing method, and laser machining device
JP4280056B2 (en) Semiconductor wafer dicing method
JPH06188311A (en) Semiconductor-element cutting method
JPH0645690A (en) Manufacture of semiconductor laser
JP2002009333A (en) Method for manufacturing light-emitting diode array
JP2006041050A (en) Method for manufacturing light emitting element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060323

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060607

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees