JPH09321326A - Manufacturing cis thin film solar cell and forming copper-indium-selenium alloy - Google Patents

Manufacturing cis thin film solar cell and forming copper-indium-selenium alloy

Info

Publication number
JPH09321326A
JPH09321326A JP8137080A JP13708096A JPH09321326A JP H09321326 A JPH09321326 A JP H09321326A JP 8137080 A JP8137080 A JP 8137080A JP 13708096 A JP13708096 A JP 13708096A JP H09321326 A JPH09321326 A JP H09321326A
Authority
JP
Japan
Prior art keywords
layer
selenium
indium
copper
cis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8137080A
Other languages
Japanese (ja)
Inventor
Kazuhiro Toyoda
和弘 豊田
Norio Mochizuki
紀雄 望月
Shinichi Nakagawa
伸一 中川
Takeshi Kamiya
武志 神谷
Takeshi Iketani
剛 池谷
Kenji Sato
賢次 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP8137080A priority Critical patent/JPH09321326A/en
Priority to DE19722474A priority patent/DE19722474A1/en
Publication of JPH09321326A publication Critical patent/JPH09321326A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To improve the photoelectric conversion efficiency avoiding peel of a CIS layer of a solar cell by forming a Se layer or Se-containing layer adjacent to a conductive layer by plating. SOLUTION: A Cr layer 2 and Mo (conductive) layer thereon are sputtered on a soda lime glass 1 to form a substrate, and Se or Se-containing layer 4 is formed thereon by plating pref. electroplating to make a more smooth surface of the Se layer 4. For forming a Se or Se alloy layer by electroplating, a plating bath contg. a selenium dioxide water soln. (selenious) acid with sulfuric acid is pref. A brightener such as sodium citrate is pref. added to further reduce the uneven thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、銅−インジウム−
セレン三元合金層を吸収層として有するCIS薄膜太陽
電池の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to copper-indium-
The present invention relates to a method for manufacturing a CIS thin film solar cell having a selenium ternary alloy layer as an absorption layer.

【0002】[0002]

【従来の技術】太陽電池は、光エネルギーを電気エネル
ギーに変換する装置であり、導電性基板上に、光電変換
性半導体からなる吸収層と光透過性電極層とを順次積層
して構成されるのが普通である。このような光電変換性
半導体層(吸収層)としては、原子の存在比が1:1:
2である銅−インジウム−セレン三元合金(CuInS
2、以下「CIS」とも云う)の薄膜が最も優れた光
電変換効率を示すものと考えられている。
2. Description of the Related Art A solar cell is a device for converting light energy into electric energy, and is constructed by sequentially laminating an absorbing layer made of a photoelectric conversion semiconductor and a light transmitting electrode layer on a conductive substrate. Is normal. In such a photoelectric conversion semiconductor layer (absorption layer), the abundance ratio of atoms is 1: 1:
2 copper-indium-selenium ternary alloy (CuInS
It is considered that a thin film of e 2 , hereinafter also referred to as “CIS”) exhibits the best photoelectric conversion efficiency.

【0003】この三元合金の製造方法の1つが特開昭6
1−237476号公報により提案されている。この方
法は、導電性基板上に銅及びインジウムを順次電着させ
てプリカーサーを形成した後、セレン化水素を含んだ不
活性ガスを流しながら加熱処理を行い、銅−インジウム
−セレン三元合金(CuInSe2)層を形成する方法
であった。
One of the methods for producing this ternary alloy is Japanese Unexamined Patent Publication
It is proposed by Japanese Patent Laid-Open No. 1-237476. In this method, copper and indium are sequentially electrodeposited on a conductive substrate to form a precursor, and then heat treatment is performed while flowing an inert gas containing hydrogen selenide, and a copper-indium-selenium ternary alloy ( It was a method of forming a CuInSe 2 ) layer.

【0004】ここで、導電性基板としてはチタンや白金
からなるものも用いられているが、主としてモリブデン
板或いはモリブデン層が形成された基板が用いられる。
これは熱膨張率及び格子係数がCISに近いため、CI
S層との密着性が良好であると考えられた等の理由によ
るものである。ここで、従来のCIS薄膜太陽電池のC
IS層の形成方法を図4を用いて説明する。
Although a conductive substrate made of titanium or platinum is also used here, a molybdenum plate or a substrate having a molybdenum layer is mainly used.
This is because the coefficient of thermal expansion and the lattice coefficient are close to CIS.
This is because it is considered that the adhesion with the S layer is good. Here, C of the conventional CIS thin film solar cell
A method of forming the IS layer will be described with reference to FIG.

【0005】すなわち、図4(a)に示すように、基板
となるソーダライムガラスA上に、モリブデン層B、銅
層C、インジウム層D、セレン層Eをこの順でスパッタ
リング等によって形成し、その後この積層物をセレン化
水素存在下で加熱処理することによって、CIS層を得
ることができる(図4(b)参照)。
That is, as shown in FIG. 4A, a molybdenum layer B, a copper layer C, an indium layer D, and a selenium layer E are formed in this order on a soda lime glass A to be a substrate by sputtering or the like. Then, the laminate is heat-treated in the presence of hydrogen selenide to obtain a CIS layer (see FIG. 4 (b)).

【0006】このCIS層とモリブデン層とは前述のよ
うに密着性が良いと期待されていたが、実際にはこのよ
うに形成されたCIS層は剥がれやすく、その結果、脱
落しやすい。ここで、詳細に調査を行ったところ、基板
のモリブデン層とCIS層との間にセレン化モリブデン
(化学式:MoxSey、x及びyは自然数)が形成され
ていることが判った。図5はこのような上記従来技術に
よって形成されたものについて、その断面の深さ方向の
銅、インジウム、セレン及びモリブデンの分布をエネル
ギー分散型X線分析装置によって調べた結果である。こ
の図5より、CIS層とモリブデン層との間にセレン化
モリブデン層が形成されていることが確認される。
Although it was expected that the CIS layer and the molybdenum layer have good adhesion as described above, in reality, the CIS layer formed in this way is easily peeled off, and as a result, is easily dropped off. Here, upon detailed investigation, it was found that molybdenum selenide (chemical formula: Mo x Se y , x and y are natural numbers) is formed between the molybdenum layer and the CIS layer of the substrate. FIG. 5 shows the results of examining the distribution of copper, indium, selenium, and molybdenum in the depth direction of the cross section of the one formed by the above-mentioned conventional technique by an energy dispersive X-ray analyzer. From FIG. 5, it is confirmed that the molybdenum selenide layer is formed between the CIS layer and the molybdenum layer.

【0007】このセレン化モリブデンは層状構造であ
り、そのためこのセレン化モリブデン層の上に形成され
たCIS層が基板から剥離する原因となっていることが
判った。すなわち、導電層であるモリブデン層とCIS
層の間にセレン化モリブデン層が形成されたときの、C
IS層の密着性に及ぼすセレン化モリブデン層の厚さ
(走査型電子顕微鏡及びエネルギー分散型X線分析装置
によって測定したもの)の影響を調べた結果を図6に示
す。なお、ここで剥がれ発生率とは、市販の粘着テープ
(住友スリーエム社製メンディングテープ)を貼りつ
け、これを剥がしたとき、貼りつけた面積に対する剥が
れが生じた面積の比である。
It has been found that this molybdenum selenide has a layered structure and therefore causes the CIS layer formed on the molybdenum selenide layer to peel off from the substrate. That is, the molybdenum layer which is a conductive layer and the CIS
C when a molybdenum selenide layer is formed between the layers
FIG. 6 shows the result of examining the influence of the thickness of the molybdenum selenide layer (measured by a scanning electron microscope and an energy dispersive X-ray analyzer) on the adhesion of the IS layer. Here, the peeling occurrence rate is the ratio of the peeled area to the stuck area when a commercially available adhesive tape (Sumitomo 3M Mending Tape) is stuck and peeled.

【0008】図6から、セレン化モリブデン層の厚さの
増加とともに剥がれ発生率が上昇することが判る。な
お、CIS層が剥がれやすいと、取扱性が劣るため製造
歩留まりが低くなって高コストとなったり、良い性能の
CIS太陽電池が得られず、かつ得られたCIS太陽電
池も耐久性の劣ったものとなる。ここで、このようなC
IS層の剥離を防止するための技術として、特開平6―
188444号公報では、モリブデン層に接してセレン
を含む層を配する技術が提案されている。このものは、
銅−インジウム−セレン三元合金層形成のための熱処理
時に、モリブデン層に接する周囲に銅−インジウム−セ
レン三元合金結晶の種結晶が生成し、かつ、この種結晶
が表面方向に発達すると考えられ、そのため、非常に優
れた結晶化度、配向度が得られ、その結果高効率の優れ
た太陽電池が得られると考えられた。しかし、実際に
は、この特開平6−188444号公報記載の技術によ
って得られた太陽電池ではCISの剥離・脱落の防止効
果はあったものの、その性能は満足できるものではなか
った。
From FIG. 6, it can be seen that the peeling occurrence rate increases as the thickness of the molybdenum selenide layer increases. If the CIS layer is easily peeled off, the handling efficiency is poor and the manufacturing yield is low, resulting in high cost, and a CIS solar cell with good performance cannot be obtained, and the obtained CIS solar cell also has poor durability. Will be things. Where C like this
As a technique for preventing peeling of the IS layer, Japanese Patent Application Laid-Open No. 6-
Japanese Patent No. 188444 proposes a technique of disposing a layer containing selenium in contact with a molybdenum layer. This one is
It is considered that during heat treatment for forming the copper-indium-selenium ternary alloy layer, a seed crystal of the copper-indium-selenium ternary alloy crystal is generated around the contact with the molybdenum layer, and the seed crystal develops in the surface direction. Therefore, it was considered that extremely excellent crystallinity and orientation were obtained, and as a result, an excellent solar cell with high efficiency was obtained. However, actually, although the solar cell obtained by the technique described in Japanese Patent Laid-Open No. 6-188444 has an effect of preventing peeling / falling off of CIS, its performance is not satisfactory.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解決する、すなわち、CIS層の剥離を防
止しながらも光電変換効率の優れた太陽電池を得ること
のできる太陽電池の製造方法を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, that is, a solar cell capable of obtaining a solar cell excellent in photoelectric conversion efficiency while preventing peeling of the CIS layer. It is intended to provide a manufacturing method.

【0010】[0010]

【課題を解決するための手段】上記特開平6−1884
44号公報記載の技術について、種々検討を行ったとこ
ろ、モリブデン層上に形成されたセレン層表面に微細な
凹凸が形成されることが判った。表1に触針式表面形状
測定装置を用いて、このセレン層(厚さ15nm)表面
の粗さについて調べた結果を示す。なお、セレン層を形
成する前のモリブデン層(ソーダライムガラス表面に形
成されている)表面の粗さについても併せて記載した。
[Means for Solving the Problems] Japanese Patent Application Laid-Open No. 6-1884
As a result of various studies on the technique described in JP-A-44, it was found that fine unevenness was formed on the surface of the selenium layer formed on the molybdenum layer. Table 1 shows the results of examining the roughness of the surface of this selenium layer (thickness: 15 nm) using a stylus type surface profile measuring device. The surface roughness of the molybdenum layer (formed on the surface of soda lime glass) before forming the selenium layer is also described.

【0011】[0011]

【表1】 [Table 1]

【0012】表1に示されるようなセレン層表面の粗さ
が、銅−インジウム−セレン三元合金形成時に微細な成
分斑を発生し、セレン層付近で発生するCISの種結晶
の成長を妨げ、その配向を不充分なものとしていると考
えた。そのため、このセレン層表面の粗さを解消するこ
とにより、高光電変換効率の太陽電池を得ることができ
ると考察し、本発明に至った。すなわち、本発明は、上
記従来技術のもつ課題を解決するため、請求項1に記載
の通り、導電層に接してセレン層或いはセレンを含有す
る層を配する工程を有するCIS薄膜太陽電池の製造方
法において、上記セレン層あるいはセレンを含有する層
をメッキ法で形成する構成を有する。このようにメッキ
法で上記セレン層あるいはセレンを含有する層を形成す
ることによって、従来技術のように蒸着等の真空応用技
術によって形成したのでは得られない高光電変換効率の
CIS薄膜太陽電池を得ることができ、かつ、この太陽
電池はCIS層の剥離強度が高いため、その生産工程に
おいて取扱いが容易であり、かつ、高歩留まり・低コス
トで生産することができる。
The roughness of the surface of the selenium layer as shown in Table 1 causes fine component unevenness during the formation of the copper-indium-selenium ternary alloy and hinders the growth of the seed crystal of CIS generated near the selenium layer. , And thought that the orientation was insufficient. Therefore, it was considered that a solar cell with high photoelectric conversion efficiency could be obtained by eliminating the roughness of the surface of the selenium layer, and the present invention was accomplished. That is, the present invention, in order to solve the above problems of the prior art, as described in claim 1, the production of a CIS thin film solar cell having a step of disposing a selenium layer or a layer containing selenium in contact with a conductive layer. In the method, the selenium layer or the layer containing selenium is formed by a plating method. By forming the selenium layer or the layer containing selenium by the plating method as described above, a CIS thin film solar cell having a high photoelectric conversion efficiency which cannot be obtained by a vacuum application technique such as vapor deposition as in the prior art is obtained. Since this solar cell can be obtained, and the peel strength of the CIS layer is high, it can be easily handled in the production process, and can be produced at high yield and low cost.

【0013】[0013]

【発明の実施の形態】本発明において、セレン層とはセ
レンからなる層を指し、またセレンを含有する層とは、
セレン合金層、セレン分散メッキ層等のセレンの化合
物、あるいは単体のセレンを含む層を指す。また、本発
明において、メッキとは、通常の電気メッキ、無電解メ
ッキ、及び、コロイド粒子を吸着させて薄膜を形成する
こと(以下「コロイドメッキ」と云う)等の湿式メッキ
を指す。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the selenium layer means a layer made of selenium, and the layer containing selenium means
It refers to a layer containing a selenium compound such as a selenium alloy layer or a selenium-dispersed plating layer, or selenium alone. In addition, in the present invention, plating refers to normal electroplating, electroless plating, and wet plating such as adsorbing colloidal particles to form a thin film (hereinafter referred to as “colloidal plating”).

【0014】ここで、本発明の実施の形態について、図
1を用いて説明する。図1は本発明に係るCIS太陽電
池の製造方法を示すモデル図である。なお、この図には
ソーダライムガラス1を基板とし、この上に形成された
クロム層2の上にモリブデン層3を導電層として形成し
ているが、モリブデンからなるもの(例:モリブデン
板)自体や、あるいは、クロムからなるもの(クロム
板)上にモリブデン層を形成したものを用いてもかまわ
ない。なお、ソーダライムガラスは熱膨張係数の関係で
後述するCIS層形成のための熱処理において、形成さ
れたCIS層の剥離が少ないために用いられる。
Here, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a model diagram showing a method for manufacturing a CIS solar cell according to the present invention. In this figure, soda lime glass 1 is used as a substrate, and molybdenum layer 3 is formed as a conductive layer on chrome layer 2 formed on it. However, it is made of molybdenum (example: molybdenum plate) itself. Alternatively, a molybdenum layer formed on a chromium plate (chrome plate) may be used. Note that soda lime glass is used because of less peeling of the formed CIS layer in the heat treatment for forming the CIS layer, which will be described later, due to the thermal expansion coefficient.

【0015】まず、図1(a)で示されるようにクロム
層2と、その上にモリブデン層3(導電層)とをスパッ
タリングで形成されたソーダライムガラス1を基板とし
てこのモリブデン層3上にセレン層あるいはセレンを含
有する層を図1(b)に示すようにメッキにて形成す
る。なお、図1はセレン層あるいはセレンを含有する層
のうち、セレン層を用いる例を示し、このセレン層を符
号4を付して示した。このようにセレン層あるいはセレ
ンを含有する層を形成する際のメッキは、化学メッキ、
電気メッキあるいはコロイドメッキのいずれかであって
も良いが、厚さ斑を減少させるよう条件を定める必要が
ある。ここで、より平滑な面のセレン層が得られるた
め、電気メッキであることが望ましい。電気メッキによ
ってセレン単体乃至セレン合金からなる層を形成する場
合には、硫酸酸性下での二酸化セレン水溶液(亜セレン
酸)を含有するメッキ浴からのメッキが好適である。こ
の場合にはクエン酸三ナトリウム等の光沢剤を添加する
と、厚さ斑をより減少させることができるため好まし
い。また、粉状のセレンや、コロイド状のセレンを分散
含有するメッキ浴を用いて銅、あるいはインジウムと、
また、銅及びインジウムと、分散メッキを行っても良
い。また、これらを組み合わせて、例えばセレンメッキ
浴の中に粉末状やコロイド状のセレンを分散させてメッ
キを行っても良い。これらセレンと共にメッキされる物
質としては、インジウム、銅が挙げられる。これらは単
独で、あるいは同時にセレンと共に導電層上にメッキさ
れてセレンを含有する層を形成する。
First, as shown in FIG. 1A, a chromium layer 2 and a molybdenum layer 3 (conductive layer) formed on the chromium layer 2 are formed by sputtering, soda lime glass 1 is used as a substrate on the molybdenum layer 3. A selenium layer or a layer containing selenium is formed by plating as shown in FIG. Note that FIG. 1 shows an example in which a selenium layer is used among selenium layers or layers containing selenium, and this selenium layer is indicated by reference numeral 4. As described above, the plating for forming the selenium layer or the layer containing selenium is chemical plating,
Either electroplating or colloidal plating may be used, but it is necessary to determine conditions so as to reduce thickness unevenness. Here, electroplating is preferable because a selenium layer having a smoother surface can be obtained. When a layer made of selenium alone or a selenium alloy is formed by electroplating, plating from a plating bath containing an aqueous solution of selenium dioxide (selenic acid) under sulfuric acid acidity is preferable. In this case, it is preferable to add a brightening agent such as trisodium citrate because the uneven thickness can be further reduced. In addition, powdered selenium or copper or indium using a plating bath containing colloidal selenium dispersed therein,
Further, dispersion plating may be performed with copper and indium. In addition, by combining these, for example, powdery or colloidal selenium may be dispersed in a selenium plating bath for plating. Examples of the material plated with selenium include indium and copper. These may be plated alone or simultaneously with selenium on the conductive layer to form a layer containing selenium.

【0016】上記メッキにおいて、セレン層あるいはセ
レンを含有する層の厚さが50nm以上1μm以下とな
るように条件を定めることが望ましい。すなわち、この
層の厚さが50nm未満であると本発明の効果が不充分
なものとなりやすく、他方、1μm超であると後述する
熱処理時に過剰となるセレンが蒸発して、その結果ボイ
ドが生じてしまい、剥がれ・ひびの原因となる。このよ
うに形成したセレン層あるいはセレンを含有する層の上
に、銅層及びインジウム層をこの順でまたは逆に、ある
いは銅インジウム層を、メッキ、あるいはスパッタリン
グ等の手段によって形成する。このとき、この層の中に
(銅層及びインジウム層の2層からなる場合には、すく
なくとも1層の中に)セレン粉末あるいはセレン微粒子
を分散させておくと、ひび、はがれのない良好なCIS
層を得ることができる。ここで、セレン微粒子はセレン
コロイドから得ることができる。なお、図1(c)にお
いてはセレン層4の上に銅インジウム層5を形成した例
を示してある。なお、本発明において、銅インジウム層
とは、銅とインジウムとを含むメッキ浴を用いてメッキ
処理によって電着させた層である。なお、これら銅層、
インジウム層、あるいは銅インジウム層の厚さは、後述
する熱処理によって生成するCIS層の厚さが1〜3μ
mになるように調整することがCIS太陽電池の光電変
換効率の点で望ましい。
In the above plating, it is desirable to determine the conditions so that the thickness of the selenium layer or the layer containing selenium is 50 nm or more and 1 μm or less. That is, if the thickness of this layer is less than 50 nm, the effect of the present invention tends to be insufficient, while if it is more than 1 μm, excess selenium evaporates during the heat treatment described below, resulting in voids. It may cause peeling and cracking. On the selenium layer or the layer containing selenium thus formed, a copper layer and an indium layer are formed in this order or vice versa, or a copper indium layer is formed by means such as plating or sputtering. At this time, if selenium powder or fine particles of selenium are dispersed in this layer (or at least one layer in the case of two layers of a copper layer and an indium layer), good CIS without cracks or peeling is obtained.
Layers can be obtained. Here, the selenium fine particles can be obtained from selenium colloid. Note that FIG. 1C shows an example in which the copper indium layer 5 is formed on the selenium layer 4. In the present invention, the copper indium layer is a layer electrodeposited by a plating process using a plating bath containing copper and indium. Incidentally, these copper layers,
Regarding the thickness of the indium layer or the copper indium layer, the thickness of the CIS layer generated by the heat treatment described later is 1 to 3 μm.
It is desirable to adjust to m in terms of photoelectric conversion efficiency of the CIS solar cell.

【0017】次いで、これら積層物をセレンを含む雰囲
気下で熱処理を行ってCIS結晶を成長させてCIS層
を得る(図1(d)参照)。ここで、セレンを含む雰囲
気とは、セレン化水素、セレン蒸気を含む不活性気体等
が挙げられる。ただし、セレン化水素は非常に毒性が強
いため、セレン蒸気を用いることが望ましい。セレン蒸
気は、プリカーサーを熱処理する容器中に固体のセレン
を同時に封入することで得ることができる。一方、熱処
理は350〜500℃で行うことができる。ここで40
0℃以上500℃以下での温度で熱処理を行うと、特に
高効率の太陽電池を得ることができるので望ましい。処
理時間は通常30〜120分程度である。なお、この熱
処理によって、上記導電層に接したセレン層あるいはセ
レンを含む層由来のセレンによって、モリブデン層に接
する周囲に銅−インジウム−セレン三元合金結晶の種結
晶が生成する。このとき、メッキによって形成されたセ
レン層あるいはセレンを含む層の厚さ斑が少ないため、
このCIS種結晶が容易に表面方向に発達し、そのため
非常に優れた結晶化度、配向度を有するCIS層が得ら
れる。なお、CISは結晶的に安定であるため、形成さ
れるとセレンを透過しなくなるため、気相からモリブデ
ン層へのセレンの浸入を防止し、その結果セレン化モリ
ブデンの生成が抑えられる。
Next, these laminates are heat-treated in an atmosphere containing selenium to grow CIS crystals and obtain CIS layers (see FIG. 1 (d)). Here, examples of the atmosphere containing selenium include hydrogen selenide and an inert gas containing selenium vapor. However, since hydrogen selenide is extremely toxic, it is desirable to use selenium vapor. Selenium vapor can be obtained by simultaneously encapsulating solid selenium in a vessel for heat treating the precursor. On the other hand, the heat treatment can be performed at 350 to 500 ° C. 40 here
It is desirable to perform the heat treatment at a temperature of 0 ° C. or higher and 500 ° C. or lower, because a highly efficient solar cell can be obtained. The processing time is usually about 30 to 120 minutes. By this heat treatment, a seed crystal of a copper-indium-selenium ternary alloy crystal is generated around the molybdenum layer by selenium derived from the selenium layer or the layer containing selenium in contact with the conductive layer. At this time, since the selenium layer formed by plating or the layer containing selenium has less thickness unevenness,
This CIS seed crystal easily develops in the surface direction, so that a CIS layer having extremely excellent crystallinity and orientation can be obtained. Since CIS is crystallographically stable, it does not permeate selenium once it is formed, which prevents selenium from penetrating into the molybdenum layer from the vapor phase, and as a result suppresses the formation of molybdenum selenide.

【0018】さらに、このように形成されたCIS層上
に、n型半導体である硫化カドミウム(CdS)層 、
同じくn型半導体であるセレン化亜鉛層を例えば蒸着法
等で形成する。なお、n型半導体CdS層の形成に関し
ては上記蒸着法以外にも溶液成長(CBS)法を応用し
ても良い。CdS層の厚さとしては0.02〜0.3μ
mであることが望ましい。CdS層の厚さが0.02μ
m未満であると、CISのCdSによる被覆が完全でな
くなり、また、0.3μm超であるとCdS層の光透過
率が低くなるため、共に光電変換効率の低下が生じやす
い。
Further, on the CIS layer thus formed, a cadmium sulfide (CdS) layer which is an n-type semiconductor,
A zinc selenide layer which is also an n-type semiconductor is formed by, for example, a vapor deposition method. For the formation of the n-type semiconductor CdS layer, a solution growth (CBS) method may be applied other than the above vapor deposition method. The thickness of the CdS layer is 0.02-0.3μ
It is desirable that it is m. CdS layer thickness is 0.02μ
If it is less than m, the coverage of CIS with CdS will be incomplete, and if it exceeds 0.3 μm, the light transmittance of the CdS layer will be low, and thus the photoelectric conversion efficiency tends to decrease.

【0019】最後に窓層として、導電性向上のためにア
ルミニウムをドーピングした酸化亜鉛(ZnO)層をス
パッタリングによって成膜し、薄膜太陽電池が完成する
(図1(e)参照)。ここで、ZnO層の厚さとしては
0.5〜2μmであることが望ましい。ZnO層の厚さ
が0.5μm未満であると、直列抵抗の増加によりロス
が大きくなり、2μm超であると光透過率が減少して効
率が低下しやすくなると同時にコストアップ要因とな
る。このように得られた薄膜太陽電池にその後必要に応
じ反射防止膜などを設け、この層及び導電性基板にリー
ド線等を接続して使用する。
Finally, as the window layer, a zinc oxide (ZnO) layer doped with aluminum for improving conductivity is formed by sputtering to complete a thin film solar cell (see FIG. 1 (e)). Here, the thickness of the ZnO layer is preferably 0.5 to 2 μm. If the thickness of the ZnO layer is less than 0.5 μm, the loss increases due to an increase in series resistance, and if it exceeds 2 μm, the light transmittance decreases and the efficiency tends to decrease, which also causes a cost increase. The thin film solar cell thus obtained is then provided with an antireflection film or the like if necessary, and a lead wire or the like is connected to this layer and the conductive substrate for use.

【0020】[0020]

【実施例】【Example】

[実施例1及び比較例] 〈導電層の形成〉厚さ1mmのソーダライムガラス上に
スパッタリングによって、クロムを0.2μm、そのク
ロム層の上にモリブデンを2.0μmの厚さになるよう
堆積した。このモリブデン層表面の中心線平均粗さを触
針式表面形状測定装置によって測定したところ、0.7
nmであった。 〈導電層に接したセレンを含む銅インジウム層の形成〉
さらにこのモリブデン薄膜上に、硫酸銅(CuSO4
10mmol/ l、硫酸インジウム(In2(S
43)50mmol/ l、二酸化セレン(SeO2
10mmol/ l、クエン酸三ナトリウム50mmol
/ l、及び硫酸500mmol/ lとなるよう水に溶解
して作成したメッキ浴中で、対極として白金板を、参照
極として硫酸第一水銀電極をそれぞれ用いて、硫酸第一
水銀電極に対して−1.0Vの定電位になるよう電気メ
ッキを2分間行い、セレンを含む銅インジウム層(厚さ
50nm)を形成した。なお、このセレンを含む銅イン
ジウム層表面の中心線平均粗さを測定したところ、2.
6nmであった。
Example 1 and Comparative Example <Formation of Conductive Layer> Chromium was deposited on a soda-lime glass having a thickness of 1 mm by sputtering to a thickness of 0.2 μm, and molybdenum was deposited on the chromium layer to a thickness of 2.0 μm. did. The center line average roughness of the surface of the molybdenum layer was measured by a stylus type surface shape measuring device and found to be 0.7.
was nm. <Formation of selenium-containing copper indium layer in contact with conductive layer>
Furthermore, on this molybdenum thin film, copper sulfate (CuSO 4 )
10 mmol / l, indium sulfate (In 2 (S
O 4 ) 3 ) 50 mmol / l, selenium dioxide (SeO 2 )
10 mmol / l, trisodium citrate 50 mmol
/ L and sulfuric acid 500 mmol / l in a plating bath prepared by dissolving in water, using a platinum plate as a counter electrode and a mercuric sulfate electrode as a reference electrode, respectively, with respect to the mercuric sulfate electrode. Electroplating was carried out for 2 minutes so as to have a constant potential of -1.0 V to form a copper indium layer (thickness: 50 nm) containing selenium. When the center line average roughness of the surface of the copper indium layer containing selenium was measured, 2.
6 nm.

【0021】〈CIS層の形成〉このようにして形成さ
れたセレンを含む銅インジウム層の上に、硫酸銅(Cu
SO4)を0.2mol/ l、硫酸ナトリウム(Na2
4)を0.1mol/lとなるよう水に溶解して作成し
た銅メッキ浴中で、銅板を対極として、電流密度30m
A/cm2で2分間の定電流法でメッキを行って、銅層
を形成した。さらにこの銅層の上に、硫酸インジウム
(In2(SO4)を50mmol/ l、硫酸ナトリウム
(Na2SO4)を80mmol/ l、及びクエン酸三ナ
トリウム25mmol/ lとなるよう水に溶解して作成
したインジウムメッキ浴中で、対極として白金電極を用
いて、電流密度10mA/cm2で2.5分間の定電流
法でメッキを行って、インジウム層を形成した。これら
セレンを含むインジウム層、銅層及びインジウム層から
なる積層膜の組成分析を蛍光X線分析装置を用いて行っ
たところ、銅原子、インジウム原子及びセレン原子の存
在比はそれぞれ37、41、22となっていた。このよ
うな積層膜を窒素中で、セレン粉末とともに500℃で
60分間加熱処理を行い、得られた層の組成分析を行っ
たところ、銅原子、インジウム原子及びセレン原子の存
在比はそれぞれ23、25、52と、銅−インジウム−
セレン三元合金の化学量論的組成に近いものであること
が判った。なお、この得られたCIS層(厚さ:2μ
m)は剥がれやひびのない良好なものであった。
<Formation of CIS Layer> On the copper indium layer containing selenium thus formed, copper sulfate (Cu
SO 4 ) 0.2 mol / l, sodium sulfate (Na 2 S
In a copper plating bath prepared by dissolving O 4 ) in water to a concentration of 0.1 mol / l, using a copper plate as a counter electrode, a current density of 30 m
A copper layer was formed by plating at A / cm 2 for 2 minutes by a constant current method. Further, on the copper layer, indium sulfate (In 2 (SO 4 ) 50 mmol / l, sodium sulfate (Na 2 SO 4 ) 80 mmol / l, and trisodium citrate 25 mmol / l were dissolved in water so as to be. The indium plating bath was prepared by using a platinum electrode as a counter electrode and plating was performed by a constant current method at a current density of 10 mA / cm 2 for 2.5 minutes to form an indium layer. When the composition analysis of the laminated film including the copper layer and the indium layer was performed using the fluorescent X-ray analyzer, the abundance ratios of the copper atom, the indium atom, and the selenium atom were 37, 41, and 22, respectively. When such a laminated film was subjected to heat treatment at 500 ° C. for 60 minutes in nitrogen together with selenium powder, the composition of the obtained layer was analyzed. Abundance of Kooyobi selenium atom respectively 23,25,52, copper - indium -
It was found to be close to the stoichiometric composition of the selenium ternary alloy. The obtained CIS layer (thickness: 2 μ
m) was good without peeling or cracking.

【0022】〈CIS層の評価〉また、このCIS層に
市販の粘着テープ(住友スリーエム社製メンディングテ
ープ)を貼りつけ、この粘着テープ剥がした際に、CI
S層に剥離が生じるかについて、同様に作製した5サン
プルについて調査した(以下このような剥離評価方法を
「テープテスト」と云う)が、5サンプル中剥離が生じ
たものは1サンプルのみであり、本発明に係る方法によ
り形成されたCIS層と導電層との間の密着性が極めて
良好であることが判った(実施例1)。なお、この剥離
が生じたサンプルの剥離が生じなかった部分について、
その断面をエネルギー分散型X線分析装置により調査し
てみた。その結果を図2に示す。図2により、この実施
例1のCIS層と導電層(モリブデン層)とは直接接し
ていて、これら層の間にはセレン化モリブデン層が生成
していないことが確認された。
<Evaluation of CIS Layer> Further, when a commercially available adhesive tape (Mending Tape manufactured by Sumitomo 3M Ltd.) was attached to the CIS layer and the adhesive tape was peeled off, CI was obtained.
As to whether or not peeling occurred in the S layer, 5 samples prepared in the same manner were investigated (hereinafter, such a peeling evaluation method is referred to as a "tape test"), but only 1 sample peeled out of the 5 samples. It was found that the adhesion between the CIS layer formed by the method according to the present invention and the conductive layer was extremely good (Example 1). In addition, regarding the portion where the peeling did not occur in the sample,
The cross section was examined by an energy dispersive X-ray analyzer. The result is shown in FIG. From FIG. 2, it was confirmed that the CIS layer of Example 1 and the conductive layer (molybdenum layer) were in direct contact with each other, and a molybdenum selenide layer was not formed between these layers.

【0023】なお、上記実施例1と同様に、ただし導電
層に接したセレンを含む銅インジウム層の形成を行わず
に作成したCIS層(その銅原子、インジウム原子及び
セレン原子の存在比はそれぞれ23、25、52であっ
た)を有する5サンプル(比較例1)について同様にテ
ープテストを行ったところ、4サンプルに剥離が生じ
た。また、別途、メッキによるセレンを含む銅インジウ
ム層の形成を行わずに、代わりに導電層に接してセレン
層(厚さ:15nm)を真空蒸着法によって形成した以
外は実施例1と同様にして得た5サンプル(比較例2)
についても、同様にテープテストを行ったところ、2サ
ンプルに剥離が生じた。なお、上記スパッタリング法で
作成されたセレン層表面の中心線平均粗さを測定したと
ころ、3.2nmであった。
The CIS layer (the abundance ratios of the copper atom, the indium atom and the selenium atom are the same as those in the above-mentioned Example 1 except that the copper indium layer containing selenium in contact with the conductive layer is not formed. The same tape test was performed on 5 samples (Comparative Example 1) having 23, 25, and 52), and peeling occurred on 4 samples. In addition, the copper indium layer containing selenium was not separately formed by plating, and instead, a selenium layer (thickness: 15 nm) was formed in contact with the conductive layer by a vacuum deposition method, and the same procedure as in Example 1 was performed. 5 samples obtained (Comparative Example 2)
Also, when the tape test was conducted in the same manner, peeling occurred in two samples. The center line average roughness of the surface of the selenium layer formed by the above-mentioned sputtering method was measured and found to be 3.2 nm.

【0024】[実施例2] 〈導電層に接したセレン層の形成〉実施例1と同様に厚
さ1mmのソーダライムガラス上にスパッタリングによ
って、クロム層、及びそのクロム層の上にモリブデン層
を堆積し、この上にセレンコロイド溶液中に30分間浸
漬させてコロイドメッキ法にてセレン層(厚さ:100
nm)を形成した。用いたセレンコロイド溶液は以下の
手順で調製したセレンコロイド原液から、セレン濃度が
10mmol/ lとなるよう作製したものである。すな
わち、ゼラチン水溶液(4g/ l)4ml、亜セレン酸水
溶液(0.1mol/ l)10ml、硫酸ヒドラジニウム
水溶液(0.1mol/ l)10ml、水30mlを混
合後、40℃で45分間加熱した後、pHを2に調整し
てコロイドを安定化させて、セレンコロイド原液とし
た。ここで、ゼラチンを加えるのはコロイドの安定のた
めである。なお、このようにして調製したセレンコロイ
ド原液のコロイド粒子を走査型電子顕微鏡で調べたとこ
ろ、セレンコロイド粒子の粒径は10nm以上100n
m以下であり、また長時間放置してもセレン粒子の沈殿
が生じることなく、非常に安定であった。
[Example 2] <Formation of selenium layer in contact with conductive layer> Similarly to Example 1, a chromium layer and a molybdenum layer were formed on the chromium layer by sputtering on a soda-lime glass having a thickness of 1 mm. The selenium layer (thickness: 100) is deposited on the selenium colloidal solution by immersing it on the selenium colloidal solution for 30 minutes.
nm). The selenium colloid solution used was prepared from the selenium colloid stock solution prepared by the following procedure so that the selenium concentration would be 10 mmol / l. That is, 4 ml of gelatin aqueous solution (4 g / l), 10 ml of selenous acid aqueous solution (0.1 mol / l), 10 ml of hydrazinium sulfate aqueous solution (0.1 mol / l), and 30 ml of water were mixed and heated at 40 ° C. for 45 minutes. , PH was adjusted to 2 to stabilize the colloid to obtain a selenium colloid stock solution. Here, gelatin is added to stabilize the colloid. When the colloidal particles of the selenium colloid stock solution thus prepared were examined by a scanning electron microscope, the particle size of the selenium colloidal particles was 10 nm or more and 100 n or more.
It was not more than m and was very stable without precipitation of selenium particles even when left for a long time.

【0025】上記のように形成されたセレン層表面の中
心線平均粗さを測定したところ、4.0nmであった。
このセレン層の上に実施例1同様にして、銅層及びイン
ジウム層を電気メッキ法で形成した。これら積層膜(セ
レン層、銅層及びインジウム層)の組成分析を蛍光X線
分析装置を用いて行ったところ、銅原子、インジウム原
子及びセレン原子の存在比はそれぞれ48、45、7と
なっていた。
The center line average roughness of the surface of the selenium layer formed as described above was measured and found to be 4.0 nm.
A copper layer and an indium layer were formed on this selenium layer by the electroplating method in the same manner as in Example 1. When the composition analysis of these laminated films (selenium layer, copper layer and indium layer) was carried out using a fluorescent X-ray analyzer, the abundance ratios of copper atoms, indium atoms and selenium atoms were 48, 45 and 7, respectively. It was

【0026】〈CIS層の形成・評価〉このような積層
膜を窒素中で、セレン粉末とともに500℃で60分間
加熱処理を行い、得られた層の組成分析を行ったとこ
ろ、銅原子、インジウム原子及びセレン原子の存在比は
それぞれ24、26、50であった。なお、この得られ
たCIS層(厚さ:2μm)は剥がれやひびのない良好
なものであり、テープテストを行ったところ、5サンプ
ル中剥離が生じたものはなかった。これらサンプルのう
ち一つについてその断面をエネルギー分散型X線分析装
置により調査したところ、CIS層と導電層との間には
セレン化モリブデン層が生成していないことが確認され
た。
<Formation / Evaluation of CIS Layer> Such a laminated film was subjected to heat treatment in nitrogen together with selenium powder at 500 ° C. for 60 minutes, and the composition of the obtained layer was analyzed. The abundance ratios of atoms and selenium atoms were 24, 26, and 50, respectively. The obtained CIS layer (thickness: 2 μm) was a good one without peeling or cracking, and when a tape test was conducted, none of the five samples peeled. When the cross section of one of these samples was examined by an energy dispersive X-ray analyzer, it was confirmed that a molybdenum selenide layer was not formed between the CIS layer and the conductive layer.

【0027】[実施例3] 〈導電層に接したセレンを含む銅層の形成〉実施例1と
同様に厚さ1mmのソーダライムガラス上に真空蒸着に
よって、クロム層、及びそのクロム層の上にモリブデン
層を堆積し、さらにこのモリブデン薄膜上に、硫酸銅
(CuSO4)10mmol/ l、二酸化セレン(Se
2)10mmol/ l、クエン酸三ナトリウム50m
mol/ l、及び硫酸500mmol/ lとなるよう水
に溶解して作成したメッキ浴中で、対極として白金板を
用いて、メッキ面に対し10mA/cm2の電流密度に
なるよう電気メッキを1分間行い、セレンを含む銅層
(厚さ:15nm)を形成した。
[Example 3] <Formation of copper layer containing selenium in contact with conductive layer> As in Example 1, on a soda lime glass having a thickness of 1 mm, a chromium layer was formed on the chromium layer and the chromium layer by vacuum vapor deposition. A molybdenum layer is deposited on the molybdenum thin film, and copper sulfate (CuSO 4 ) 10 mmol / l and selenium dioxide (Se) are deposited on the molybdenum thin film.
O 2 ) 10 mmol / l, trisodium citrate 50 m
In a plating bath prepared by dissolving it in water so as to have mol / l and sulfuric acid of 500 mmol / l, a platinum plate was used as a counter electrode, and electroplating was carried out at a current density of 10 mA / cm 2 with respect to the plated surface. After that, the copper layer containing selenium (thickness: 15 nm) was formed.

【0028】上記のように形成されたセレンを含む銅層
表面の中心線平均粗さを測定したところ、2.6nmで
あった。このセレンを含む銅層の上に実施例1同様に、
ただし、処理時間を調整してインジウム層を電気メッキ
法で形成した。これら積層膜(セレンを含む銅層及びイ
ンジウム層)の組成分析を蛍光X線分析装置を用いて行
ったところ、銅原子、インジウム原子及びセレン原子の
存在比はそれぞれ23、25、52となっていた。
The center line average roughness of the surface of the copper layer containing selenium formed as described above was measured and found to be 2.6 nm. On the copper layer containing selenium, as in Example 1,
However, the treatment time was adjusted and the indium layer was formed by the electroplating method. When the composition analysis of these laminated films (copper layer containing selenium and indium layer) was performed using an X-ray fluorescence analyzer, the abundance ratios of copper atoms, indium atoms and selenium atoms were 23, 25 and 52, respectively. It was

【0029】〈CIS層の形成・評価〉このような積層
膜を実施例1同様に加熱処理を行い、得られた層の組成
分析を行ったところ、銅原子、インジウム原子及びセレ
ン原子の存在比はそれぞれ23、25、52で、また、
この得られたCIS層(厚さ:2μm)は剥がれやひび
のない良好なものであり、テープテストを行ったとこ
ろ、5サンプル中1サンプルのみ剥離が生じたものの、
残りの4サンプルには剥離は生じなかった(実施例
3)。なお、この剥離が生じたサンプルの剥離が生じな
かった部分について、その断面をエネルギー分散型X線
分析装置により調査したところ、CIS層と導電層との
間にはセレン化モリブデン層が生成していないことが確
認された。
<Formation / Evaluation of CIS Layer> Such a laminated film was heat treated in the same manner as in Example 1 and the composition of the obtained layer was analyzed. As a result, the abundance ratios of copper atoms, indium atoms and selenium atoms were found. Are 23, 25 and 52 respectively, and
The obtained CIS layer (thickness: 2 μm) was a good one without peeling or cracking, and when a tape test was conducted, only one sample out of five samples peeled,
No peeling occurred in the remaining 4 samples (Example 3). The cross-section of the peeled sample in the non-peeled sample was examined by an energy dispersive X-ray analyzer. As a result, a molybdenum selenide layer was formed between the CIS layer and the conductive layer. It was confirmed that there was not.

【0030】[実施例4] 〈導電層に接したセレンを含むインジウム層の形成〉実
施例1と同様に厚さ1mmのソーダライムガラス上にス
パッタリングによって、クロム層、及びそのクロム層の
上にモリブデン層を堆積し、さらにこのモリブデン薄膜
上に、硫酸インジウム(In2(SO43)50mmo
l/ l、セレンコロイド10mmol/ l(実施例2で
用いたセレンコロイド原液を用いた)、クエン酸三ナト
リウム25mmol/ l、及び硫酸500mmol/ l
となるよう水に溶解して作成したメッキ浴中で、対極と
して白金板を用いて、電流密度30mA/cm2として
2分間メッキを行い、セレンを含むインジウム層を形成
した。
[Example 4] <Formation of indium layer containing selenium in contact with conductive layer> As in Example 1, on a soda lime glass having a thickness of 1 mm, a chromium layer was formed on the chromium layer and the chromium layer by sputtering. A molybdenum layer is deposited, and indium sulfate (In 2 (SO 4 ) 3 ) 50 mmo is further deposited on this molybdenum thin film.
l / l, selenium colloid 10 mmol / l (using the selenium colloid stock solution used in Example 2), trisodium citrate 25 mmol / l, and sulfuric acid 500 mmol / l.
In a plating bath prepared by dissolving in water so as to obtain a platinum electrode as a counter electrode, plating was performed at a current density of 30 mA / cm 2 for 2 minutes to form an indium layer containing selenium.

【0031】上記のように形成されたセレンを含むイン
ジウム層表面の中心線平均粗さを測定したところ、50
nmであった。このセレンを含むインジウム層の上に実
施例1同様に、ただし、処理時間を調整して銅層を電気
メッキ法で形成した。これら積層膜(セレンを含むイン
ジウム層及び銅層)の組成分析を蛍光X線分析装置を用
いて行ったところ、銅原子、インジウム原子及びセレン
原子の存在比はそれぞれ37、41、22となってい
た。
When the center line average roughness of the surface of the indium layer containing selenium formed as described above was measured, it was 50
was nm. A copper layer was formed on the indium layer containing selenium by the electroplating method in the same manner as in Example 1, except that the treatment time was adjusted. When the composition analysis of these laminated films (the indium layer containing selenium and the copper layer) was performed using a fluorescent X-ray analyzer, the abundance ratios of copper atoms, indium atoms and selenium atoms were 37, 41 and 22, respectively. It was

【0032】〈CIS層の形成・評価〉このような積層
膜を実施例1同様に加熱処理を行い、得られた層の組成
分析を行ったところ、銅原子、インジウム原子及びセレ
ン原子の存在比はそれぞれ23、25、52で、また、
この得られたCIS層(厚さ:2μm)は剥がれやひび
のない良好なものであり、テープテストを行ったとこ
ろ、5サンプル中2サンプルに剥離が生じたものの、残
りの3サンプルには剥離は生じなかった(実施例4)。
なお、この剥離が生じたサンプルの剥離が生じなかった
部分について、その断面をエネルギー分散型X線分析装
置により調査したところ、CIS層と導電層との間には
セレン化モリブデン層が生成していないことが確認され
た。
<Formation / Evaluation of CIS Layer> Such a laminated film was subjected to heat treatment in the same manner as in Example 1 and the composition of the obtained layer was analyzed. As a result, the abundance ratios of copper atoms, indium atoms and selenium atoms were found. Are 23, 25 and 52 respectively, and
The obtained CIS layer (thickness: 2 μm) was a good one without peeling or cracking, and when a tape test was conducted, peeling occurred in 2 out of 5 samples, but peeled in the remaining 3 samples. Did not occur (Example 4).
The cross-section of the peeled sample in the non-peeled sample was examined by an energy dispersive X-ray analyzer. As a result, a molybdenum selenide layer was formed between the CIS layer and the conductive layer. It was confirmed that there was not.

【0033】[太陽電池としての評価]上記実施例1〜
実施例4、比較例1及び比較例2で得られたサンプルの
うち、剥離等の障害のないものを選択し、これらCIS
層の上にそれぞれ、硫化カドミウム層を液相成長法によ
り形成した。即ち、70℃の硫酸カドミウム(CdSO
4)0.01mol/ l水溶液(アンモニア水でpHを8.
5に調整したもの)に、上記の薄膜層を形成したソーダ
ラムガラスを5分間浸漬し、その後、チオ尿素0.01
mol/ l水溶液を加え5分間保持して硫化カドミウム層
を成長させ、水で充分に洗浄後、窒素下で乾燥させた。
得られたこれら硫化カドミウム層の厚さは0.05μm
であった。
[Evaluation as Solar Cell] Examples 1 to 1 above
Among the samples obtained in Example 4, Comparative Example 1 and Comparative Example 2, those without obstacles such as peeling were selected, and these CISs were selected.
A cadmium sulfide layer was formed on each of the layers by liquid phase epitaxy. That is, 70 ° C cadmium sulfate (CdSO
4 ) 0.01 mol / l aqueous solution (pH was adjusted to 8.
5) was soaked in the soda lam glass on which the above thin film layer was formed for 5 minutes, and then thiourea 0.01
A mol / l aqueous solution was added, and the mixture was kept for 5 minutes to grow a cadmium sulfide layer, thoroughly washed with water, and then dried under nitrogen.
The thickness of the obtained cadmium sulfide layer is 0.05 μm.
Met.

【0034】その後、これらそれぞれに2重量%のアル
ミニウムをドープさせた酸化亜鉛層の2μm厚の薄膜を
スパッタリング法にて形成し、薄膜太陽電池A〜Fを得
た。。なお、得られた太陽電池のうち、比較例1のサン
プルを用いたもの(薄膜太陽電池E)にはその周辺部に
比較的大きな剥がれ、ひびが生じていた。また、比較例
2のサンプルを用いたもの(薄膜太陽電池F)にも、そ
の周辺部にひびが生じているもの(4サンプル中1サン
プル)があった。一方実施例1〜実施例4のサンプルを
用いたもの(薄膜太陽電池A〜D)にはこのような瑕疵
は生じなかった。これらCIS薄膜太陽電池A〜Dの中
央の直径2mmの円状の部分についてその特性を太陽電
池出力特性装置(WACOM社製)を用いて測定した。
結果を表2に示す。また、太陽電池電池A、太陽電池E
及び太陽電池FのI−V曲線を図3に示す。
Thereafter, a 2 μm thick thin film of a zinc oxide layer doped with 2% by weight of aluminum was formed on each of these by sputtering to obtain thin film solar cells A to F. . In addition, among the obtained solar cells, the one using the sample of Comparative Example 1 (thin film solar cell E) had relatively large peeling and cracks in its peripheral portion. In addition, some of the samples using the sample of Comparative Example 2 (thin film solar cell F) also had cracks in the peripheral portion (1 sample out of 4 samples). On the other hand, such defects did not occur in the samples using the samples of Examples 1 to 4 (thin film solar cells A to D). The characteristics of a circular portion having a diameter of 2 mm at the center of each of the CIS thin-film solar cells A to D were measured using a solar cell output characteristic device (manufactured by WACOM).
Table 2 shows the results. In addition, solar cell A and solar cell E
And the IV curve of the solar cell F is shown in FIG.

【0035】[0035]

【表2】 [Table 2]

【0036】表2および図3より、本発明に係るCIS
薄膜太陽電池の太陽電池の出力特性は従来技術に係る太
陽電池E及びFより優れていることが判る。
From Table 2 and FIG. 3, the CIS according to the present invention is shown.
It can be seen that the output characteristics of the thin film solar cell are superior to those of the conventional solar cells E and F.

【0037】[0037]

【発明の効果】上記導電層に接したセレン層あるいはセ
レンを含む層由来のセレンによって、モリブデン層に接
する周囲に銅−インジウム−セレン三元合金結晶の種結
晶が生成しこのとき、メッキによって形成されたセレン
層あるいはセレンを含む層の厚さ斑が少ないため、この
CIS種結晶が容易に表面方向に発達し、そのため非常
に優れた結晶化度、配向度が得られ、その結果として優
れた光電変換効率を有するCIS太陽電池が歩留まり良
く得られる。
EFFECTS OF THE INVENTION A seed crystal of a copper-indium-selenium ternary alloy crystal is formed in the periphery in contact with a molybdenum layer by selenium derived from a selenium layer in contact with the conductive layer or a layer containing selenium. This CIS seed crystal easily develops in the surface direction because the thickness unevenness of the formed selenium layer or the layer containing selenium is small, and as a result, very excellent crystallinity and orientation degree are obtained, and as a result, it is excellent. A CIS solar cell having photoelectric conversion efficiency can be obtained with high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るCIS薄膜太陽電池の製造工程の
一例を示す図である。
FIG. 1 is a diagram showing an example of a manufacturing process of a CIS thin film solar cell according to the present invention.

【図2】実施例1で形成されたCIS層とモリブデン層
との断面におけるエネルギー分散型X線分析装置による
深さ方向の分析結果を示す図である。
FIG. 2 is a diagram showing a result of analysis in a depth direction by an energy dispersive X-ray analyzer in a cross section of a CIS layer and a molybdenum layer formed in Example 1.

【図3】本発明に係る太陽電池A、比較例の太陽電池E
及びFのI−V曲線を示す図である。
FIG. 3 shows a solar cell A according to the present invention and a solar cell E as a comparative example.
It is a figure which shows the IV curve of F and F.

【図4】従来技術によるCIS層の形成方法を示す図で
ある。
FIG. 4 is a diagram showing a method for forming a CIS layer according to a conventional technique.

【図5】従来技術によって形成されたCIS層とモリブ
デン層との断面におけるエネルギー分散型X線分析装置
による深さ方向の分析結果を示す図である。
FIG. 5 is a diagram showing an analysis result in a depth direction by an energy dispersive X-ray analysis device in a cross section of a CIS layer and a molybdenum layer formed by a conventional technique.

【図6】CIS層の密着性に及ぼすセレン化モリブデン
層の厚さの影響を調べた結果を示すグラフである。
FIG. 6 is a graph showing the results of examining the effect of the thickness of the molybdenum selenide layer on the adhesion of the CIS layer.

【符号の説明】[Explanation of symbols]

1 ソーダライムガラス 2 クロム層 3 モリブデン層(導電層) 4 セレン層 5 銅インジウム層 6 CIS層 7 硫化カドミウム層 8 酸化亜鉛層 1 Soda lime glass 2 Chromium layer 3 Molybdenum layer (conductive layer) 4 Selenium layer 5 Copper indium layer 6 CIS layer 7 Cadmium sulfide layer 8 Zinc oxide layer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年2月21日[Submission date] February 21, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0018】さらに、このように形成されたCIS層上
に、n型半導体である硫化カドミウム(CdS)層、同
じくn型半導体であるセレン化亜鉛層を例えば蒸着法等
で形成する。なお、n型半導体CdS層の形成に関して
は上記蒸着法以外にも溶液成長(CBD(Chemic
al Bath Deposition))法を応用し
ても良い。CdS層の厚さとしては0.02〜0.3μ
mであることが望ましい。CdS層の厚さが0.02μ
m未満であると、CISのCdSによる被覆が完全でな
くなり、また、0.3μm超であるとCdS層の光透過
率が低くなるため、共に光電変換効率の低下が生じやす
い。
Further, on the CIS layer thus formed, a cadmium sulfide (CdS) layer which is an n-type semiconductor and a zinc selenide layer which is also an n-type semiconductor are formed by, for example, a vapor deposition method. Regarding the formation of the n-type semiconductor CdS layer, solution growth ( CBD (Chemical
al Bath Deposition) ) method may be applied. The thickness of the CdS layer is 0.02-0.3μ
It is desirable that it is m. CdS layer thickness is 0.02μ
If it is less than m, the coverage of CIS with CdS will be incomplete, and if it exceeds 0.3 μm, the light transmittance of the CdS layer will be low, and thus the photoelectric conversion efficiency tends to decrease.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図4[Correction target item name] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図4】 FIG. 4

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神谷 武志 静岡県裾野市御宿1500 矢崎総業株式会社 内 (72)発明者 池谷 剛 静岡県裾野市御宿1500 矢崎総業株式会社 内 (72)発明者 佐藤 賢次 静岡県裾野市御宿1500 矢崎総業株式会社 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Kamiya 1500, Onjuku, Susono, Shizuoka Prefecture, Yazaki Sogyo Co., Ltd. 1500 Onjuku, Susono-shi, Shizuoka Inside Yazaki Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導電層に接してセレン層或いはセレンを
含有する層を配する工程を有するCIS薄膜太陽電池の
製造方法において、上記セレン層あるいはセレンを含有
する層をメッキ法で形成することを特徴とするCIS薄
膜太陽電池の製造方法。
1. A method for producing a CIS thin-film solar cell comprising a step of disposing a selenium layer or a layer containing selenium in contact with a conductive layer, wherein the selenium layer or the layer containing selenium is formed by a plating method. A method for manufacturing a CIS thin-film solar cell, which is characterized.
【請求項2】 上記導電層に接する層が、セレンを含有
する銅層、あるいは、セレンを含有するインジウム層の
いずれかであることを特徴とする請求項1に記載の薄膜
太陽電池の製造方法。
2. The method for producing a thin film solar cell according to claim 1, wherein the layer in contact with the conductive layer is either a copper layer containing selenium or an indium layer containing selenium. .
【請求項3】 上記導電層に接する層が銅、インジウム
及びセレンからなる層であることを特徴とする請求項1
に記載のCIS薄膜太陽電池の製造方法。
3. The layer in contact with the conductive layer is a layer made of copper, indium and selenium.
The method for producing a CIS thin-film solar cell according to 1.
【請求項4】 導電層に接して銅−インジウム−セレン
三元合金を形成する際に、導電層に接してセレンあるい
はセレンを含有する層をメッキ法で形成し、次いでこの
セレンあるいはセレンを含有する層の上に銅層、インジ
ウム層あるいは銅インジウム層の少なくとも一つを形成
した後、セレンを含む雰囲気中で熱処理を行うことを特
徴とする銅−インジウム−セレン三元合金の形成方法。
4. When forming a copper-indium-selenium ternary alloy in contact with a conductive layer, selenium or a layer containing selenium is formed in contact with the conductive layer by a plating method, and then selenium or selenium is added. Forming at least one of a copper layer, an indium layer, or a copper indium layer on the layer, and then performing heat treatment in an atmosphere containing selenium, to form a ternary alloy of copper-indium-selenium.
JP8137080A 1996-05-30 1996-05-30 Manufacturing cis thin film solar cell and forming copper-indium-selenium alloy Withdrawn JPH09321326A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8137080A JPH09321326A (en) 1996-05-30 1996-05-30 Manufacturing cis thin film solar cell and forming copper-indium-selenium alloy
DE19722474A DE19722474A1 (en) 1996-05-30 1997-05-28 Production of copper-indium-selenium solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8137080A JPH09321326A (en) 1996-05-30 1996-05-30 Manufacturing cis thin film solar cell and forming copper-indium-selenium alloy

Publications (1)

Publication Number Publication Date
JPH09321326A true JPH09321326A (en) 1997-12-12

Family

ID=15190433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8137080A Withdrawn JPH09321326A (en) 1996-05-30 1996-05-30 Manufacturing cis thin film solar cell and forming copper-indium-selenium alloy

Country Status (2)

Country Link
JP (1) JPH09321326A (en)
DE (1) DE19722474A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202919A (en) * 2005-01-19 2006-08-03 Shinko Electric Ind Co Ltd Solar cell module and method of manufacturing same
JP2010507909A (en) * 2006-10-19 2010-03-11 ソロパワー、インコーポレイテッド Roll-to-roll electroplating for the production of photovoltaic films
JP2011029633A (en) * 2009-07-24 2011-02-10 Korea Electronics Telecommun Cigs solar cell, and method of fabricating the same
JP2011060789A (en) * 2009-09-04 2011-03-24 Taiyo Nippon Sanso Corp Method and apparatus for supplying hydrogen selenide-mixed gas for solar cell
CN102339903A (en) * 2011-07-26 2012-02-01 友达光电股份有限公司 Method for forming photoelectric conversion layer
WO2012060096A1 (en) 2010-11-02 2012-05-10 富士フイルム株式会社 Photoelectric conversion element
JP2013179133A (en) * 2012-02-28 2013-09-09 Osaka Gas Co Ltd Photoelectric conversion device capable of being simply manufactured
JP2014067951A (en) * 2012-09-27 2014-04-17 Seiko Epson Corp Photoelectric conversion element, photoelectric conversion element manufacturing method and electronic apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202919A (en) * 2005-01-19 2006-08-03 Shinko Electric Ind Co Ltd Solar cell module and method of manufacturing same
JP2010507909A (en) * 2006-10-19 2010-03-11 ソロパワー、インコーポレイテッド Roll-to-roll electroplating for the production of photovoltaic films
JP2011029633A (en) * 2009-07-24 2011-02-10 Korea Electronics Telecommun Cigs solar cell, and method of fabricating the same
JP2011060789A (en) * 2009-09-04 2011-03-24 Taiyo Nippon Sanso Corp Method and apparatus for supplying hydrogen selenide-mixed gas for solar cell
WO2012060096A1 (en) 2010-11-02 2012-05-10 富士フイルム株式会社 Photoelectric conversion element
CN102339903A (en) * 2011-07-26 2012-02-01 友达光电股份有限公司 Method for forming photoelectric conversion layer
JP2013179133A (en) * 2012-02-28 2013-09-09 Osaka Gas Co Ltd Photoelectric conversion device capable of being simply manufactured
JP2014067951A (en) * 2012-09-27 2014-04-17 Seiko Epson Corp Photoelectric conversion element, photoelectric conversion element manufacturing method and electronic apparatus

Also Published As

Publication number Publication date
DE19722474A1 (en) 1997-12-04

Similar Documents

Publication Publication Date Title
US7297868B2 (en) Preparation of CIGS-based solar cells using a buffered electrodeposition bath
US5871630A (en) Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells
US20110259424A1 (en) Method of fabricating solar cells with electrodeposited compound interface layers
JP3249342B2 (en) Heterojunction thin-film solar cell and method of manufacturing the same
US20100140098A1 (en) Selenium containing electrodeposition solution and methods
Alam et al. Electrodeposition of CdS thin-films from cadmium acetate and ammonium thiosulphate precursors
EP2784828A1 (en) Czts thin-film solar cell, and method for producing same
Baid et al. A comprehensive review on Cu 2 ZnSnS 4 (CZTS) thin film for solar cell: forecast issues and future anticipation
US20040131792A1 (en) Electroless deposition of cu-in-ga-se film
US8409418B2 (en) Enhanced plating chemistries and methods for preparation of group IBIIIAVIA thin film solar cell absorbers
JPH09321326A (en) Manufacturing cis thin film solar cell and forming copper-indium-selenium alloy
JPH08125206A (en) Thin-film solar cell
TW201322460A (en) Method for manufacturing light absorber layer of bismuth-doped IB-IIIA-VIA compound and photovoltaic device including the same
KR101322652B1 (en) Structure and Fabrication of ZnS/CIGS Thin Film Solar Cells
WO2011075561A1 (en) Plating chemistries of group ib /iiia / via thin film solar absorbers
KR101484156B1 (en) Process of preparing tin-doped indium sulfide thin film
JP2010232427A (en) Photoelectric conversion device, method for manufacturing the same, anodic oxidation substrate for use therein, and solar cell
TW201427054A (en) Photoelectric conversion element and method of producing the same, manufacturing method for buffer layer of photoelectric conversion element, and solar cell
JP3011319B2 (en) Plating method and solar cell manufacturing method
WO1998048079A1 (en) Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells
KR102420408B1 (en) P-type compound semiconductor layer manufacturing method for inorganic thin film solar cells and inorganic solar cells including fabricated by the same method
JPH09148602A (en) Cis type solar battery and its manufacture
JPH07263735A (en) Solar cell and manufacture thereof
KR102513863B1 (en) Flexible CZTSSe thin film solar cells and manufacturing method thereof
KR102284809B1 (en) Cis based thin film, solar cell comprising the thin film and fabrication method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030805