JPH09148602A - Cis type solar battery and its manufacture - Google Patents

Cis type solar battery and its manufacture

Info

Publication number
JPH09148602A
JPH09148602A JP7300234A JP30023495A JPH09148602A JP H09148602 A JPH09148602 A JP H09148602A JP 7300234 A JP7300234 A JP 7300234A JP 30023495 A JP30023495 A JP 30023495A JP H09148602 A JPH09148602 A JP H09148602A
Authority
JP
Japan
Prior art keywords
layer
cis
phosphorus
nickel
selenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7300234A
Other languages
Japanese (ja)
Inventor
Norio Mochizuki
紀雄 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP7300234A priority Critical patent/JPH09148602A/en
Publication of JPH09148602A publication Critical patent/JPH09148602A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable absorbing the difference of thermal expansion of glass and CIS alloy, with an electrode layer, by using a nickel phosphorus layer as an absorption layer side electrode. SOLUTION: After a soda lime glass board turning to a board 1 is dipped in potassium hydroxide aqueous solution (8wt.%), the glass board is washed by dipping it in mercleaner and a surface to be plated is roughened. Catalyst is stuck on the plated surface by dipping the glass board in conditioner. The catalyst is activated by dipping the glass board in activator. Chemical plating is performed by dipping the glass board in plating material, and a nickel phosphorus layer 2a composed of nickel (97wt.%) and phosphorus (3wt.%) is formed. An CIS layer 3 is formed on the nickel phosphorus layer 2a. By containing phosphorus in an absorption side electrode, the thermal expansion coefficient of an electrode layer is adjusted. The difference of thermal expansion coefficient of glass and CIS alloy at the time of high temperature heating in selenide treatment can be absorbed with the electrode layer. A chemical plating method is selected, and plating material is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、CIS型薄膜太陽
電池、及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a CIS type thin film solar cell and a method for manufacturing the same.

【0002】[0002]

【従来の技術】太陽電池は光エネルギーを電気エネルギ
ーに変換する装置であり、最初は単結晶シリコンが用い
られていたが、単結晶シリコンでは大面積の太陽電池を
作ることが困難で、かつ、コストも高いものとなるた
め、最近は非晶質シリコンや化合物半導体が用いられる
ようになってきた。これら化合物半導体のうちでも、銅
−インジウム−セレン三元合金(CuInSe2 、以
下、「CIS」とも云う)が優れた光電変換効率を有す
るものとされ、これを吸収層のp型半導体として用いれ
ば、低コストで大面積の太陽電池の実現が可能となると
期待されている。
2. Description of the Related Art A solar cell is a device for converting light energy into electric energy, and initially single crystal silicon was used. However, it is difficult to make a large area solar cell with single crystal silicon, and Because of high cost, amorphous silicon and compound semiconductors have been used recently. Among these compound semiconductors, copper - indium - selenium ternary alloy (CuInSe 2, hereinafter referred to as "CIS") is to have an excellent photoelectric conversion efficiency, the use of this as a p-type semiconductor absorber layer It is expected that a large area solar cell can be realized at low cost.

【0003】このような太陽電池について図2を用いて
説明する。図2はCIS型太陽電池の断面図(モデル
図)である。図中符号1は基板で、通常、熱膨張係数が
CIS層に近いこと、また価格が安い等の理由でソーダ
ライムガラスが使われる。符号2は吸収層側電極である
モリブデン層である。符号3はp型半導体CuInSe
2 からなる吸収層であるCIS層、4はn型半導体であ
る硫化カドミウム層、5は窓側電極である酸化亜鉛層で
ある。
Such a solar cell will be described with reference to FIG. FIG. 2 is a cross-sectional view (model diagram) of a CIS solar cell. Reference numeral 1 in the figure is a substrate, and soda lime glass is usually used because of its thermal expansion coefficient being close to that of the CIS layer and its low price. Reference numeral 2 is a molybdenum layer which is an absorption layer side electrode. Reference numeral 3 is a p-type semiconductor CuInSe
A CIS layer which is an absorption layer composed of 2 , 4 is a cadmium sulfide layer which is an n-type semiconductor, and 5 is a zinc oxide layer which is a window side electrode.

【0004】上記吸収層側電極の材質としては次の理由
によってモリブデンが選択されている。すなわち、吸収
層であるCIS層は、銅及びインジウムからなる層を吸
収層側電極上に(例えばメッキ法、或いはスパッタリン
グによって)形成し、これをプリカーサーとしてセレン
化水素、或いはセレン蒸気を含む雰囲気中で350〜6
00℃で熱処理を行って得られる。このセレン化処理時
に裏面電極の材質が例えばセレンと容易に合金を形成す
るものであると、合金形成の結果膨張が生じ、得られる
CIS層にひび、剥離等が生じたり、或いは、裏面電極
自体の導電性が低下したりする障害が発生する。モリブ
デンはこのセレン化処理時の耐セレン性に優れているた
め裏面電極として用いられている。
Molybdenum is selected as the material of the absorption layer side electrode for the following reasons. That is, the CIS layer as the absorption layer is formed by forming a layer made of copper and indium on the absorption layer side electrode (for example, by plating or sputtering), and using this as a precursor in an atmosphere containing hydrogen selenide or selenium vapor. At 350-6
It is obtained by heat treatment at 00 ° C. If the material of the back electrode is one that easily forms an alloy with selenium during the selenization treatment, expansion occurs as a result of the alloy formation, and the resulting CIS layer is cracked or peeled off, or the back electrode itself. The electrical conductivity of the device will be reduced and other problems will occur. Molybdenum is used as the back electrode because it has excellent selenium resistance during the selenization treatment.

【0005】しかし、モリブデン層を形成するには事実
上スパッタリング等の真空応用技術を応用する方法によ
るしかない。ここで、これら真空応用技術に用いられる
装置は一般に非常に高価であり、またモリブデン自体も
高価である。それに加えて、これら真空応用技術では時
間当たりの処理能力を高めることが困難であり、従って
上記モリブデン層を吸収層側電極として有する太陽電池
は高価なものとならざるを得なかった。また、この真空
応用技術による場合、大面積でかつ均一な厚みを有する
電極層を得ることは非常に困難であった。
However, in order to form the molybdenum layer, the method of applying a vacuum application technique such as sputtering is practically used. Here, the devices used for these vacuum application techniques are generally very expensive, and molybdenum itself is also expensive. In addition, it is difficult to increase the processing capacity per hour with these vacuum application techniques, so that the solar cell having the above molybdenum layer as the absorption layer side electrode must be expensive. Further, according to this vacuum application technique, it is very difficult to obtain an electrode layer having a large area and a uniform thickness.

【0006】ここで、モリブデン層の代わりにニッケル
金属層を無電解メッキ法を用いて形成する半導体膜作成
用基板(特開平4−304681号公報)が提案され
た。しかしこの方法は高価なアルミナ基板には応用でき
るものの、一般的に用いられている安価なガラス基板を
用いることは事実上できなかった。すなわち、ガラス基
板に無電解メッキ法によってニッケル金属層を形成し、
このニッケル金属層上にCIS層を形成した場合にはひ
び、剥離等の瑕疵の多いものしか得られず、その結果、
歩留まりが大幅に低下し、或いは、これら瑕疵あるCI
S層を有するものをあえて用いて太陽電池を作成した場
合には短絡や光電変換効率の低下の原因になり問題とな
っていた。
Here, a semiconductor film forming substrate (Japanese Patent Laid-Open No. 4-304681) has been proposed in which a nickel metal layer is formed by using an electroless plating method instead of the molybdenum layer. However, although this method can be applied to an expensive alumina substrate, it is practically impossible to use a commonly used inexpensive glass substrate. That is, a nickel metal layer is formed on a glass substrate by electroless plating,
When a CIS layer is formed on this nickel metal layer, only those with many defects such as cracks and peeling are obtained, and as a result,
Yield is greatly reduced, or these CIs have defects.
When a solar cell is prepared by using one having an S layer, it causes a short circuit and a decrease in photoelectric conversion efficiency, which is a problem.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解決する、すなわち、高価な装置を要する
真空応用技術による工程を最小限に減らし、また、ひ
び、剥離等の障害のない、安価なCIS型太陽電池を歩
留まり良く得る方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, that is, the number of steps by vacuum application technology that requires expensive equipment is reduced to a minimum, and the problems such as cracks and peeling are prevented. It is an object of the present invention to provide a method for obtaining an inexpensive, inexpensive CIS solar cell with high yield.

【0008】[0008]

【課題を解決するための手段】本発明は、上記従来技術
における電極層であるニッケル金属層の欠点を改良する
ため、燐に注目してなされたものである。すなわち、燐
は、 ・電極層の熱膨張率を調整してセレン化処理中の高温加
熱時でのガラスとCIS合金との熱膨張の差を電極層で
吸収できるようにする ・ニッケル金属からなる結晶格子に燐原子が入り込むこ
とによりその格子間隔をCIS結晶との接合に適したも
のにする ・燐のもつ共有結合性がCIS(特にCIS中のインジ
ウム及びセレン)との結合に寄与し、またガラスとの結
合にも寄与する ものとして選択された。すなわち、本発明のCIS太陽
電池は、請求項1に記載のように吸収層側電極としてニ
ッケル燐層を有する構成を有する。
The present invention has been made by paying attention to phosphorus in order to improve the drawbacks of the nickel metal layer which is the electrode layer in the above-mentioned prior art. That is, phosphorus is: ・ Adjusts the coefficient of thermal expansion of the electrode layer so that the electrode layer can absorb the difference in thermal expansion between the glass and the CIS alloy during high temperature heating during the selenization treatment. By incorporating phosphorus atoms into the crystal lattice, the lattice spacing is made suitable for joining with the CIS crystal. The covalent bond of phosphorus contributes to the binding with CIS (particularly indium and selenium in CIS), and It was selected to also contribute to the bonding with glass. That is, the CIS solar cell of the present invention has a structure having a nickel phosphorus layer as the absorption layer side electrode as described in claim 1.

【0009】[0009]

【発明の実施の形態】本発明において、ニッケル燐層と
しては、燐の含有量が3重量%以上10重量%未満で残
部が実質上ニッケルからなるものであることが望まし
い。燐の含有率が3重量%未満であると、本発明の効果
が充分には得られず、その結果電極層上に形成されるC
IS層には、ひび、剥離等の障害が発生しやすくなる。
一方燐の含有率が10重量%以上であるとセレン化処理
工程における耐セレン性が劣化したり、導電性が劣化し
て、その結果光電変換効率が著しく低下する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, it is desirable that the nickel phosphorus layer has a phosphorus content of 3% by weight or more and less than 10% by weight, and the balance being substantially nickel. When the phosphorus content is less than 3% by weight, the effect of the present invention cannot be sufficiently obtained, and as a result, C formed on the electrode layer is not formed.
Problems such as cracks and peeling are likely to occur in the IS layer.
On the other hand, when the phosphorus content is 10% by weight or more, the selenium resistance in the selenization treatment step is deteriorated and the conductivity is deteriorated, resulting in a marked decrease in photoelectric conversion efficiency.

【0010】なお、本発明に係るニッケル燐層のセレン
化処理における耐セレン性は、モリブデン層とほぼ同様
であり、そのセレン化値は現在上限の目安として考えら
れている2%未満である。また、本発明のCIS型太陽
電池の製造方法は、上述のように主としてガラスを基板
として用いるのに適している方法であるが、もちろんア
ルミナを基板として用いる場合にも応用することができ
る。
The selenization resistance of the nickel phosphorus layer according to the present invention in the selenization treatment is almost the same as that of the molybdenum layer, and the selenization value is less than 2%, which is currently considered as an upper limit standard. Further, the method for producing a CIS type solar cell of the present invention is a method suitable mainly for using glass as a substrate as described above, but can be applied to a case where alumina is used as a substrate.

【0011】なお、上記のようなニッケル燐層は燐成分
を含有するニッケルメッキ液を用いて電気メッキ法によ
って得ることができ、また、同様に燐成分を含有する化
学メッキ液によっても得ることができる。これらにおい
てメッキ液中の燐成分濃度、或いはメッキ液のpHを調
製することによって、適切な燐含有量のニッケル燐層を
得ることができる。なお、特に化学メッキ法で得られた
ニッケル燐層はスパッタリング法で形成するニッケル層
と比較すると均一で厚さ斑が少なく、また大面積の太陽
電池を作製することも容易である。また、ニッケル燐層
において燐以外の成分はニッケルのみであることが望ま
しいが、メッキ工程において必須な成分(光沢剤等)が
夾雑物として多少取り込まれることがある。
The nickel phosphorus layer as described above can be obtained by an electroplating method using a nickel plating solution containing a phosphorus component, and can also be obtained by a chemical plating solution similarly containing a phosphorus component. it can. By adjusting the phosphorus component concentration in the plating solution or the pH of the plating solution in these, a nickel phosphorus layer having an appropriate phosphorus content can be obtained. In particular, the nickel-phosphorus layer obtained by the chemical plating method is more uniform and has less thickness unevenness as compared with the nickel layer formed by the sputtering method, and it is easy to manufacture a large-area solar cell. Further, in the nickel-phosphorus layer, it is desirable that the component other than phosphorus is only nickel, but some components essential in the plating step (such as a brightener) may be incorporated as impurities.

【0012】CIS層は、例えば上記ニッケル燐層上に
銅層、インジウム層を例えば電気メッキ法で形成し、そ
の後セレンを含む雰囲気中で熱処理することで得ること
ができる。ここで、セレンコロイド分散インジウムメッ
キ浴を用いて銅層上にセレンコロイド分散インジウム層
を形成してプリカーサーとし、これをセレンを含む雰囲
気下で熱処理することでCIS合金形成時に伴う膨張に
対する空間的余裕を持たせることができ、従って特に瑕
疵の少ない極めて良好なCIS層を得ることができる。
The CIS layer can be obtained, for example, by forming a copper layer and an indium layer on the above nickel phosphorus layer by, for example, an electroplating method, and then performing heat treatment in an atmosphere containing selenium. Here, a selenium colloid-dispersed indium plating bath is used to form a selenium colloid-dispersed indium layer on a copper layer to form a precursor, and the precursor is heat-treated in an atmosphere containing selenium to provide a spatial margin for expansion accompanying the formation of CIS alloy. Therefore, it is possible to obtain a very good CIS layer with particularly few defects.

【0013】なお、上記セレンを含む雰囲気とは、一般
にセレン化水素ガスが用いられるが、このセレン化水素
ガスは毒性が極めて高く、その取扱いにあたっては特別
な注意及び設備が必要である。ここで粉末などの形状の
セレンを上記プリカーサーとともに不活性ガスで置換さ
れた密閉容器に封じて熱処理を行ってセレン蒸気を発生
させることにより、セレン化水素を用いる場合とは比較
にならないほど安全に、かつ低コストでセレン化処理を
行うことができる。
As the atmosphere containing selenium, hydrogen selenide gas is generally used. This hydrogen selenide gas is extremely toxic, and special care and equipment are required for its handling. Here, selenium in the form of powder or the like is sealed together with the above-mentioned precursor in a closed container replaced with an inert gas and heat-treated to generate selenium vapor, so that it is safer than in the case of using hydrogen selenide. In addition, the selenization treatment can be performed at low cost.

【0014】このように形成されたCIS層上にn型半
導体である硫化カドミウム層を形成する。これは、溶液
成長法や蒸着法で形成することができる。特に溶液成長
法の場合、蒸着法と比較すると特別な装置が不要で、生
産性も良い上、大面積の太陽電池の製造にあたっても均
一な薄い層が得られるので好ましい。
A cadmium sulfide layer which is an n-type semiconductor is formed on the CIS layer thus formed. This can be formed by a solution growth method or a vapor deposition method. Especially in the case of the solution growth method, a special apparatus is not required as compared with the vapor deposition method, the productivity is good, and a uniform thin layer can be obtained even when manufacturing a large-area solar cell, which is preferable.

【0015】また、この硫化カドミウム層の上に導電性
向上のためにアルミニウムをドープした酸化亜鉛層を窓
側電極としてスパッタリングなどで形成する。このよう
にして積層が終了し、その後窓側電極である酸化亜鉛層
及び吸収層側電極であるニッケル燐層にリード線等を接
続してCIS型太陽電池が完成する。
On the cadmium sulfide layer, a zinc oxide layer doped with aluminum for improving conductivity is formed as a window side electrode by sputtering or the like. The lamination is completed in this way, and then lead wires and the like are connected to the zinc oxide layer which is the window side electrode and the nickel phosphorus layer which is the absorption layer side electrode to complete the CIS solar cell.

【0016】[0016]

【実施例】【Example】

《実施例1》受光部が辺の長さが15mmの正方形の太
陽電池(吸収層側電極としてニッケル燐層を有するも
の)を作製した。ここでニッケル燐層形成にあたっては
化学メッキ法を選択し、メルテックス社製のメッキ剤を
用いて行った。まず、基板とするソーダライムガラス板
を75℃の8重量%水酸化カリウム水溶液中に5分間浸
漬後、60℃に保ったメルテックス社製メルクリーナー
170に5分間浸漬し、このガラス板を洗浄するととも
に、被メッキ面の粗化を行った。
<Example 1> A square solar cell having a light receiving portion with a side length of 15 mm (having a nickel phosphorus layer as an absorption layer side electrode) was produced. Here, in forming the nickel phosphorus layer, a chemical plating method was selected and a plating agent manufactured by Meltex was used. First, a soda lime glass plate used as a substrate is immersed in an 8 wt% potassium hydroxide aqueous solution at 75 ° C. for 5 minutes, and then immersed in Mel Cleaner 170 manufactured by Meltex Co. at 60 ° C. for 5 minutes to wash the glass plate. At the same time, the plated surface was roughened.

【0017】その後、同メルテックス社製コンディショ
ナー1101(室温)に1分間浸漬してメッキ面に触媒
を添着し、次いで同メルテックス社製アクチベータ44
0(室温)に1分間浸漬して上記触媒を活性化し、最後
に80℃に保った同メルテックス社製メッキ剤メルプレ
ートNi866に80分浸漬して化学メッキを行った。
なお、上記各工程においては、処理が不要の箇所は粘着
シートでマスキングして処理が行われるのを防いだ。
Thereafter, the catalyst is attached to the plating surface by immersing it in conditioner 1101 (room temperature) manufactured by the same Meltex Co., Ltd., and then activator 44 manufactured by the same Meltex company.
The catalyst was activated by immersing it in 0 (room temperature) for 1 minute, and finally immersed in a plating agent Melplate Ni866 (manufactured by Meltex Co., Ltd.) kept at 80 ° C. for 80 minutes for chemical plating.
In addition, in each of the above-mentioned steps, a portion which does not need to be treated was masked with an adhesive sheet to prevent the treatment.

【0018】このようにして得たメッキ層について微小
蛍光X線分析装置を用いて(以下同様)その組成を調べ
たところ、ニッケル97重量%、燐3重量%からなるも
のであることが判った。またメッキ層は良好なもので、
その厚さを微小部蛍光X線装置で測定したところ2μm
であり、メッキ面全体のメッキ斑もほとんどないことが
判った。
When the composition of the plated layer thus obtained was examined by using a micro fluorescent X-ray analyzer (the same applies hereinafter), it was found that it consisted of 97% by weight of nickel and 3% by weight of phosphorus. . Also, the plating layer is good,
The thickness was measured with a microscopic fluorescent X-ray device to be 2 μm.
It was found that there were almost no plating spots on the entire plated surface.

【0019】次にこのニッケル燐層上にCIS層を形成
した。まず、銅層を電気メッキ法で形成した。メッキ液
としてはピロ燐酸銅(II)三水和物(Cu2 2 7 ・3
2 O)80g、ピロ燐酸カリウム300gを水に溶解
させ1 lとし、これに28重量%アンモニア水5mlを添
加して調整した50℃のピロ燐酸錯塩浴を用い、アノー
ドとしては電気銅を用いて電流密度2Adm-2となるよ
う電気メッキを行った。この銅層の厚さ(メッキ面中央
部)の厚さは0.3μmであった。
Next, a CIS layer was formed on this nickel phosphorus layer. First, a copper layer was formed by electroplating. As a plating solution, copper (II) pyrophosphate trihydrate (Cu 2 P 2 O 7・ 3) is used.
H 2 O) (80 g) and potassium pyrophosphate (300 g) were dissolved in water to make 1 liter, and a pyrophosphate complex salt bath at 50 ° C. prepared by adding 5 ml of 28% by weight ammonia water was used, and electrolytic copper was used as an anode. Electroplating was performed so that the current density was 2 Adm -2 . The thickness of this copper layer (the center of the plated surface) was 0.3 μm.

【0020】次いで、メッキ液としてセレンコロイド分
散インジウムメッキ液を用いて、セレンコロイド分散イ
ンジウム層を得た。まず、セレンコロイド溶液を以下の
手順で調製した。ゼラチン溶液(4g/ l)4ml、亜セ
レン酸(0.1 mol/ l)10ml、硫酸ヒドラジニウム
(0.1 mol/ l)10ml、純水30mlを混合後、40
℃で45分間加熱した後、pHを2に調整してコロイド
を安定化させて、セレンコロイド溶液とした。ここで、
ゼラチンを加えるのはコロイドの安定のためである。
Then, a selenium colloid-dispersed indium plating solution was used as a plating solution to obtain a selenium colloid-dispersed indium layer. First, a selenium colloidal solution was prepared by the following procedure. After mixing 4 ml of gelatin solution (4 g / l), 10 ml of selenious acid (0.1 mol / l), 10 ml of hydrazinium sulfate (0.1 mol / l), and 30 ml of pure water, 40
After heating at 45 ° C. for 45 minutes, the pH was adjusted to 2 to stabilize the colloid to obtain a selenium colloid solution. here,
Gelatin is added to stabilize the colloid.

【0021】このようにして調製したセレンコロイド溶
液のコロイド粒子を走査型電子顕微鏡で調べたところ、
セレンコロイド粒子の粒径は10nm以上100nm以
下であり、また長時間放置してもセレン粒子の沈殿が生
じることなく、非常に安定であった。
When the colloidal particles of the selenium colloidal solution thus prepared were examined by a scanning electron microscope,
The particle size of the selenium colloidal particles was 10 nm or more and 100 nm or less, and the selenium particles did not precipitate even when left standing for a long time and were very stable.

【0022】このセレンコロイド溶液を用いて、セレン
コロイド10mmol/ l、硫酸インジウム50mmol/ l、
硫酸ナトリウム80mmol/ l、クエン酸ナトリウム50
mmol/ lとなるようにメッキ液を調整した。前記銅層上
に上記メッキ液を用いて参照電極である飽和硫酸第一水
銀電極に対して1.5Vの電圧で、メッキ面中央でのメ
ッキ層(セレン分散電着インジウム層)の厚さが0.7
0μmになるよう定電圧メッキを行った。なお、このと
き対極としては白金板を用いた。
Using this selenium colloid solution, selenium colloid 10 mmol / l, indium sulfate 50 mmol / l,
Sodium sulfate 80 mmol / l, sodium citrate 50
The plating solution was adjusted to be mmol / l. The thickness of the plating layer (selenium-dispersed electrodeposited indium layer) at the center of the plating surface was adjusted on the copper layer using the plating solution at a voltage of 1.5 V with respect to a saturated mercuric sulfate electrode as a reference electrode. 0.7
Constant voltage plating was performed so that the thickness was 0 μm. At this time, a platinum plate was used as the counter electrode.

【0023】なお、このメッキ液は非常に安定であって
メッキ液中のコロイド粒子は沈降しないため、メッキ中
も攪拌は行わなかった。これらのセレンコロイド粒子を
分散含有する電着インジウム層中のインジウム原子とセ
レン原子の存在比は組成分析によれば10:2であっ
た。なお、このセレン分散電着インジウム層は非常に均
一なものであった。
Since the plating solution was very stable and colloidal particles in the plating solution did not settle, stirring was not performed during plating. The abundance ratio of indium atoms and selenium atoms in the electrodeposited indium layer containing these selenium colloidal particles dispersed therein was 10: 2 according to composition analysis. The selenium-dispersed electrodeposited indium layer was very uniform.

【0024】このように銅層及びセレン分散電着インジ
ウム層を形成した導電性基板を、セレン粉末と共にアル
ゴンガスで置換した密閉容器に入れ、500Torr
中、500℃、1時間の加熱処理を行った。なお、上記
のようにセレン雰囲気で行ったのは、CIS層形成時に
セレンが不足するのを予防するためである。なお、得ら
れたこの層は分析の結果、銅、インジウム及びセレンの
それぞれの原子存在比が23、24及び53であって、
ほぼCuInSe2 合金の化学量論比であることが確認
された。また、このCIS層はひび、剥がれのない優れ
たものであった。
The conductive substrate on which the copper layer and the selenium-dispersed electrodeposited indium layer were thus formed was placed together with selenium powder in a closed container which had been replaced with argon gas, and the pressure was 500 Torr.
Heat treatment was performed at 500 ° C. for 1 hour. The selenium atmosphere was used as described above in order to prevent selenium from becoming insufficient during the formation of the CIS layer. As a result of analysis, the obtained layers have atomic abundance ratios of copper, indium and selenium of 23, 24 and 53, respectively,
It was confirmed that the ratio was almost the same as that of the CuInSe 2 alloy. Further, this CIS layer was excellent without cracking or peeling.

【0025】上記CIS層上に硫化カドミウム層を液相
成長法により形成した。即ち、70℃の硫酸カドミウム
(CdSO4 )0.01mol / l水溶液(アンモニア水
でpHを8.5に調整したもの)に、上記の薄膜層を形
成したソーダラムガラスを5分間浸漬し、その後、チオ
尿素0.01mol / l水溶液を加え5分間保持して硫化
カドミウム層を成長させ、水で充分に洗浄後、窒素下で
乾燥させた。得られた硫化カドミウム層の厚さは0.0
5μmであった。
A cadmium sulfide layer was formed on the CIS layer by liquid phase epitaxy. That is, the soda lam glass having the above thin film layer formed thereon was dipped in a 0.01 mol / l aqueous solution of cadmium sulfate (CdSO 4 ) at 70 ° C. (pH adjusted to 8.5 with ammonia water) for 5 minutes, and then, Then, a thiourea 0.01 mol / l aqueous solution was added and the mixture was kept for 5 minutes to grow a cadmium sulfide layer, thoroughly washed with water, and then dried under nitrogen. The thickness of the obtained cadmium sulfide layer is 0.0
It was 5 μm.

【0026】その後、2重量%のアルミニウムをドープ
させた酸化亜鉛層の2μm厚の薄膜をスパッタリング法
にて形成し、本発明に係る薄膜太陽電池を得た。このも
のの断面図(モデル図)を図1に示した。図中符号1は
ソーダライムガラスからなる基板、2aはニッケル燐
層、3はCIS層、4は硫化カドミウム層、符号5は酸
化亜鉛層である。なお、上記と同様にして他に4個、計
5個の太陽電池(太陽電池1〜5:実施例1)を作製し
たが、それらすべてについて、各工程で良好な薄膜が得
られ、最終的に得られたものも剥がれ等の欠陥のない優
れたものであった。これら太陽電池1〜5の中央の直径
2mmの円状の部分についてその特性を太陽電池出力特
性装置(WACOM社製)を用いて測定した。結果を表
1に示す。
Thereafter, a 2 μm thick thin film of a zinc oxide layer doped with 2% by weight of aluminum was formed by a sputtering method to obtain a thin film solar cell according to the present invention. A cross-sectional view (model diagram) of this product is shown in FIG. In the figure, reference numeral 1 is a substrate made of soda lime glass, 2a is a nickel phosphorus layer, 3 is a CIS layer, 4 is a cadmium sulfide layer, and reference numeral 5 is a zinc oxide layer. In addition, in the same manner as above, four solar cells (solar cells 1 to 5: Example 1) were manufactured in addition to the other four solar cells. For all of them, a good thin film was obtained in each step, and finally, The product obtained in Example 2 was also excellent without defects such as peeling. The characteristics of a circular portion having a diameter of 2 mm at the center of each of the solar cells 1 to 5 were measured using a solar cell output characteristic device (manufactured by WACOM). Table 1 shows the results.

【0027】[0027]

【表1】 [Table 1]

【0028】《実施例2及び実施例3》上記実施例1と
同様に、但し1N−塩酸及び1N−水酸化ナトリウム水
溶液を用いてメッキ液メルプレートNi868のpHを
調整して太陽電池6〜10(実施例2)及び太陽電池1
1〜15(実施例3)の2種各5個づつ計10個の太陽
電池を得た。
<Examples 2 and 3> As in Example 1 above, the solar cells 6 to 10 were prepared by adjusting the pH of the plating solution Melplate Ni868 using 1N-hydrochloric acid and 1N-sodium hydroxide aqueous solution. (Example 2) and solar cell 1
1 to 15 (Example 3), 5 solar cells each of 2 types, 10 solar cells in total were obtained.

【0029】なお太陽電池6〜10におけるニッケル燐
層の燐含有量は8重量%で、太陽電池11〜15におけ
るニッケル燐層の燐含有量は10重量%であった。これ
ら太陽電池6〜11について実施例1の太陽電池と同様
にその性能を測定した。結果を表2及び表3に示す。
In the solar cells 6 to 10, the phosphorus content of the nickel phosphorus layer was 8% by weight, and in the solar cells 11 to 15, the phosphorus content of the nickel phosphorus layer was 10% by weight. The performance of these solar cells 6 to 11 was measured in the same manner as the solar cell of Example 1. The results are shown in Tables 2 and 3.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】《比較例》比較例として、無電解メッキに
よって形成されたニッケル金属からなる電極を用いた太
陽電池の作製を試みた。実施例1と同じソーダライムガ
ラス5枚を基板として用い、これらにフッ酸を含む溶液
で10分間エッチング処理を施し、さらにこの基板表面
に活性化処理を施した。次いでNiを含有する弱酸性溶
液を用い、液温90℃のもと無電解メッキ法により、該
5枚の基板上にそれぞれNi膜を形成した。これらNi
膜上に実施例1と同様にCIS層を形成した。
Comparative Example As a comparative example, an attempt was made to manufacture a solar cell using an electrode made of nickel metal formed by electroless plating. The same 5 soda lime glasses as in Example 1 were used as substrates, and these were subjected to etching treatment with a solution containing hydrofluoric acid for 10 minutes, and then the substrate surface was subjected to activation treatment. Then, using a weakly acidic solution containing Ni, a Ni film was formed on each of the five substrates by electroless plating at a liquid temperature of 90 ° C. These Ni
A CIS layer was formed on the film as in Example 1.

【0033】これらCIS層を詳細に観察すると、5個
のうち2つのサンプルにひび及びはがれが生じており、
また他の1つに微小なひびが生じていた。これら瑕疵あ
る3個については、短絡等の障害が予想されたが実施例
1と同様に硫化カドミウム層及び酸化亜鉛層を形成し、
その後太陽電池としての性能を調べたが、いずれも実際
に用いることができないものであることが判った。一
方、残りのサンプル2個(CIS層にひび、剥離のない
もの)については実施例1と同様に硫化カドミウム層及
び酸化亜鉛層を形成したところ、性能の良好な太陽電池
が得られた。上記実施例及び比較例より、適度な含有率
で燐を有するニッケル燐層を電極としてこれにCIS層
を形成することにより、良好なCIS型太陽電池を歩留
まり良く製造することができることが判る。
When these CIS layers were observed in detail, two out of five samples were cracked and peeled,
In addition, another one had a small crack. About these three defects, it was expected that a failure such as a short circuit would occur, but a cadmium sulfide layer and a zinc oxide layer were formed as in Example 1.
After that, the performance as a solar cell was examined, but it was found that none of them could be actually used. On the other hand, with respect to the remaining two samples (those having no crack in the CIS layer and no peeling), a cadmium sulfide layer and a zinc oxide layer were formed in the same manner as in Example 1, and a solar cell with good performance was obtained. From the above Examples and Comparative Examples, it is understood that a good CIS solar cell can be manufactured with a good yield by forming a CIS layer on a nickel phosphorus layer having an appropriate content of phosphorus as an electrode.

【0034】《耐セレン化の検討》ニッケル燐層とモリ
ブデン層について、その耐セレン化について調査した。
ソーダライムガラス板に対してそれぞれ実施例1と同様
に厚さ20μmで辺の長さが15mmの正方形のニッケ
ル燐層を形成した。また比較のため、スパッタリング法
によって、同寸法で同じ厚さのモリブデン層を形成した
ソーダライムガラス板を形成した。
<< Investigation of Selenium Resistance >> The nickel phosphorus layer and the molybdenum layer were investigated for resistance to selenium.
On each of the soda lime glass plates, a square nickel phosphorus layer having a thickness of 20 μm and a side length of 15 mm was formed in the same manner as in Example 1. For comparison, a soda lime glass plate having a molybdenum layer of the same size and the same thickness was formed by a sputtering method.

【0035】この2種のガラス板をそれぞれ10mgの
セレン粉末とともに密閉容器に封入して、500℃・1
時間の熱処理を行った。これらの層についてその成分分
析を行ったところ、ニッケル燐層に浸入したセレンの量
は1.8重量%であり、モリブデン層に浸入したセレン
の量は1.2重量%で、ほぼ同じレベルであり、共に実
用上問題のないレベルであった。
Each of these two types of glass plates was sealed in a closed container together with 10 mg of selenium powder, and the temperature was 500 ° C.
Time heat treatment was performed. When the composition of these layers was analyzed, the amount of selenium infiltrated into the nickel phosphorus layer was 1.8% by weight, and the amount of selenium infiltrated into the molybdenum layer was 1.2% by weight, which were almost the same level. Yes, there was no problem in practical use.

【0036】[0036]

【発明の効果】本発明のCIS型太陽電池の製造方法に
よれば、高価な装置や高価なモリブデンを用いることな
く電極層を作製することができる。また、ニッケル燐層
を有する電極層を用いてCIS型太陽電池を作製するこ
とにより、良品率・生産性が向上する効果も得られる。
従って瑕疵のないCIS型太陽電池をより低コストで供
給することができる。
According to the method for manufacturing a CIS solar cell of the present invention, an electrode layer can be formed without using an expensive device or expensive molybdenum. In addition, by producing a CIS solar cell using an electrode layer having a nickel phosphorus layer, it is possible to obtain the effect of improving the yield rate and productivity.
Therefore, it is possible to supply a CIS type solar cell having no defects at a lower cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るCIS型太陽電池の断面を示すモ
デル図である。
FIG. 1 is a model diagram showing a cross section of a CIS solar cell according to the present invention.

【図2】従来技術に係るCIS型太陽電池の断面を示す
モデル図である。
FIG. 2 is a model diagram showing a cross section of a CIS solar cell according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 …基板 2a…ニッケル燐層 2 …モリブデン層 3 …CIS層 4 …硫化カドミウム層 5 …酸化亜鉛層 DESCRIPTION OF SYMBOLS 1 ... Substrate 2a ... Nickel phosphorus layer 2 ... Molybdenum layer 3 ... CIS layer 4 ... Cadmium sulfide layer 5 ... Zinc oxide layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 吸収層側電極としてニッケル燐層を有す
ることを特徴とするCIS型太陽電池。
1. A CIS solar cell having a nickel phosphorus layer as an absorption layer side electrode.
【請求項2】 上記ニッケル燐層の燐含有率が3重量%
以上10重量%未満であることを特徴とする請求項1に
記載のCIS型太陽電池。
2. The phosphorus content of the nickel phosphorus layer is 3% by weight.
The CIS solar cell according to claim 1, wherein the amount is less than 10% by weight.
【請求項3】 基板上にニッケル燐層を形成し、該ニッ
ケル燐層上にCuInSe2 合金層を形成することを特
徴とするCIS型太陽電池の製造方法。
3. A method for manufacturing a CIS solar cell, comprising forming a nickel phosphorus layer on a substrate and forming a CuInSe 2 alloy layer on the nickel phosphorus layer.
【請求項4】 上記ニッケル燐層の燐含有率が3重量%
以上10重量%未満であることを特徴とする請求項3に
記載のCIS型太陽電池の製造方法。
4. The phosphorus content of the nickel phosphorus layer is 3% by weight.
The above is less than 10% by weight, and the method for producing a CIS solar cell according to claim 3, wherein
JP7300234A 1995-11-17 1995-11-17 Cis type solar battery and its manufacture Withdrawn JPH09148602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7300234A JPH09148602A (en) 1995-11-17 1995-11-17 Cis type solar battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7300234A JPH09148602A (en) 1995-11-17 1995-11-17 Cis type solar battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH09148602A true JPH09148602A (en) 1997-06-06

Family

ID=17882333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7300234A Withdrawn JPH09148602A (en) 1995-11-17 1995-11-17 Cis type solar battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH09148602A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241396A (en) * 2010-05-18 2011-12-01 Rohm & Haas Electronic Materials Llc Selenium/group 3a ink and methods of making and using the same
CN102394256A (en) * 2011-11-16 2012-03-28 浙江大学 Preparing method of copper-indium-sulfide array film used for solar cell absorbed layer
JP2013536986A (en) * 2010-09-02 2013-09-26 インターナショナル・ビジネス・マシーンズ・コーポレーション Methods for electrodeposition of gallium and gallium alloy films and related photovoltaic structures

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241396A (en) * 2010-05-18 2011-12-01 Rohm & Haas Electronic Materials Llc Selenium/group 3a ink and methods of making and using the same
JP2013536986A (en) * 2010-09-02 2013-09-26 インターナショナル・ビジネス・マシーンズ・コーポレーション Methods for electrodeposition of gallium and gallium alloy films and related photovoltaic structures
CN102394256A (en) * 2011-11-16 2012-03-28 浙江大学 Preparing method of copper-indium-sulfide array film used for solar cell absorbed layer

Similar Documents

Publication Publication Date Title
JP2806469B2 (en) Method for manufacturing solar cell absorption layer
Savadogo Chemically and electrochemically deposited thin films for solar energy materials
US4239553A (en) Thin film photovoltaic cells having increased durability and operating life and method for making same
US20040206390A1 (en) Preparation of CIGS-based solar cells using a buffered electrodeposition bath
JP4803548B2 (en) Oxide thin film solar cell
US20030230338A1 (en) Thin film solar cell configuration and fabrication method
US20060070653A1 (en) Nanostructured composite photovoltaic cell
Zhao et al. Electrodeposition of photoactive silicon films for low-cost solar cells
EP0021774B1 (en) Photovoltaic cells and a method of making such cells
WO2010125861A1 (en) Backside-electrode type solar battery and manufacturing method thereof
EP2228467A2 (en) Aluminum alloy substrate and solar cell substrate
TW201123467A (en) Structure and preparation of CIGS-based solar cells using an anodized substrate with an alkali metal precursor
JPH08125206A (en) Thin-film solar cell
EP0195152B1 (en) Process of forming a compound semiconductive material
US8686281B2 (en) Semiconductor device and solar battery using the same
JPH09148602A (en) Cis type solar battery and its manufacture
JPH09321326A (en) Manufacturing cis thin film solar cell and forming copper-indium-selenium alloy
JP2003258278A (en) Photoelectric conversion device and manufacturing method thereof
NL2034304A (en) Solar Cell, Electrode Structure, Cell Module, Power Generation System and Preparation Method
JP2010232427A (en) Photoelectric conversion device, method for manufacturing the same, anodic oxidation substrate for use therein, and solar cell
JP3097805B2 (en) Solar cell, method of manufacturing the same, and plating method
JP2940782B2 (en) Method for manufacturing solar cell absorption layer
JPH09116177A (en) Formation method for compound semiconductor film and manufacturing method for thin film solar cell
CN109811331B (en) Silicon surface coating and preparation process and application thereof
JPH11340489A (en) Semiconductor thin film, manufacture of it, and solar cell using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204