JPH09320591A - Lithium ion secondary battery negative electrode material - Google Patents

Lithium ion secondary battery negative electrode material

Info

Publication number
JPH09320591A
JPH09320591A JP8157417A JP15741796A JPH09320591A JP H09320591 A JPH09320591 A JP H09320591A JP 8157417 A JP8157417 A JP 8157417A JP 15741796 A JP15741796 A JP 15741796A JP H09320591 A JPH09320591 A JP H09320591A
Authority
JP
Japan
Prior art keywords
graphite
fiber
negative electrode
pitch
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8157417A
Other languages
Japanese (ja)
Inventor
Hiroshi Ejiri
宏 江尻
Norimune Yamazaki
典宗 山崎
Hideyuki Nakajima
秀行 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PETOCA KK
Original Assignee
PETOCA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PETOCA KK filed Critical PETOCA KK
Priority to JP8157417A priority Critical patent/JPH09320591A/en
Publication of JPH09320591A publication Critical patent/JPH09320591A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material with large discharge capacity which is suppressed in decomposition of electrolyte and excellent in cycle characteristic by mixing prescribed carbon material and graphite material together. SOLUTION: This negative electrode material is obtained by mixing a pitch carbonaceous fiber mild (A) and a pitch graphite fiber mild (B). (A) is obtained at a thermal treatment temperature of 550-1300 deg.C, and has an average particle size less than 10μm, and the content is 60-98wt.%. (B) is obtained at a thermal treatment temperature of 2400 deg.C or more, and has an average particle size of 10-30μm, and the content is 2-40wt.%. The (A) and (B) are mixed together in a fixed ratio with the particle sizes being regulated, whereby a negative electrode material having a high discharge capacity in which the initial charge and discharge efficiency is improved more than in the independent use of (A), decomposition of electrolyte is suppressed, and reduction in cycle characteristic is also minimized can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭素質繊維ミルド
及び黒鉛質繊維ミルドを主成分とするリチウムイオン二
次電池用負極材に関する。更に、本発明は、熱処理(炭
化・黒鉛化)温度の異なる2種以上の易黒鉛化性ピッチ
系繊維ミルド、特に550℃以上1300℃以下で炭化
されたピッチ系炭素質繊維ミルド(A)と、2400℃
以上で黒鉛化されたピッチ系黒鉛質繊維ミルド(B)と
をそれぞれ粒径を調整し混合使用するリチウムイオン二
次電池用負極材に関する。更には、本発明は、ピッチ系
炭素質繊維ミルド(A)を単独で用いた場合よりも、充
放電効率が向上し、且つ充放電サイクル特性に優れてい
る高放電容量を持つリチウムイオン二次電池用負極材に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode material for a lithium ion secondary battery containing carbonaceous fiber mill and graphite fiber milled as main components. Furthermore, the present invention relates to two or more types of easily graphitizable pitch-based fiber mills having different heat treatment (carbonization / graphitization) temperatures, particularly pitch-based carbonaceous fiber mills (A) carbonized at 550 ° C. or more and 1300 ° C. or less. 2400 ° C
The present invention relates to a negative electrode material for a lithium ion secondary battery, in which the particle size of the graphitized pitch-based graphite fiber milled (B) is adjusted and the mixture is used. Furthermore, the present invention is a lithium ion secondary having a high discharge capacity, which has improved charge / discharge efficiency and excellent charge / discharge cycle characteristics, as compared with the case where the pitch-based carbonaceous fiber milled (A) is used alone. The present invention relates to a negative electrode material for batteries.

【0002】[0002]

【従来の技術】一般に、アルカリ金属、例えばリチウム
を負極活物質として用いた二次電池は、高エネルギー密
度及び高起電力である他、非水電解液を用いるために作
動温度範囲が広く、長期保存に優れ、さらに軽量小型で
ある等の多くの利点を有している。従って、このような
非水電解液リチウムイオン二次電池は、携帯用電子機器
電源をはじめとして、電気自動車、電力貯蔵用などの高
性能電池としての実用化が期待されている。
2. Description of the Related Art In general, a secondary battery using an alkali metal, for example, lithium as a negative electrode active material has a high energy density and a high electromotive force. It has many advantages such as excellent storage, light weight and small size. Therefore, such a non-aqueous electrolyte lithium-ion secondary battery is expected to be put to practical use as a high-performance battery for power supplies for portable electronic devices, electric vehicles, and power storage.

【0003】しかし、現状の試作電池は、リチウムイオ
ン二次電池が期待されている上記特性を充分に実現して
おらず、充放電容量、サイクル寿命、エネルギー密度な
どにおいて不十分であった。その理由の一つは、二次電
池に用いられる負極にあった。例えば、リチウムイオン
二次電池に金属リチウムからなる負極を用いた場合で
は、充電時に負極表面に析出するリチウムが針状のデン
ドライトを形成し、正・負極間の短絡を起こし易くなる
ため、サイクル寿命が短く、安全性が低かった。
However, the current prototype battery does not sufficiently realize the above-mentioned characteristics expected of a lithium ion secondary battery, and is insufficient in charge / discharge capacity, cycle life, energy density and the like. One of the reasons was the negative electrode used in the secondary battery. For example, when a negative electrode made of metallic lithium is used in a lithium-ion secondary battery, lithium that deposits on the negative electrode surface during charging forms needle-like dendrites, which easily causes a short circuit between the positive electrode and the negative electrode. Was short and the safety was low.

【0004】また、リチウムは反応性が非常に高く、負
極表面付近での電解液の分解反応を起こさせるため、こ
の分解反応によって負極表面が変成され、反復使用によ
る電池容量の低下が発生する恐れがあった。従来より、
このようなリチウムイオン二次電池における問題点を解
決するために、種々の負極材の検討がなされおり、その
一つとして炭素系材料(炭素材及び黒鉛材)を利用する
ことが検討されている。
Further, since lithium has a very high reactivity and causes a decomposition reaction of the electrolytic solution in the vicinity of the surface of the negative electrode, the surface of the negative electrode is denatured by this decomposition reaction, which may cause a decrease in battery capacity due to repeated use. was there. Conventionally,
In order to solve the problems in such a lithium ion secondary battery, various negative electrode materials have been studied, and the use of carbonaceous materials (carbon materials and graphite materials) has been considered as one of them. .

【0005】この炭素材としては、石炭、コークス、P
AN系炭素繊維、ピッチ系炭素繊維、有機物の炭素化
(低温熱処理)品等が検討されており、黒鉛材として
は、天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイ
クロビーズ、有機物の黒鉛化(高温熱処理)品、黒鉛繊
維等が検討されている。また、一般的に、炭素材を使用
した負極材は、初期の充電容量には優れるが、初期の充
放電効率が低く、またサイクル特性が劣っており、一
方、黒鉛材を使用した負極材は、炭素材と比較し、サイ
クル特性に優れるものの、初期充電容量が低く、充放電
速度が遅いという問題があり、それらを補完する目的
で、両者を混合使用することも研究されている。
As the carbon material, coal, coke, P
AN-based carbon fibers, pitch-based carbon fibers, carbonized (low-temperature heat treated) products of organic substances, etc. are being studied. As graphite materials, natural graphite, artificial graphite, synthetic graphite, mesocarbon micro beads, graphitization of organic substances ( High-temperature heat treated products, graphite fibers, etc. are being studied. Further, generally, the negative electrode material using the carbon material is excellent in the initial charge capacity, but the initial charge / discharge efficiency is low, and the cycle characteristics are inferior, while the negative electrode material using the graphite material is Although it has excellent cycle characteristics as compared with carbon materials, it has problems of low initial charge capacity and slow charge / discharge speed, and in order to complement them, mixed use of both has been studied.

【0006】例えば、特開平6−111818号公報に
は、球状の黒鉛粒子と黒鉛化炭素短繊維(気相成長炭素
繊維を黒鉛化したもの)とを適当量混合することで電極
シートの導電性が向上し高容量が発現でき、また、電極
強度も向上し、炭素材の脱落や集電基体からの脱落など
が防止でき、サイクル寿命が延長できることが開示され
ているが、条件によっては放電容量が低下し、混合の効
果が不十分であった。また、特開平5−283061号
公報には、炭素粒子と炭素繊維とを複合化することで、
導電性の向上とバルキーな構造となるため気孔を通じて
電解液の拡散が向上することにより、充放電速度、出力
密度及びサイクル特性に優れたリチウム二次電池が開示
されているが、放電容量が270mAh/gと低くまだ
不十分なものである。
For example, in JP-A-6-111818, the conductivity of an electrode sheet is obtained by mixing an appropriate amount of spherical graphite particles and graphitized carbon short fibers (graphitized vapor-grown carbon fibers). It is disclosed that the discharge capacity can be improved and a high capacity can be expressed, the electrode strength can also be improved, the carbon material can be prevented from falling off and from the current collecting substrate, and the cycle life can be extended. And the effect of mixing was insufficient. Further, in JP-A-5-283061, by combining carbon particles and carbon fibers,
A lithium secondary battery having excellent charge / discharge rate, output density and cycle characteristics is disclosed by improving the conductivity and improving the diffusion of the electrolyte through the pores due to the bulky structure, but the discharge capacity is 270 mAh. It is as low as / g and is still insufficient.

【0007】また、特開平6−150931号公報に
は、ピッチ系炭素繊維の炭素体に、無定形粒状の黒鉛材
を混合することにより、炭素材の欠点である導電性の改
善と、黒鉛材の欠点である充放電速度の向上と、サイク
ル寿命の改善を計ろうとする試みが開示されているが、
放電容量は依然として200mAh/g程度と低いもの
である。また、特開平7−161347号公報には、比
抵抗の小さい高温炭化の高結晶性PAN系炭素繊維と、
比抵抗の大きな低温炭化の低結晶性PAN系炭素繊維と
を、等量混合することにより、両者の欠点をそれぞれ補
充し、高い放電容量を有し、且つ初期容量損失が低い負
極材を与えることが開示されているが、初期放電容量が
240mAh/g程度とまだ低く、また初期充放電効率
が依然として55%程度と低く、実用に耐えるものでな
かった。
Further, in Japanese Unexamined Patent Publication (Kokai) No. 6-150931, a carbon material of pitch-based carbon fiber is mixed with an amorphous granular graphite material to improve conductivity, which is a drawback of the carbon material, and to improve the graphite material. Although an attempt to improve the charging / discharging speed, which is a drawback of, and the improvement of cycle life is disclosed,
The discharge capacity is still as low as about 200 mAh / g. Further, Japanese Patent Application Laid-Open No. 7-161347 discloses a high-temperature carbonized highly crystalline PAN-based carbon fiber having a small specific resistance,
An equal amount of low-temperature carbonized, low-crystalline carbonized PAN-based carbon fiber having a large specific resistance is mixed to replenish the drawbacks of both, and a negative electrode material having a high discharge capacity and a low initial capacity loss is provided. However, the initial discharge capacity was still low at about 240 mAh / g, and the initial charge / discharge efficiency was still low at about 55%, which was not practical.

【0008】さらに、特開平7−192724号公報に
は、天然又は人造黒鉛粉末と難黒鉛化炭素材料及び/又
は易黒鉛化炭素材料のような炭素材粉末との共存体(混
合体)が、黒鉛の高真密度と炭素材のリチウムイオンの
高速拡散性を兼備して、高い充放電性と正極の安定性を
損なわない特徴を有することが開示されているが、負極
材として挙げられている黒鉛粉末は、天然黒鉛、有機材
料を炭素化しさらに高温熱処理し得られる人造黒鉛であ
り、またその炭素材粉末との共有体における負極材の電
池特性は、断続充放電という特殊な操作で発現されてお
り、一般的ではない。
Further, JP-A-7-192724 discloses a coexisting body (mixture) of natural or artificial graphite powder and carbon material powder such as non-graphitizable carbon material and / or graphitizable carbon material. It has been disclosed that it has a high true density of graphite and a high-speed diffusibility of lithium ions of a carbon material, and has a characteristic that high charge / discharge characteristics and stability of a positive electrode are not impaired, but it is mentioned as a negative electrode material. Graphite powder is artificial graphite obtained by carbonizing natural graphite or organic material and further heat-treating it at high temperature.The battery characteristics of the negative electrode material in the co-state with the carbon material powder are expressed by a special operation called intermittent charge / discharge. And is not common.

【0009】[0009]

【発明が解決しようとする課題】本発明は、炭素系材料
と黒鉛系材料を混合した負極材の課題である、未だ充放
電容量が小さく、初期の充放電効率が低く、充放電速度
が遅く、さらにサイクル寿命が短い点を解決することを
目的とする。通常、リチウムイオン二次電池負極材に要
求される特性としては、 1)充放電容量が大きいこと、 2)負極材の内部或いは表面でリチウムイオンが不活性
化する量が少ないこと(不可逆容量が少ないこと)、 3)電解液を分解させないこと、 4)サイクル特性として、負極材自身の構造を破壊させ
ないこと、等を挙げることができる。
DISCLOSURE OF THE INVENTION The present invention is a subject of a negative electrode material in which a carbon material and a graphite material are mixed. The charge / discharge capacity is still small, the initial charge / discharge efficiency is low, and the charge / discharge speed is slow. In addition, the purpose is to solve the problem that the cycle life is short. Generally, the characteristics required for a negative electrode material of a lithium ion secondary battery are as follows: 1) a large charge / discharge capacity, and 2) a small amount of inactivating lithium ions inside or on the surface of the negative electrode material (the irreversible capacity is Small), 3) do not decompose the electrolytic solution, and 4) do not destroy the structure of the negative electrode material itself as the cycle characteristics.

【0010】これらの諸特性を満足させる炭素系及び黒
鉛系の負極材料の研究・開発、及びそれら負極材料のリ
チウムイオンの充放電機構の解析が盛んに行われてい
る。炭素系及び黒鉛系の材料は、いわゆる無定形炭素、
規則的構造を有する黒鉛、及びダイヤモンド等と種々の
構造をとり、更に無定形炭素から完全な黒鉛結晶までの
間には色々な中間的構造が存在し、極めて複雑であり、
構造自体完全には明らかにされていない。一般に、炭素
系材料と呼ぶものは、構造上、無定形炭素から完全な黒
鉛結晶までの中間にあるものを言い、多結晶体であるこ
とを意味している。
Research and development of carbon-based and graphite-based negative electrode materials satisfying these characteristics and analysis of charge / discharge mechanism of lithium ions of these negative electrode materials have been actively conducted. Carbon-based and graphite-based materials are so-called amorphous carbon,
It has various structures such as graphite having a regular structure, and diamond, and there are various intermediate structures between amorphous carbon and complete graphite crystal, which are extremely complicated.
The structure itself has not been completely revealed. Generally, what is called a carbon-based material is a material that is in the middle of amorphous carbon to a complete graphite crystal in terms of structure, and means that it is a polycrystalline body.

【0011】これら炭素系材料の構造は炭素前駆体の種
類或いは処理方法等によって様々に異なると言える。そ
して、リチウムイオンの充放電機構もまた炭素材の種類
によって様々と言える。また、炭素系材料は、高温で熱
処理(黒鉛化)するとその構造は変化し、黒鉛構造に近
づく。完全な黒鉛結晶におけるリチウムイオンの充放電
機構は、炭素原子の六角網平面積層面の間に入り込んだ
り出たりする、いわゆるリチウムイオンの黒鉛層間(層
間距離0.3354nm)へのインターカレーション、
デインターカレーションという機構で説明され、その理
論容量は、常温、常圧でLiがインターカレートされ安
定化するC6 Liの状態の時の電気容量であって、37
2mAh/gとなる。
It can be said that the structures of these carbon-based materials differ variously depending on the type of carbon precursor, the treatment method and the like. It can be said that the charging / discharging mechanism of lithium ions also varies depending on the type of carbon material. Further, the carbon-based material changes its structure when it is heat-treated (graphitized) at high temperature, and approaches a graphite structure. The charge / discharge mechanism of lithium ions in a perfect graphite crystal is as follows: intercalation of so-called lithium ions into and out of the hexagonal net plane stacking plane of carbon atoms, between the graphite layers (interlayer distance 0.3354 nm),
It is explained by a mechanism called deintercalation, and its theoretical capacity is the electric capacity in the state of C 6 Li in which Li is intercalated and stabilized at room temperature and atmospheric pressure,
2 mAh / g.

【0012】また、黒鉛材は放電容量が大きく、且つL
iの不可逆容量も少ないためサイクル特性が良いが、電
解液を分解させるだけでなく、Liイオンの充放電の繰
り返しによって黒鉛層間は膨張・収縮を繰り返すことに
なり、構造破壊をきたすことが報告されている。黒鉛層
構造が未発達の炭素材の場合は、リチウムイオンの充電
において広い層間スペースにリチウムイオンがクラスタ
ー(凝集状態)で存在すると言われている。また、炭素
材料は電解液を分解させず、構造破壊もきたさないが、
初回の充放電効率が低く(Liの不可逆容量が大き
い)、サイクル特性が低下する欠点があった。
The graphite material has a large discharge capacity and
It has a good cycle characteristic because the i irreversible capacity is also small, but it is reported that not only the electrolytic solution is decomposed, but also the graphite layers repeatedly expand and contract due to repeated charging and discharging of Li ions, which causes structural destruction. ing. In the case of a carbon material having an undeveloped graphite layer structure, it is said that lithium ions exist in clusters (aggregated state) in a wide interlayer space in charging lithium ions. Also, the carbon material does not decompose the electrolytic solution and does not cause structural destruction,
The charge and discharge efficiency of the first time is low (the irreversible capacity of Li is large), and the cycle characteristics are deteriorated.

【0013】この原因については炭素材料自身の構造と
密接に関連している。つまり、炭素材料は結晶構造が未
発達のため、その表層部において構造の欠陥部が黒鉛材
料より多く存在しているのみならず、表面では炭素原子
が空気や水分によって酸化を受け、より多くの含酸素官
能基(水酸基、カルボキシル基等)が存在している。ま
た、含酸素官能基が多いと空気中の水分を吸着しやす
い。そのため、Liイオンのインターカレーション、デ
インターカレーションの際に、その構造欠陥部の炭素ラ
ジカルにトラップされたり、含酸素官能基や水分と反応
して水酸化リチウムや炭酸リチウム等の無機物を生成
し、これが初回の充放電効率やサイクル特性の低下を引
き起こしているものと考えられる。
This cause is closely related to the structure of the carbon material itself. In other words, since the crystal structure of the carbon material is undeveloped, not only are there more defects in the structure in the surface layer than in the graphite material, but also the carbon atoms on the surface are oxidized by air and moisture, and Oxygen-containing functional groups (hydroxyl group, carboxyl group, etc.) are present. In addition, when there are many oxygen-containing functional groups, it is easy to adsorb moisture in the air. Therefore, during intercalation and deintercalation of Li ions, they are trapped by carbon radicals in their structural defects or react with oxygen-containing functional groups and water to form inorganic substances such as lithium hydroxide and lithium carbonate. However, it is considered that this causes the deterioration of the initial charge / discharge efficiency and cycle characteristics.

【0014】そして、本発明者らはこの考えに基き、表
層部に存在する欠陥部のラジカル濃度を減少させ、且つ
含酸素官能基を除去することによって、Liの不可逆容
量を少なくし、初回の充放電効率やサイクル特性を著し
く向上させることを見出した。また、更に上記改質処理
を施した炭素材料と黒鉛材料とを混合することによっ
て、改質処理をしていない炭素材料と黒鉛材料とを混合
したものに比べ、放電容量が大きく、更に電解液の分解
を抑え、サイクル特性の優れた負極材となることを見出
した。本発明は、炭素材料に黒鉛材料を混合することに
より、放電容量が大きく、電解液の分解を抑え、サイク
ル特性の優れた負極材を提供することを目的とする。
Based on this idea, the present inventors reduce the irreversible capacity of Li by reducing the radical concentration of the defect portion existing in the surface layer portion and removing the oxygen-containing functional group. It was found that the charging / discharging efficiency and the cycle characteristics are remarkably improved. Further, by mixing the modified carbon material and the graphite material, the discharge capacity is larger than that in the case where the unmodified carbon material and the graphite material are mixed, and the electrolytic solution is further increased. It has been found that the negative electrode material has excellent cycle characteristics by suppressing decomposition of An object of the present invention is to provide a negative electrode material having a large discharge capacity, suppressing decomposition of an electrolytic solution, and excellent cycle characteristics by mixing a carbon material with a graphite material.

【0015】[0015]

【課題を解決するための手段】本発明者らは上記課題を
種々検討し、出発原料の選択、製造方法等を含めた炭素
系及び黒鉛系の適切な材料の選定、その形態、その組み
合わせ方、配合比率等を研究した結果、ピッチ系炭素質
繊維ミルドにピッチ系黒鉛質繊維ミルドをそれぞれ粒径
を調整し混合することにより、従来の炭素材あるいは黒
鉛材単独使用の負極材の課題を解決できることを見いだ
し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have studied the above-mentioned problems variously, selected starting materials, selected appropriate carbon-based and graphite-based materials including their manufacturing methods, their forms, and their combinations. As a result of researching the blending ratio, etc., the problems of the conventional carbon material or the negative electrode material using the graphite material alone can be solved by adjusting the particle size and mixing the pitch-based carbonaceous fiber milled with the pitch-based graphite fiber milled. They have found what they can do and have completed the present invention.

【0016】即ち、本発明による負極材は、 550℃以上1300℃以下の熱処理温度で得られ
る平均粒径が10μm未満のピッチ系炭素質繊維ミルド
(A)を60wt%以上98wt%以下含み、且つ24
00℃以上の熱処理温度で得られる平均粒径が10μm
以上30μm以下のピッチ系黒鉛質繊維ミルド(B)を
2wt%以上40wt%以下含むリチウムイオン二次電
池用負極材を提供する。また (A)が塩化水素ガスを含有する不活性雰囲気下に
て熱処理されてなることにも特徴を有する。また、 (A)及び(B)がメソフェーズピッチを出発原料と
することにも特徴を有する。
That is, the negative electrode material according to the present invention contains 60 wt% or more and 98 wt% or less of pitch-based carbonaceous fiber milled (A) having an average particle size of less than 10 μm obtained at a heat treatment temperature of 550 ° C. or more and 1300 ° C. or less, and 24
The average particle size obtained at a heat treatment temperature of 00 ° C. or higher is 10 μm
Provided is a negative electrode material for a lithium ion secondary battery, which contains 2 wt% or more and 40 wt% or less of pitch-based graphite fiber milled (B) having a thickness of 30 μm or less. It is also characterized in that (A) is heat-treated in an inert atmosphere containing hydrogen chloride gas. Further, (A) and (B) are also characterized in that mesophase pitch is used as a starting material.

【0017】なお、本発明においてミルド化(粉砕)さ
れた繊維を繊維ミルドと称し、特に2000℃未満で熱
処理された繊維ミルドを炭素質繊維ミルド、2000℃
以上で熱処理された繊維ミルドを黒鉛質繊維ミルドと称
す。このように、本発明におけるリチウムイオン二次電
池用負極材は、ピッチ系炭素前駆体を原料とし、紡糸
(繊維化)し、不融化後、炭素化したもの及び黒鉛化し
たものであり、更に繊維形態がほとんど保持されないほ
ど微粒状にミルド化された炭素質繊維ミルドを主体に、
繊維形態のまま特定の粒径及び粒度分布を持つようにミ
ルド化された主に円柱状形態の黒鉛質繊維ミルドを混合
使用するものであり、以下の利点を有す。
In the present invention, the milled (crushed) fiber is referred to as a fiber milled, and a fiber milled at a temperature of less than 2000 ° C. is a carbonaceous fiber milled, 2000 ° C.
The heat-treated fiber mill is referred to as a graphite fiber mill. Thus, the negative electrode material for a lithium ion secondary battery in the present invention is a pitch-based carbon precursor as a raw material, spun (fiberized), infusibilized, carbonized and graphitized, and Mainly on carbonaceous fiber mill that is milled into fine particles so that the fiber form is hardly retained,
This is a mixture of graphite fiber mills, which are mainly columnar and are milled to have a specific particle size and particle size distribution as they are in fiber form, and have the following advantages.

【0018】1)ピッチ、特にメソフェーズピッチを原
料とすることにより、芳香環ピッチ分子の配向が繊維内
部まで促進され、負極材のリチウムイオンの出入りが容
易となる。 2)炭素質繊維ミルドが、1300℃以下の熱処理温度
であるため芳香環シートの重なりが弱く、リチウムイオ
ンの充電において広い層間スペースにリチウムイオンが
クラスター(凝集状態)で存在し得るため、高容量が達
成できる。また、微粒状にミルド化されており、負極材
の充填密度を高くすることができる。 3)黒鉛質繊維ミルドは、黒鉛構造が発達しており、リ
チウムイオンのインターカレーション・ディインターカ
レーションが容易であり、また、繊維形態に成形後不融
化することで黒鉛構造に歪みを有し、天然黒鉛や人造黒
鉛ほど高度には黒鉛構造が発達せず、リチウムイオンの
出入りにより生じる膨張・収縮による構造破壊が起こり
にくく、サイクル低下が少ない。また、黒鉛質繊維ミル
ドは、高い導電性を有しており、炭素質繊維ミルド単独
使用の場合の導電性不足を補完する。
1) By using pitch, particularly mesophase pitch as a raw material, the orientation of aromatic ring pitch molecules is promoted to the inside of the fiber, and lithium ions in the negative electrode material come in and out easily. 2) Since the carbonaceous fiber milled has a heat treatment temperature of 1300 ° C. or less, the aromatic ring sheets are not overlapped with each other, and lithium ions may exist in clusters (aggregated state) in a wide interlayer space during charging of lithium ions, resulting in high capacity. Can be achieved. Further, since it is milled into fine particles, the packing density of the negative electrode material can be increased. 3) Graphite fiber milled has a well-developed graphite structure, which facilitates intercalation / deintercalation of lithium ions, and also causes distortion in the graphite structure due to infusibilization after molding into a fiber form. However, the graphite structure does not develop as highly as natural graphite and artificial graphite, structural destruction due to expansion and contraction caused by the ingress and egress of lithium ions does not easily occur, and cycle reduction is small. In addition, the graphite fiber milled has high conductivity, and complements the lack of conductivity when the carbonaceous fiber mill is used alone.

【0019】以下、本発明を具体的に説明する。 (I)繊維ミルドについて: <原料ピッチ>本発明に用いる炭素質繊維ミルド及び黒
鉛質繊維ミルドの出発原料は、石油ピッチ系、石炭ピッ
チ系、合成ピッチ系のいずれに限定されるものではない
が、特に易黒鉛化質であるメソフェーズ系ピッチとする
ことが好ましい。該メソフェーズ系ピッチとしては紡糸
可能ならば特に限定されるものでないが、メソフェーズ
含有量100%のものが望ましい。原料ピッチの軟化点
は特に限定されるものではないが、紡糸温度との関係か
ら、軟化点が低くて且つ不融化反応速度の速いものが、
製造のコスト及び安定性の面から有利である。従って、
原料ピッチの軟化点は230℃以上350℃以下、好ま
しくは250℃以上310℃以下である。
Hereinafter, the present invention will be described specifically. (I) Fiber Milled: <Raw Material Pitch> The starting materials for the carbonaceous fiber milled material and the graphite fiber milled material used in the present invention are not limited to petroleum pitch type, coal pitch type, and synthetic pitch type. It is particularly preferable to use a mesophase pitch that is easily graphitizable. The mesophase pitch is not particularly limited as long as it can be spun, but a mesophase content of 100% is desirable. The softening point of the raw material pitch is not particularly limited, but from the relationship with the spinning temperature, one having a low softening point and a high infusible reaction rate,
It is advantageous in terms of manufacturing cost and stability. Therefore,
The softening point of the raw material pitch is 230 ° C. or higher and 350 ° C. or lower, preferably 250 ° C. or higher and 310 ° C. or lower.

【0020】<紡糸>原料ピッチを溶融紡糸する方法は
特に限定されるものではなく、メルトスピニング、メル
トブロー、遠心紡糸等種々の方法を使用することが出来
るが、紡糸時の生産性や得られる繊維の品質の観点か
ら、メルトブロー法が好ましい。この時の紡糸孔の大き
さは、0.1mmΦ以上0.5mmΦ以下、好ましくは
0.15mmΦ以上0.3mmΦ以下である。また、紡
糸速度は毎分500m以上、好ましくは毎分1,500
m以上、より好ましくは毎分2,000m以上である。
<Spinning> The method of melt spinning the raw material pitch is not particularly limited, and various methods such as melt spinning, melt blow, and centrifugal spinning can be used, but the productivity during spinning and the obtained fiber From the viewpoint of quality, the melt blow method is preferable. At this time, the size of the spinning holes is 0.1 mmΦ or more and 0.5 mmΦ or less, preferably 0.15 mmΦ or more and 0.3 mmΦ or less. The spinning speed is 500 m / min or more, preferably 1,500 / min.
m or more, more preferably 2,000 m or more per minute.

【0021】紡糸温度は使用する原料ピッチにより幾分
変更されるが、原料ピッチの軟化点以上でピッチが変質
しない温度であれば良く、300℃以上400℃以下、
好ましくは300℃以上380℃以下である。なかで
も、本発明に用いる原料ピッチは、数十ポイズ以下とい
う低粘度で紡糸し、且つ、高速冷却することにより、黒
鉛層面が繊維表面に開口するように配列されるためにメ
ソフェーズ系ピッチを用いたメルトブロー法が最も好ま
しい。このようにして製造されたピッチ繊維から得られ
た炭素繊維は、黒鉛層面が繊維表面に開口しつつも、黒
鉛層面が繊維円周に沿った疑似オニオン層が繊維表層に
形成され、充放電速度を早くしても容量低下が少なく、
さらに、充放電を繰り返しても容量低下は殆どないと言
う長所を示す。
The spinning temperature is somewhat changed depending on the raw material pitch used, but it may be any temperature at which the pitch does not change above the softening point of the raw material pitch, such as 300 ° C to 400 ° C.
It is preferably 300 ° C. or higher and 380 ° C. or lower. Among them, the raw material pitch used in the present invention is a mesophase pitch because the graphite layer surface is arranged so as to open on the fiber surface by spinning at a low viscosity of tens of poise or less and cooling at high speed. Most preferred is the melt-blown method. The carbon fiber obtained from the pitch fiber produced in this manner, while the graphite layer surface is opened to the fiber surface, the graphite layer surface is formed on the fiber surface layer a pseudo onion layer along the fiber circumference, charge and discharge rate Even if you speed up, there is little decrease in capacity,
Further, it has an advantage that the capacity hardly decreases even if charging and discharging are repeated.

【0022】<不融化>不融化方法としては、二酸化窒
素や酸素等の酸化性ガス雰囲気中で加熱処理する方法
や、硝酸やクロム酸等の酸化性水溶液中で処理する方
法、さらには、光やγ線等による重合処理方法も可能で
ある。より簡便な不融化方法は、空気中で200〜35
0℃で一定時間加熱処理する方法であり、その時の平均
昇温速度は1℃/分以上、好ましくは3℃/分以上であ
る。
<Insolubilization> Examples of the infusibilization method include heat treatment in an atmosphere of an oxidizing gas such as nitrogen dioxide and oxygen, a method of treating in an oxidizing aqueous solution of nitric acid, chromic acid, and the like. A polymerization treatment method using γ-rays or the like is also possible. A simpler infusibilizing method is 200 to 35 in air.
This is a method of performing heat treatment at 0 ° C. for a certain period of time, and the average rate of temperature rise at that time is 1 ° C./min or more, preferably 3 ° C./min or more.

【0023】<炭化、ミルド化、黒鉛化> (a)繊維の炭化:不融化したピッチ繊維は、不活性ガ
ス中や或いは酸化性ガスの非存在下で加熱処理すること
により炭素質繊維とすることができる。この時の昇温速
度や保持時間は特に限定されるものでない。ピッチ繊維
の炭化は常法に従って、不活性ガス雰囲気下250℃以
上2,000℃未満の温度で実施することができる。た
だし、本発明の炭素質繊維ミルドの場合、炭化温度は、
550℃以上1,300℃以下、好ましくは650℃以
上1200℃以下であることを要する。550℃未満の
場合は、炭素質繊維ミルド自体が未だ水素や酸素あるい
はその他の炭素以外の元素を多く含み、電気化学的に不
安定であるとともに導電性に劣るためサイクル特性が問
題となる。
<Carbonization, Milling, Graphitization> (a) Carbonization of fibers: The infusibilized pitch fibers are heated to be carbonaceous fibers in an inert gas or in the absence of an oxidizing gas. be able to. The heating rate and the holding time at this time are not particularly limited. Carbonization of pitch fibers can be carried out according to a conventional method in an inert gas atmosphere at a temperature of 250 ° C or higher and lower than 2,000 ° C. However, in the case of the carbonaceous fiber mill of the present invention, the carbonization temperature is
It is necessary to be 550 ° C or higher and 1300 ° C or lower, preferably 650 ° C or higher and 1200 ° C or lower. When the temperature is lower than 550 ° C., the carbonaceous fiber mill itself still contains a large amount of hydrogen, oxygen or other elements other than carbon, is electrochemically unstable, and is inferior in conductivity, which causes a problem in cycle characteristics.

【0024】一方、1300℃を超えて高温熱処理した
炭素質繊維ミルドの場合、繊維のほとんどが炭素元素の
みとなり化学安定性や導電性の観点では優れた炭素材と
なるが、リチウムの受入れ量が小さく本発明に対しては
好ましくない。このように550℃以上1300℃以下
で炭化された炭素質繊維の結晶化程度をX線回折データ
で示すと、黒鉛層間距離(d002 )が0.350nm以
上、C軸方向の結晶子の大きさ(Lc)が5nm以下と
なっている。
On the other hand, in the case of a carbonaceous fiber mill that has been heat-treated at a high temperature of over 1300 ° C., most of the fibers are carbon elements, which is an excellent carbon material from the viewpoint of chemical stability and conductivity, but the amount of lithium to be received is large. It is small and not preferable for the present invention. When the crystallization degree of the carbonaceous fiber carbonized at 550 ° C. or more and 1300 ° C. or less is shown by X-ray diffraction data, the graphite interlayer distance (d 002 ) is 0.350 nm or more, and the crystallite size in the C-axis direction is large. (Lc) is 5 nm or less.

【0025】(b)繊維のミルド化:通常の炭素繊維
は、充放電速度を早くするためには、単位重量当たりの
繊維表面積を大きくする必要があり、このため繊維をミ
ルド化することが要望される。しかしながら、特に黒鉛
質繊維の場合、後述のように繊維をいたずらに微粉化す
ると、逆に活性な黒鉛層が露出し電解液と反応するため
に容量低下等のデメリットが発生するので、適度な粒径
となるようにミルド化することを要する。
(B) Milling of Fibers: In order to increase the charge / discharge speed of ordinary carbon fibers, it is necessary to increase the fiber surface area per unit weight. Therefore, it is desirable to mill the fibers. To be done. However, particularly in the case of graphite fiber, if the fiber is mischievously finely powdered as described below, the active graphite layer is exposed and reacts with the electrolytic solution to cause demerits such as capacity reduction, so that an appropriate particle size is obtained. It needs to be milled to have a diameter.

【0026】(i)炭素質繊維のミルド化:本発明のピ
ッチ系炭素質繊維ミルドを製造する方法としては、メソ
フェーズピッチを紡糸し不融化しさらに要求される所定
の温度で不活性ガス中で炭化した後、ビクトリーミル、
ジェットミル、クロスフローミル等でミルド化すること
が有効である。なお、繊維のミルド化を効率良く実施す
るためには、上記方法に共通することであるが、例えば
プレートを取り付けたローターを高速に回転することに
より、繊維に対し直角方向に繊維を寸断する方法が適
切である。
(I) Milling of carbonaceous fiber: As a method for producing the pitch-based carbonaceous fiber milled product of the present invention, mesophase pitch is spun to be infusible, and further in an inert gas at a predetermined temperature required. After carbonization, Victory Mill,
Milling with a jet mill, cross flow mill, etc. is effective. In order to efficiently carry out milling of the fibers, it is common to the above methods. For example, by rotating a rotor with a plate attached thereto at high speed, the fibers are cut in a direction perpendicular to the fiber axis. The method is appropriate.

【0027】ピッチ系炭素質繊維ミルドに適する粒径
は、ローターの回転数、使用する刃の枚数、プレートの
角度及びローターの周辺に取り付けられたフィルターの
目の大きさ等を調整することによりコントロールするこ
とが可能である。なお、ミルド化には、ヘンシェルミキ
サーやボールミル、擂潰機等による方法もあるが、これ
らの方法によると繊維軸の直角方向への加圧力が働き、
繊維軸方向への縦割れの発生が多くなり好ましくない。
また、これら方法はミルド化に長時間を要し、適切なミ
ルド化方法とは言い難い。
The particle size suitable for the pitch-based carbonaceous fiber mill is controlled by adjusting the number of rotations of the rotor, the number of blades used, the angle of the plate, the size of the meshes of the filters mounted around the rotor, and the like. It is possible to In addition, there is a method using a Henschel mixer, a ball mill, a crusher, etc. for milling, but according to these methods, a pressure force in the direction perpendicular to the fiber axis works,
This is not preferable because the number of vertical cracks in the fiber axis direction increases.
In addition, these methods require a long time for milling, and it cannot be said that they are suitable milling methods.

【0028】(ii)黒鉛質繊維ミルドの製造:通常、
熱処理(特に黒鉛化)を効率よく行うためには、容積当
りの充填量を高くすることが良い。すなわち、黒鉛化後
ミルド化する方法も考えられるがミルド化処理した後に
黒鉛化処理することが焼成コストを低減させる上で有利
である。このため、ピッチ系黒鉛質繊維ミルドを製造す
る方法としては、550℃以上1300℃以下の温度で
不活性ガス中で炭化した後、ミルド化し黒鉛化する方法
が有利である。特に本発明の場合、550℃以上130
0℃以下で炭化処理した後ミルド化し、さらに黒鉛化処
理することによりミルド化後の繊維の縦割れが防げると
共に、ミルド化時に新たに表面に露出した黒鉛層面がよ
り高温の黒鉛化時に縮重合・環化反応が進み、その表面
の活性度が低下することも、電解液の分解を阻止する上
で効果があり好ましい。
(Ii) Manufacture of Graphite Fiber Milled: Usually,
In order to efficiently perform heat treatment (particularly graphitization), it is preferable to increase the filling amount per volume. That is, a method of performing graphitization and then milling can be considered, but it is advantageous to perform the graphitizing treatment after performing the milling treatment in order to reduce the firing cost. Therefore, as a method for producing a pitch-based graphitic fiber mill, a method of carbonizing in an inert gas at a temperature of 550 ° C. or higher and 1300 ° C. or lower, and then milling and graphitizing is advantageous. Particularly in the case of the present invention, 550 ° C. or higher and 130
By carbonizing at 0 ° C or lower, milling, and then graphitizing to prevent longitudinal cracking of the fiber after milling, the newly exposed surface of the graphite layer during milling is polycondensed during graphitization at a higher temperature. The progress of the cyclization reaction and the decrease in the activity of the surface are also effective in preventing the decomposition of the electrolytic solution, which is preferable.

【0029】黒鉛化した後にミルド化すると、繊維軸方
向に発達した黒鉛層面に沿って開裂が発生し易くなり、
製造されたミルド化された黒鉛繊維の全表面積中に占め
る破断面表面積の割合が大きくなるとともに、格子欠陥
をもつ活性な表面あるいは含酸素官能基が多くなり、そ
の部分ではLiイオンとの反応による酸化物等の生成や
電子の局在化による電解液の分解が起こり好ましくな
い。また、炭素質繊維ミルドの炭化温度と範囲を合わせ
ることにより、工程管理の簡略化にもつながる。粉砕方
法は、炭素質繊維のミルド化と同様であり、同一の機器
を使用することができる。
When graphitized and then milled, cleavage easily occurs along the graphite layer surface developed in the fiber axis direction,
The ratio of the fracture surface area to the total surface area of the manufactured milled graphite fiber is large, and the active surface having a lattice defect or the oxygen-containing functional group is also large. It is not preferable because the electrolyte solution is decomposed due to the formation of oxides and the localization of electrons. Also, by matching the carbonization temperature and range of the carbonaceous fiber mill, it is possible to simplify process control. The crushing method is the same as the milling of carbonaceous fibers, and the same equipment can be used.

【0030】(c)黒鉛化:ピッチ系炭素質繊維の黒鉛
化は、通常2000℃以上の温度で実施されるが、電池
の容量を高容量化させるためには、本発明で使用するよ
うなピッチ系炭素繊維の場合、より黒鉛化を進める(焼
成温度を高くする)ことが要求される。このため、本発
明ではピッチ系炭素質繊維を2400℃以上、好ましく
は2500℃以上の温度で焼成(黒鉛化)したものを使
用することが好適である。また、より黒鉛化が進んだも
のの方が、炭素系の材料との混合効果が発現し易く好ま
しい。
(C) Graphitization: Graphitization of pitch-based carbonaceous fibers is usually carried out at a temperature of 2000 ° C. or higher, but in order to increase the capacity of the battery, as in the present invention. In the case of pitch-based carbon fiber, further graphitization (increasing firing temperature) is required. Therefore, in the present invention, it is preferable to use the pitch-based carbonaceous fiber fired (graphitized) at a temperature of 2400 ° C. or higher, preferably 2500 ° C. or higher. Further, it is preferable that the graphitization is more advanced because the effect of mixing with the carbon-based material is easily exhibited.

【0031】このように、焼成(黒鉛化)温度は、高い
方が容量等の点で好ましいが、生産コストが黒鉛化温度
とともに急激に高くなり、また3000℃を超える焼成
温度では、黒鉛化を行う炉材の耐久性の観点で商業的に
安定的生産することが困難となるため、その目的に合わ
せ適宜選択する必要がある。また、黒鉛化度をより発達
させるためには、ホウ素化合物等を添加して黒鉛化する
方法も使用できる。
As described above, a higher firing (graphitization) temperature is preferable in terms of capacity and the like, but the production cost rapidly increases with the graphitization temperature, and at a firing temperature of higher than 3000 ° C., graphitization takes place. Since it is difficult to produce a commercially stable product from the viewpoint of durability of the furnace material to be used, it is necessary to select it appropriately according to the purpose. Further, in order to further develop the graphitization degree, a method of adding a boron compound or the like to graphitize can also be used.

【0032】このようにして製造されたピッチ系黒鉛質
繊維ミルドの結晶化程度をX線回折データで示すと、黒
鉛層間距離(d002 )が0.338nm以下、C軸方向
の結晶子の大きさ(Lc)が35nm以上、a軸方向の
結晶子の大きさ(La)が50nm以上、(101)回
折ピークと(100)回折ピークのピーク比(P101
100 )が1.0以上である。ここで、X線回折法と
は、CuKαをX線源、標準物質に高純度シリコンを使
用し、炭素繊維に対し回折パターンを測定するものであ
る。そして、その002回折パターンのピーク位置、半
値幅から、それぞれ黒鉛層間距離d(002) 、c軸方向の
結晶子の大きさLc(002) 、及び110回折パターンの
ピーク位置、半値幅からa軸方向の結晶子の大きさLa
(110) を算出する。算出方法は学振法に基づき算出す
る。101/100のピーク比の測定は、得られた回折
線図にベースラインを引き、このベースラインから10
1(2θ≒44.5)、100(2θ≒42.5)の各
ピークの高さを測定し、101の回折ピーク高さを10
0回折ピーク高さで除して求める。
The degree of crystallization of the pitch-based graphitic fiber mill thus produced is shown by X-ray diffraction data. The graphite interlayer distance (d 002 ) is 0.338 nm or less, and the size of the crystallite in the C-axis direction. (Lc) is 35 nm or more, the crystallite size (La) in the a-axis direction is 50 nm or more, and the peak ratio of the (101) diffraction peak to the (100) diffraction peak (P 101 /
P 100 ) is 1.0 or more. Here, the X-ray diffraction method is a method in which CuKα is used as an X-ray source, high-purity silicon is used as a standard substance, and a diffraction pattern is measured for carbon fibers. From the peak position and half width of the 002 diffraction pattern, the graphite interlayer distance d (002) , the crystallite size Lc (002) in the c-axis direction, and the peak position and half width of the 110 diffraction pattern from the a-axis Direction crystallite size La
Calculate (110) . The calculation method is based on the Gakushin method. To measure the peak ratio of 101/100, a baseline is drawn on the obtained diffraction diagram, and 10 is obtained from this baseline.
The height of each peak of 1 (2θ ≒ 44.5) and 100 (2θ ≒ 42.5) was measured, and the diffraction peak height of 101 was set to 10
It is determined by dividing by zero diffraction peak height.

【0033】(d)炭素質繊維ミルドの粒径、粒度分
布:レーザー回折方式による、ピッチ系炭素質繊維ミル
ド(A)の平均粒径は10μm未満、好ましくは5μm
以下で、且つ粒度分布が、50%、90%の累積径でそ
れぞれ1〜10μm、5〜20μmの範囲であることが
電池の性能を向上させることができ好ましい。ピッチ系
炭素質繊維ミルドは黒鉛層間距離がピッチ系黒鉛質繊維
ミルドより大きく、0.350nm以上であり、Liイ
オンの層間への拡散速度が早い。このような炭素材では
平均粒径が小さければ小さいほどLiイオンの出入り口
が多くなるため、また、シート化した場合、粒径が小さ
いと充填密度を上げることができ、容量の発現及び充放
電効率の向上の面で好ましい。
(D) Particle size and particle size distribution of carbonaceous fiber milled: The average particle size of pitch-based carbonaceous fiber milled (A) by laser diffraction method is less than 10 μm, preferably 5 μm.
It is preferable that the particle size distributions are in the ranges of 1 to 10 μm and 5 to 20 μm at the cumulative diameters of 50% and 90%, respectively, since the performance of the battery can be improved. The pitch-based carbonaceous fiber mill has a graphite interlayer distance larger than that of the pitch-based graphite fiber milled and is 0.350 nm or more, and the diffusion rate of Li ions between layers is fast. In such a carbon material, the smaller the average particle size, the more the number of Li ion entrances and exits. Therefore, in the case of a sheet, if the particle size is small, the packing density can be increased, and the capacity development and charge / discharge efficiency can be improved. Is preferable in terms of improvement of

【0034】ただし、粉砕性の問題から、現状、極端に
微小化することは困難であり、また粉砕効率も悪化しコ
ストも増加するので、平均粒径は1μm以上が目安とな
る。一方、平均粒径が10μm以上では黒鉛質繊維ミル
ドと混合しても初回の充放電効率、放電容量及びサイク
ル特性の点で向上の程度が低くなるので好ましくない。
However, due to the problem of pulverizability, it is currently difficult to extremely reduce the size, and the pulverization efficiency deteriorates and the cost increases, so the average particle size should be 1 μm or more. On the other hand, if the average particle size is 10 μm or more, even if mixed with the graphite fiber milled, the degree of improvement in the initial charge / discharge efficiency, discharge capacity and cycle characteristics will be low, which is not preferable.

【0035】(e)黒鉛質繊維ミルドの粒径、粒度分
布:レーザー回折方式による、黒鉛質繊維ミルド(B)
の平均粒径は10〜30μmの範囲で、且つ粒度分布
が、10%、50%、90%の累積径でそれぞれ8〜1
5μm、10〜20μm、30〜60μmの範囲である
ことが電池の性能を向上させることができ好ましい。ピ
ッチ系黒鉛質繊維ミルドは黒鉛層間距離が0.338n
m以下であり、Liイオンが層間へインターカレーショ
ンするには表面の黒鉛層間を拡散しやすいように広げる
必要があり、炭素質繊維ミルドに比べよりエネルギーを
要し、Liイオンは表面で電解液と共に滞留しやすくな
る。
(E) Particle size and particle size distribution of graphite fiber milled: Graphite fiber milled (B) by laser diffraction method
Has an average particle size in the range of 10 to 30 μm and a particle size distribution of 8 to 1 for 10%, 50% and 90% cumulative diameters, respectively.
The range of 5 μm, 10 to 20 μm, and 30 to 60 μm is preferable because the performance of the battery can be improved. Pitch-based graphite fiber milled has a graphite interlayer distance of 0.338n
m or less, it is necessary to spread Li ions so as to easily diffuse between the graphite layers on the surface in order to intercalate between the layers, and more energy is required compared with the carbonaceous fiber milled. It becomes easy to stay with.

【0036】このため、黒鉛表面でのLiイオンの反応
や、電解液の分解が生じやすくなる。このような現象
は、黒鉛粒子を微細化すればするほど促進されるため、
黒鉛繊維ミルドの粒径は、適度な範囲にコントロールさ
れねばならない。すなわち、平均粒径10μm未満にな
ると、表面に活性部をもつ粒径の小さい黒鉛粒子が多く
なるため、表面で水酸化リチウムや炭酸リチウム等無機
物となって不可逆となるLiが多くなったり、且つ電解
液の分解も激しくなる。
Therefore, the reaction of Li ions on the graphite surface and the decomposition of the electrolytic solution are likely to occur. Such a phenomenon is promoted as the graphite particles are made finer,
The particle size of the graphite fiber milled must be controlled within an appropriate range. That is, when the average particle size is less than 10 μm, the number of graphite particles having an active portion on the surface and having a small particle size increases, and therefore Li becomes irreversible as an inorganic substance such as lithium hydroxide or lithium carbonate on the surface, and The decomposition of the electrolyte also becomes severe.

【0037】その結果、充放電効率を低下させ、容量の
向上効果も期待できなくなり好ましくない。一方、平均
粒径が30μmを越えると、本発明の炭素質繊維ミルド
の平均粒径が10μm未満と微粒子状であるため、混合
による導電性の付与効果が薄れ、初回の充放電効率、放
電容量及びサイクル特性の向上効果が低下し好ましくな
い。また、本発明においては、粒径が2μm以下の黒鉛
質繊維ミルドの存在する割合が全繊維ミルドの5wt%
以下、好ましくは検出されないこと、また、繊維長が1
25μm以上の黒鉛質繊維ミルドが存在する割合は全繊
維ミルド1wt%以下、好ましくは検出されないことが
望ましい。
As a result, the charging / discharging efficiency is lowered, and the capacity improving effect cannot be expected, which is not preferable. On the other hand, if the average particle size exceeds 30 μm, the carbonaceous fiber milled product of the present invention has an average particle size of less than 10 μm and is in the form of fine particles, so that the effect of imparting conductivity by mixing is weakened, and the initial charge / discharge efficiency and discharge capacity are reduced. Also, the effect of improving cycle characteristics is reduced, which is not preferable. In the present invention, the proportion of graphite fiber milled particles having a particle size of 2 μm or less is 5 wt% of the total fiber milled particles.
Below, preferably not detected, and the fiber length is 1
The proportion of the graphite fiber milled particles having a size of 25 μm or more is 1 wt% or less of the total fiber milled particles, and preferably not detected.

【0038】粒径が2μm以下の黒鉛質繊維ミルドが5
wt%を越えて存在すると、活性な表面を持つ微細粒子
が多くなり、電解液の分解が激しくなり、初回の充放電
効率が低下し、サイクル特性も低下する。また、繊維長
が125μm以上の繊維ミルドが1wt%を越え存在す
ると、シート化時に厚みむらを引き起こす原因となるの
で好ましくない。なお、平均粒径や粒度分布を調整する
際、ミルド化処理、混合処理等の任意の段階で、必要に
応じ、分級機、篩い等による処理を行うことができる。
また、黒鉛質繊維ミルド(B)の前駆体炭素質繊維ミル
ドを分級機、篩い等で処理し粒径を調整する場合、除去
される微粒側の炭素質繊維ミルドを、炭素質繊維ミルド
(A)の一部または全部として使用することができる。
5 graphite fiber mills having a particle size of 2 μm or less
If it is present in excess of wt%, the number of fine particles having an active surface increases, the decomposition of the electrolytic solution becomes vigorous, the initial charge / discharge efficiency decreases, and the cycle characteristics also decrease. If the fiber milled fiber having a fiber length of 125 μm or more is present in an amount of more than 1 wt%, it may cause unevenness in thickness when formed into a sheet, which is not preferable. When adjusting the average particle size and particle size distribution, a treatment with a classifier, a sieve, etc. can be performed at any stage such as milling treatment and mixing treatment, if necessary.
When the precursor carbonaceous fiber mill of the graphite fiber milled (B) is treated with a classifier, a sieve or the like to adjust the particle size, the carbonaceous fiber mill on the fine particle side to be removed is the carbonaceous fiber milled (A). ) Can be used as a part or all.

【0039】(f)炭素質繊維ミルドの表面改質:一般
的に炭素材、特に熱処理温度が低い炭素材の表面には、
含酸素官能基や炭素ラジカルが存在し、これらが電池の
容量等を低下させる原因となっている。このため、本発
明の炭素質繊維ミルドにおいても、表面を化学処理、熱
処理等で改質することが、電池の性能をより向上させる
上で好ましい。特に、本発明においては、塩化水素ガス
を含有する不活性雰囲気下で400℃以上1300℃以
下、好ましくは400℃以上1000℃以下で熱処理す
ることが、電池の性能向上面、コスト面及び生産性の面
から見て好ましい。
(F) Surface modification of carbonaceous fiber milled: Generally, on the surface of a carbon material, especially a carbon material having a low heat treatment temperature,
Oxygen-containing functional groups and carbon radicals are present, which cause the capacity of the battery to decrease. Therefore, also in the carbonaceous fiber mill of the present invention, it is preferable to modify the surface by chemical treatment, heat treatment or the like in order to further improve the performance of the battery. In particular, in the present invention, heat treatment at 400 ° C. or higher and 1300 ° C. or lower, preferably 400 ° C. or higher and 1000 ° C. or lower in an inert atmosphere containing hydrogen chloride gas is effective in improving battery performance, cost and productivity. From the perspective of, it is preferable.

【0040】これは、塩化水素が炭素表面或いは表層部
に存在する炭素ラジカルに対し、縮重合・環化反応を促
進させる効果があり、且つ含酸素官能基に対して、脱離
させ、炭素ラジカルを発生させると共に同様に縮重合・
環化を促進させる効果があり、従って、この処理によっ
て、充放電に際し、その不可逆容量の原因とされる炭素
ラジカルや含酸素官能基を減少させることができるため
と考えられる。この際の熱処理温度が400℃未満で
は、炭素質繊維ミルドの表面改質に長時間を要し好まし
くない。また、熱処理温度が1300℃を超えて高くな
ると前述のようにリチウムの受入量が少なくなるという
影響がでるため、好ましくない。
This is because hydrogen chloride has the effect of accelerating the condensation polymerization / cyclization reaction with respect to the carbon radicals existing on the surface of the carbon or the surface layer portion thereof, and with the elimination of the oxygen-containing functional group, the carbon radicals. Similarly, polycondensation and
It is considered that this treatment has an effect of promoting cyclization, and therefore, this treatment can reduce carbon radicals and oxygen-containing functional groups that cause the irreversible capacity during charge and discharge. If the heat treatment temperature at this time is lower than 400 ° C., it takes a long time to modify the surface of the carbonaceous fiber milled, which is not preferable. In addition, if the heat treatment temperature is higher than 1300 ° C., the lithium reception amount is reduced as described above, which is not preferable.

【0041】塩化水素ガスを含有する雰囲気としては、
爆発性を有する塩化窒素等を生成しない不活性雰囲気が
好ましく、特に、希ガス、中でもアルゴン雰囲気が好ま
しい。塩化水素ガスの含有量については、特に限定され
るものでないが、処理の効率、装置への腐食性、排ガス
処理及び経済性の観点から、0.5vol%以上10v
ol%以下、好ましくは1vol%以上5vol%以下
である。また、本発明は、炭素ラジカルの生成及び再結
合の過程で、炭素以外の元素、例えばFe、Ni等金属
元素や窒素、イオウ等ヘテロ元素等を効率的に除去する
効果があり、炭素材の純度が向上し、初回の充放電効率
及びサイクル特性が向上する効果も考えられる。
As the atmosphere containing hydrogen chloride gas,
An inert atmosphere that does not generate explosive nitrogen chloride or the like is preferable, and a rare gas, especially an argon atmosphere is particularly preferable. The content of hydrogen chloride gas is not particularly limited, but is 0.5 vol% or more and 10 v or more from the viewpoint of treatment efficiency, apparatus corrosivity, exhaust gas treatment and economic efficiency.
It is ol% or less, preferably 1 vol% or more and 5 vol% or less. Further, the present invention has an effect of efficiently removing elements other than carbon, for example, metal elements such as Fe and Ni and hetero elements such as nitrogen and sulfur in the process of carbon radical generation and recombination. The effect of improving the purity and improving the initial charge / discharge efficiency and cycle characteristics is also considered.

【0042】(II)負極の構成:本発明により得られ
た各繊維ミルド及びそれらの混合繊維ミルドは、通常の
手法により負極とすることが出来る。すなわち、ポリエ
チレンやポリテトラフルオロエチレン等のバインダーを
添加し、有機溶媒あるいは水溶媒を用いスラリー状と
し、厚さ10〜50μmの銅、ニッケル等からなる金属
箔上の片面または両面に塗布し、これを圧延、乾燥を行
い、厚さ50〜200μm程度のシート状物とする方法
が広く用いられている。
(II) Structure of Negative Electrode: Each fiber mill and the mixed fiber mill obtained by the present invention can be used as a negative electrode by a usual method. That is, a binder such as polyethylene or polytetrafluoroethylene is added, and a slurry is formed using an organic solvent or an aqueous solvent, and is applied to one or both sides of a metal foil made of copper, nickel or the like having a thickness of 10 to 50 μm. The method of rolling and drying to obtain a sheet-like material having a thickness of about 50 to 200 μm is widely used.

【0043】その後、所定の幅・長さにスリットし、正
極及びセパレーターと共に巻取り製缶する方法が一般的
である。各繊維ミルドを混合使用する際の混合割合とし
ては、炭素質繊維ミルド(A)/黒鉛質質繊維ミルド
(B)が重量比で98/2以下60/40以上、好まし
くは95/5以下70/30以上である。混合割合
(A)/(B)が、60/40未満では、炭素質繊維ミ
ルドの配合比率の低下に伴なつて炭素質繊維ミルドの利
点である充放電容量が急激に低下し好ましくない。一
方、混合割合(A)/(B)が、98/2を越えると混
合の効果が薄れ、炭素質繊維ミルド単独使用と電池性能
面で大差がなくなり、初回の充放電効率が低下し、サイ
クル特性も低下し好ましくない。なお、(A)及び
(B)は、それぞれの条件が本発明の範囲であれば、そ
れぞれ単独(1種類)であっても、2種類以上の使用で
あってもよく、電池性能面と製造面を勘案し適宜選択す
ればよい。
After that, a method of slitting into a predetermined width and length and winding and making a can together with the positive electrode and the separator is common. As a mixing ratio when the respective fiber mills are mixed and used, the weight ratio of carbonaceous fiber milled (A) / graphitic fiber milled (B) is 98/2 or less 60/40 or more, preferably 95/5 or less 70 / 30 or more. When the mixing ratio (A) / (B) is less than 60/40, the charge / discharge capacity, which is an advantage of the carbonaceous fiber milled, is drastically reduced as the blending ratio of the carbonaceous fiber milled decreases, which is not preferable. On the other hand, when the mixing ratio (A) / (B) exceeds 98/2, the effect of mixing is weakened, and there is no great difference in battery performance from the use of the carbonaceous fiber milled alone, and the initial charge / discharge efficiency decreases, and the cycle The characteristics are also deteriorated, which is not preferable. It should be noted that (A) and (B) may be used alone (one kind) or may be used in two or more kinds as long as the respective conditions are within the scope of the present invention. It may be appropriately selected in consideration of the aspect.

【0044】(III)電池:本発明による各繊維ミル
ド及びそれらの混合繊維ミルドを負極に用い、リチウム
イオン二次電池を作製する場合には、電解液としてはリ
チウム塩を溶解し得るものであればよいが、特に非プロ
トン性の誘電率が大きい有機溶媒が好ましい。このよう
にして作られた繊維ミルドからの負極は、単位体積当た
りの充放電容量が大きく、電池の小型化に好適である。
(III) Battery: When a lithium ion secondary battery is produced by using each fiber milled product according to the present invention and a mixed fiber milled product thereof as a negative electrode, the electrolyte solution should be one that can dissolve a lithium salt. However, an aprotic organic solvent having a large dielectric constant is preferable. The negative electrode made of the fiber mill thus produced has a large charge / discharge capacity per unit volume and is suitable for downsizing of batteries.

【0045】また、上記有機溶媒としては、例えば、プ
ロピレンカーボネート、エチレンカーボネート、テトラ
ヒドロフラン、2−メチルテトラヒドロフラン、ジオキ
ソラン、4−メチル−ジオキソラン、アセトニトリル、
ジメチルカーボネート、メチルエチルカーボネート、ジ
エチルカーボネート等を挙げることができる。これらの
溶媒を単独あるいは適宜混合して用いることが可能であ
る。電解質としては、安定なアニオンを生成するリチウ
ム塩、例えば、過塩素酸リチウム、ホウフッ化リチウ
ム、六塩化アンチモン酸リチウム、六フッ化アンチモン
酸リチウム(LiPF6 )等が好適である。
Examples of the organic solvent include propylene carbonate, ethylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyl-dioxolane, acetonitrile,
Examples thereof include dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate. These solvents can be used alone or in a suitable mixture. As the electrolyte, a lithium salt that produces a stable anion, for example, lithium perchlorate, lithium borofluoride, lithium hexamonate antimonate, lithium hexafluoroantimonate (LiPF 6 ) or the like is preferable.

【0046】また、リチウムイオン二次電池の正極とし
ては、例えば、酸化クロム、酸化チタン、酸化コバル
ト、五酸化バナジウム等の金属酸化物や、リチウムマン
ガン酸化物(LiMn2 4 )、リチウムコバルト酸化
物(LiCoO2 )、リチウムニッケル酸化物(LiN
iO2 )等のリチウム金属酸化物;硫化チタン、硫化モ
リブデン等の遷移金属のカルコゲン化合物;及びポリア
セチレン、ポリパラフェニレン、ポリピロール等の導電
性を有する共役系高分子物質等を用いることが出来る。
Examples of the positive electrode of the lithium ion secondary battery include metal oxides such as chromium oxide, titanium oxide, cobalt oxide, vanadium pentoxide, lithium manganese oxide (LiMn 2 O 4 ), and lithium cobalt oxide. Substance (LiCoO 2 ), lithium nickel oxide (LiN
A lithium metal oxide such as iO 2 ); a chalcogen compound of a transition metal such as titanium sulfide or molybdenum sulfide; and a conjugated polymer substance having conductivity such as polyacetylene, polyparaphenylene, or polypyrrole can be used.

【0047】これらの正極と負極との間に合成繊維製又
はガラス繊維製の不織布、織布やポリオレフィン系多孔
質膜、ポリテトラフルオロエチレンの不織布等のセパレ
ータを設ける。本発明の二次電池は、前記セパレータ、
集電体、ガスケット、封口板、ケース等の電池構成要素
と本発明の特定の負極を用い、常法に従って円筒型、角
型或いはボタン型等の形態のリチウムイオン二次電池に
組立てることができる。
A separator made of synthetic fiber or glass fiber non-woven fabric, woven fabric, polyolefin type porous membrane, polytetrafluoroethylene non-woven fabric or the like is provided between the positive electrode and the negative electrode. The secondary battery of the present invention, the separator,
By using battery constituent elements such as a current collector, a gasket, a sealing plate, and a case, and the specific negative electrode of the present invention, a lithium ion secondary battery of a cylindrical type, a square type, a button type or the like can be assembled according to a conventional method. .

【0048】[0048]

【実施例】本発明を以下の実施例により更に具体的に説
明するが、これらは本発明の範囲を制限するものではな
い。 (実施例1)ナフタレンを主成分としフッ化水素等触媒
を用いて合成された、光学的異方性で比重1.25のメ
ソフェーズピッチを原料として、幅3mmのスリットの
中に直径0.2mmφの紡糸孔を一列に500個有する
口金を用い、スリットから加熱空気を噴出させて、溶融
ピッチを牽引して平均直径13μmのピッチ繊維を製造
した。この時、紡糸温度は360℃、吐出量は0.8g
/H・分であった。紡出されたピッチ繊維を、捕集部分
が20メッシュのステンレス製金網でできたベルトの背
面から吸引しつつベルト上に捕集した。
The present invention will be described in more detail by the following examples, which do not limit the scope of the present invention. (Example 1) A mesophase pitch having an optical anisotropy and a specific gravity of 1.25, which was synthesized using a catalyst such as hydrogen fluoride with naphthalene as a main component, was used as a raw material, and a diameter of 0.2 mm was used in a slit having a width of 3 mm. Using a spinneret having 500 spinning holes in a row, heated air was ejected from the slit to pull the molten pitch to produce pitch fibers having an average diameter of 13 μm. At this time, the spinning temperature is 360 ° C and the discharge rate is 0.8g.
/ H · min. The spun pitch fibers were collected on the belt while suctioning from the back surface of the belt made of a stainless steel wire mesh having a collecting portion of 20 mesh.

【0049】この捕集したマットを空気中、室温から3
00℃まで平均昇温速度6℃/分で昇温して不融化処理
を行った後、650℃で炭化処理し、さらに、この炭素
質繊維をクロスフローミルで粉砕し、炭素質繊維ミルド
(A)とした。該炭素質繊維ミルド(A)を島津製作所
製のレーザー回折法による粉体粒度測定装置、SALD
−3000を用い、粒子の屈折率を1.80−0.20
iとして粒度を測定した結果、平均粒径3.5μm、5
0%及び90%累積径がそれぞれ3.5μm及び6.2
μmであった。
The collected mat was placed in air at room temperature for 3 hours.
The temperature was raised to 00 ° C at an average temperature rising rate of 6 ° C / min for infusibilization treatment, followed by carbonization treatment at 650 ° C, and the carbonaceous fiber was crushed by a cross flow mill to obtain a carbonaceous fiber milled ( A). The carbonaceous fiber mill (A) is manufactured by Shimadzu Corporation, and a powder particle size measuring apparatus by laser diffraction method, SALD
-3000, the refractive index of the particles is 1.80-0.20.
As a result of measuring the particle size as i, the average particle size is 3.5 μm, 5
0% and 90% cumulative diameters are 3.5 μm and 6.2, respectively.
μm.

【0050】一方、上記炭素質繊維を、クロスフローミ
ルの運転条件を変更し、更に分級機で分級し(A)と粒
度分布のことなる炭素質繊維ミルド(C)を得た。該炭
素質繊維ミルド(C)を、同様に粉体粒度測定装置を用
い粒度を測定した結果、平均粒径19.7μm、10
%、50%及び90%累積径がそれぞれ11.5μm、
18.7μm及び45.6μmであり、且つ2μm以下
の繊維ミルドの存在は0.4wt%で、120μm以上
の繊維ミルドは検知されなかった。該炭素質繊維ミルド
(C)を2900℃まで3℃/分の速度で昇温し、更に
2900℃で1時間保持し、黒鉛化して黒鉛質繊維ミル
ド(B)を得た。
On the other hand, the above carbonaceous fibers were classified by a classifier by changing the operating conditions of the cross flow mill (A) to obtain a carbonaceous fiber milled (C) having a different particle size distribution. The carbonaceous fiber mill (C) was measured for particle size in the same manner using a powder particle size measuring device. As a result, an average particle size of 19.7 μm, 10
%, 50% and 90% cumulative diameters are each 11.5 μm,
The presence of fiber mills of 18.7 μm and 45.6 μm and 2 μm or less was 0.4 wt%, and fiber milled of 120 μm or more was not detected. The carbonaceous fiber mill (C) was heated to 2900 ° C. at a rate of 3 ° C./min, kept at 2900 ° C. for 1 hour, and graphitized to obtain a graphite fiber milled (B).

【0051】該黒鉛質繊維ミルド(B)を、同様に粉体
粒度測定装置を用い粒度を測定した結果、平均粒径1
7.6μm、10%、50%及び90%累積径がそれぞ
れ9.9μm、16.8μm及び43.8μmに、また
2μm以下の黒鉛繊維ミルドの存在は1.8wt%に変
化していた。このようにして得られた炭素質繊維ミルド
(A)と黒鉛質繊維ミルド(B)を重量比で98:2、
80:20、60:40の割合で均一に混合した後、ポ
リテトラフルオロエチレンを全繊維ミルドに対して3w
t%添加混練しペレットを作製し負極とした後、それぞ
れ3極セルで充放電試験を行った。
The graphite fiber milled (B) was measured for particle size in the same manner by using a powder particle size measuring device. As a result, the average particle size was 1
The cumulative diameters of 7.6 μm, 10%, 50% and 90% were changed to 9.9 μm, 16.8 μm and 43.8 μm, respectively, and the presence of graphite fiber milled of 2 μm or less was changed to 1.8 wt%. The carbonaceous fiber milled (A) thus obtained and the graphite fiber milled (B) in a weight ratio of 98: 2,
After uniformly mixing in the ratio of 80:20, 60:40, add 3% of polytetrafluoroethylene to the total fiber milled
After adding and kneading t% to prepare pellets and using them as negative electrodes, a charge / discharge test was performed in a 3-electrode cell.

【0052】試験は、陽極に金属リチウムを用い、エチ
レンカーボネート(EC)/ジメチルカーボネート(D
MC)を容量比で1/1に調整した混合炭酸エステル溶
媒に、電解質として過塩素酸リチウム(LiClO4
を1モルの濃度で溶解させた電解液中で実施し、充放電
容量特性を測定した。充放電容量特性の測定は、100
mA/gの定電流で行い、放電容量は電池電圧が2Vに
低下するまでの容量とし、10回繰返し測定とした。そ
の測定結果を表1に示す。
In the test, metallic lithium was used for the anode, and ethylene carbonate (EC) / dimethyl carbonate (D
MC) in a mixed carbonate solvent adjusted to a volume ratio of 1/1, and lithium perchlorate (LiClO 4 ) as an electrolyte.
Was carried out in an electrolytic solution dissolved at a concentration of 1 mol, and the charge / discharge capacity characteristics were measured. The charge / discharge capacity characteristic is 100
It was carried out at a constant current of mA / g, and the discharge capacity was the capacity until the battery voltage dropped to 2 V, and the measurement was repeated 10 times. The measurement results are shown in Table 1.

【0053】(比較例1)実施例1で得られた炭素質繊
維ミルド(A)と黒鉛質繊維ミルド(B)をそれぞれ単
独で使用した以外は実施例1と同様に負極を作製し充放
電試験を行った。電極特性の測定結果を合わせて表1に
示す。
Comparative Example 1 A negative electrode was prepared and charged and discharged in the same manner as in Example 1 except that the carbonaceous fiber mill (A) and the graphite fiber milled (B) obtained in Example 1 were used alone. The test was conducted. The measurement results of the electrode characteristics are also shown in Table 1.

【表1】 [Table 1]

【0054】(実施例2、比較例2)実施例1で得られ
た炭素質繊維ミルド(A)を2vol%塩化水素含有アル
ゴンガス気流中にて、600℃、2hrの熱処理を行っ
た。この改質処理を施した炭素質繊維ミルド(A)と実
施例1で得られた黒鉛質繊維ミルド(B)を重量比で8
0:20の割合でそれぞれ均一に混合した後、実施例1
と同様に負極材を作製し、充放電試験を行った。電極特
性の測定結果を表2に示す。また、改質処理を施した炭
素質繊維ミルド(A)単独で使用し、実施例1と同様に
負極材を作製し、充放電試験を行った結果も合わせて表
2に示す。
Example 2 and Comparative Example 2 The carbonaceous fiber milled product (A) obtained in Example 1 was heat-treated at 600 ° C. for 2 hours in an argon gas stream containing 2 vol% hydrogen chloride. The weight ratio of the modified carbonaceous fiber mill (A) and the graphite fiber milled (B) obtained in Example 1 was 8
After uniformly mixing each in a ratio of 0:20, Example 1
A negative electrode material was prepared in the same manner as above, and a charge / discharge test was conducted. Table 2 shows the measurement results of the electrode characteristics. Table 2 also shows the results of charge-discharge tests performed by using the modified carbonaceous fiber milled (A) alone to prepare a negative electrode material in the same manner as in Example 1.

【0055】[0055]

【表2】 [Table 2]

【0056】(実施例3、比較例3)表3に示すように
熱処理温度を変化させた以外は実施例1と同様にして炭
素質繊維ミルド(A)を5種作製した。実施例1と同様
に測定した各炭素質繊維ミルド(A)の平均粒径は、い
ずれも3.5μmであった。このようにして得られた炭
素質繊維ミルド(A)と実施例1で得られた黒鉛質繊維
ミルド(B)を重量比で80:20の割合でそれぞれ均
一に混合した後、それぞれ実施例1と同様に負極を作製
し充放電試験を行った。電極特性の測定結果を表3に示
す。
(Example 3, Comparative Example 3) Five carbonaceous fiber mills (A) were prepared in the same manner as in Example 1 except that the heat treatment temperature was changed as shown in Table 3. The average particle size of each carbonaceous fiber mill (A) measured in the same manner as in Example 1 was 3.5 μm. The carbonaceous fiber mill (A) thus obtained and the graphite fiber milled (B) obtained in Example 1 were uniformly mixed in a weight ratio of 80:20, and then each of Example 1 was used. A negative electrode was prepared and a charge / discharge test was conducted in the same manner as in. Table 3 shows the measurement results of the electrode characteristics.

【0057】[0057]

【表3】 [Table 3]

【0058】(実施例4、比較例4)実施例3で得られ
た焼成温度750℃の炭素質繊維を、ミルド化の条件を
変更し、表4に示すような平均粒径の炭素質繊維ミルド
(A)を5種作製した。このようにして得られた炭素質
繊維ミルド(A)と実施例1で得られた黒鉛質繊維ミル
ド(B)を重量比で80:20の割合でそれぞれ均一に
混合した後、それぞれ実施例1と同様に負極を作製し充
放電試験を行った。電極特性の測定結果を表4に示す。
(Example 4, Comparative Example 4) The carbonaceous fibers obtained in Example 3 and having a firing temperature of 750 ° C. were changed in milling conditions, and carbonaceous fibers having an average particle size as shown in Table 4 were obtained. Five types of milled (A) were prepared. The carbonaceous fiber mill (A) thus obtained and the graphite fiber milled (B) obtained in Example 1 were uniformly mixed in a weight ratio of 80:20, and then each of Example 1 was used. A negative electrode was prepared and a charge / discharge test was conducted in the same manner as in. Table 4 shows the measurement results of the electrode characteristics.

【0059】[0059]

【表4】 [Table 4]

【0060】(実施例5、比較例5)実施例1で得られ
た炭素質繊維ミルド(A)と、ミルド化の条件を変更し
た以外実施例1と同様にして得られた、表5に示すよう
な平均粒子径をもつ4種の黒鉛質繊維ミルド(B)とを
それぞれ80:20の割合で均一に混合した後、実施例
1と同様にして負極を作製し充放電試験を行った。電極
特性の測定結果を表5に示す。
(Example 5 and Comparative Example 5) Table 5 was obtained in the same manner as in Example 1 except that the carbonaceous fiber milled (A) obtained in Example 1 and the milling conditions were changed. Four types of graphite fiber mills (B) having average particle diameters as shown were uniformly mixed at a ratio of 80:20, and then a negative electrode was prepared in the same manner as in Example 1 and a charge / discharge test was conducted. . Table 5 shows the measurement results of the electrode characteristics.

【0061】[0061]

【表5】 [Table 5]

【0062】[0062]

【発明の効果】ピッチ系炭素質繊維ミルドとピッチ系黒
鉛質繊維ミルドをそれぞれ粒度を調整し、一定の比率で
混合することにより、ピッチ系炭素質繊維ミルドを単独
で用いるよりも、初回の充放電効率が向上し、サイクル
特性の低下も少ない高放電容量を持つ負極材を提供する
ことが可能となった。
The pitch-based carbonaceous fiber mill and the pitch-based graphite fiber milled are respectively adjusted in particle size and mixed at a constant ratio, so that the pitch-based carbonaceous fiber milled can be used for the first time rather than used alone. It has become possible to provide a negative electrode material having high discharge capacity with improved discharge efficiency and less deterioration in cycle characteristics.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 550℃以上1300℃以下の熱処理温
度で得られる平均粒径が10μm未満のピッチ系炭素質
繊維ミルド(A)を60wt%以上98wt%以下含
み、且つ2400℃以上の熱処理温度で得られる平均粒
径が10μm以上30μm以下のピッチ系黒鉛質繊維ミ
ルド(B)を2wt%以上40wt%以下含むことを特
徴とする、リチウムイオン二次電池用負極材。
1. A pitch-based carbonaceous fiber milled (A) having an average particle size of less than 10 μm obtained at a heat treatment temperature of 550 ° C. or higher and 1300 ° C. or lower is contained in an amount of 60 wt% or more and 98 wt% or less, and at a heat treatment temperature of 2400 ° C. or more. A negative electrode material for a lithium ion secondary battery, characterized by containing 2 wt% or more and 40 wt% or less of pitch-based graphite fiber milled (B) having an average particle size of 10 μm or more and 30 μm or less.
【請求項2】 (A)が塩化水素ガスを含有する不活性
雰囲気下にて熱処理されてなることを特徴とする、請求
項1記載のリチウムイオン2次電池用負極材。
2. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein (A) is heat-treated in an inert atmosphere containing hydrogen chloride gas.
【請求項3】 (A)及び(B)がメソフェーズピッチ
を出発原料とすることを特徴とする、請求項1記載のリ
チウムイオン二次電池用負極材。
3. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein (A) and (B) use mesophase pitch as a starting material.
JP8157417A 1996-05-30 1996-05-30 Lithium ion secondary battery negative electrode material Pending JPH09320591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8157417A JPH09320591A (en) 1996-05-30 1996-05-30 Lithium ion secondary battery negative electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8157417A JPH09320591A (en) 1996-05-30 1996-05-30 Lithium ion secondary battery negative electrode material

Publications (1)

Publication Number Publication Date
JPH09320591A true JPH09320591A (en) 1997-12-12

Family

ID=15649186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8157417A Pending JPH09320591A (en) 1996-05-30 1996-05-30 Lithium ion secondary battery negative electrode material

Country Status (1)

Country Link
JP (1) JPH09320591A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136476A (en) * 1999-01-29 2000-10-24 Hydro-Quebec Corporation Methods for making lithium vanadium oxide electrode materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136476A (en) * 1999-01-29 2000-10-24 Hydro-Quebec Corporation Methods for making lithium vanadium oxide electrode materials

Similar Documents

Publication Publication Date Title
JP3540478B2 (en) Anode material for lithium ion secondary battery
US5951959A (en) Mesophase pitch-based carbon fiber for use in negative electrode of secondary battery and process for producing the same
JP4281099B2 (en) Metal-carbon composite particles
US5556723A (en) Negative electrode for use in a secondary battery
JP2005019399A (en) Negative pole material for lithium ion secondary battery and its producing method, negative pole for lithium ion secondary battery and lithium ion secondary battery
EP0675555B1 (en) Negative electrode for use in lithium secondary battery and process for producing the same
JP2000164215A (en) Graphite material for negative electrode of lithium ion secondary battery
US20020160266A1 (en) Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
JP3617550B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery including the negative electrode, and method for producing the negative electrode for lithium secondary battery
JPH09320590A (en) Lithium ton secondary battery negative electrode material and its manufacture
JPH10152311A (en) Surface graphitized carbon material, its production and lithium ion secondary battery using the same
JPH0963584A (en) Carbon material for lithium secondary battery and manufacture thereof
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JPH0992283A (en) Carbon material for nonaqueous lithium secondary battery and its manufacture
JPH10255799A (en) Graphite material for high-capacity nonaqueous secondary battery negative electrode and its manufacture
JPH09306489A (en) Nonaqueous electrolyte secondary battery negative electrode material, manufacture of this nonaqueous electrolyte secondary battery negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material
JPH0963585A (en) Carbon material for lithium secondary battery and manufacture thereof
JPH09320591A (en) Lithium ion secondary battery negative electrode material
KR101530686B1 (en) Negative electrode active material for rechargeable lithium battery, method for preparing the same, negative electrode including the same, and rechargeable lithium battery including the negative electrode
JP2003077472A (en) Manufacturing method of graphite material for lithium ion secondary battery negative electrode
JPH09283145A (en) Carbon material for lithium secondary battery and manufacture thereof
JP2002063902A (en) Carbon material manufacturing method and lithium ion secondary battery
JP2001110415A (en) Graphite material for negative electrode of lithium ion secondary battery, manufacturing method of the same, negative electrode for lithium ion secondary battery using the graphite material, and lithium ion secondary battery
JPH10312809A (en) Graphite material for high capacity nonaqueous secondary battery negative electrode and manufacture therefor
JPH09306488A (en) Negative electrode material for nonaqueous electrolyte secondary battery, manufacture of this negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material