JPH09320587A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH09320587A
JPH09320587A JP8154873A JP15487396A JPH09320587A JP H09320587 A JPH09320587 A JP H09320587A JP 8154873 A JP8154873 A JP 8154873A JP 15487396 A JP15487396 A JP 15487396A JP H09320587 A JPH09320587 A JP H09320587A
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
battery
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8154873A
Other languages
Japanese (ja)
Inventor
Shigeto Okada
重人 岡田
So Arai
創 荒井
Kaoru Asakura
薫 朝倉
Takahisa Masashiro
尊久 正代
Yoji Sakurai
庸司 桜井
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8154873A priority Critical patent/JPH09320587A/en
Publication of JPH09320587A publication Critical patent/JPH09320587A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide at low cost a nonaqueous electrolyte battery for use as a large battery with a battery characteristic that ensures excellent charge and discharge. SOLUTION: A double oxide given as Fe2 (XO4 )3 (containing at least one kind or more selected from S and metal elements in Group VIa as X) is contained as a positive electrode active material 6, an alkali metal or a material that can store and release alkali metal is used as a negative electrode active material 4, and a material that allows ions of the alkali metal to migrate for electrochemical reactions with the positive electrode active material and the negative electrode active material 4 is used as an electrolytic material. Therefore, a nonaqueous electrolyte secondary battery having a large capacity, a long cycle life, and therefore high serviceability can be constructed at low cost, and has the advantage of having applications over a wide range of fields.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解質電池、さらに
詳細には充放電可能な非水電解質二次電池に関し、特に
正極活物質の改良に関わり、電池の充放電容量の増加を
目指すものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to a chargeable / dischargeable non-aqueous electrolyte secondary battery, and particularly to the improvement of the positive electrode active material, aiming at increasing the charge / discharge capacity of the battery. Is.

【0002】[0002]

【従来の技術及ぴ問題点】リチウムなどのアルカリ金属
及びその合金や化合物を負極活物質とする非水電解質電
池は、負極金属イオンの正極活物質へのインサーション
もしくはインターカレーション反応によって、その大放
電容量と充電可逆性を両立させている。従来から、リチ
ウムを負極活物質として用いる二次電池としては、リチ
ウムに対しインターカレーションホストとなりうるV2
5やLiCoO2やLiNiO2などの層状もしくはト
ンネル状酸化物を正極に用いた電池が提案されている
が、これらの金属酸化物は中心金属にクラーク数の極端
に小さなレアメタルを用いているため、量産化、大型化
に伴いコストの点で問題が残る。
2. Description of the Related Art A non-aqueous electrolyte battery using an alkali metal such as lithium and an alloy or compound thereof as a negative electrode active material is produced by insertion or intercalation reaction of negative metal ions into the positive electrode active material. It has both large discharge capacity and charge reversibility. Conventionally, as a secondary battery using lithium as a negative electrode active material, V 2 which can be an intercalation host for lithium has been used.
Batteries using layered or tunnel oxides such as O 5 , LiCoO 2 and LiNiO 2 for the positive electrode have been proposed, but these metal oxides use rare metals with extremely small Clark numbers as the central metal. However, problems remain in terms of cost due to mass production and increase in size.

【0003】一方、資源的な問題が無く、経済性も高い
鉄系化合物正極としては、Fe23やFePS3などが
提案されているが、サイクル寿命、放電電圧の平坦性と
低さの点で実用上難点が多かった。また、この点を改善
した、安価な正極活物質として硫酸第二鉄(Fe2(S
43)が提案されており、3.6Vの平坦な放電電圧
が得られているが、鉄3価/2価のレドックス反応によ
る理論放電容量は134mAh/gで、まだまだ充分と
はいえない容量で、電子導電性も不充分である。
On the other hand, Fe 2 O 3 and FePS 3 have been proposed as iron-based compound positive electrodes which have no resource problems and are highly economical. However, they have low cycle life and flatness and low discharge voltage. There were many practical difficulties. In addition, ferric sulfate (Fe 2 (S 2
O 4 ) 3 ) has been proposed, and a flat discharge voltage of 3.6 V has been obtained, but the theoretical discharge capacity due to the redox reaction of trivalent / divalent iron is 134 mAh / g, which is still sufficient. With no capacity, electronic conductivity is also insufficient.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記現状の
問題点を改善するために提案されたもので、その目的
は、充放電特性に優れた電池特性を持つ大型電池用非水
電解質電池を低コストで提供することにある。
SUMMARY OF THE INVENTION The present invention has been proposed to improve the above-mentioned problems, and an object of the present invention is to provide a non-aqueous electrolyte battery for a large battery having battery characteristics excellent in charge / discharge characteristics. At low cost.

【0005】[0005]

【問題点を解決するための手段】本発明者らは、上記の
目的を達成するために、硫酸第二鉄に種々の改良検討を
重ねた結果、硫酸第二鉄と同じ組成式、Fe2(XO4
3で表され、Xとして、非金属元素である硫黄の代わり
に、遷移金属元素であるモリブデンを始めとする周期律
表の第VIa族金属元素の中の少なくとも1種類以上を
部分置換もしくは完全置換させた物質を正極活物質とし
て含み、アルカリ金属またはアルカリ金属を吸蔵、放出
可能な物質を負極活物質とし、前記アルカリ金属のイオ
ンが前記正極活物質及ぴ前記負極活物質と電気化学反応
をするための移動を行い得る物質を電解質物質としたこ
とを特徴としている。
In order to achieve the above object, the inventors of the present invention have conducted various improvements and studies on ferric sulfate, and as a result, have the same composition formula as Fe 2 sulfate, Fe 2 (XO 4 )
In place of sulfur, which is a non-metal element, represented by 3 , at least one or more of Group VIa metal elements in the periodic table including molybdenum, which is a transition metal element, are partially or completely substituted. The positive electrode active material includes the selected substance, and the negative electrode active material is a substance capable of occluding and releasing alkali metal or alkali metal, and the ions of the alkali metal cause an electrochemical reaction with the positive electrode active material and the negative electrode active material. It is characterized in that an electrolyte material is used as a material capable of carrying out the transfer.

【0006】以下、本発明をさらに詳しく説明する。The present invention will be described in more detail below.

【0007】本発明のリチウム二次電池においては、上
述のように、正極を構成する正極活物質として、Fe2
(XO43(Xとして、Sと第VIa族元素の中の少な
くとも1種類以上を含む)を使用することを特徴として
いる。
In the lithium secondary battery of the present invention, as described above, as the positive electrode active material constituting the positive electrode, Fe 2
It is characterized in that (XO 4 ) 3 (wherein X is at least one of S and Group VIa elements) is used.

【0008】図1に示すようにFe2(XO43の単斜
晶結晶単位格子は各コーナーに酸素原子、中心にFe3+
を持つ2つの八面体FeO6と各コーナーに酸素原子、
中心にSとVIa族金属元素を持つ3つのXO4からな
り、1つの酸素原子は1つの八面体群と1つの四面体群
によって共有されている。その結晶単位格子は結晶軸が
互いに傾いた、ナシコン類似のβ−硫酸鉄構造を持って
いる。
As shown in FIG. 1, the monoclinic crystal unit cell of Fe 2 (XO 4 ) 3 has oxygen atoms at each corner and Fe 3+ at the center.
With two octahedral FeO 6 with oxygen atoms in each corner,
It consists of three XO 4 having S and VIa group metal elements in the center, and one oxygen atom is shared by one octahedral group and one tetrahedral group. The crystal unit cell has a β-iron sulfate structure similar to NASICON, in which the crystal axes are inclined to each other.

【0009】このような八面体配位場におけるFe3+
最近接酸素の2p軌道と図2のようなFe−O混成軌道
を作っている。Fe3+では、σ、πの結合軌道はFe3+
の5つの3d電子で完全に占有されており、Fe3+/2+
のレドックス準位は、π*反結合軌道準位上に存在す
る。ここで、π*反結合軌道準位は、Fe−O間の共有
結合性によって上下することになるため、−Fe−O−
X−O−Fe−の元素結合しか持たないFe2(XO4
3結晶構造においては、Xの電気陰性度が、Fe−Oの
共有結合性、ひいてはこの正極材料の放電電圧を決定す
るキーパラメータとなる。
Fe 3+ in such an octahedral coordination field forms the closest oxygen 2p orbital and the Fe-O hybrid orbital as shown in FIG. In Fe 3+ , the bond orbits of σ and π are Fe 3+
Completely occupied by the 5 3d electrons of Fe 3 + / 2 +
The redox level of exists on the π * antibonding orbital level. Here, since the π * antibonding orbital level goes up and down due to the covalent bond between Fe and O, -Fe-O-
Fe 2 (XO 4 ) having only X-O-Fe-elemental bonds
In the three- crystal structure, the electronegativity of X is a key parameter that determines the covalent bond of Fe—O, and thus the discharge voltage of this positive electrode material.

【0010】電気陰性度が、2.6と大きな値を持つ硫
黄をアニオン基に持つ硫酸鉄は、Fe3+/2+レドックス
系正極としては、最も高い3.6Vもの放電電圧が得ら
れているが、Fe+イオンが存在しないため、2電子反
応以上放電し続けると、放電電位が1.5V以下まで急
激に低下し、不可逆的な鉄の析出が始まる。
Iron sulfate having an electronegativity as large as 2.6, which has sulfur as an anion group, has the highest discharge voltage of 3.6 V as an Fe 3 + / 2 + redox type positive electrode. However, since there are no Fe + ions, if the discharge continues for two or more electron reactions, the discharge potential drops sharply to 1.5 V or less, and irreversible iron precipitation begins.

【0011】本発明の正極活物質、Fe2(XO4
3は、Xとして、硫黄の代わりにモリブデンを始めとす
る第VIa族金属元素を部分もしくは完全置換したこと
を特徴とする。代表的な第VIa族金属元素である、M
oやWは共に2.4と、硫黄より若干小さな電気陰性度
を持つため、Fe2(MoO43、及びFe2(WO43
のFe3+/2+レドックス反応に対応する2電子反応の放
電電圧は、硫酸鉄に比べ、共に3Vと若干低めである
(Rev.Chim.Miner,21,No.4,5
37(1984))。しかし、本願発明者らは、この正
極活物質をさらに放電させることにより、鉄の析出が起
こる前にXO4アニオンに含まれる第VIa族6価金属
元素が、それ自身5価に還元され、都合5つのLiイオ
ンの可逆インサーション反応を可能にすることを確認
し、200mAh/g前後の大容量の鉄化合物正極を発
見するに至った。
The cathode active material of the present invention, Fe 2 (XO 4 ).
3 is characterized in that, as X, a Group VIa metal element such as molybdenum is partially or completely substituted for sulfur. M, which is a typical Group VIa metal element
Since both o and W have an electronegativity of 2.4, which is slightly smaller than that of sulfur, Fe 2 (MoO 4 ) 3 and Fe 2 (WO 4 ) 3
The discharge voltage of the two-electron reaction corresponding to the Fe 3 + / 2 + redox reaction is 3 V, which is slightly lower than that of iron sulfate (Rev. Chim. Miner, 21, No. 4, 5).
37 (1984)). However, by further discharging this positive electrode active material, the inventors of the present invention reduce the hexavalent metal element of Group VIa contained in the XO 4 anion to pentavalent metal by itself before the precipitation of iron occurs. It was confirmed that a reversible insertion reaction of five Li ions was made possible, and it was discovered that a large-capacity iron compound positive electrode of about 200 mAh / g was discovered.

【0012】このような金属元素Xとしては、例えば、
Mo、Wの他に、Cr等の第VIa族金属元素の中の一
種以上を挙げることができる。
Examples of such a metal element X include:
In addition to Mo and W, one or more of Group VIa metal elements such as Cr can be cited.

【0013】本発明で正極活物質として使用するFe2
(XO43は、公知の方法により合成することができ
る。例えば、Fe2(S1-xMox43は酸化第二鉄
(Fe23)と酸化モリブデン(MoO3)に硫酸第二
鉄水和物(Fe2(SO43・nH2O)もしくは硫酸鉄
アンモニウム塩((NH42Fe(SO42・6H
2O)を所定比で混合した後、酸素含有雰囲気下で焼成
することにより好ましく製造することができる。あるい
は、モリブデン酸アンモニウム水溶液に、硝酸第二鉄も
しくは、塩化第二飲水溶液を加えて得られるコロイド状
懸濁液を熟成、乾燥し、酸素雰囲気下で焼成後、硫酸第
二鉄水和物(Fe2(SO43・nH2O)もしくは硫酸
鉄アンモニウム塩((NH42Fe(SO42・6H2
O)と所定比で混合・焼成することにより得ることもで
きる。
Fe 2 used as the positive electrode active material in the present invention
(XO 4 ) 3 can be synthesized by a known method. For example, Fe 2 (S 1-x Mo x O 4 ) 3 can be converted to ferric oxide (Fe 2 O 3 ) and molybdenum oxide (MoO 3 ) by ferric sulfate hydrate (Fe 2 (SO 4 ) 3 ·. nH 2 O) or iron sulfate ammonium salt ((NH 4) 2 Fe ( SO 4) 2 · 6H
It can be preferably produced by mixing 2 O) in a predetermined ratio and then firing it in an oxygen-containing atmosphere. Alternatively, ferric nitrate or an aqueous solution of ferric chloride is added to an aqueous solution of ammonium molybdate to obtain a colloidal suspension, which is then dried and baked in an oxygen atmosphere, and then ferric sulfate hydrate ( Fe 2 (SO 4) 3 · nH 2 O) or iron sulfate ammonium salt ((NH 4) 2 Fe ( SO 4) 2 · 6H 2
It can also be obtained by mixing and firing with O) at a predetermined ratio.

【0014】いずれの合成方法でも、NOxやSOxなど
の有害副生成物の発生が無く、また、結晶水が仮に残存
した場合にも加熱処理等によって容易にその影響を排除
できるため、無公害かつ簡便、安価な製造が可能であ
る。
In any of the synthesis methods, no harmful by-products such as NO x and SO x are generated, and even if the water of crystallization remains, its influence can be easily eliminated by heat treatment or the like, so that no Pollution, simple manufacturing, and inexpensive manufacturing are possible.

【0015】この正極活物質を用いて正極を形成するに
は、前記化合物粉末とポリテトラフルオロエチレンのご
とき結着剤粉末との混合物をステンレス等の支持体上に
圧着成形する、或いは、かかる混合物粉末に導電性を付
与するためアセチレンブラックのような導電性粉末を混
合し、これにさらにポリテトラフルオロエチレンのよう
な結着剤粉末を所要に応じて加え、この混合物を金属容
器にいれる、あるいは前述の混合物をステンレスなどの
支持体に圧着成形する、あるいは前述の混合物を有機溶
剤等の溶媒中に分散してスラリー状にして金属基板上に
塗布する、等の手段によって形成される。
To form a positive electrode using this positive electrode active material, a mixture of the compound powder and a binder powder such as polytetrafluoroethylene is pressure-molded on a support such as stainless steel, or such a mixture is formed. A conductive powder such as acetylene black is mixed to impart conductivity to the powder, and a binder powder such as polytetrafluoroethylene is further added to the powder as needed, and the mixture is put in a metal container, or It is formed by means such as press-molding the above mixture on a support such as stainless steel, or dispersing the above mixture in a solvent such as an organic solvent to form a slurry and coating it on a metal substrate.

【0016】負極活物質であるリチウムは、一般のリチ
ウム電池のそれと同様にシート状にして、またそのシー
トをニッケル、ステンレス等の導電体網に圧着して負極
として形成される。また、負極活物質としては、リチウ
ム以外にリチウム合金やリチウム化合物、その他ナトリ
ウム、カリウム、マグネシウム等従来公知のアルカリ金
属、及ぴそれらのアルカリ金属合金、アルカリ金属イオ
ンを吸蔵、放出可能なLi2.5Co0.5N、Li4Ti5
12の如き含アルカリ金属材料等が使用できる。
Lithium, which is the negative electrode active material, is formed into a sheet as in the case of a general lithium battery, and the sheet is pressure-bonded to a conductor network of nickel, stainless steel or the like to form a negative electrode. As the negative electrode active material, in addition to lithium, lithium alloys and lithium compounds, other conventionally known alkali metals such as sodium, potassium, and magnesium, and their alkali metal alloys, Li 2.5 Co capable of occluding and releasing alkali metal ions can be used. 0.5 N, Li 4 Ti 5 O
Alkali-containing metal materials such as 12 can be used.

【0017】電解液としては、例えばジメトキシエタ
ン、2−メチルテトラヒドロフラン、エチレンカーボネ
ート、メチルホルメート、ジメチルスルホキシド、プロ
ピレンカーボネート、アセトニトリル、ブチロラクト
ン、ジメチルホルムアミド、ジメチルカーボネート、ジ
エチルカーボネート、スルホラン、エチルメチルカーボ
ネート等に、アルカリ金属イオンを含むルイス酸を溶解
した非水電解質溶媒、あるいは固体電解質等が使用でき
る。さらにセパレータ、電池ケース等の構造材料等の他
の要素についても従来公知の各種材料が使用でき、特に
制限はない。また、電池形状についても特に制限される
ことはなく、円筒状、角型、コイン型等種々の形状、サ
イズにすることができる。
Examples of the electrolytic solution include dimethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, methyl formate, dimethylsulfoxide, propylene carbonate, acetonitrile, butyrolactone, dimethylformamide, dimethyl carbonate, diethyl carbonate, sulfolane, ethyl methyl carbonate and the like. A non-aqueous electrolyte solvent in which a Lewis acid containing an alkali metal ion is dissolved, a solid electrolyte, or the like can be used. Furthermore, various conventionally known materials can be used for other elements such as structural materials such as a separator and a battery case, and there is no particular limitation. The shape of the battery is also not particularly limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be used.

【0018】[0018]

【実施例】以下実施例によって本発明の方法をさらに具
体的に説明するが、本発明はこれらによりなんら制限さ
れるものではない。なお、実施例において電池の作成及
ぴ測定はアルゴン雰囲気下のドライボックス内で行っ
た。
EXAMPLES The method of the present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto. In the examples, preparation and measurement of the battery were performed in a dry box under an argon atmosphere.

【0019】[0019]

【実施例1】図3は本発明による電池の一具体例である
コイン型電池の断面図であり、図中1は封口板、2はガ
スケット、3は正極ケース、4は負極、5はセパレー
タ、6は正極合剤ペレットを示す。
EXAMPLE 1 FIG. 3 is a cross-sectional view of a coin-type battery, which is one specific example of the battery according to the present invention, in which 1 is a sealing plate, 2 is a gasket, 3 is a positive electrode case, 4 is a negative electrode, and 5 is a separator. , 6 are positive electrode material mixture pellets.

【0020】正極活物質には、γ酸化第二鉄(Fe
23)と酸化モリブデン(MoO3)とをFe:Mo=
2:3のモル比で混合した後、大気中、780℃で1日
焼成して得た。図4に示す粉末X線回折パターンから、
単斜晶Fe2(MoO43であることを確認した。この
試料をaとする。
The positive electrode active material includes gamma ferric oxide (Fe
2 O 3 ) and molybdenum oxide (MoO 3 ) with Fe: Mo =
After mixing in a molar ratio of 2: 3, it was obtained by baking in air at 780 ° C. for 1 day. From the powder X-ray diffraction pattern shown in FIG.
It was confirmed to be monoclinic Fe 2 (MoO 4 ) 3 . This sample is designated as a.

【0021】この試料aを粉砕して粉末とし、導電剤
(アセチレンブラック)、結着剤(ポリテトラフルオロ
エチレン)と共に混合の上、ロール成形し、正極合剤ペ
レット6(厚さ0.5mm、直径15mm)とした。
This sample a was crushed into powder, mixed with a conductive agent (acetylene black) and a binder (polytetrafluoroethylene), and then roll-molded to form a positive electrode mixture pellet 6 (thickness 0.5 mm, The diameter was 15 mm).

【0022】次にステンレス製の封口板1上に金属リチ
ウムの負極4を加圧配置したものをポリプロピレン製ガ
スケット2の凹部に挿入し、負極4の上にポリプロピレ
ン製で微孔性のセパレータ5、正極合剤ペレット6をこ
の順序に配置し、電解液として、プロピレンカーボネー
トとジメトキシエタンの等積混合溶媒にLiCiO4
溶解させた1規定溶液を適量注入して含浸させた後に、
ステンレス製の正極ケース3を被せてかしめることによ
り、厚さ2mm、直径23mmのコイン型リチウム電池
を作製した。
Next, a metallic lithium negative electrode 4 placed under pressure on a stainless steel sealing plate 1 is inserted into a recess of a polypropylene gasket 2, and a polypropylene microporous separator 5 is placed on the negative electrode 4. After arranging the positive electrode material mixture pellets 6 in this order and injecting an appropriate amount of a 1N solution of LiCiO 4 dissolved in an equal volume mixed solvent of propylene carbonate and dimethoxyethane as an electrolytic solution to impregnate it,
A coin type lithium battery having a thickness of 2 mm and a diameter of 23 mm was produced by covering and crimping the positive electrode case 3 made of stainless steel.

【0023】[0023]

【実施例2】正極活物質は、上記試料aを硫酸鉄アンモ
ニウム塩((NH42Fe(SO42・6H2O)と
S:Mo=1:2のモル比になるよう混合した後、大気
中、500℃で6時間再焼成して得た。この試料をbと
する。
Example 2 cathode active material, the sample a and iron sulfate ammonium salt ((NH 4) 2 Fe ( SO 4) 2 · 6H 2 O) S: Mo = 1: mixed so that the 2 molar ratio After that, it was obtained by rebaking at 500 ° C. for 6 hours in the air. This sample is designated as b.

【0024】正極活物質に、以上のようにして作成した
Fe2(SO4)(MoO42を用いる以外は、実施例1
と同様にしてコイン型リチウム電池を作製した。
Example 1 was repeated except that Fe 2 (SO 4 ) (MoO 4 ) 2 prepared as described above was used as the positive electrode active material.
A coin-type lithium battery was produced in the same manner as.

【0025】[0025]

【実施例3】正極活物質には、上記試料aを硫酸鉄アン
モニウム塩((NH42Fe(SO42・6H2O)と
S:Mo=2:1のモル比になるよう混合した後、大気
中、500℃で6時間再焼成して得た。この試料をcと
する。
Example 3 As the positive electrode active material, the sample a was mixed with an ammonium iron sulfate salt ((NH 4 ) 2 Fe (SO 4 ) 2 .6H 2 O) in a molar ratio of S: Mo = 2: 1. After mixing, it was obtained by rebaking at 500 ° C. for 6 hours in the air. This sample is designated as c.

【0026】正極活物質に、以上のようにして作成した
Fe2(SO42(MoO4)を用いる以外は、実施例1
と同様にしてコイン型リチウム電池を作製した。
Example 1 except that Fe 2 (SO 4 ) 2 (MoO 4 ) prepared as described above was used as the positive electrode active material.
A coin-type lithium battery was produced in the same manner as.

【0027】[0027]

【比較例1】正極活物質には、硫酸鉄アンモニウム塩
((NH42Fe(SO42・6H2O)を大気中、5
00℃で6時間再焼成して無水硫酸第二鉄を得た。この
試料をdとする。
The Comparative Example 1 positive electrode active material, in the air iron sulfate ammonium salt ((NH 4) 2 Fe ( SO 4) 2 · 6H 2 O), 5
Recalcination was performed at 00 ° C. for 6 hours to obtain anhydrous ferric sulfate. This sample is referred to as d.

【0028】正極活物質に、以上のようにして作成した
無水硫酸第二鉄Fe2(SO43を用いる以外は、実施
例1と同様にしてコイン型リチウム電池を作製した。
A coin type lithium battery was prepared in the same manner as in Example 1 except that the anhydrous ferric sulfate Fe 2 (SO 4 ) 3 prepared as described above was used as the positive electrode active material.

【0029】比較例として試料dの0.25mA/cm
2の電流密度での疑似開放電位曲線を図5に示す。ま
た、一例として試料aの0.5mA/cm2の電流密度
での、4V−2.5V間電圧規制充放電曲線を図6a
に、同じく試料aの0.5mA/cm2の電流密度で
の、4.5V−1.5V間電圧規制充放電曲線を図6b
に示す。
0.25 mA / cm of sample d as a comparative example
A pseudo open-circuit potential curve at a current density of 2 is shown in FIG. As an example, FIG. 6a shows a voltage regulation charge / discharge curve between 4V and 2.5V at a current density of 0.5 mA / cm 2 of sample a.
Similarly, FIG. 6b shows a voltage regulation charge / discharge curve between 4.5 V and 1.5 V at a current density of 0.5 mA / cm 2 of the sample a.
Shown in

【0030】6価金属元素によって置換処理されていな
い無水硫酸第二鉄Fe2(SO43の場合は、Sが可逆
な価数変化を起こさないため、図5に示すように、鉄3
価/2価のレドックスに伴う2電子反応を超えた時点で
急速に1V以下の鉄の析出電位を示し、この時点で構造
破壊を起こしている。これに対し、Moによって完全置
換されたモリブデン酸鉄Fe2(MoO43は、図6a
に示す4V−2.5V間電圧規制条件では、鉄3価/2
価のレドックスに伴う可逆2電子反応を示している。こ
の電圧規制条件を4.5V−1.5V間に拡大すると、
図6bに示すように、1.5V付近でMo6価/5価の
レドックス反応に伴う3電子反応を起こし、都合5電子
反応が可能となっている。しかし、ナシコン類似構造の
Fe2(S1-xMox43は、1式量当たり4つのLi
サイトしか持っていないので、都合5つのLi挿入は、
ナシコン類似構造に大きな格子変調をもたらし、それに
伴って2サイクル目からの放電曲線が単調減少曲線に変
化していることがわかる。
In the case of anhydrous ferric sulfate Fe 2 (SO 4 ) 3 which has not been subjected to the substitution treatment with a hexavalent metal element, S does not cause a reversible valence change, and therefore, as shown in FIG.
When the two-electron reaction accompanying the valence / 2 valence redox is exceeded, a deposition potential of iron of 1 V or less is rapidly exhibited, and structural destruction occurs at this time. On the other hand, iron molybdate Fe 2 (MoO 4 ) 3 completely substituted by Mo is shown in FIG.
Under the voltage regulation condition between 4V and 2.5V shown in, iron trivalent / 2
It shows a reversible two-electron reaction with valence redox. If this voltage regulation condition is expanded to 4.5V-1.5V,
As shown in FIG. 6b, a 3-electron reaction accompanying the redox reaction of Mo6 valence / 5 valence occurs around 1.5 V, and a convenient 5 electron reaction is possible. However, Fe 2 (S 1-x Mo x O 4 ) 3 having a NASICON-like structure has four Li atoms per formula weight.
Since I only have a site, the five Li insertions are
It can be seen that a large lattice modulation is brought to the NASICON-like structure, and the discharge curve from the second cycle is changed to a monotonically decreasing curve accordingly.

【0031】表1はMoの最適置換量を求めるためにF
2(S1-xMox43試料a〜dの放電容量、サイク
ル特性を比較したものである。
Table 1 shows F in order to obtain the optimum substitution amount of Mo.
3 is a comparison of the discharge capacities and cycle characteristics of e 2 (S 1-x Mo x O 4 ) 3 samples a to d.

【0032】Fe3+/2+のレドックスに対応する2.5
V容量は、Mo置換量と共に分子量が増えるにつれ低下
しているが、Mo6+/5+のレドックスに対応する1.5
V容量は、Mo置換量と共に増加している。但し、1.
5V終止の初期放電容量はFe2(MoO43が最大な
がら、1.5V終止の深い充放電条件での50サイクル
目のサイクル容量を比較すると、サイクル性に関して
は、Liの挿入量を正極活物質当たり4Li以下に制限
することになるFe2(S1-xMox43(2/3≧x
>0)の組成のものが良好であることがわかる。
2.5 corresponding to Fe 3 + / 2 + redox
The V capacity decreases as the molecular weight increases with the amount of Mo substitution, but the V capacity is 1.5, which corresponds to the redox of Mo 6 + / 5 +.
The V capacity increases with the Mo substitution amount. However, 1.
Fe 2 (MoO 4 ) 3 has the maximum initial discharge capacity at the end of 5 V, but when comparing the cycle capacities at the 50th cycle under the deep charge / discharge condition of the end of 1.5 V, it was found that the amount of inserted Li was positive. Fe 2 (S 1-x Mo x O 4 ) 3 (2/3 ≧ x will be limited to 4 Li or less per active material)
It can be seen that the composition of> 0) is good.

【0033】 [0033]

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
低コストで大容量かつ長サイクル寿命の実用性高い非水
電解質二次電池を構成することができ、様々な分野に利
用できるという利点を有する。
As described above, according to the present invention,
A non-aqueous electrolyte secondary battery with low cost, large capacity, and long cycle life and high practicability can be constructed, and it has an advantage that it can be used in various fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である単斜晶Fe2(Mo
43の結晶構造図。
1 is an example of the present invention, monoclinic Fe 2 (Mo
Crystal structure diagram of O 4 ) 3 .

【図2】本発明の一実施例である単斜晶Fe2(Mo
43のFe3+/2+レドックス準位を示すFe−O混成
軌道のエネルギーダイアグラム。
FIG. 2 is a monoclinic Fe 2 (Mo) according to one embodiment of the present invention.
Energy diagram of Fe-O hybrid orbital showing Fe 3 + / 2 + redox level of O 4 ) 3 .

【図3】本発明の一具体例であるコイン型電池の構造断
面図。
FIG. 3 is a structural cross-sectional view of a coin battery which is a specific example of the present invention.

【図4】本発明の一実施例である単斜晶Fe2(Mo
43のX線回折図形。
FIG. 4 is a monoclinic Fe 2 (Mo) according to one embodiment of the present invention.
X-ray diffraction pattern of O 4 ) 3 .

【図5】本発明の比較例である無水硫酸第二鉄Fe
2(SO43の疑似開放電位曲線を示す特性図。
FIG. 5 is anhydrous ferric sulfate Fe, which is a comparative example of the present invention.
2 is a characteristic diagram showing a pseudo open-circuit potential curve of 2 (SO 4 ) 3 .

【図6a】本発明の一実施例であるFe2(MoO43
の4V−2.5V間電圧規制試験時の充放電曲線を示す
特性図。
FIG. 6a is an embodiment of the present invention Fe 2 (MoO 4 ) 3
FIG. 4 is a characteristic diagram showing a charge / discharge curve during a voltage regulation test between 4 V and 2.5 V in FIG.

【図6b】本発明の一実施例であるFe2(MoO43
の4.5V−1.5V間電圧規制試験時の充放電曲線を
示す特性図。
FIG. 6b is an embodiment of the present invention Fe 2 (MoO 4 ) 3
FIG. 5 is a characteristic diagram showing a charge / discharge curve at the time of the 4.5V-1.5V voltage regulation test.

【符号の説明】[Explanation of symbols]

1 ステンレス製封口板 2 ポリプロピレン製ガスケット 3 ステンレス製正極ケース 4 リチウム負極 5 ポリプロピレン製セパレータ 6 正極合剤ペレット 1 Stainless steel sealing plate 2 Polypropylene gasket 3 Stainless steel positive electrode case 4 Lithium negative electrode 5 Polypropylene separator 6 Positive electrode material pellet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 正代 尊久 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 桜井 庸司 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 山木 準一 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahisa Masahiro 3-19-3 Nishishinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Inventor Youji Sakurai 3-chome, Nishishinjuku, Shinjuku-ku, Tokyo 19 No. 2 inside Nippon Telegraph and Telephone Corporation (72) Inventor Junichi Yamaki 3-19-3 Nishishinjuku, Shinjuku-ku, Tokyo Inside Nippon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式、Fe2(XO43(Xとして、
Sと第VIa族金属元素の中の少なくとも1種類以上を
含む)で与えられる複酸化物を正極活物質として含み、
アルカリ金属またはアルカリ金属を吸蔵、放出可能な物
質を負極活物質とし、前記アルカリ金属のイオンが前記
正極活物質及ぴ前記負極活物質と電気化学反応をするた
めの移動を行い得る物質を電解質物質としたことを特徴
とする非水電解質二次電池。
1. The general formula, Fe 2 (XO 4 ) 3 (X,
Containing S and at least one or more of Group VIa metal elements) as a positive electrode active material,
An electrolyte material is a substance capable of occluding and releasing an alkali metal or an alkali metal as a negative electrode active material, and the ions of the alkali metal capable of moving to cause an electrochemical reaction with the positive electrode active material and the negative electrode active material. A non-aqueous electrolyte secondary battery characterized in that
【請求項2】 前記Fe2(XO43中のXにおいて、
第VIa族金属元素がMoであることを特徴とする一般
式、Fe2(S1-nMon43(1≧n>0)で与えら
れる複酸化物を正極活物質として含む、請求項1記載の
非水電解質二次電池。
2. In X in the Fe 2 (XO 4 ) 3 ,
A group VIa metal element is Mo, and a compound represented by the general formula Fe 2 (S 1-n Mn O 4 ) 3 (1 ≧ n> 0) is included as a positive electrode active material. The non-aqueous electrolyte secondary battery according to claim 1.
JP8154873A 1996-05-27 1996-05-27 Nonaqueous electrolyte battery Pending JPH09320587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8154873A JPH09320587A (en) 1996-05-27 1996-05-27 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8154873A JPH09320587A (en) 1996-05-27 1996-05-27 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH09320587A true JPH09320587A (en) 1997-12-12

Family

ID=15593805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8154873A Pending JPH09320587A (en) 1996-05-27 1996-05-27 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH09320587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038675A (en) * 2019-06-04 2020-12-04 北京航空航天大学 Miniature metal battery, connector of battery and preparation method of miniature metal battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038675A (en) * 2019-06-04 2020-12-04 北京航空航天大学 Miniature metal battery, connector of battery and preparation method of miniature metal battery

Similar Documents

Publication Publication Date Title
JP4082214B2 (en) Nonaqueous electrolyte secondary battery and its positive electrode active material
JPH09134724A (en) Non-aqueous electrolyte secondary battery
JP2014502006A (en) Lithium ion battery with auxiliary lithium
CN101278424B (en) Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP7060776B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, positive electrode mixture paste for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2011031546A2 (en) Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
JP2001210324A (en) Lithium secondary battery
JP5245210B2 (en) Cathode active material for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP7207261B2 (en) Method for manufacturing positive electrode active material, and method for manufacturing lithium ion battery
JPH09330720A (en) Lithium battery
JP2000128539A (en) Lithium transition metal based halogenated oxide and its production and its utilization
JP2002015735A (en) Lithium iron compound oxide for lithium secondary cell positive active material, its manufacturing method and lithium secondary cell using the same
JP4318002B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
KR100805910B1 (en) Olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
US20070212608A1 (en) Secondary battery material and synthesis method
JPH08298121A (en) Nonaqueous secondary battery
JPH0992285A (en) Nonaqueous electrolyte lithium secondary battery
KR101219395B1 (en) Anode Material for Lithium Secondary Battery and Manufacturing Method of the Same
JP3229425B2 (en) Positive electrode for lithium secondary battery and method for producing the same
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP2002246025A (en) Electrode active material for non-aqueous electrolyte secondary battery, and electrode and battery containing the same
US6756154B2 (en) Cathode active material for non-aqueous electrolyte secondary cell and process for producing the same
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JP4170733B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JPH0521067A (en) Nonaqueous electrolytic battery