JPH09320357A - Corrosion-resistant electric wire - Google Patents

Corrosion-resistant electric wire

Info

Publication number
JPH09320357A
JPH09320357A JP13383696A JP13383696A JPH09320357A JP H09320357 A JPH09320357 A JP H09320357A JP 13383696 A JP13383696 A JP 13383696A JP 13383696 A JP13383696 A JP 13383696A JP H09320357 A JPH09320357 A JP H09320357A
Authority
JP
Japan
Prior art keywords
corrosion
ammonia
thermoplastic resin
coating layer
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13383696A
Other languages
Japanese (ja)
Other versions
JP3693417B2 (en
Inventor
Hiroto Nozaki
裕人 野崎
Yasuo Takahashi
保夫 高橋
Akira Tanaka
顯 田中
Ataru Onoda
中 小野田
Kenzo Takeuchi
健三 武内
Hiroshi Hashimoto
洋 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP13383696A priority Critical patent/JP3693417B2/en
Publication of JPH09320357A publication Critical patent/JPH09320357A/en
Application granted granted Critical
Publication of JP3693417B2 publication Critical patent/JP3693417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a corrosion-resistant electric wire, excellent in corrosion- resistance to ammonia, and moreover easy in manufacture, by overlappedly coating an ammonia-resistant metallic material and a thermoplastic resin on the outer periphery of the core material of metallic material. SOLUTION: A core material is composed of any one kind high conductivity metallic material out of copper, a copper alloy, aluminium, an aluminum alloy, silver, and a silver alloy. The metallic material, showing corrosion resistance to ammonia, is coated to be adopted as a metal coated layer. A thermoplastic resin, having a solubility parameter value of 8 or less, that is, the extrusion coating layer, having an ammonia-resistant thermoplastic resin composed of polyethylene, polypropylene, fluororesin is closedly formed on the outer periphery of an obtained composite metallic wire.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は耐腐食性、特に耐ア
ンモニア性に優れた耐腐食性電線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion resistant electric wire excellent in corrosion resistance, particularly ammonia resistance.

【0002】[0002]

【従来の技術】電線に用いられる電気導体は、その使用
環境によっては、雰囲気の腐食性ガスによって比較的短
期間の間に腐食し、断線して停電事故を引起こしたり、
電気機器の使用を不能にすることがあり、また時にはそ
れが原因となって大きな事故を誘発する恐れがある。そ
こで腐食性ガス雰囲気で使用される電線には、耐腐食性
に優れた電気導体が用いられる。この腐食性ガス雰囲気
としては、亜硫酸ガスやオゾンを含む大気、あるいはア
ンモニアガス雰囲気などがある。また、アンモニア冷媒
のもとで使用される電気機器用の電線としては特に耐ア
ンモニア性が必要とされる。アンモニアは乾ガスの状態
でも多くの金属材料に対して腐食性を示すが、これに水
分の加わった湿ガスの状態では、より激しい腐食性を示
し、金属材料、特に銅および銅合金を急激に劣化させ
る。
2. Description of the Related Art Electric conductors used for electric wires are corroded in a relatively short period of time by corrosive gas in the atmosphere depending on the environment in which they are used, and they are disconnected to cause a power failure accident.
It can render electrical equipment unusable and at times can cause serious accidents. Therefore, an electric conductor having excellent corrosion resistance is used for an electric wire used in a corrosive gas atmosphere. The corrosive gas atmosphere may be an atmosphere containing sulfurous acid gas or ozone, or an ammonia gas atmosphere. In addition, the electric wire for electric equipment used under the ammonia refrigerant is particularly required to have ammonia resistance. Ammonia is corrosive to many metallic materials even in the dry gas state, but it shows more severe corrosiveness in the wet gas state where moisture is added to it, and the metallic materials, especially copper and copper alloy, are rapidly corroded. Deteriorate.

【0003】[0003]

【発明が解決しようとする課題】耐腐食性、特に耐アン
モニア性の電気導体としては、優れた耐腐食性と高い導
電性および経済性を兼ね備えた金属素材があれば最適で
あるが、現実にはそのような素材の入手は困難であると
ころから、一般には複合金属素材の使用が検討されてい
る。例えば、芯材として銅を使用し、その外周にアルミ
ニウムや鉄、あるいはニッケルなどの耐アンモニア性金
属を蒸着やダイス引抜きなどによって被覆する技術が知
られている(例えば、特開平5−252680号公
報)。このような複合金属素材は、外面に絶縁被覆を施
して使用されるが、従来からコイル巻線に使用されてき
た絶縁材料は耐アンモニア性に乏しく、アンモニアに接
触すると膨潤して絶縁耐力が低下するため、長期間に亘
って使用することができないという難点がある。
As an electric conductor having corrosion resistance, particularly ammonia resistance, it is most suitable if there is a metal material having excellent corrosion resistance, high conductivity and economical efficiency. Since it is difficult to obtain such a material, the use of a composite metal material is generally considered. For example, a technique is known in which copper is used as a core material, and an ammonia-resistant metal such as aluminum, iron, or nickel is coated on the outer periphery of the core material by vapor deposition, die drawing, or the like (for example, JP-A-5-252680). ). Such composite metal materials are used with an insulating coating on the outer surface, but the insulating materials conventionally used for coil windings have poor ammonia resistance, and when contacted with ammonia they swell and their dielectric strength decreases. Therefore, there is a drawback that it cannot be used for a long period of time.

【0004】上記複合金属素材は、必要な導電率を維持
するためには、金属被覆層の厚さをあまり大きくとるこ
とは許されない。しかしながら、金属被覆層の厚さを薄
くすると、クラックやピンホールなどを生じ、耐腐食性
が著しく低下してしまう恐れがあり、製造上の自由度が
少ない。また、芯材と金属被覆層の線膨脹係数に大きな
違いがあると、応力腐食によって、劣化が急速に進展
し、断線に至る恐れがある。本発明は、このような点に
着目してなされたもので、アンモニアに対する耐腐食性
に優れ、しかも製造が容易な耐腐食性電線を提供するこ
とを課題とするものである。
In the above composite metal material, in order to maintain the required conductivity, it is not allowed to make the thickness of the metal coating layer too large. However, if the thickness of the metal coating layer is reduced, cracks, pinholes, etc. may occur and corrosion resistance may be significantly reduced, and the degree of freedom in manufacturing is low. Further, if there is a large difference in the coefficient of linear expansion between the core material and the metal coating layer, stress corrosion may cause rapid progress of deterioration and lead to disconnection. The present invention has been made in view of such a point, and an object thereof is to provide a corrosion-resistant electric wire which is excellent in corrosion resistance to ammonia and is easy to manufacture.

【0005】[0005]

【課題を解決するための手段】本発明の耐腐食性電線
は、高導電率の金属材料を芯材とし、その外周にアンモ
ニアに対して耐腐食性を示す金属材料を被覆して金属被
覆層とし、得られた複合金属線の外周に密着して、SP
値(溶解度パラメータ)8以下の熱可塑性樹脂からなる
耐アンモニア性熱可塑性樹脂の押出被覆層を形成したこ
とを特徴とするものである。
A corrosion-resistant wire according to the present invention comprises a metal material having high conductivity as a core material, and a metal material having corrosion resistance to ammonia is coated on the outer periphery of the core material to form a metal coating layer. And adhere to the outer periphery of the obtained composite metal wire,
It is characterized in that an extrusion coating layer of an ammonia-resistant thermoplastic resin made of a thermoplastic resin having a value (solubility parameter) of 8 or less is formed.

【0006】[0006]

【発明の実施の形態】本発明において、金属被覆層の厚
さは3μm以上とすることが望ましい。これは、これ未
満の厚さでは傷などにより孔が生成するため、クラック
やピンホール等の発生が急増し、所期の耐アンモニア性
が得られないからである。また、複合金属線の導電率は
55%以上とすることが望ましい。これは、導体径が細
い場合でも、所期の電気伝導度を確保するためである。
押出被覆層の形成は、耐アンモニア性の熱可塑性樹脂を
押出機内に導入して加熱混練し、半溶融状態にしてダイ
ス・ニップルの間から複合金属線の上に押出し被覆する
ことによって形成される。この場合、引落し形の押出機
を使用すれば、複合金属線と押出被覆層を密着させるこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the thickness of the metal coating layer is preferably 3 μm or more. This is because if the thickness is less than this, holes are generated due to scratches and the like, the number of cracks, pinholes, etc. rapidly increases, and the desired ammonia resistance cannot be obtained. Further, it is desirable that the conductivity of the composite metal wire is 55% or more. This is to ensure the desired electrical conductivity even when the conductor diameter is small.
The extrusion coating layer is formed by introducing an ammonia-resistant thermoplastic resin into an extruder, heating and kneading the mixture to form a semi-molten state, and extruding and coating the composite metal wire from between the dies and nipples. . In this case, if a draw-down type extruder is used, the composite metal wire and the extrusion coating layer can be brought into close contact with each other.

【0007】本発明においては、耐アンモニア性熱可塑
性樹脂として、SP値が8以下の熱可塑性樹脂として、
例えばポリエチレン(PE)やポリプロピレン、あるい
は四フッ化エチレン樹脂、フッ化ビニリデン樹脂、三フ
ッ化エチレン樹脂等のフッ素樹脂、もしくはこれらのフ
ッ素樹脂を含む共重合体を使用することが望ましい。共
重合体としては、FEP(テトラフルオロエチレン/ヘ
キサフルオロプロピレン共重合体)、ETFE(エチレ
ン/テトラフルオロエチレン共重合体)などが使用され
る。なお、SP値とは、液体のモル蒸発エネルギーをモ
ル体積で割った値の平方根を意味し、プラスチック(高
分子材料)の場合には、そのプラスチックを、所定のS
P値を示す溶剤に溶解させる場合の溶解しやすさを、熱
力学的な方法で数値として示したものであり、この値が
8以下の熱可塑性樹脂被覆層はアンモニアガスに接触し
ても膨潤せず、絶縁耐力を保持するので、長期間に亘っ
て使用することができる。
In the present invention, as the ammonia-resistant thermoplastic resin, a thermoplastic resin having an SP value of 8 or less,
For example, it is desirable to use polyethylene (PE), polypropylene, a fluororesin such as tetrafluoroethylene resin, vinylidene fluoride resin, or trifluoroethylene resin, or a copolymer containing these fluororesins. As the copolymer, FEP (tetrafluoroethylene / hexafluoropropylene copolymer), ETFE (ethylene / tetrafluoroethylene copolymer) and the like are used. The SP value means the square root of the value obtained by dividing the molar evaporation energy of a liquid by the molar volume, and in the case of plastic (polymer material), the plastic is given a predetermined S
The solubility in the case of dissolving in a solvent having a P value is shown as a numerical value by a thermodynamic method, and the thermoplastic resin coating layer having a value of 8 or less swells even when contacted with ammonia gas. Instead, the dielectric strength is maintained, so that it can be used for a long period of time.

【0008】本発明において、芯材としては、銅、銅合
金、アルミ、アルミ合金、銀および銀合金などを使用す
ることができ、また金属被覆層としては、SUS(ステ
ンレス・スチール)、純鉄、錫、錫合金、鉛および鉛合
金のいずれかを使用することができる。純鉄を使用する
場合、純度99.9%以上のものが好ましい。
In the present invention, the core material may be copper, copper alloy, aluminum, aluminum alloy, silver and silver alloy, and the metal coating layer is SUS (stainless steel), pure iron. , Tin, tin alloys, lead and lead alloys can be used. When pure iron is used, it preferably has a purity of 99.9% or more.

【0009】なお、芯材が銅からなる場合、金属被覆層
として線膨脹係数17.1〜17.4×10-6/KのN
i含有SUS、例えばSUS304を使用すると、両者
の線膨脹係数が近く、熱伸縮に伴う応力が緩和されるの
で、応力腐食の危険を低減させることができる。これら
のSUSを用いる場合、クラッド法を採用すれば、ピン
ホール等は発生しないので好都合である。また、本発明
においては、金属被覆層として融点350℃以下の低融
点金属、例えば錫、錫合金、鉛または鉛合金の電気メッ
キ層を使用することができる。その場合には、耐アンモ
ニア性熱可塑性樹脂の押出し被覆時の熱(150〜35
0℃)でメッキ層が焼鈍され、たとえピンホールがあっ
ても消失する。
When the core material is made of copper, the metal coating layer has N with a coefficient of linear expansion of 17.1 to 17.4 × 10 −6 / K.
When i-containing SUS, such as SUS304, is used, the linear expansion coefficients of the two are close to each other, and the stress associated with thermal expansion and contraction is relaxed, so the risk of stress corrosion can be reduced. When these SUSs are used, it is convenient to use the clad method because pinholes and the like do not occur. Further, in the present invention, a low melting point metal having a melting point of 350 ° C. or lower, for example, an electroplating layer of tin, tin alloy, lead or lead alloy can be used as the metal coating layer. In that case, heat (150 to 35
The plating layer is annealed at 0 ° C. and disappears even if there are pinholes.

【0010】[0010]

【実施例】以下、本発明の実施例を説明する。表1は、
芯材として銅を使用し、金属被覆層としてSUS(SU
S304)、純鉄(純度99.9%以上)、錫、または
鉛を使用し、絶縁層(耐アンモニア性熱可塑性樹脂被覆
層)としてPEまたはETFEを押出し被覆した本発明
の実施例を示す。なお、試験方法と評価項目は次の通り
である。 試験方法…気圧5〜7kgf/cmのアンモニアガス雰
囲気に各電線を14日間静置した。 外観………アンモニアガス試験前後で導体、絶縁体それ
ぞれに変色、収縮、割れ等の変化がないかどうかを観察
して評価した。 絶縁性……アンモニアガス試験後、絶縁性能を保ってい
るかどうか、絶縁耐圧を測定して評価した。絶縁耐圧が
10kV/cm以上のものを合格とした。
Embodiments of the present invention will be described below. Table 1 shows
Copper is used as the core material, and SUS (SU
S304), pure iron (purity 99.9% or more), tin, or lead is used, and an example of the present invention in which PE or ETFE is extrusion-coated as an insulating layer (ammonium-resistant thermoplastic resin coating layer) is shown. The test method and evaluation items are as follows. Test method: Each electric wire was allowed to stand in an ammonia gas atmosphere having an atmospheric pressure of 5 to 7 kgf / cm for 14 days. Appearance: It was evaluated by observing the conductor and the insulator before and after the ammonia gas test for any changes such as discoloration, shrinkage, and cracking. Insulation property: After the ammonia gas test, the insulation withstand voltage was measured to evaluate whether the insulation performance was maintained. A device having a withstand voltage of 10 kV / cm or more was accepted.

【表1】 [Table 1]

【0011】表2は、上記実施例と同一条件で行った比
較例を示す。
Table 2 shows a comparative example conducted under the same conditions as the above-mentioned examples.

【表2】 [Table 2]

【0012】表1と表2を対比すれば明らかなように、
本発明の実施例である例1ないし例5はいずれも外観お
よび試験後絶縁性が良好であったが、金属被覆層のない
もの(比較例1)と、金属被覆層としてニッケルを使用
したもの(比較例2)は芯材の外観が不良であり、また
絶縁層としてPI(ポリイミド樹脂)を使用したもの
(比較例3)は外観(芯材と絶縁層)および試験後絶縁
性が共に不良であった。表3は、芯材として銅を使用
し、金属被覆層を錫、鉛、またははんだの電気メッキ層
で形成し、絶縁層としてPEまたはETFEを150〜
350℃で押出し被覆した本発明の実施例(例6〜例
9)と、比較例として金属被覆層にニッケルを使用した
もの(比較例4)、および絶縁層にPI(ポリイミド樹
脂)を使用したもの(比較例5)を示す。なお、試験方
法と評価項目は表1の場合と同じである。
As is clear from comparison between Table 1 and Table 2,
In all of Examples 1 to 5 which are examples of the present invention, the appearance and the insulating property after the test were good, but those without the metal coating layer (Comparative Example 1) and those using nickel as the metal coating layer. In Comparative Example 2, the appearance of the core material is poor, and in Comparative Example 3 in which PI (polyimide resin) is used as the insulating layer, both the appearance (the core material and the insulating layer) and the insulating property after the test are poor. Met. In Table 3, copper is used as the core material, the metal coating layer is formed of an electroplating layer of tin, lead, or solder, and PE or ETFE is 150 to 150 as the insulating layer.
Examples of the present invention extruded and coated at 350 ° C. (Examples 6 to 9), nickel as a metal coating layer as a comparative example (Comparative Example 4), and PI (polyimide resin) as an insulating layer were used. The thing (Comparative example 5) is shown. The test method and evaluation items are the same as in Table 1.

【表3】 [Table 3]

【0013】表3中の各例と比較例とを対比すれば明ら
かなように、本発明の実施例ではいずれも外観および試
験後絶縁性が良好であったが、金属被覆層としてニッケ
ルを使用したもの(比較例4)は芯材の外観が不良であ
り、また絶縁層としてPIを使用したもの(比較例5)
は絶縁層の外観および試験後絶縁性が共に不良であっ
た。表4は、芯材として銅を使用し、金属被覆層を錫の
電気メッキ層で形成し、絶縁層としてPEまたはETF
Eを150〜200℃で押出し被覆した本発明の実施例
(例10〜例12)と、比較例として絶縁層の押出し温
度を100℃または200℃とした例(比較例6,7)
を示す。なお、試験方法と評価項目は表1の場合と同じ
である。
As is clear from comparing each example in Table 3 with the comparative example, in each of the examples of the present invention, the appearance and the insulating property after the test were good, but nickel was used as the metal coating layer. The obtained (Comparative Example 4) had a poor appearance of the core material, and PI was used as the insulating layer (Comparative Example 5).
Was poor in both the appearance of the insulating layer and the insulating property after the test. Table 4 shows that copper is used as the core material, the metal coating layer is formed by the tin electroplating layer, and PE or ETF is used as the insulating layer.
Examples of the present invention in which E was extrusion-coated at 150 to 200 ° C (Examples 10 to 12), and examples in which the extrusion temperature of the insulating layer was 100 ° C or 200 ° C as comparative examples (Comparative Examples 6 and 7).
Is shown. The test method and evaluation items are the same as in Table 1.

【0014】[0014]

【表4】 [Table 4]

【0015】表4中の各例と比較例とを対比すれば明ら
かなように、本発明の実施例ではいずれも外観および試
験後絶縁性が良好であったが、絶縁層としてPEを10
0℃で押出し被覆したもの(比較例6)と、400℃で
押出し被覆したもの(比較例7)はいずれも芯材の外観
が不良であった。上述した実施例と比較例から明らかな
ように、本発明においては、金属被覆層として、SU
S、純鉄、アルミ、錫、錫合金、鉛および鉛合金のよう
に、アンモニアに対して高い耐腐食性を示す金属材料
を、好ましくは厚さ3μm以上に被覆しており、またそ
の外周に耐アンモニア性に優れ、SP値が8以下の熱可
塑性樹脂を、金属被覆層に密着するようにして押出し被
覆しているので、高い耐アンモニア性を持つ耐腐食性電
線を得ることができる。
As is clear from comparing each example in Table 4 with the comparative example, in each of the examples of the present invention, the appearance and the insulating property after the test were good, but PE was used as the insulating layer.
Both the one extruded and coated at 0 ° C. (Comparative Example 6) and the one extruded and coated at 400 ° C. (Comparative Example 7) had poor core appearance. As is clear from the above-mentioned Examples and Comparative Examples, in the present invention, as the metal coating layer, SU
A metal material having high corrosion resistance to ammonia, such as S, pure iron, aluminum, tin, tin alloy, lead and lead alloy, is preferably coated to a thickness of 3 μm or more, and the outer periphery thereof is coated. Since the thermoplastic resin having excellent ammonia resistance and having an SP value of 8 or less is extrusion-coated so as to be in close contact with the metal coating layer, a corrosion-resistant electric wire having high ammonia resistance can be obtained.

【0016】本発明においては、芯材を銅で構成する場
合、金属被覆層として線膨脹係数17.1〜17.4×
10-6/KのNi含有SUSを使用すると、両者の線膨
脹係数が近く(銅の線膨脹係数は17.3×10-6
K)、熱伸縮に伴う応力が緩和されるので、応力腐食の
危険を低減させることができる。また、金属被覆層とし
て融点350℃以下の低融点金属、例えば錫、錫合金、
鉛または鉛合金の電気メッキ層を使用する場合、耐アン
モニア性熱可塑性樹脂を150〜350℃で押出し被覆
することにより、メッキ層が焼鈍されるので、たとえピ
ンホールがあっても消失する。特に本発明において、S
P値が8以下の耐アンモニア性熱可塑性樹脂として、例
えばポリエチレンやポリプロピレン、あるいは四フッ化
エチレン樹脂、フッ化ビニリデン樹脂、三フッ化エチレ
ン樹脂などのフッ素樹脂、またはこれらのフッ素樹脂を
含む共重合体を使用する場合には、これらの熱可塑性樹
脂被覆層はアンモニアガスに接触しても膨潤しないの
で、長期間に亘って所期の絶縁耐圧を保持することがで
きる。
In the present invention, when the core material is made of copper, the metal coating layer has a coefficient of linear expansion of 17.1 to 17.4 ×.
When 10 −6 / K Ni-containing SUS is used, the linear expansion coefficient of both is close (the linear expansion coefficient of copper is 17.3 × 10 −6 /
K) Since the stress associated with thermal expansion and contraction is relieved, the risk of stress corrosion can be reduced. Further, as the metal coating layer, a low melting point metal having a melting point of 350 ° C. or lower, such as tin or tin alloy,
When a lead or lead alloy electroplating layer is used, the plating layer is annealed by extrusion-coating an ammonia-resistant thermoplastic resin at 150 to 350 ° C., so that even if there are pinholes, they disappear. Particularly in the present invention, S
As the ammonia-resistant thermoplastic resin having a P value of 8 or less, for example, polyethylene or polypropylene, or a fluororesin such as tetrafluoroethylene resin, vinylidene fluoride resin or trifluoroethylene resin, or a copolymer containing these fluororesins When using a united body, these thermoplastic resin coating layers do not swell even when they come into contact with ammonia gas, so that the desired dielectric strength can be maintained for a long period of time.

【0017】[0017]

【発明の効果】本発明によれば、アンモニアに対する耐
腐食性に優れ、しかも製造が容易な耐腐食性電線を得る
ことができる。
According to the present invention, it is possible to obtain a corrosion resistant electric wire which is excellent in corrosion resistance to ammonia and is easy to manufacture.

フロントページの続き (72)発明者 田中 顯 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 小野田 中 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 武内 健三 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 橋本 洋 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内Front page continued (72) Inventor Akira Tanaka 2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Showa Electric Wire & Cable Co., Ltd. No. 1 in Showa Electric Wire & Cable Co., Ltd. (72) Inventor Kenzo Takeuchi 2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture 2-1-1 No. 1 Showa Electric Wire & Cable Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高導電率の金属材料を芯材とし、その外
周にアンモニアに対して耐腐食性を示す金属材料を被覆
して金属被覆層とし、得られた複合金属線の外周に密着
して、SP値(溶解度パラメータ)8以下の熱可塑性樹
脂からなる耐アンモニア性熱可塑性樹脂の押出被覆層を
形成したことを特徴とする耐腐食性電線。
1. A metal material having a high conductivity is used as a core material, and a metal material having corrosion resistance to ammonia is coated on the outer periphery of the core material to form a metal coating layer, which is adhered to the outer periphery of the obtained composite metal wire. Then, an extrusion-coated layer of an ammonia-resistant thermoplastic resin made of a thermoplastic resin having an SP value (solubility parameter) of 8 or less is formed, and a corrosion-resistant electric wire.
【請求項2】 芯材が銅、銅合金、アルミ、アルミ合
金、銀および銀合金の内のいずれか一種からなり、金属
被覆層がSUS、純鉄、錫、錫合金、鉛および鉛合金の
内のいずれか一種からなることを特徴とする請求項1に
記載の耐腐食性電線。
2. The core material is made of any one of copper, copper alloy, aluminum, aluminum alloy, silver and silver alloy, and the metal coating layer is made of SUS, pure iron, tin, tin alloy, lead and lead alloy. The corrosion resistant electric wire according to claim 1, wherein the electric wire is made of any one of the above.
【請求項3】 芯材が銅からなり、金属被覆層が線膨脹
係数17.1〜17.4×10-6/KのNi含有SUS
からなることを特徴とする請求項1または2に記載の耐
腐食性電線。
3. A Ni-containing SUS whose core material is made of copper and whose metal coating layer has a coefficient of linear expansion of 17.1 to 17.4 × 10 −6 / K.
The corrosion-resistant electric wire according to claim 1 or 2, comprising:
【請求項4】 金属被覆層が、融点350℃以下の低融
点金属の電気メッキ層からなることを特徴とする請求項
1または2に記載の耐腐食性電線。
4. The corrosion-resistant wire according to claim 1, wherein the metal coating layer is an electroplating layer of a low melting point metal having a melting point of 350 ° C. or lower.
【請求項5】 SP値8以下の熱可塑性樹脂がポリエチ
レン、ポリプロピレン、フッ素樹脂、またはフッ素樹脂
を含む共重合体からなることを特徴とする請求項1ない
し4のいずれか一項に記載の耐腐食性電線。
5. The thermoplastic resin according to claim 1, wherein the thermoplastic resin having an SP value of 8 or less is polyethylene, polypropylene, a fluororesin, or a copolymer containing a fluororesin. Corrosive wire.
JP13383696A 1996-05-28 1996-05-28 Corrosion resistant wire Expired - Fee Related JP3693417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13383696A JP3693417B2 (en) 1996-05-28 1996-05-28 Corrosion resistant wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13383696A JP3693417B2 (en) 1996-05-28 1996-05-28 Corrosion resistant wire

Publications (2)

Publication Number Publication Date
JPH09320357A true JPH09320357A (en) 1997-12-12
JP3693417B2 JP3693417B2 (en) 2005-09-07

Family

ID=15114186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13383696A Expired - Fee Related JP3693417B2 (en) 1996-05-28 1996-05-28 Corrosion resistant wire

Country Status (1)

Country Link
JP (1) JP3693417B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195328A (en) * 1997-12-27 1999-07-21 Sumitomo Electric Ind Ltd Silane cross-linked watertight insulated wire and manufacture therefor
JP2000083339A (en) * 1998-09-04 2000-03-21 Mayekawa Mfg Co Ltd Rotating electric machine coupled with rotating machine for ammonia
EP3058224A1 (en) * 2013-10-16 2016-08-24 GEA Refrigeration Germany GmbH Compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195328A (en) * 1997-12-27 1999-07-21 Sumitomo Electric Ind Ltd Silane cross-linked watertight insulated wire and manufacture therefor
JP2000083339A (en) * 1998-09-04 2000-03-21 Mayekawa Mfg Co Ltd Rotating electric machine coupled with rotating machine for ammonia
EP3058224A1 (en) * 2013-10-16 2016-08-24 GEA Refrigeration Germany GmbH Compressor
US20160248287A1 (en) * 2013-10-16 2016-08-25 Gea Refrigeration Germany Gmbh Compressor
EP3058224B1 (en) * 2013-10-16 2022-04-27 GEA Refrigeration Germany GmbH Compressor

Also Published As

Publication number Publication date
JP3693417B2 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
US6781063B2 (en) Multi-layer insulation system for electrical conductors
US4801501A (en) Insulated conductor with multi-layer, high temperature insulation
JP2021122007A (en) Insulated electric conductor
US6218624B1 (en) Coaxial cable
IE54432B1 (en) Winding or insulating tape made of a high temperature-resistant synthetic resin
WO2006004074A1 (en) Flat cable
JP2009093900A (en) Multi-core flat insulated wire and manufacturing method therefor
CN110415869B (en) Soft cable coating material, aluminum alloy soft cable and preparation method thereof
JP2001508588A (en) Insulated electrical conductor
JPH05501473A (en) electric cable
JPH09320357A (en) Corrosion-resistant electric wire
EP0188370A2 (en) Electrical wire with refractory coating
KR20080103020A (en) Electrical conductor
US20100170691A1 (en) Coaxial cable
JPH0817258A (en) Polyether ether ketone resin covered wire/cable
CN213424629U (en) Insulated wire, and coil and motor provided with same
JP4280887B2 (en) Manufacturing method of flame retardant multi-core flat insulated wire
JP2021002458A (en) Heat-shrinkable tubing for forming rectangular magnet wire coating layer, rectangular magnet wire and manufacturing method thereof, and coil
JPH03226911A (en) Insulated wire
JPH09306247A (en) Ammonium resistant insulated wire
JP3678313B2 (en) Insulated wire
CN212461192U (en) Special modified polyester enameled wire with remarkable scratch resistance
WO2021210668A1 (en) Heat-resistant insulated electric wire
JP2705008B2 (en) Insulated wire
US20220013253A1 (en) Cable with improved corrosion resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Effective date: 20050526

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Effective date: 20050621

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090701

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110701

LAPS Cancellation because of no payment of annual fees