JPH02177212A - Heat-proof electric wire and manufacture thereof - Google Patents

Heat-proof electric wire and manufacture thereof

Info

Publication number
JPH02177212A
JPH02177212A JP63332125A JP33212588A JPH02177212A JP H02177212 A JPH02177212 A JP H02177212A JP 63332125 A JP63332125 A JP 63332125A JP 33212588 A JP33212588 A JP 33212588A JP H02177212 A JPH02177212 A JP H02177212A
Authority
JP
Japan
Prior art keywords
layer
conductor
heat
copper
electric wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63332125A
Other languages
Japanese (ja)
Inventor
Takuya Suzuki
卓哉 鈴木
Takeshi Endo
壮 遠藤
Yasukazu Ohashi
大橋 泰和
Mitsuaki Fukuda
福田 光昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63332125A priority Critical patent/JPH02177212A/en
Publication of JPH02177212A publication Critical patent/JPH02177212A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve improved heat resistance and small diameter size formability by providing multi-covering with two kinds of specific layers formed on a conductor of a prescribed material via a barrier layer. CONSTITUTION:A conductor 1 made of copper, copper alloy or copper based composite metal is covered, via a barrier layer 2, with an insulating alumite layer 3 which has been subjected to anode oxidation and hole-filling. Further, the layer 3 is covered with a ceramic layer 4. This multi-layer covering allows heat-resistance temperature that is higher than melting temperature of the conductor 1, and is free of cracks even when small-path coil winding is employed. Thus, a heat-proof electric wire obtained using this method is characterized by enhanced heat resistance and small wire formability.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は、配電線やコイル等に用いられる耐熱N線に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat-resistant N wire used for power distribution lines, coils, and the like.

〔従来の技術とその課題〕[Conventional technology and its issues]

原子力発電所や高2石ビル等には火災時においても一定
時間通電し1)るhI熱電線の使用が〜拐づけられてい
る。
The use of hI heating wires (1), which remain energized for a certain period of time even in the event of a fire, has been discouraged at nuclear power plants, the Takashiki Building, etc.

このような耐熱′、Tt線には、従来SUS等の金属管
にCu線を挿通し、ト記SUS管とCu線の間隙にM 
g Oを充填し、これを引火き加ニーで所望の形状とな
したMIC(MgO絶縁ケーブル)が用いられているが
、このMICは構成784の各々が変形能を異にする為
、細線にまで加工するのが困難で用途が限定されていた
Conventionally, for such heat-resistant and Tt wires, a Cu wire is inserted into a metal tube such as SUS, and an M wire is inserted into the gap between the SUS tube and the Cu wire.
MIC (MgO insulated cable) is used, which is filled with g O and made into the desired shape by igniting and kneading it. However, since each structure 784 of this MIC has a different deformability, it is difficult to make it into a thin wire. It was difficult to process, and its uses were limited.

他方電気電子機器の高機能化に伴い、そこに用いられる
マグネットコイルには600 ’CCヒト1Tit熱性
及び500V以上の耐電圧特性が要求されるようになり
、従来のアルマイト電線では、対応し切れないという問
題があった。
On the other hand, as electrical and electronic equipment becomes more sophisticated, the magnetic coils used there are required to have 600' CC 1Tit heat resistance and withstand voltage characteristics of 500 V or more, which conventional alumite wires cannot meet. There was a problem.

上記の耐電圧特性を向上させる方法として、アルマイト
電線の絶縁鳴であるアルマイト層を厚くする方法がある
が、17りするとアルマイト11がポーラスとなって、
逆に耐電圧特性が低下し、高い耐電圧特性が得られない
という問題があった。
One way to improve the above-mentioned withstand voltage characteristics is to thicken the alumite layer, which is the insulation sound of the alumite wire.
On the contrary, there was a problem in that the withstand voltage characteristics deteriorated and high withstand voltage characteristics could not be obtained.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、かかる状況に恵みなされたものでその目的と
するところは、600 ’C以−トの高温に耐え、又細
線化が可能で、且つ絶縁性に優れた耐熱電線及びその製
造方法を提供することにある。
The present invention was made under these circumstances, and its purpose is to provide a heat-resistant electric wire that can withstand high temperatures of 600'C or higher, can be made into thin wires, and has excellent insulation properties, and a method for manufacturing the same. It is about providing.

即ち本請求項1の発明は、銅、銅合金又は銅基複合金属
からなる導体上に、バリヤー層を介して陽極酸化及び封
孔処理を施したアルミニウム層を被覆し、更にその上に
セラミック層を被覆したことを特徴とするものである。
That is, the invention of claim 1 covers a conductor made of copper, copper alloy, or copper-based composite metal with an aluminum layer that has been anodized and sealed through a barrier layer, and further coats the conductor with a ceramic layer thereon. It is characterized by being coated with.

この発明の耐熱電線は、銅系金属材料の導体上にバリヤ
層を介して絶縁層を被覆したもので、1記絶縁層は上下
2層からなり、下層はアルマイト層、上層は/1.0.
等のセラミックス層からなるものである。
The heat-resistant electric wire of the present invention has an insulating layer coated on a conductor made of a copper-based metal material via a barrier layer. ..
It consists of ceramic layers such as.

上記において導体にはCu、Cu合金の他に、第2相を
分散させたCu−C系、Cu−W系等の複合金属材料が
用いられる。この複合金属材料は、溶湯鍛造した素材を
押出し等により丸線又は平角線等に加Tして用いられる
In the above, in addition to Cu and Cu alloys, composite metal materials such as Cu-C series and Cu-W series in which a second phase is dispersed are used for the conductor. This composite metal material is used by forming a molten metal forged material into a round wire or a rectangular wire by extrusion or the like.

上記においてバリヤー層には、W、Ta、Nb等の銅と
拡散反応を起こさない高融点金属、又は5izNa 、
Zr0z 、MgO等のセラミックスが用いられる。又
上記バリヤー層上に被覆する絶縁層は、前記のように2
層からなり、1層を厚く形成したものより緻密で可撓性
に富み、小径コイルに巻いても表面に亀裂を生しるよう
なことがない。
In the above, the barrier layer is made of a high melting point metal that does not cause a diffusion reaction with copper, such as W, Ta, or Nb, or 5izNa,
Ceramics such as Zr0z and MgO are used. Further, the insulating layer coated on the barrier layer has two layers as described above.
It is made up of layers, and is denser and more flexible than a single thick layer, and does not cause cracks on the surface even when wound into a small diameter coil.

この発明において、導体に熱膨張係数がバリヤー層や絶
縁層と同等の銅基複合金属を用いると、加熱冷却が繰り
返される用途においても導体からバリヤー層や絶縁層が
剥離したりすることがない。
In this invention, if a copper-based composite metal with a coefficient of thermal expansion equivalent to that of the barrier layer or insulating layer is used for the conductor, the barrier layer or insulating layer will not peel off from the conductor even in applications where heating and cooling are repeated.

この発明の耐熱電線は、バリヤー層に前記の如きセラミ
ックス材もしくは、W等の高融点金属を用いると導体と
なる銅系金属材料の融点近くまで使用することが可能で
ある。
The heat-resistant electric wire of the present invention can be used up to a temperature close to the melting point of the copper-based metal material that becomes the conductor by using the above-mentioned ceramic materials or high-melting point metals such as W for the barrier layer.

この発明の耐熱電線の製造は、例えば導体となる銅線を
走行させ、この上にイオンブレーティング等のPvD法
によりW、AN、A1.020)各層を順次形成せしめ
て複合線材となし、しかるのちこの複合線材のAffi
層をAt1tosNのピンホール等の空隙部分を通して
陽極酸化及び封孔処理分権して緻密なアルマイト層を形
成してなされるものである。
The heat-resistant electric wire of the present invention can be manufactured by, for example, running a copper wire as a conductor, and sequentially forming W, AN, A1.020) layers on the copper wire by a PvD method such as ion blasting to form a composite wire, and then Affi of this composite wire later
A dense alumite layer is formed by passing the layer through voids such as pinholes in At1tosN and performing anodizing and sealing processes.

本請求項2の発明は、銅、銅合金又は銅基複合金属から
なる導体トに、バリヤー層を介してアルミニウム層を被
覆し、更にその上にセラミンク層を被覆して多層液l′
W導体となし、次いでこの多層被覆導体を所望形状に成
形したの5、当該導体のアルミニウム層に陽極酸化及び
封孔処理を施すことを特徴とする耐熱電線の製造方法で
ある。
The invention of claim 2 provides a multilayer solution l' in which a conductor made of copper, a copper alloy, or a copper-based composite metal is coated with an aluminum layer via a barrier layer, and further a ceramic layer is coated thereon.
This method of manufacturing a heat-resistant electric wire is characterized by forming a W conductor, then molding this multilayer coated conductor into a desired shape, and subjecting the aluminum layer of the conductor to anodizing and sealing treatment.

この発明方法によれば、アルミニウム層のlff1酸化
及び封孔処理を、例えばコイル等に成形してから行うの
で、下層には亀裂のない封孔処理された健全なアルマイ
ト層が形成され、父上層のセラミック層に亀裂があって
もセラミック層がA1201の場合は1,1孔処理によ
り亀裂が封止される。
According to the method of this invention, the lff1 oxidation and sealing treatment of the aluminum layer is performed after forming the aluminum layer into, for example, a coil, so that a healthy alumite layer with no cracks and sealing treatment is formed in the lower layer, and the upper layer Even if there is a crack in the ceramic layer, if the ceramic layer is A1201, the crack can be sealed by the 1,1 hole treatment.

〔作用〕[Effect]

銅系金属材料の導体上にバリヤ層が設けられているので
、アルマイト層となる。1層が製造時等に導体トに拡散
して導体を劣化させるようなことかない、又絶縁層がア
ルマイト層とセラミック層の2層構造になっているので
各々の層を薄くすることができて緻密な層が得られ、更
に封孔処理を施すので曲げ等による亀裂発生が防止され
る。又構成材料のうち融点が最も低いのは、導体となる
銅系材料であり、従って本発明の耐熱電線は、銅の融点
近傍の温度まで使用できる。又使用サイズの導体上にバ
リヤー層及び絶縁層を被覆するので細線等も容易に製造
できる。
Since the barrier layer is provided on the conductor of copper-based metal material, it becomes an alumite layer. There is no possibility that one layer will diffuse into the conductor during manufacturing and cause the conductor to deteriorate, and since the insulating layer has a two-layer structure of an alumite layer and a ceramic layer, each layer can be made thinner. A dense layer is obtained, and the sealing treatment prevents cracks from occurring due to bending, etc. Further, among the constituent materials, the one having the lowest melting point is a copper-based material that serves as a conductor, and therefore, the heat-resistant electric wire of the present invention can be used up to temperatures close to the melting point of copper. Furthermore, since the conductor of the size used is coated with a barrier layer and an insulating layer, thin wires and the like can be easily manufactured.

また陽極酸化及び封孔処理を所望形状に成形後に行うよ
うにすると少なくとも下層において亀裂の全くない絶縁
層が形成される。
Furthermore, if anodization and sealing treatment are performed after molding into a desired shape, an insulating layer with no cracks at least in the lower layer will be formed.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例1 第1図は、本発明の耐熱電線の一実施例を示す断面説明
図である。
Example 1 FIG. 1 is a cross-sectional explanatory diagram showing an example of a heat-resistant electric wire of the present invention.

断面形状IXUmiコーナーRO,3mのCu平角線導
体l上に厚さ2−のWバリヤー層2が被覆され、その上
にA1を陽掻酸化後封孔処理した厚さ15−のアルマイ
ト層3が被覆され、更にそのEに厚さ10−のAN、O
,からなるセラミック層4が被覆されている。
A 2-thick W barrier layer 2 is coated on a 3 m Cu rectangular wire conductor 1 with a cross-sectional shape IXUmi corner RO, and on top of that a 15-thick alumite layer 3 that has been subjected to a sealing treatment after positive oxidation of A1. coated and further coated with AN, O with a thickness of 10-
, is coated with a ceramic layer 4 consisting of .

上記の耐熱電線の製造は、Cu平角綿】上にW2をメン
キにより被覆し、次いでAN及びAf。
The above-mentioned heat-resistant electric wire is manufactured by coating W2 on Cu rectangular cotton with a spacing, and then coating AN and Af.

0.4をイオンブレーティング法により?、!覆して複
合線材となし、しかるのち上記複合線材のA1層を硫酸
浴中にて、A l t Oi層に存在するピンホール等
を通して陽I?ii酸化してアルマイト層3となし、次
いでこれを水洗後熱湯に浸漬して封孔処理を施して行っ
た。
0.4 by ion blating method? ,! After that, the A1 layer of the above composite wire is oxidized through the pinholes present in the Al t Oi layer in a sulfuric acid bath. ii. Oxidized to form an alumite layer 3, which was then washed with water and then immersed in hot water for pore sealing treatment.

実施例2 実施例1において導体にCu、−C(長繊維)系復合材
料を用いた他は実施例1と同じ方法により耐熱電線を製
造した。
Example 2 A heat-resistant electric wire was manufactured in the same manner as in Example 1 except that a Cu, -C (long fiber) composite material was used for the conductor.

実施例3 実施例1においてVA極酸酸化前複合!3打を5〇−φ
の棒にコイル巻きしたのら、陽極酸化及び封孔処理を施
した他は、実施例1と同し方法により耐熱電線を製造し
た。
Example 3 VA polar acid pre-oxidation composite in Example 1! 3 strokes 50-φ
A heat-resistant electric wire was produced in the same manner as in Example 1, except that the wire was coiled around a rod, and then anodized and sealed.

尚、コイルは、ゆるめに巻いて陽極酸化時硫酸液が線表
面に接するようにした。
The coil was wound loosely so that the sulfuric acid solution came into contact with the wire surface during anodization.

比較例1 実施例1において陽極酸化及び封孔処理を行わなかった
他は実施例1と同し方法により耐熱電線を製造した。
Comparative Example 1 A heat-resistant electric wire was manufactured in the same manner as in Example 1, except that the anodizing and sealing treatments were not performed.

比較例2 実施例1においてW層の上に直接/M!、0.を3On
被覆し、陽極酸化及び封孔処理は行わなかった他は実施
例Iと同し方法により耐熱′SL線を製造した。
Comparative Example 2 Directly on the W layer in Example 1/M! , 0. 3On
A heat-resistant SL wire was produced in the same manner as in Example I except that the coating, anodizing, and sealing treatments were not performed.

斯くの如くして得られた各々の耐熱電線及び従来のアル
マイト電線(比較例3)について1.実施例3の耐熱電
線を除いて、50随φ棒にコイル巻きして耐電圧特性を
調べた。耐熱性は上記のコイル巻きしたものを700 
’CI H加熱後室温に冷却するサイクルを100回繰
り返したのら耐電圧特性を測定して評価した。耐電圧特
性はJI33003金属箔法に準して測定した。結果は
第1表に示した。
1. Regarding each of the heat-resistant wires thus obtained and the conventional alumite wire (Comparative Example 3). Except for the heat-resistant wire of Example 3, the wires were wound into coils around a 50-diameter rod to examine the withstand voltage characteristics. Heat resistance is 700 for the above coil-wound product.
After repeating the cycle of heating with CI H and cooling to room temperature 100 times, the withstand voltage characteristics were measured and evaluated. The withstand voltage characteristics were measured according to the JI33003 metal foil method. The results are shown in Table 1.

第1表より明らかなように、本発明品(1〜3)は、い
ずれもi4’ffl圧特性に優れている。
As is clear from Table 1, the products of the present invention (1 to 3) are all excellent in i4'ffl pressure characteristics.

コイル巻き後の耐電圧は、No3が最も高いが、これは
コイル巻き後に陽極酸化及び封孔処理を施したので絶縁
層にクラックが全く存在しなかった為である。
The withstand voltage after coil winding was the highest in No. 3, but this was because no cracks existed in the insulating layer because anodizing and sealing were performed after coil winding.

耐熱試験後Nol、3の耐電圧が低ドしているのは、熱
膨張差により各々の層の界面に一部亀裂が生じた為であ
る。No2は、導体にCu−W系復合材を用いたので各
層の熱膨張率がほぼ同し値となり各層の密着性が良好に
保たれた。
The reason why the withstand voltage of No. 3 was low after the heat resistance test was because some cracks were generated at the interfaces of each layer due to the difference in thermal expansion. In No. 2, since a Cu-W based composite material was used for the conductor, the coefficient of thermal expansion of each layer was approximately the same value, and the adhesion of each layer was maintained well.

これに対し比較品(4〜6)は、コイル巻き後において
既に耐電圧が低くなっている。これは、No4.6は絶
縁層が薄い為であり、No5は絶縁層は厚いが、ポーラ
スとなり、更にコイル巻きの際絶縁層にクランクが入っ
た為である。
On the other hand, the comparative products (4 to 6) already have low withstand voltage after coil winding. This is because No. 4.6 has a thin insulating layer, and No. 5 has a thick insulating layer but is porous, and furthermore, the insulating layer is cranked during coil winding.

加熱試験後は、No4.6は、11層が溶融してしまっ
た為、又No5は熱膨張差により各層界面に亀裂が生し
いずれも低い値となった。
After the heating test, No. 4.6 had 11 layers melted, and No. 5 had cracks at the interfaces of each layer due to the difference in thermal expansion, resulting in both low values.

以上マグネットコイルに適用した場合の実施例について
述べたが、本発明の耐熱電線は高層ビル等耐火性を・拐
求される配電線にも十分使用し得る事が実証されている
Although an embodiment in which the wire is applied to a magnet coil has been described above, it has been demonstrated that the heat-resistant wire of the present invention can also be sufficiently used for power distribution lines such as high-rise buildings where fire resistance is required.

〔効果] 以上述べたように本発明によれば、600 ’CC14
の高点に耐え、■つ細径サイズの電線に絶縁性を)lな
わずに成形d]能な耐熱電線が得られ、工業F顕著な効
果を奏する。
[Effect] As described above, according to the present invention, 600'CC14
A heat-resistant electric wire can be obtained that can withstand the high points of 1) and can be formed into small-diameter electric wires without sacrificing insulation properties, resulting in remarkable industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の耐熱電線の・一実施例を示す断面説
明図である。 l・・・導体、  2・・・バリヤー層、  3・・・
アルマイ1層、  4・・・セラミック層。 第1図
FIG. 1 is an explanatory cross-sectional view showing one embodiment of the heat-resistant electric wire of the present invention. l...Conductor, 2...Barrier layer, 3...
1 layer of aluminium, 4...ceramic layers. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)銅、銅合金又は銅基複合金属からなる導体上に、
バリヤー層を介して陽極酸化及び封孔処理を施したアル
ミニウム層を被覆し、更にその上にセラミック層を被覆
したことを特徴とする耐熱電線。
(1) On a conductor made of copper, copper alloy, or copper-based composite metal,
A heat-resistant electric wire comprising an aluminum layer coated with an anodized and sealed aluminum layer via a barrier layer, and further coated with a ceramic layer.
(2)銅、銅合金又は銅基複合金属からなる導体上に、
バリヤー層を介してアルミニウム層を被覆し、更にその
上にセラミック層を被覆して多層被覆導体となし、次い
でこの多層被覆導体を所望形状に成形したのち、当該導
体のアルミニウム層に陽極酸化及び封孔処理を施すこと
を特徴とする耐熱電線の製造方法。
(2) On a conductor made of copper, copper alloy or copper matrix composite metal,
A multi-layer coated conductor is obtained by coating an aluminum layer through a barrier layer and then a ceramic layer thereon.The multi-layer coated conductor is then formed into a desired shape, and then the aluminum layer of the conductor is anodized and sealed. A method for manufacturing a heat-resistant electric wire, which comprises performing hole treatment.
JP63332125A 1988-12-28 1988-12-28 Heat-proof electric wire and manufacture thereof Pending JPH02177212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63332125A JPH02177212A (en) 1988-12-28 1988-12-28 Heat-proof electric wire and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63332125A JPH02177212A (en) 1988-12-28 1988-12-28 Heat-proof electric wire and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02177212A true JPH02177212A (en) 1990-07-10

Family

ID=18251430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63332125A Pending JPH02177212A (en) 1988-12-28 1988-12-28 Heat-proof electric wire and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02177212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101503U (en) * 1990-02-06 1991-10-23
CN106876012A (en) * 2017-02-23 2017-06-20 海安县天星电工材料有限公司 High-temperature resistant enamelled wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155143A (en) * 1976-06-18 1977-12-23 Sumitomo Electric Industries Process for treating anodic oxidation coating of aluminum
JPS57105908A (en) * 1980-12-23 1982-07-01 Fujikura Ltd Insulated wire
JPS61165909A (en) * 1985-01-14 1986-07-26 レイケム・リミテツド Refractory covered article
JPS62217507A (en) * 1986-02-06 1987-09-25 アルカン・インタ−ナシヨナル・リミテツド Insulated aluminum wire and manufacture of the same
JPS6358706A (en) * 1986-08-29 1988-03-14 富士ゼロックス株式会社 Electric film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155143A (en) * 1976-06-18 1977-12-23 Sumitomo Electric Industries Process for treating anodic oxidation coating of aluminum
JPS57105908A (en) * 1980-12-23 1982-07-01 Fujikura Ltd Insulated wire
JPS61165909A (en) * 1985-01-14 1986-07-26 レイケム・リミテツド Refractory covered article
JPS62217507A (en) * 1986-02-06 1987-09-25 アルカン・インタ−ナシヨナル・リミテツド Insulated aluminum wire and manufacture of the same
JPS6358706A (en) * 1986-08-29 1988-03-14 富士ゼロックス株式会社 Electric film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101503U (en) * 1990-02-06 1991-10-23
CN106876012A (en) * 2017-02-23 2017-06-20 海安县天星电工材料有限公司 High-temperature resistant enamelled wire

Similar Documents

Publication Publication Date Title
US5436409A (en) Electrical conductor member such as a wire with an inorganic insulating coating
US3461523A (en) Method of producing a multilaminated tube
EP0188370A2 (en) Electrical wire with refractory coating
JPH02177212A (en) Heat-proof electric wire and manufacture thereof
JP2003301292A (en) Plated aluminum wire and enamel-coated plated aluminum wire
JP2000113730A (en) Compound lightweight ribbon wire, insulated compound lightweight ribbon wire, and manufacture thereof
JPS63192895A (en) Coating member
JPH10237674A (en) Plated aluminum electric wire, insulating plated aluminum electric wire and their production
RU2648996C2 (en) Method of forming insulated electric conductor
JP2004139832A (en) Nickel coating aluminum wire and nickel coating aluminum wire covered with insulating enamel
JPH02301909A (en) Inorganic insulated cable and its manufacture
JPH0656722B2 (en) High frequency wire
JP2737950B2 (en) Ceramic insulated wire
US6572916B1 (en) Coating method for use in a process for producing high-temperature superconductive strip conductors
JPH0963359A (en) Heat resisting electric wire
JP2562903B2 (en) Superconductor
JPH11111067A (en) Laminated insulated flat wire for high frequency
JP2749600B2 (en) Manufacturing method of heat-resistant insulated conductor
JPS6381709A (en) Superconductor
JPH10237673A (en) Plated aluminum electric wire, insulating plated aluminum electric wire and their production
JPH07282645A (en) Heat resistant insulated wire and its manufacture
JPH02183909A (en) Insulated wire
JPH02270217A (en) Insulated wire
EP0729157A1 (en) Electrical conductor member such as a wire with an inorganic insulating coating
JPH0223961B2 (en)