JP2749600B2 - Manufacturing method of heat-resistant insulated conductor - Google Patents

Manufacturing method of heat-resistant insulated conductor

Info

Publication number
JP2749600B2
JP2749600B2 JP28197888A JP28197888A JP2749600B2 JP 2749600 B2 JP2749600 B2 JP 2749600B2 JP 28197888 A JP28197888 A JP 28197888A JP 28197888 A JP28197888 A JP 28197888A JP 2749600 B2 JP2749600 B2 JP 2749600B2
Authority
JP
Japan
Prior art keywords
alloy
coated
outside
carbon
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28197888A
Other languages
Japanese (ja)
Other versions
JPH02129813A (en
Inventor
欽也 小川
勝比呂 室田
高敏 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP28197888A priority Critical patent/JP2749600B2/en
Publication of JPH02129813A publication Critical patent/JPH02129813A/en
Application granted granted Critical
Publication of JP2749600B2 publication Critical patent/JP2749600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は特に真空及び超真空雰囲気中で使用するのに
好適な、コイル巻線或いは信号用、電力用導体等に使用
される耐熱性絶縁被覆導体の製造方法に関するものであ
り、特に長尺品を連続的に製造し得る耐熱性絶縁被覆導
体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a heat-resistant insulation used for coil windings, signal conductors, power conductors, etc., which is particularly suitable for use in vacuum and ultra-vacuum atmospheres. The present invention relates to a method for producing a coated conductor, and more particularly to a method for producing a heat-resistant insulated conductor capable of continuously producing a long product.

〔従来の技術〕[Conventional technology]

最近、超高真空雰囲気における半導体等工業製品の製
造或いは粒子加速実験等の科学実験が数多く行なわれて
いる。而して、前記超高真空雰囲気を得る為の設備につ
いては、種々の改善が進められており、かなり高水準の
設備が実用化されているが、この超高真空雰囲気中で例
えば移動テーブルやロボット等を自動操作するのに必要
な小型モーター及び信号ケーブルや電力ケーブルに関し
ては、コイル巻線或いはこれらケーブルの絶縁被膜とし
て用いられているエナメル被膜等からガスが放出されて
充分な超高真空度が維持されなくなるという問題があっ
た。
2. Description of the Related Art In recent years, many scientific experiments such as production of industrial products such as semiconductors in an ultrahigh vacuum atmosphere or particle acceleration experiments have been conducted. Various improvements have been made to the equipment for obtaining the ultra-high vacuum atmosphere, and quite high-level equipment has been put into practical use. For small motors and signal cables and power cables necessary for automatic operation of robots, etc., gas is released from coil windings or enamel coatings used as insulating coatings for these cables, etc. Is no longer maintained.

又小型モーターに関しては、超高真空装置内では真空
度を維持する必要上からコイルの冷却が困難であり、そ
の為通電時の導体抵抗によって、コイル温度が上昇し
て、該コイルが焼損する場合が多く、実験上の制約が大
きかった。
Also, for a small motor, it is difficult to cool the coil in an ultra-high vacuum device because it is necessary to maintain the degree of vacuum. Therefore, when the coil temperature rises due to the conductor resistance during energization and the coil is burned out And the experimental constraints were great.

そこで、これら真空用絶縁導体からのガス放出量を少
なくし、且つその耐熱性を向上させる為、導電材として
の銅の周囲に、ガス放出量が少なく、且つ耐熱性を有し
ているAl2O3等の金属酸化物系セラミックスを湿式(電
気化学的方法)により被覆したものが提案されている。
Therefore, in order to reduce the amount of gas released from these vacuum insulated conductors and to improve the heat resistance, Al 2 which has a small amount of gas released and has heat resistance around copper as a conductive material. It has been proposed to coat a metal oxide ceramic such as O 3 by a wet method (electrochemical method).

然しながら、前記導電材の周囲に金属酸化物系セラミ
ックスを被覆した導体においては、前記絶縁被膜からの
ガスの放出は抑えられるものの、耐熱性及び絶縁特性の
点で問題があった。
However, in a conductor in which the metal oxide-based ceramic is coated around the conductive material, the release of gas from the insulating film is suppressed, but there is a problem in terms of heat resistance and insulating properties.

即ち、前記金属酸化物系セラミックスは一般に銅等の
導電材との接合性が悪くて、導電材の外側に直接セラミ
ックス(酸化物系)を被覆出来ない為、通常前記導電材
をAl等の異種金属で被覆した後、セラミックス(酸化物
系)を被覆しているが、通電時に導電材と異種金属間で
熱拡散を生じて合金層が形成される為、導体抵抗が高く
なって発熱量が多くなり、耐熱性の低下をきたしてい
た。
That is, the metal oxide-based ceramics generally have poor bondability with a conductive material such as copper and cannot be directly coated with ceramics (oxide-based) outside the conductive material. After coating with metal, it is coated with ceramic (oxide type). However, when conducting electricity, heat diffusion occurs between the conductive material and the dissimilar metal and an alloy layer is formed. The heat resistance decreased.

又これら従来のセラミックス被覆導体においては、前
記導電材が微量ながらセラミックス表面にも熱拡散する
現象が見られ、充分な絶縁破壊電圧が得られなかった。
Further, in these conventional ceramic-coated conductors, a phenomenon was observed in which the conductive material was thermally diffused on the ceramic surface even in a small amount, and a sufficient dielectric breakdown voltage was not obtained.

本発明者等はこの様な問題点を解決する為鋭意検討を
行なった結果、耐熱性及び絶縁特性が良好で、ガス放出
量も極めて少ない耐熱性絶縁被覆導体として、導電材と
しての銅又は銅合金或いは銀又は銀合金の周囲に、平均
粒径5μm以下の微粒子からなる厚さが0.05μm以上の
炭素又はボロンナイトライド層が被覆されており、該炭
素又はボロンナイトライド層の外側に厚さが1μm以上
のAl又はAl合金層が被覆されており、更に該Al又はAl合
金層の外側に厚さが0.1〜50μmの範囲内である金属酸
化物系セラミックスが被覆されている耐熱性絶縁被覆導
体を見出し、先に特許出願を行なった(特願昭63−1859
87号(特開平2−37616号)参照)。
The present inventors have conducted intensive studies to solve such problems, and as a result, as a heat-resistant insulation-coated conductor having good heat resistance and insulation properties and extremely low gas emission, copper or copper as a conductive material. An alloy or silver or a silver alloy is coated with a carbon or boron nitride layer having a thickness of 0.05 μm or more composed of fine particles having an average particle size of 5 μm or less, and a thickness outside the carbon or boron nitride layer. Is a heat-resistant insulating coating in which an Al or Al alloy layer having a thickness of 1 μm or more is coated, and a metal oxide ceramic having a thickness in the range of 0.1 to 50 μm is coated outside the Al or Al alloy layer. He discovered conductors and filed a patent application earlier (Japanese Patent Application No. 63-1859).
No. 87 (see JP-A-2-37616).

而して前記耐熱性絶縁被覆導体を製造するに際して、
銅又は銅合金或いは銀又は銀合金の周囲に炭素又はボロ
ンナイトライド層を被覆して得られた複合線の外側にAl
又はAl合金層を被覆する方法としては、前記複合線を所
定長さのAl又はAl合金中空ビレットとコンテナ内で一体
化させ、該複合線の外側に所定厚さのAl又はAl合金層を
押出被覆した後、所望寸法迄伸線加工する方法が従来と
られていた。
Thus, in producing the heat-resistant insulated conductor,
The outer surface of the composite wire obtained by coating a carbon or boron nitride layer around copper or copper alloy or silver or silver alloy
Alternatively, as a method of coating the Al alloy layer, the composite wire is integrated with a predetermined length of Al or Al alloy hollow billet in a container, and an Al or Al alloy layer having a predetermined thickness is extruded outside the composite wire. After coating, a method of wire drawing to a desired size has conventionally been adopted.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

然しながら、前記従来の複合線の外側に所定厚さのAl
又はAl合金層を押出被覆する方法においては、Al又はAl
合金素材として所定長さの中空ビレットをコンテナ内に
挿入して使用していたので、得られる押出材の長さは前
記中空ビレットの長さによって制約され、長尺品を得る
事が出来なかった。又一回押す毎にビレット交換の為に
押出作業が中断されて、連続的に押出加工する事が出来
なく、その為生産性が非常に悪かった。
However, the outside of the conventional composite wire has a predetermined thickness of Al.
Or in the method of extrusion coating the Al alloy layer, Al or Al
Since a hollow billet of a predetermined length was used by inserting it into the container as an alloy material, the length of the obtained extruded material was limited by the length of the hollow billet, and a long product could not be obtained. . In addition, each time it was pressed once, the extruding operation was interrupted due to billet exchange, and it was not possible to continuously extrude, so that the productivity was very poor.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は上記の点に鑑み鋭意検討の結果なされたもの
であり、その目的とするところは、長尺品を連続的に製
造し得る耐熱性絶縁被覆導体の製造方法を提供し、その
生産性を向上させる事である。
The present invention has been made as a result of intensive studies in view of the above points, and it is an object of the present invention to provide a method for manufacturing a heat-resistant insulated coated conductor capable of continuously manufacturing long products, and to improve the productivity. It is to improve.

即ち本発明は、導電材としての銅又は銅合金或いは銀
又は銀合金の周囲に、炭素又はボロンナイトライド層を
被覆した後、この様にして得られた複合線を内径が上記
複合線の外径よりも大きく、内部が不活性ガス又は還元
性ガスで置換された押出中のAl又はAl合金パイプ内に連
続的に供給し、次いでこの複合線を内包したAl又はAl合
金パイプを室温に冷却後、絞りダイスにより減面加工を
施して上記複合線の外面とAl又はAl合金パイプの内面と
を密着させた後、この様にして得られたAl又はAl合金被
覆導体を所定の線径迄伸線加工し、更にその外側に金属
酸化物系セラミックスを被覆する事を特徴とする導電材
としての銅又は銅合金或いは銀又は銀合金の周囲に、平
均粒径5μm以下の微粒子からなる厚さが0.05μm以上
の炭素又はボロンナイトライド層が被覆されており、該
炭素又はボロンナイトライド層の外側に厚さが1μm以
上のAl又はAl合金層が被覆されており、更に該Al又はAl
合金層の外側に厚さが0.1〜50μmの範囲内である金属
酸化物系セラミックスが被覆されている耐熱性絶縁被覆
導体の製造方法である。
That is, according to the present invention, after a copper or copper alloy or silver or silver alloy as a conductive material is coated with a carbon or boron nitride layer, the composite wire thus obtained has an inner diameter outside the composite wire. Continuously supply into the extruded Al or Al alloy pipe larger than the diameter and the inside is replaced with inert gas or reducing gas, then cool the Al or Al alloy pipe containing this composite wire to room temperature Thereafter, the outer surface of the composite wire and the inner surface of the Al or Al alloy pipe are brought into close contact with each other by performing surface reduction processing with a drawing die, and the Al or Al alloy coated conductor obtained in this manner is reduced to a predetermined wire diameter. The thickness of fine particles with an average particle size of 5 μm or less around copper or copper alloy or silver or silver alloy as a conductive material, characterized by being drawn and further coated with a metal oxide ceramic on the outside. With carbon or boron nitride of 0.05μm or more Layer is coated, carbon Motomata is Al or Al alloy layer thickness outside than 1μm boron nitride layer is coated, further said Al or Al
A method for producing a heat-resistant insulated conductor in which a metal oxide ceramic having a thickness in the range of 0.1 to 50 μm is coated on the outside of an alloy layer.

本発明方法において長尺のAl又はAl合金パイプを押出
す押出機としては、例えばラムによる押継押出機やコン
フォーム押出機等を用いる事が出来る。後者の押出機
は、回転する溝付ホイールとこの溝上に配置固定された
シューブロックとの間の摩擦力で材料を押出す方式のも
ので、特に小サイズの長尺材の押出に適している。
In the method of the present invention, as the extruder for extruding a long Al or Al alloy pipe, for example, a ram push extruder, a conform extruder, or the like can be used. The latter extruder extrudes a material by a frictional force between a rotating grooved wheel and a shoe block arranged and fixed on the groove, and is particularly suitable for extruding a small-sized long material. .

而して前記Al又はAl合金パイプの押出に際して、その
内面が銅等の導電材の周囲に炭素等を被覆して得られた
複合線の外面に密着する様にして押出を行なうと、Al又
はAl合金と複合線との間に働く摩擦力によって、前記導
電材周囲の被覆層が剥離する場合があるので、Al又はAl
合金パイプの内面と複合線の外面との間に所定のクリア
ランスがある様に押出加工し、しかる後冷間で絞りダイ
スによる減面加工を施して、両者を密着させる必要があ
る。尚前記押出時における導電材周囲の被覆層の剥離を
防止する為に必要なAl又はAl合金パイプと複合線との間
のクリアランスの大きさは、被覆層の導電材への密着
度、押出条件等によって異なってくるものであるが、通
常0.05mm程度以上ある事が望ましい。
Thus, when extruding the Al or Al alloy pipe, when extruding such that the inner surface is in close contact with the outer surface of a composite wire obtained by coating a conductive material such as copper with carbon or the like, Al or Due to the frictional force acting between the Al alloy and the composite wire, the coating layer around the conductive material may peel off, so that Al or Al
It is necessary to extrude such that there is a predetermined clearance between the inner surface of the alloy pipe and the outer surface of the composite wire, and then apply a reduced surface area with a drawing die in a cold state to bring the two into close contact. The size of the clearance between the Al or Al alloy pipe and the composite wire required to prevent the peeling of the coating layer around the conductive material during the extrusion is determined by the degree of adhesion of the coating layer to the conductive material and the extrusion conditions. Although it differs depending on the like, it is usually desirable that the thickness is about 0.05 mm or more.

〔実施例〕〔Example〕

次に本発明を実施例により更に具体的に説明する。 Next, the present invention will be described more specifically with reference to examples.

第1図は、本発明の耐熱性絶縁被覆導体の製造方法の
一実施例説明図、第2図は同実施例で用いられるコンフ
ォーム押出機の要部説明図である。図において、1は炭
素被覆銅線、2はAlパイプである。線径2.8mmφの銅線
の周囲に厚さ0.5μmの炭素を被覆して得られた炭素被
覆銅線1を、アンコイラー3から送出し、その表面を洗
浄機4により洗浄した後、上記押出機5の中空マンドレ
ル10から押出される内径3.8mmφ、外径5.0mmφのAlパイ
プ2中に、前記炭素被覆銅線1を供給し、このAlパイプ
2内部には図示していないガスパイプを通してArガスを
吹き込んで充満させ、この炭素被覆銅線1が内包された
Alパイプ2を冷却槽6で冷却した後、絞りダイス7によ
り当該Alパイプ2を外径が4.0mmφになる迄減面加工し
て、Alパイプ2の内面を炭素被覆銅線1の外面と密着さ
せ、Al被覆導体8としてコイラー9に巻き取った。
FIG. 1 is an explanatory view of an embodiment of a method for producing a heat-resistant insulated conductor of the present invention, and FIG. 2 is an explanatory view of a main part of a conform extruder used in the embodiment. In the figure, 1 is a carbon-coated copper wire, and 2 is an Al pipe. A carbon-coated copper wire 1 obtained by coating a copper wire having a wire diameter of 2.8 mmφ with a thickness of 0.5 μm of carbon is sent out from an uncoiler 3, and its surface is washed by a washing machine 4. The carbon-coated copper wire 1 is supplied into an Al pipe 2 having an inner diameter of 3.8 mmφ and an outer diameter of 5.0 mmφ extruded from a hollow mandrel 10 of No. 5 and Ar gas is passed through a gas pipe (not shown) inside the Al pipe 2. The carbon-coated copper wire 1 was enclosed by blowing and filling.
After cooling the Al pipe 2 in the cooling bath 6, the Al pipe 2 is reduced in surface area by the drawing die 7 until the outer diameter becomes 4.0 mmφ, and the inner surface of the Al pipe 2 is brought into close contact with the outer surface of the carbon-coated copper wire 1. Then, it was wound around a coiler 9 as an Al-coated conductor 8.

この様にして得られたAl被覆導体8を伸線加工して、
厚さ75μmのAl層を有する線径0.5mmφの線材とした。
しかる後、この様にして得られた線材の前記Al層の外側
に湿式(電気化学的方法)により、厚さ10μmのAl2O3
を被覆して、所望の耐熱性絶縁被覆導体を得た。
The thus obtained Al-coated conductor 8 is drawn and
A wire having a diameter of 0.5 mmφ and an Al layer having a thickness of 75 μm was used.
Thereafter, a 10 μm-thick Al 2 O 3 layer was wet-coated (electrochemical method) on the outside of the Al layer of the wire thus obtained.
To obtain a desired heat-resistant insulated conductor.

〔発明の効果〕〔The invention's effect〕

本発明方法によれば、コイル巻線或いは信号用、電力
用導体等に使用される耐熱性絶縁被覆導体の長尺品を連
続的に製造する事が可能であり、その生産性が向上する
等工業上顕著な効果を奏するものである。
According to the method of the present invention, it is possible to continuously manufacture long products of a heat-resistant insulation-coated conductor used for coil windings, signal conductors, power conductors, etc., thereby improving the productivity, etc. It has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の耐熱性絶縁被覆導体の製造方法の一
実施例説明図、第2図は同実施例で用いられるコンフォ
ーム押出機の要部説明図である。 1……炭素被覆銅線、2……Alパイプ、3……アンコイ
ラー、4……洗浄機、5……押出機、6……冷却槽、7
……絞りダイス、8……Al被覆導体、9……コイラー。
FIG. 1 is an explanatory view of an embodiment of a method for producing a heat-resistant insulated conductor of the present invention, and FIG. 2 is an explanatory view of a main part of a conform extruder used in the embodiment. 1 ... carbon coated copper wire, 2 ... Al pipe, 3 ... uncoiler, 4 ... washing machine, 5 ... extruder, 6 ... cooling tank, 7
… Drawing die, 8… Al-coated conductor, 9… coiler.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電材としての銅又は銅合金或いは銀又は
銀合金の周囲に、炭素又はボロンナイトライド層を被覆
した後、この様にして得られた複合線を内径が上記複合
線の外径よりも大きく、内部が不活性ガス又は還元性ガ
スで置換された押出中のAl又はAl合金パイプ内に連続的
に供給し、次いでこの複合線を内包したAl又はAl合金パ
イプを室温に冷却後、絞りダイスにより減面加工を施し
て上記複合線の外面とAl又はAl合金パイプの内面とを密
着させた後、この様にして得られたAl又はAl合金被覆導
体を所定の線径迄伸線加工し、更にその外側に金属酸化
物系セラミックスを被覆する事を特徴とする導電材とし
ての銅又は銅合金或いは銀又は銀合金の周囲に、平均粒
径5μm以下の微粒子からなる厚さが0.05μm以上の炭
素又はボロンナイトライド層が被覆されており、該炭素
又はボロンナイトライド層の外側に厚さが1μm以上の
Al又はAl合金層が被覆されており、更に該Al又はAl合金
層の外側に厚さが0.1〜50μmの範囲内である金属酸化
物系セラミックスが被覆されている耐熱性絶縁被覆導体
の製造方法。
(1) After coating a carbon or boron nitride layer around copper or a copper alloy or silver or a silver alloy as a conductive material, a composite wire obtained in this way has an inner diameter outside the composite wire. Continuously supply into the extruded Al or Al alloy pipe larger than the diameter and the inside is replaced with inert gas or reducing gas, then cool the Al or Al alloy pipe containing this composite wire to room temperature Thereafter, the outer surface of the composite wire and the inner surface of the Al or Al alloy pipe are brought into close contact with each other by performing surface reduction processing with a drawing die, and the Al or Al alloy coated conductor obtained in this manner is reduced to a predetermined wire diameter. The thickness of fine particles with an average particle size of 5 μm or less around copper or copper alloy or silver or silver alloy as a conductive material, characterized by being drawn and further coated with a metal oxide ceramic on the outside. Carbon or boron nitride having a particle size of 0.05 μm or more There are coated, carbon Motomata has more than 1μm thick on the outside of the boron nitride layer
A method for producing a heat-resistant insulated conductor in which an Al or Al alloy layer is coated, and a metal oxide ceramic having a thickness in the range of 0.1 to 50 μm is coated on the outside of the Al or Al alloy layer. .
JP28197888A 1988-11-08 1988-11-08 Manufacturing method of heat-resistant insulated conductor Expired - Lifetime JP2749600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28197888A JP2749600B2 (en) 1988-11-08 1988-11-08 Manufacturing method of heat-resistant insulated conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28197888A JP2749600B2 (en) 1988-11-08 1988-11-08 Manufacturing method of heat-resistant insulated conductor

Publications (2)

Publication Number Publication Date
JPH02129813A JPH02129813A (en) 1990-05-17
JP2749600B2 true JP2749600B2 (en) 1998-05-13

Family

ID=17646549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28197888A Expired - Lifetime JP2749600B2 (en) 1988-11-08 1988-11-08 Manufacturing method of heat-resistant insulated conductor

Country Status (1)

Country Link
JP (1) JP2749600B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100590211B1 (en) 2002-11-21 2006-06-15 가부시키가이샤 덴소 Magnetic impedance device, sensor apparatus using the same and method for manufacturing the same
JP6382726B2 (en) * 2015-01-08 2018-08-29 住友電気工業株式会社 Coil conductor wire and coil wire

Also Published As

Publication number Publication date
JPH02129813A (en) 1990-05-17

Similar Documents

Publication Publication Date Title
US20090194316A1 (en) Wire-in-channel superconductor
US3890700A (en) Method for the manufacture of a composite wire with an aluminum core and niobium cladding
US3243871A (en) Method of making ductile superconductors
JPH04248207A (en) Complex conductor and manufacture thereof
JP2749600B2 (en) Manufacturing method of heat-resistant insulated conductor
US3807041A (en) Method of fabricating a composite superconductor
US4815309A (en) Method of producing an electrical conductor
JPS63124314A (en) Manufacture of electric contact
JP2000113730A (en) Compound lightweight ribbon wire, insulated compound lightweight ribbon wire, and manufacture thereof
CN112562914A (en) Method for preparing round wire of REBCO stacked conductor and rolling die
JPH10302559A (en) Reducing coupling method for matrix htc superconducting multi-stranded wire consisting of silver as main component, and multi-stranded wire obtained thereby
JP2604379B2 (en) Manufacturing method of ceramic superconducting wire
JPH02301909A (en) Inorganic insulated cable and its manufacture
JPS63284720A (en) Superconducting wire
JP2677831B2 (en) Heat resistant conductor for vacuum
JPS6262405B2 (en)
JPS6328807Y2 (en)
JP2001219318A (en) Electrode line for wire discharge machining and method of manufacturing the electrode line
JPH03246821A (en) Superconducting strand wire
JPS6234621A (en) Manufacture of eccentric composite metallic wire
JPS6381708A (en) Superconductor
JPH01254335A (en) Manufacture of aluminum stabilized superconducting wire rod
JP2004142079A (en) Method for manufacturing electrode wire for wire electric discharge machining, and electrode wire for wire electric discharge machining manufactured by using method
JPH01134818A (en) Manufacture of aluminum stabilized superconductive wire material
JPH01144524A (en) Manufacture of ceramic-based superconductive wire

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090220

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11